1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs several transformations to transform natural loops into a 10 // simpler form, which makes subsequent analyses and transformations simpler and 11 // more effective. 12 // 13 // Loop pre-header insertion guarantees that there is a single, non-critical 14 // entry edge from outside of the loop to the loop header. This simplifies a 15 // number of analyses and transformations, such as LICM. 16 // 17 // Loop exit-block insertion guarantees that all exit blocks from the loop 18 // (blocks which are outside of the loop that have predecessors inside of the 19 // loop) only have predecessors from inside of the loop (and are thus dominated 20 // by the loop header). This simplifies transformations such as store-sinking 21 // that are built into LICM. 22 // 23 // This pass also guarantees that loops will have exactly one backedge. 24 // 25 // Indirectbr instructions introduce several complications. If the loop 26 // contains or is entered by an indirectbr instruction, it may not be possible 27 // to transform the loop and make these guarantees. Client code should check 28 // that these conditions are true before relying on them. 29 // 30 // Similar complications arise from callbr instructions, particularly in 31 // asm-goto where blockaddress expressions are used. 32 // 33 // Note that the simplifycfg pass will clean up blocks which are split out but 34 // end up being unnecessary, so usage of this pass should not pessimize 35 // generated code. 36 // 37 // This pass obviously modifies the CFG, but updates loop information and 38 // dominator information. 39 // 40 //===----------------------------------------------------------------------===// 41 42 #include "llvm/Transforms/Utils/LoopSimplify.h" 43 #include "llvm/ADT/DepthFirstIterator.h" 44 #include "llvm/ADT/SetOperations.h" 45 #include "llvm/ADT/SetVector.h" 46 #include "llvm/ADT/SmallVector.h" 47 #include "llvm/ADT/Statistic.h" 48 #include "llvm/Analysis/AliasAnalysis.h" 49 #include "llvm/Analysis/AssumptionCache.h" 50 #include "llvm/Analysis/BasicAliasAnalysis.h" 51 #include "llvm/Analysis/BranchProbabilityInfo.h" 52 #include "llvm/Analysis/DependenceAnalysis.h" 53 #include "llvm/Analysis/GlobalsModRef.h" 54 #include "llvm/Analysis/InstructionSimplify.h" 55 #include "llvm/Analysis/LoopInfo.h" 56 #include "llvm/Analysis/MemorySSA.h" 57 #include "llvm/Analysis/MemorySSAUpdater.h" 58 #include "llvm/Analysis/ScalarEvolution.h" 59 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 60 #include "llvm/IR/CFG.h" 61 #include "llvm/IR/Constants.h" 62 #include "llvm/IR/DataLayout.h" 63 #include "llvm/IR/Dominators.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/Instructions.h" 66 #include "llvm/IR/IntrinsicInst.h" 67 #include "llvm/IR/LLVMContext.h" 68 #include "llvm/IR/Module.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/InitializePasses.h" 71 #include "llvm/Support/Debug.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Transforms/Utils.h" 74 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 75 #include "llvm/Transforms/Utils/Local.h" 76 #include "llvm/Transforms/Utils/LoopUtils.h" 77 using namespace llvm; 78 79 #define DEBUG_TYPE "loop-simplify" 80 81 STATISTIC(NumNested , "Number of nested loops split out"); 82 83 // If the block isn't already, move the new block to right after some 'outside 84 // block' block. This prevents the preheader from being placed inside the loop 85 // body, e.g. when the loop hasn't been rotated. 86 static void placeSplitBlockCarefully(BasicBlock *NewBB, 87 SmallVectorImpl<BasicBlock *> &SplitPreds, 88 Loop *L) { 89 // Check to see if NewBB is already well placed. 90 Function::iterator BBI = --NewBB->getIterator(); 91 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 92 if (&*BBI == SplitPreds[i]) 93 return; 94 } 95 96 // If it isn't already after an outside block, move it after one. This is 97 // always good as it makes the uncond branch from the outside block into a 98 // fall-through. 99 100 // Figure out *which* outside block to put this after. Prefer an outside 101 // block that neighbors a BB actually in the loop. 102 BasicBlock *FoundBB = nullptr; 103 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 104 Function::iterator BBI = SplitPreds[i]->getIterator(); 105 if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) { 106 FoundBB = SplitPreds[i]; 107 break; 108 } 109 } 110 111 // If our heuristic for a *good* bb to place this after doesn't find 112 // anything, just pick something. It's likely better than leaving it within 113 // the loop. 114 if (!FoundBB) 115 FoundBB = SplitPreds[0]; 116 NewBB->moveAfter(FoundBB); 117 } 118 119 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a 120 /// preheader, this method is called to insert one. This method has two phases: 121 /// preheader insertion and analysis updating. 122 /// 123 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT, 124 LoopInfo *LI, MemorySSAUpdater *MSSAU, 125 bool PreserveLCSSA) { 126 BasicBlock *Header = L->getHeader(); 127 128 // Compute the set of predecessors of the loop that are not in the loop. 129 SmallVector<BasicBlock*, 8> OutsideBlocks; 130 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); 131 PI != PE; ++PI) { 132 BasicBlock *P = *PI; 133 if (!L->contains(P)) { // Coming in from outside the loop? 134 // If the loop is branched to from an indirect terminator, we won't 135 // be able to fully transform the loop, because it prohibits 136 // edge splitting. 137 if (P->getTerminator()->isIndirectTerminator()) 138 return nullptr; 139 140 // Keep track of it. 141 OutsideBlocks.push_back(P); 142 } 143 } 144 145 // Split out the loop pre-header. 146 BasicBlock *PreheaderBB; 147 PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT, 148 LI, MSSAU, PreserveLCSSA); 149 if (!PreheaderBB) 150 return nullptr; 151 152 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header " 153 << PreheaderBB->getName() << "\n"); 154 155 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 156 // code layout too horribly. 157 placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L); 158 159 return PreheaderBB; 160 } 161 162 /// Add the specified block, and all of its predecessors, to the specified set, 163 /// if it's not already in there. Stop predecessor traversal when we reach 164 /// StopBlock. 165 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, 166 SmallPtrSetImpl<BasicBlock *> &Blocks) { 167 SmallVector<BasicBlock *, 8> Worklist; 168 Worklist.push_back(InputBB); 169 do { 170 BasicBlock *BB = Worklist.pop_back_val(); 171 if (Blocks.insert(BB).second && BB != StopBlock) 172 // If BB is not already processed and it is not a stop block then 173 // insert its predecessor in the work list 174 for (BasicBlock *WBB : predecessors(BB)) { 175 Worklist.push_back(WBB); 176 } 177 } while (!Worklist.empty()); 178 } 179 180 /// The first part of loop-nestification is to find a PHI node that tells 181 /// us how to partition the loops. 182 static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT, 183 AssumptionCache *AC) { 184 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 185 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { 186 PHINode *PN = cast<PHINode>(I); 187 ++I; 188 if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) { 189 // This is a degenerate PHI already, don't modify it! 190 PN->replaceAllUsesWith(V); 191 PN->eraseFromParent(); 192 continue; 193 } 194 195 // Scan this PHI node looking for a use of the PHI node by itself. 196 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 197 if (PN->getIncomingValue(i) == PN && 198 L->contains(PN->getIncomingBlock(i))) 199 // We found something tasty to remove. 200 return PN; 201 } 202 return nullptr; 203 } 204 205 /// If this loop has multiple backedges, try to pull one of them out into 206 /// a nested loop. 207 /// 208 /// This is important for code that looks like 209 /// this: 210 /// 211 /// Loop: 212 /// ... 213 /// br cond, Loop, Next 214 /// ... 215 /// br cond2, Loop, Out 216 /// 217 /// To identify this common case, we look at the PHI nodes in the header of the 218 /// loop. PHI nodes with unchanging values on one backedge correspond to values 219 /// that change in the "outer" loop, but not in the "inner" loop. 220 /// 221 /// If we are able to separate out a loop, return the new outer loop that was 222 /// created. 223 /// 224 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader, 225 DominatorTree *DT, LoopInfo *LI, 226 ScalarEvolution *SE, bool PreserveLCSSA, 227 AssumptionCache *AC, MemorySSAUpdater *MSSAU) { 228 // Don't try to separate loops without a preheader. 229 if (!Preheader) 230 return nullptr; 231 232 // Treat the presence of convergent functions conservatively. The 233 // transformation is invalid if calls to certain convergent 234 // functions (like an AMDGPU barrier) get included in the resulting 235 // inner loop. But blocks meant for the inner loop will be 236 // identified later at a point where it's too late to abort the 237 // transformation. Also, the convergent attribute is not really 238 // sufficient to express the semantics of functions that are 239 // affected by this transformation. So we choose to back off if such 240 // a function call is present until a better alternative becomes 241 // available. This is similar to the conservative treatment of 242 // convergent function calls in GVNHoist and JumpThreading. 243 for (auto BB : L->blocks()) { 244 for (auto &II : *BB) { 245 if (auto CI = dyn_cast<CallBase>(&II)) { 246 if (CI->isConvergent()) { 247 return nullptr; 248 } 249 } 250 } 251 } 252 253 // The header is not a landing pad; preheader insertion should ensure this. 254 BasicBlock *Header = L->getHeader(); 255 assert(!Header->isEHPad() && "Can't insert backedge to EH pad"); 256 257 PHINode *PN = findPHIToPartitionLoops(L, DT, AC); 258 if (!PN) return nullptr; // No known way to partition. 259 260 // Pull out all predecessors that have varying values in the loop. This 261 // handles the case when a PHI node has multiple instances of itself as 262 // arguments. 263 SmallVector<BasicBlock*, 8> OuterLoopPreds; 264 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 265 if (PN->getIncomingValue(i) != PN || 266 !L->contains(PN->getIncomingBlock(i))) { 267 // We can't split indirect control flow edges. 268 if (PN->getIncomingBlock(i)->getTerminator()->isIndirectTerminator()) 269 return nullptr; 270 OuterLoopPreds.push_back(PN->getIncomingBlock(i)); 271 } 272 } 273 LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n"); 274 275 // If ScalarEvolution is around and knows anything about values in 276 // this loop, tell it to forget them, because we're about to 277 // substantially change it. 278 if (SE) 279 SE->forgetLoop(L); 280 281 BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", 282 DT, LI, MSSAU, PreserveLCSSA); 283 284 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 285 // code layout too horribly. 286 placeSplitBlockCarefully(NewBB, OuterLoopPreds, L); 287 288 // Create the new outer loop. 289 Loop *NewOuter = LI->AllocateLoop(); 290 291 // Change the parent loop to use the outer loop as its child now. 292 if (Loop *Parent = L->getParentLoop()) 293 Parent->replaceChildLoopWith(L, NewOuter); 294 else 295 LI->changeTopLevelLoop(L, NewOuter); 296 297 // L is now a subloop of our outer loop. 298 NewOuter->addChildLoop(L); 299 300 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 301 I != E; ++I) 302 NewOuter->addBlockEntry(*I); 303 304 // Now reset the header in L, which had been moved by 305 // SplitBlockPredecessors for the outer loop. 306 L->moveToHeader(Header); 307 308 // Determine which blocks should stay in L and which should be moved out to 309 // the Outer loop now. 310 SmallPtrSet<BasicBlock *, 4> BlocksInL; 311 for (BasicBlock *P : predecessors(Header)) { 312 if (DT->dominates(Header, P)) 313 addBlockAndPredsToSet(P, Header, BlocksInL); 314 } 315 316 // Scan all of the loop children of L, moving them to OuterLoop if they are 317 // not part of the inner loop. 318 const std::vector<Loop*> &SubLoops = L->getSubLoops(); 319 for (size_t I = 0; I != SubLoops.size(); ) 320 if (BlocksInL.count(SubLoops[I]->getHeader())) 321 ++I; // Loop remains in L 322 else 323 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); 324 325 SmallVector<BasicBlock *, 8> OuterLoopBlocks; 326 OuterLoopBlocks.push_back(NewBB); 327 // Now that we know which blocks are in L and which need to be moved to 328 // OuterLoop, move any blocks that need it. 329 for (unsigned i = 0; i != L->getBlocks().size(); ++i) { 330 BasicBlock *BB = L->getBlocks()[i]; 331 if (!BlocksInL.count(BB)) { 332 // Move this block to the parent, updating the exit blocks sets 333 L->removeBlockFromLoop(BB); 334 if ((*LI)[BB] == L) { 335 LI->changeLoopFor(BB, NewOuter); 336 OuterLoopBlocks.push_back(BB); 337 } 338 --i; 339 } 340 } 341 342 // Split edges to exit blocks from the inner loop, if they emerged in the 343 // process of separating the outer one. 344 formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA); 345 346 if (PreserveLCSSA) { 347 // Fix LCSSA form for L. Some values, which previously were only used inside 348 // L, can now be used in NewOuter loop. We need to insert phi-nodes for them 349 // in corresponding exit blocks. 350 // We don't need to form LCSSA recursively, because there cannot be uses 351 // inside a newly created loop of defs from inner loops as those would 352 // already be a use of an LCSSA phi node. 353 formLCSSA(*L, *DT, LI, SE); 354 355 assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) && 356 "LCSSA is broken after separating nested loops!"); 357 } 358 359 return NewOuter; 360 } 361 362 /// This method is called when the specified loop has more than one 363 /// backedge in it. 364 /// 365 /// If this occurs, revector all of these backedges to target a new basic block 366 /// and have that block branch to the loop header. This ensures that loops 367 /// have exactly one backedge. 368 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader, 369 DominatorTree *DT, LoopInfo *LI, 370 MemorySSAUpdater *MSSAU) { 371 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); 372 373 // Get information about the loop 374 BasicBlock *Header = L->getHeader(); 375 Function *F = Header->getParent(); 376 377 // Unique backedge insertion currently depends on having a preheader. 378 if (!Preheader) 379 return nullptr; 380 381 // The header is not an EH pad; preheader insertion should ensure this. 382 assert(!Header->isEHPad() && "Can't insert backedge to EH pad"); 383 384 // Figure out which basic blocks contain back-edges to the loop header. 385 std::vector<BasicBlock*> BackedgeBlocks; 386 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){ 387 BasicBlock *P = *I; 388 389 // Indirect edges cannot be split, so we must fail if we find one. 390 if (P->getTerminator()->isIndirectTerminator()) 391 return nullptr; 392 393 if (P != Preheader) BackedgeBlocks.push_back(P); 394 } 395 396 // Create and insert the new backedge block... 397 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), 398 Header->getName() + ".backedge", F); 399 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); 400 BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc()); 401 402 LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block " 403 << BEBlock->getName() << "\n"); 404 405 // Move the new backedge block to right after the last backedge block. 406 Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator(); 407 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); 408 409 // Now that the block has been inserted into the function, create PHI nodes in 410 // the backedge block which correspond to any PHI nodes in the header block. 411 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 412 PHINode *PN = cast<PHINode>(I); 413 PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(), 414 PN->getName()+".be", BETerminator); 415 416 // Loop over the PHI node, moving all entries except the one for the 417 // preheader over to the new PHI node. 418 unsigned PreheaderIdx = ~0U; 419 bool HasUniqueIncomingValue = true; 420 Value *UniqueValue = nullptr; 421 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 422 BasicBlock *IBB = PN->getIncomingBlock(i); 423 Value *IV = PN->getIncomingValue(i); 424 if (IBB == Preheader) { 425 PreheaderIdx = i; 426 } else { 427 NewPN->addIncoming(IV, IBB); 428 if (HasUniqueIncomingValue) { 429 if (!UniqueValue) 430 UniqueValue = IV; 431 else if (UniqueValue != IV) 432 HasUniqueIncomingValue = false; 433 } 434 } 435 } 436 437 // Delete all of the incoming values from the old PN except the preheader's 438 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); 439 if (PreheaderIdx != 0) { 440 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); 441 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); 442 } 443 // Nuke all entries except the zero'th. 444 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) 445 PN->removeIncomingValue(e-i, false); 446 447 // Finally, add the newly constructed PHI node as the entry for the BEBlock. 448 PN->addIncoming(NewPN, BEBlock); 449 450 // As an optimization, if all incoming values in the new PhiNode (which is a 451 // subset of the incoming values of the old PHI node) have the same value, 452 // eliminate the PHI Node. 453 if (HasUniqueIncomingValue) { 454 NewPN->replaceAllUsesWith(UniqueValue); 455 BEBlock->getInstList().erase(NewPN); 456 } 457 } 458 459 // Now that all of the PHI nodes have been inserted and adjusted, modify the 460 // backedge blocks to jump to the BEBlock instead of the header. 461 // If one of the backedges has llvm.loop metadata attached, we remove 462 // it from the backedge and add it to BEBlock. 463 unsigned LoopMDKind = BEBlock->getContext().getMDKindID("llvm.loop"); 464 MDNode *LoopMD = nullptr; 465 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { 466 Instruction *TI = BackedgeBlocks[i]->getTerminator(); 467 if (!LoopMD) 468 LoopMD = TI->getMetadata(LoopMDKind); 469 TI->setMetadata(LoopMDKind, nullptr); 470 TI->replaceSuccessorWith(Header, BEBlock); 471 } 472 BEBlock->getTerminator()->setMetadata(LoopMDKind, LoopMD); 473 474 //===--- Update all analyses which we must preserve now -----------------===// 475 476 // Update Loop Information - we know that this block is now in the current 477 // loop and all parent loops. 478 L->addBasicBlockToLoop(BEBlock, *LI); 479 480 // Update dominator information 481 DT->splitBlock(BEBlock); 482 483 if (MSSAU) 484 MSSAU->updatePhisWhenInsertingUniqueBackedgeBlock(Header, Preheader, 485 BEBlock); 486 487 return BEBlock; 488 } 489 490 /// Simplify one loop and queue further loops for simplification. 491 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist, 492 DominatorTree *DT, LoopInfo *LI, 493 ScalarEvolution *SE, AssumptionCache *AC, 494 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 495 bool Changed = false; 496 if (MSSAU && VerifyMemorySSA) 497 MSSAU->getMemorySSA()->verifyMemorySSA(); 498 499 ReprocessLoop: 500 501 // Check to see that no blocks (other than the header) in this loop have 502 // predecessors that are not in the loop. This is not valid for natural 503 // loops, but can occur if the blocks are unreachable. Since they are 504 // unreachable we can just shamelessly delete those CFG edges! 505 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 506 BB != E; ++BB) { 507 if (*BB == L->getHeader()) continue; 508 509 SmallPtrSet<BasicBlock*, 4> BadPreds; 510 for (pred_iterator PI = pred_begin(*BB), 511 PE = pred_end(*BB); PI != PE; ++PI) { 512 BasicBlock *P = *PI; 513 if (!L->contains(P)) 514 BadPreds.insert(P); 515 } 516 517 // Delete each unique out-of-loop (and thus dead) predecessor. 518 for (BasicBlock *P : BadPreds) { 519 520 LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor " 521 << P->getName() << "\n"); 522 523 // Zap the dead pred's terminator and replace it with unreachable. 524 Instruction *TI = P->getTerminator(); 525 changeToUnreachable(TI, /*UseLLVMTrap=*/false, PreserveLCSSA, 526 /*DTU=*/nullptr, MSSAU); 527 Changed = true; 528 } 529 } 530 531 if (MSSAU && VerifyMemorySSA) 532 MSSAU->getMemorySSA()->verifyMemorySSA(); 533 534 // If there are exiting blocks with branches on undef, resolve the undef in 535 // the direction which will exit the loop. This will help simplify loop 536 // trip count computations. 537 SmallVector<BasicBlock*, 8> ExitingBlocks; 538 L->getExitingBlocks(ExitingBlocks); 539 for (BasicBlock *ExitingBlock : ExitingBlocks) 540 if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator())) 541 if (BI->isConditional()) { 542 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) { 543 544 LLVM_DEBUG(dbgs() 545 << "LoopSimplify: Resolving \"br i1 undef\" to exit in " 546 << ExitingBlock->getName() << "\n"); 547 548 BI->setCondition(ConstantInt::get(Cond->getType(), 549 !L->contains(BI->getSuccessor(0)))); 550 551 Changed = true; 552 } 553 } 554 555 // Does the loop already have a preheader? If so, don't insert one. 556 BasicBlock *Preheader = L->getLoopPreheader(); 557 if (!Preheader) { 558 Preheader = InsertPreheaderForLoop(L, DT, LI, MSSAU, PreserveLCSSA); 559 if (Preheader) 560 Changed = true; 561 } 562 563 // Next, check to make sure that all exit nodes of the loop only have 564 // predecessors that are inside of the loop. This check guarantees that the 565 // loop preheader/header will dominate the exit blocks. If the exit block has 566 // predecessors from outside of the loop, split the edge now. 567 if (formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA)) 568 Changed = true; 569 570 if (MSSAU && VerifyMemorySSA) 571 MSSAU->getMemorySSA()->verifyMemorySSA(); 572 573 // If the header has more than two predecessors at this point (from the 574 // preheader and from multiple backedges), we must adjust the loop. 575 BasicBlock *LoopLatch = L->getLoopLatch(); 576 if (!LoopLatch) { 577 // If this is really a nested loop, rip it out into a child loop. Don't do 578 // this for loops with a giant number of backedges, just factor them into a 579 // common backedge instead. 580 if (L->getNumBackEdges() < 8) { 581 if (Loop *OuterL = separateNestedLoop(L, Preheader, DT, LI, SE, 582 PreserveLCSSA, AC, MSSAU)) { 583 ++NumNested; 584 // Enqueue the outer loop as it should be processed next in our 585 // depth-first nest walk. 586 Worklist.push_back(OuterL); 587 588 // This is a big restructuring change, reprocess the whole loop. 589 Changed = true; 590 // GCC doesn't tail recursion eliminate this. 591 // FIXME: It isn't clear we can't rely on LLVM to TRE this. 592 goto ReprocessLoop; 593 } 594 } 595 596 // If we either couldn't, or didn't want to, identify nesting of the loops, 597 // insert a new block that all backedges target, then make it jump to the 598 // loop header. 599 LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI, MSSAU); 600 if (LoopLatch) 601 Changed = true; 602 } 603 604 if (MSSAU && VerifyMemorySSA) 605 MSSAU->getMemorySSA()->verifyMemorySSA(); 606 607 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 608 609 // Scan over the PHI nodes in the loop header. Since they now have only two 610 // incoming values (the loop is canonicalized), we may have simplified the PHI 611 // down to 'X = phi [X, Y]', which should be replaced with 'Y'. 612 PHINode *PN; 613 for (BasicBlock::iterator I = L->getHeader()->begin(); 614 (PN = dyn_cast<PHINode>(I++)); ) 615 if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) { 616 if (SE) SE->forgetValue(PN); 617 if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) { 618 PN->replaceAllUsesWith(V); 619 PN->eraseFromParent(); 620 Changed = true; 621 } 622 } 623 624 // If this loop has multiple exits and the exits all go to the same 625 // block, attempt to merge the exits. This helps several passes, such 626 // as LoopRotation, which do not support loops with multiple exits. 627 // SimplifyCFG also does this (and this code uses the same utility 628 // function), however this code is loop-aware, where SimplifyCFG is 629 // not. That gives it the advantage of being able to hoist 630 // loop-invariant instructions out of the way to open up more 631 // opportunities, and the disadvantage of having the responsibility 632 // to preserve dominator information. 633 auto HasUniqueExitBlock = [&]() { 634 BasicBlock *UniqueExit = nullptr; 635 for (auto *ExitingBB : ExitingBlocks) 636 for (auto *SuccBB : successors(ExitingBB)) { 637 if (L->contains(SuccBB)) 638 continue; 639 640 if (!UniqueExit) 641 UniqueExit = SuccBB; 642 else if (UniqueExit != SuccBB) 643 return false; 644 } 645 646 return true; 647 }; 648 if (HasUniqueExitBlock()) { 649 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 650 BasicBlock *ExitingBlock = ExitingBlocks[i]; 651 if (!ExitingBlock->getSinglePredecessor()) continue; 652 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 653 if (!BI || !BI->isConditional()) continue; 654 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 655 if (!CI || CI->getParent() != ExitingBlock) continue; 656 657 // Attempt to hoist out all instructions except for the 658 // comparison and the branch. 659 bool AllInvariant = true; 660 bool AnyInvariant = false; 661 for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) { 662 Instruction *Inst = &*I++; 663 if (Inst == CI) 664 continue; 665 if (!L->makeLoopInvariant( 666 Inst, AnyInvariant, 667 Preheader ? Preheader->getTerminator() : nullptr, MSSAU)) { 668 AllInvariant = false; 669 break; 670 } 671 } 672 if (AnyInvariant) { 673 Changed = true; 674 // The loop disposition of all SCEV expressions that depend on any 675 // hoisted values have also changed. 676 if (SE) 677 SE->forgetLoopDispositions(L); 678 } 679 if (!AllInvariant) continue; 680 681 // The block has now been cleared of all instructions except for 682 // a comparison and a conditional branch. SimplifyCFG may be able 683 // to fold it now. 684 if (!FoldBranchToCommonDest(BI, MSSAU)) 685 continue; 686 687 // Success. The block is now dead, so remove it from the loop, 688 // update the dominator tree and delete it. 689 LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block " 690 << ExitingBlock->getName() << "\n"); 691 692 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock)); 693 Changed = true; 694 LI->removeBlock(ExitingBlock); 695 696 DomTreeNode *Node = DT->getNode(ExitingBlock); 697 while (!Node->isLeaf()) { 698 DomTreeNode *Child = Node->back(); 699 DT->changeImmediateDominator(Child, Node->getIDom()); 700 } 701 DT->eraseNode(ExitingBlock); 702 if (MSSAU) { 703 SmallSetVector<BasicBlock *, 8> ExitBlockSet; 704 ExitBlockSet.insert(ExitingBlock); 705 MSSAU->removeBlocks(ExitBlockSet); 706 } 707 708 BI->getSuccessor(0)->removePredecessor( 709 ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA); 710 BI->getSuccessor(1)->removePredecessor( 711 ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA); 712 ExitingBlock->eraseFromParent(); 713 } 714 } 715 716 // Changing exit conditions for blocks may affect exit counts of this loop and 717 // any of its paretns, so we must invalidate the entire subtree if we've made 718 // any changes. 719 if (Changed && SE) 720 SE->forgetTopmostLoop(L); 721 722 if (MSSAU && VerifyMemorySSA) 723 MSSAU->getMemorySSA()->verifyMemorySSA(); 724 725 return Changed; 726 } 727 728 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, 729 ScalarEvolution *SE, AssumptionCache *AC, 730 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 731 bool Changed = false; 732 733 #ifndef NDEBUG 734 // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA 735 // form. 736 if (PreserveLCSSA) { 737 assert(DT && "DT not available."); 738 assert(LI && "LI not available."); 739 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 740 "Requested to preserve LCSSA, but it's already broken."); 741 } 742 #endif 743 744 // Worklist maintains our depth-first queue of loops in this nest to process. 745 SmallVector<Loop *, 4> Worklist; 746 Worklist.push_back(L); 747 748 // Walk the worklist from front to back, pushing newly found sub loops onto 749 // the back. This will let us process loops from back to front in depth-first 750 // order. We can use this simple process because loops form a tree. 751 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 752 Loop *L2 = Worklist[Idx]; 753 Worklist.append(L2->begin(), L2->end()); 754 } 755 756 while (!Worklist.empty()) 757 Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE, 758 AC, MSSAU, PreserveLCSSA); 759 760 return Changed; 761 } 762 763 namespace { 764 struct LoopSimplify : public FunctionPass { 765 static char ID; // Pass identification, replacement for typeid 766 LoopSimplify() : FunctionPass(ID) { 767 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry()); 768 } 769 770 bool runOnFunction(Function &F) override; 771 772 void getAnalysisUsage(AnalysisUsage &AU) const override { 773 AU.addRequired<AssumptionCacheTracker>(); 774 775 // We need loop information to identify the loops... 776 AU.addRequired<DominatorTreeWrapperPass>(); 777 AU.addPreserved<DominatorTreeWrapperPass>(); 778 779 AU.addRequired<LoopInfoWrapperPass>(); 780 AU.addPreserved<LoopInfoWrapperPass>(); 781 782 AU.addPreserved<BasicAAWrapperPass>(); 783 AU.addPreserved<AAResultsWrapperPass>(); 784 AU.addPreserved<GlobalsAAWrapperPass>(); 785 AU.addPreserved<ScalarEvolutionWrapperPass>(); 786 AU.addPreserved<SCEVAAWrapperPass>(); 787 AU.addPreservedID(LCSSAID); 788 AU.addPreserved<DependenceAnalysisWrapperPass>(); 789 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. 790 AU.addPreserved<BranchProbabilityInfoWrapperPass>(); 791 if (EnableMSSALoopDependency) 792 AU.addPreserved<MemorySSAWrapperPass>(); 793 } 794 795 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. 796 void verifyAnalysis() const override; 797 }; 798 } 799 800 char LoopSimplify::ID = 0; 801 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify", 802 "Canonicalize natural loops", false, false) 803 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 804 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 805 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 806 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify", 807 "Canonicalize natural loops", false, false) 808 809 // Publicly exposed interface to pass... 810 char &llvm::LoopSimplifyID = LoopSimplify::ID; 811 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } 812 813 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do 814 /// it in any convenient order) inserting preheaders... 815 /// 816 bool LoopSimplify::runOnFunction(Function &F) { 817 bool Changed = false; 818 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 819 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 820 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 821 ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr; 822 AssumptionCache *AC = 823 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 824 MemorySSA *MSSA = nullptr; 825 std::unique_ptr<MemorySSAUpdater> MSSAU; 826 if (EnableMSSALoopDependency) { 827 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 828 if (MSSAAnalysis) { 829 MSSA = &MSSAAnalysis->getMSSA(); 830 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 831 } 832 } 833 834 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 835 836 // Simplify each loop nest in the function. 837 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 838 Changed |= simplifyLoop(*I, DT, LI, SE, AC, MSSAU.get(), PreserveLCSSA); 839 840 #ifndef NDEBUG 841 if (PreserveLCSSA) { 842 bool InLCSSA = all_of( 843 *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); }); 844 assert(InLCSSA && "LCSSA is broken after loop-simplify."); 845 } 846 #endif 847 return Changed; 848 } 849 850 PreservedAnalyses LoopSimplifyPass::run(Function &F, 851 FunctionAnalysisManager &AM) { 852 bool Changed = false; 853 LoopInfo *LI = &AM.getResult<LoopAnalysis>(F); 854 DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F); 855 ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F); 856 AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F); 857 auto *MSSAAnalysis = AM.getCachedResult<MemorySSAAnalysis>(F); 858 std::unique_ptr<MemorySSAUpdater> MSSAU; 859 if (MSSAAnalysis) { 860 auto *MSSA = &MSSAAnalysis->getMSSA(); 861 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 862 } 863 864 865 // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA 866 // after simplifying the loops. MemorySSA is preserved if it exists. 867 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 868 Changed |= 869 simplifyLoop(*I, DT, LI, SE, AC, MSSAU.get(), /*PreserveLCSSA*/ false); 870 871 if (!Changed) 872 return PreservedAnalyses::all(); 873 874 PreservedAnalyses PA; 875 PA.preserve<DominatorTreeAnalysis>(); 876 PA.preserve<LoopAnalysis>(); 877 PA.preserve<BasicAA>(); 878 PA.preserve<GlobalsAA>(); 879 PA.preserve<SCEVAA>(); 880 PA.preserve<ScalarEvolutionAnalysis>(); 881 PA.preserve<DependenceAnalysis>(); 882 if (MSSAAnalysis) 883 PA.preserve<MemorySSAAnalysis>(); 884 // BPI maps conditional terminators to probabilities, LoopSimplify can insert 885 // blocks, but it does so only by splitting existing blocks and edges. This 886 // results in the interesting property that all new terminators inserted are 887 // unconditional branches which do not appear in BPI. All deletions are 888 // handled via ValueHandle callbacks w/in BPI. 889 PA.preserve<BranchProbabilityAnalysis>(); 890 return PA; 891 } 892 893 // FIXME: Restore this code when we re-enable verification in verifyAnalysis 894 // below. 895 #if 0 896 static void verifyLoop(Loop *L) { 897 // Verify subloops. 898 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 899 verifyLoop(*I); 900 901 // It used to be possible to just assert L->isLoopSimplifyForm(), however 902 // with the introduction of indirectbr, there are now cases where it's 903 // not possible to transform a loop as necessary. We can at least check 904 // that there is an indirectbr near any time there's trouble. 905 906 // Indirectbr can interfere with preheader and unique backedge insertion. 907 if (!L->getLoopPreheader() || !L->getLoopLatch()) { 908 bool HasIndBrPred = false; 909 for (pred_iterator PI = pred_begin(L->getHeader()), 910 PE = pred_end(L->getHeader()); PI != PE; ++PI) 911 if (isa<IndirectBrInst>((*PI)->getTerminator())) { 912 HasIndBrPred = true; 913 break; 914 } 915 assert(HasIndBrPred && 916 "LoopSimplify has no excuse for missing loop header info!"); 917 (void)HasIndBrPred; 918 } 919 920 // Indirectbr can interfere with exit block canonicalization. 921 if (!L->hasDedicatedExits()) { 922 bool HasIndBrExiting = false; 923 SmallVector<BasicBlock*, 8> ExitingBlocks; 924 L->getExitingBlocks(ExitingBlocks); 925 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 926 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { 927 HasIndBrExiting = true; 928 break; 929 } 930 } 931 932 assert(HasIndBrExiting && 933 "LoopSimplify has no excuse for missing exit block info!"); 934 (void)HasIndBrExiting; 935 } 936 } 937 #endif 938 939 void LoopSimplify::verifyAnalysis() const { 940 // FIXME: This routine is being called mid-way through the loop pass manager 941 // as loop passes destroy this analysis. That's actually fine, but we have no 942 // way of expressing that here. Once all of the passes that destroy this are 943 // hoisted out of the loop pass manager we can add back verification here. 944 #if 0 945 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 946 verifyLoop(*I); 947 #endif 948 } 949