1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs several transformations to transform natural loops into a 10 // simpler form, which makes subsequent analyses and transformations simpler and 11 // more effective. 12 // 13 // Loop pre-header insertion guarantees that there is a single, non-critical 14 // entry edge from outside of the loop to the loop header. This simplifies a 15 // number of analyses and transformations, such as LICM. 16 // 17 // Loop exit-block insertion guarantees that all exit blocks from the loop 18 // (blocks which are outside of the loop that have predecessors inside of the 19 // loop) only have predecessors from inside of the loop (and are thus dominated 20 // by the loop header). This simplifies transformations such as store-sinking 21 // that are built into LICM. 22 // 23 // This pass also guarantees that loops will have exactly one backedge. 24 // 25 // Indirectbr instructions introduce several complications. If the loop 26 // contains or is entered by an indirectbr instruction, it may not be possible 27 // to transform the loop and make these guarantees. Client code should check 28 // that these conditions are true before relying on them. 29 // 30 // Similar complications arise from callbr instructions, particularly in 31 // asm-goto where blockaddress expressions are used. 32 // 33 // Note that the simplifycfg pass will clean up blocks which are split out but 34 // end up being unnecessary, so usage of this pass should not pessimize 35 // generated code. 36 // 37 // This pass obviously modifies the CFG, but updates loop information and 38 // dominator information. 39 // 40 //===----------------------------------------------------------------------===// 41 42 #include "llvm/Transforms/Utils/LoopSimplify.h" 43 #include "llvm/ADT/DepthFirstIterator.h" 44 #include "llvm/ADT/SetOperations.h" 45 #include "llvm/ADT/SetVector.h" 46 #include "llvm/ADT/SmallVector.h" 47 #include "llvm/ADT/Statistic.h" 48 #include "llvm/Analysis/AliasAnalysis.h" 49 #include "llvm/Analysis/AssumptionCache.h" 50 #include "llvm/Analysis/BasicAliasAnalysis.h" 51 #include "llvm/Analysis/BranchProbabilityInfo.h" 52 #include "llvm/Analysis/DependenceAnalysis.h" 53 #include "llvm/Analysis/GlobalsModRef.h" 54 #include "llvm/Analysis/InstructionSimplify.h" 55 #include "llvm/Analysis/LoopInfo.h" 56 #include "llvm/Analysis/ScalarEvolution.h" 57 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 58 #include "llvm/Transforms/Utils/Local.h" 59 #include "llvm/IR/CFG.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/Dominators.h" 63 #include "llvm/IR/Function.h" 64 #include "llvm/IR/Instructions.h" 65 #include "llvm/IR/IntrinsicInst.h" 66 #include "llvm/IR/LLVMContext.h" 67 #include "llvm/IR/Module.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Transforms/Utils.h" 72 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 73 #include "llvm/Transforms/Utils/LoopUtils.h" 74 using namespace llvm; 75 76 #define DEBUG_TYPE "loop-simplify" 77 78 STATISTIC(NumNested , "Number of nested loops split out"); 79 80 // If the block isn't already, move the new block to right after some 'outside 81 // block' block. This prevents the preheader from being placed inside the loop 82 // body, e.g. when the loop hasn't been rotated. 83 static void placeSplitBlockCarefully(BasicBlock *NewBB, 84 SmallVectorImpl<BasicBlock *> &SplitPreds, 85 Loop *L) { 86 // Check to see if NewBB is already well placed. 87 Function::iterator BBI = --NewBB->getIterator(); 88 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 89 if (&*BBI == SplitPreds[i]) 90 return; 91 } 92 93 // If it isn't already after an outside block, move it after one. This is 94 // always good as it makes the uncond branch from the outside block into a 95 // fall-through. 96 97 // Figure out *which* outside block to put this after. Prefer an outside 98 // block that neighbors a BB actually in the loop. 99 BasicBlock *FoundBB = nullptr; 100 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 101 Function::iterator BBI = SplitPreds[i]->getIterator(); 102 if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) { 103 FoundBB = SplitPreds[i]; 104 break; 105 } 106 } 107 108 // If our heuristic for a *good* bb to place this after doesn't find 109 // anything, just pick something. It's likely better than leaving it within 110 // the loop. 111 if (!FoundBB) 112 FoundBB = SplitPreds[0]; 113 NewBB->moveAfter(FoundBB); 114 } 115 116 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a 117 /// preheader, this method is called to insert one. This method has two phases: 118 /// preheader insertion and analysis updating. 119 /// 120 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT, 121 LoopInfo *LI, bool PreserveLCSSA) { 122 BasicBlock *Header = L->getHeader(); 123 124 // Compute the set of predecessors of the loop that are not in the loop. 125 SmallVector<BasicBlock*, 8> OutsideBlocks; 126 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); 127 PI != PE; ++PI) { 128 BasicBlock *P = *PI; 129 if (!L->contains(P)) { // Coming in from outside the loop? 130 // If the loop is branched to from an indirect terminator, we won't 131 // be able to fully transform the loop, because it prohibits 132 // edge splitting. 133 if (P->getTerminator()->isIndirectTerminator()) 134 return nullptr; 135 136 // Keep track of it. 137 OutsideBlocks.push_back(P); 138 } 139 } 140 141 // Split out the loop pre-header. 142 BasicBlock *PreheaderBB; 143 PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT, 144 LI, nullptr, PreserveLCSSA); 145 if (!PreheaderBB) 146 return nullptr; 147 148 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header " 149 << PreheaderBB->getName() << "\n"); 150 151 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 152 // code layout too horribly. 153 placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L); 154 155 return PreheaderBB; 156 } 157 158 /// Add the specified block, and all of its predecessors, to the specified set, 159 /// if it's not already in there. Stop predecessor traversal when we reach 160 /// StopBlock. 161 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, 162 std::set<BasicBlock*> &Blocks) { 163 SmallVector<BasicBlock *, 8> Worklist; 164 Worklist.push_back(InputBB); 165 do { 166 BasicBlock *BB = Worklist.pop_back_val(); 167 if (Blocks.insert(BB).second && BB != StopBlock) 168 // If BB is not already processed and it is not a stop block then 169 // insert its predecessor in the work list 170 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 171 BasicBlock *WBB = *I; 172 Worklist.push_back(WBB); 173 } 174 } while (!Worklist.empty()); 175 } 176 177 /// The first part of loop-nestification is to find a PHI node that tells 178 /// us how to partition the loops. 179 static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT, 180 AssumptionCache *AC) { 181 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 182 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { 183 PHINode *PN = cast<PHINode>(I); 184 ++I; 185 if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) { 186 // This is a degenerate PHI already, don't modify it! 187 PN->replaceAllUsesWith(V); 188 PN->eraseFromParent(); 189 continue; 190 } 191 192 // Scan this PHI node looking for a use of the PHI node by itself. 193 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 194 if (PN->getIncomingValue(i) == PN && 195 L->contains(PN->getIncomingBlock(i))) 196 // We found something tasty to remove. 197 return PN; 198 } 199 return nullptr; 200 } 201 202 /// If this loop has multiple backedges, try to pull one of them out into 203 /// a nested loop. 204 /// 205 /// This is important for code that looks like 206 /// this: 207 /// 208 /// Loop: 209 /// ... 210 /// br cond, Loop, Next 211 /// ... 212 /// br cond2, Loop, Out 213 /// 214 /// To identify this common case, we look at the PHI nodes in the header of the 215 /// loop. PHI nodes with unchanging values on one backedge correspond to values 216 /// that change in the "outer" loop, but not in the "inner" loop. 217 /// 218 /// If we are able to separate out a loop, return the new outer loop that was 219 /// created. 220 /// 221 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader, 222 DominatorTree *DT, LoopInfo *LI, 223 ScalarEvolution *SE, bool PreserveLCSSA, 224 AssumptionCache *AC) { 225 // Don't try to separate loops without a preheader. 226 if (!Preheader) 227 return nullptr; 228 229 // The header is not a landing pad; preheader insertion should ensure this. 230 BasicBlock *Header = L->getHeader(); 231 assert(!Header->isEHPad() && "Can't insert backedge to EH pad"); 232 233 PHINode *PN = findPHIToPartitionLoops(L, DT, AC); 234 if (!PN) return nullptr; // No known way to partition. 235 236 // Pull out all predecessors that have varying values in the loop. This 237 // handles the case when a PHI node has multiple instances of itself as 238 // arguments. 239 SmallVector<BasicBlock*, 8> OuterLoopPreds; 240 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 241 if (PN->getIncomingValue(i) != PN || 242 !L->contains(PN->getIncomingBlock(i))) { 243 // We can't split indirect control flow edges. 244 if (PN->getIncomingBlock(i)->getTerminator()->isIndirectTerminator()) 245 return nullptr; 246 OuterLoopPreds.push_back(PN->getIncomingBlock(i)); 247 } 248 } 249 LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n"); 250 251 // If ScalarEvolution is around and knows anything about values in 252 // this loop, tell it to forget them, because we're about to 253 // substantially change it. 254 if (SE) 255 SE->forgetLoop(L); 256 257 BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", 258 DT, LI, nullptr, PreserveLCSSA); 259 260 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 261 // code layout too horribly. 262 placeSplitBlockCarefully(NewBB, OuterLoopPreds, L); 263 264 // Create the new outer loop. 265 Loop *NewOuter = LI->AllocateLoop(); 266 267 // Change the parent loop to use the outer loop as its child now. 268 if (Loop *Parent = L->getParentLoop()) 269 Parent->replaceChildLoopWith(L, NewOuter); 270 else 271 LI->changeTopLevelLoop(L, NewOuter); 272 273 // L is now a subloop of our outer loop. 274 NewOuter->addChildLoop(L); 275 276 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 277 I != E; ++I) 278 NewOuter->addBlockEntry(*I); 279 280 // Now reset the header in L, which had been moved by 281 // SplitBlockPredecessors for the outer loop. 282 L->moveToHeader(Header); 283 284 // Determine which blocks should stay in L and which should be moved out to 285 // the Outer loop now. 286 std::set<BasicBlock*> BlocksInL; 287 for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) { 288 BasicBlock *P = *PI; 289 if (DT->dominates(Header, P)) 290 addBlockAndPredsToSet(P, Header, BlocksInL); 291 } 292 293 // Scan all of the loop children of L, moving them to OuterLoop if they are 294 // not part of the inner loop. 295 const std::vector<Loop*> &SubLoops = L->getSubLoops(); 296 for (size_t I = 0; I != SubLoops.size(); ) 297 if (BlocksInL.count(SubLoops[I]->getHeader())) 298 ++I; // Loop remains in L 299 else 300 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); 301 302 SmallVector<BasicBlock *, 8> OuterLoopBlocks; 303 OuterLoopBlocks.push_back(NewBB); 304 // Now that we know which blocks are in L and which need to be moved to 305 // OuterLoop, move any blocks that need it. 306 for (unsigned i = 0; i != L->getBlocks().size(); ++i) { 307 BasicBlock *BB = L->getBlocks()[i]; 308 if (!BlocksInL.count(BB)) { 309 // Move this block to the parent, updating the exit blocks sets 310 L->removeBlockFromLoop(BB); 311 if ((*LI)[BB] == L) { 312 LI->changeLoopFor(BB, NewOuter); 313 OuterLoopBlocks.push_back(BB); 314 } 315 --i; 316 } 317 } 318 319 // Split edges to exit blocks from the inner loop, if they emerged in the 320 // process of separating the outer one. 321 formDedicatedExitBlocks(L, DT, LI, nullptr, PreserveLCSSA); 322 323 if (PreserveLCSSA) { 324 // Fix LCSSA form for L. Some values, which previously were only used inside 325 // L, can now be used in NewOuter loop. We need to insert phi-nodes for them 326 // in corresponding exit blocks. 327 // We don't need to form LCSSA recursively, because there cannot be uses 328 // inside a newly created loop of defs from inner loops as those would 329 // already be a use of an LCSSA phi node. 330 formLCSSA(*L, *DT, LI, SE); 331 332 assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) && 333 "LCSSA is broken after separating nested loops!"); 334 } 335 336 return NewOuter; 337 } 338 339 /// This method is called when the specified loop has more than one 340 /// backedge in it. 341 /// 342 /// If this occurs, revector all of these backedges to target a new basic block 343 /// and have that block branch to the loop header. This ensures that loops 344 /// have exactly one backedge. 345 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader, 346 DominatorTree *DT, LoopInfo *LI) { 347 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); 348 349 // Get information about the loop 350 BasicBlock *Header = L->getHeader(); 351 Function *F = Header->getParent(); 352 353 // Unique backedge insertion currently depends on having a preheader. 354 if (!Preheader) 355 return nullptr; 356 357 // The header is not an EH pad; preheader insertion should ensure this. 358 assert(!Header->isEHPad() && "Can't insert backedge to EH pad"); 359 360 // Figure out which basic blocks contain back-edges to the loop header. 361 std::vector<BasicBlock*> BackedgeBlocks; 362 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){ 363 BasicBlock *P = *I; 364 365 // Indirect edges cannot be split, so we must fail if we find one. 366 if (P->getTerminator()->isIndirectTerminator()) 367 return nullptr; 368 369 if (P != Preheader) BackedgeBlocks.push_back(P); 370 } 371 372 // Create and insert the new backedge block... 373 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), 374 Header->getName() + ".backedge", F); 375 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); 376 BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc()); 377 378 LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block " 379 << BEBlock->getName() << "\n"); 380 381 // Move the new backedge block to right after the last backedge block. 382 Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator(); 383 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); 384 385 // Now that the block has been inserted into the function, create PHI nodes in 386 // the backedge block which correspond to any PHI nodes in the header block. 387 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 388 PHINode *PN = cast<PHINode>(I); 389 PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(), 390 PN->getName()+".be", BETerminator); 391 392 // Loop over the PHI node, moving all entries except the one for the 393 // preheader over to the new PHI node. 394 unsigned PreheaderIdx = ~0U; 395 bool HasUniqueIncomingValue = true; 396 Value *UniqueValue = nullptr; 397 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 398 BasicBlock *IBB = PN->getIncomingBlock(i); 399 Value *IV = PN->getIncomingValue(i); 400 if (IBB == Preheader) { 401 PreheaderIdx = i; 402 } else { 403 NewPN->addIncoming(IV, IBB); 404 if (HasUniqueIncomingValue) { 405 if (!UniqueValue) 406 UniqueValue = IV; 407 else if (UniqueValue != IV) 408 HasUniqueIncomingValue = false; 409 } 410 } 411 } 412 413 // Delete all of the incoming values from the old PN except the preheader's 414 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); 415 if (PreheaderIdx != 0) { 416 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); 417 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); 418 } 419 // Nuke all entries except the zero'th. 420 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) 421 PN->removeIncomingValue(e-i, false); 422 423 // Finally, add the newly constructed PHI node as the entry for the BEBlock. 424 PN->addIncoming(NewPN, BEBlock); 425 426 // As an optimization, if all incoming values in the new PhiNode (which is a 427 // subset of the incoming values of the old PHI node) have the same value, 428 // eliminate the PHI Node. 429 if (HasUniqueIncomingValue) { 430 NewPN->replaceAllUsesWith(UniqueValue); 431 BEBlock->getInstList().erase(NewPN); 432 } 433 } 434 435 // Now that all of the PHI nodes have been inserted and adjusted, modify the 436 // backedge blocks to jump to the BEBlock instead of the header. 437 // If one of the backedges has llvm.loop metadata attached, we remove 438 // it from the backedge and add it to BEBlock. 439 unsigned LoopMDKind = BEBlock->getContext().getMDKindID("llvm.loop"); 440 MDNode *LoopMD = nullptr; 441 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { 442 Instruction *TI = BackedgeBlocks[i]->getTerminator(); 443 if (!LoopMD) 444 LoopMD = TI->getMetadata(LoopMDKind); 445 TI->setMetadata(LoopMDKind, nullptr); 446 TI->replaceSuccessorWith(Header, BEBlock); 447 } 448 BEBlock->getTerminator()->setMetadata(LoopMDKind, LoopMD); 449 450 //===--- Update all analyses which we must preserve now -----------------===// 451 452 // Update Loop Information - we know that this block is now in the current 453 // loop and all parent loops. 454 L->addBasicBlockToLoop(BEBlock, *LI); 455 456 // Update dominator information 457 DT->splitBlock(BEBlock); 458 459 return BEBlock; 460 } 461 462 /// Simplify one loop and queue further loops for simplification. 463 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist, 464 DominatorTree *DT, LoopInfo *LI, 465 ScalarEvolution *SE, AssumptionCache *AC, 466 bool PreserveLCSSA) { 467 bool Changed = false; 468 ReprocessLoop: 469 470 // Check to see that no blocks (other than the header) in this loop have 471 // predecessors that are not in the loop. This is not valid for natural 472 // loops, but can occur if the blocks are unreachable. Since they are 473 // unreachable we can just shamelessly delete those CFG edges! 474 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 475 BB != E; ++BB) { 476 if (*BB == L->getHeader()) continue; 477 478 SmallPtrSet<BasicBlock*, 4> BadPreds; 479 for (pred_iterator PI = pred_begin(*BB), 480 PE = pred_end(*BB); PI != PE; ++PI) { 481 BasicBlock *P = *PI; 482 if (!L->contains(P)) 483 BadPreds.insert(P); 484 } 485 486 // Delete each unique out-of-loop (and thus dead) predecessor. 487 for (BasicBlock *P : BadPreds) { 488 489 LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor " 490 << P->getName() << "\n"); 491 492 // Zap the dead pred's terminator and replace it with unreachable. 493 Instruction *TI = P->getTerminator(); 494 changeToUnreachable(TI, /*UseLLVMTrap=*/false, PreserveLCSSA); 495 Changed = true; 496 } 497 } 498 499 // If there are exiting blocks with branches on undef, resolve the undef in 500 // the direction which will exit the loop. This will help simplify loop 501 // trip count computations. 502 SmallVector<BasicBlock*, 8> ExitingBlocks; 503 L->getExitingBlocks(ExitingBlocks); 504 for (BasicBlock *ExitingBlock : ExitingBlocks) 505 if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator())) 506 if (BI->isConditional()) { 507 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) { 508 509 LLVM_DEBUG(dbgs() 510 << "LoopSimplify: Resolving \"br i1 undef\" to exit in " 511 << ExitingBlock->getName() << "\n"); 512 513 BI->setCondition(ConstantInt::get(Cond->getType(), 514 !L->contains(BI->getSuccessor(0)))); 515 516 Changed = true; 517 } 518 } 519 520 // Does the loop already have a preheader? If so, don't insert one. 521 BasicBlock *Preheader = L->getLoopPreheader(); 522 if (!Preheader) { 523 Preheader = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA); 524 if (Preheader) 525 Changed = true; 526 } 527 528 // Next, check to make sure that all exit nodes of the loop only have 529 // predecessors that are inside of the loop. This check guarantees that the 530 // loop preheader/header will dominate the exit blocks. If the exit block has 531 // predecessors from outside of the loop, split the edge now. 532 if (formDedicatedExitBlocks(L, DT, LI, nullptr, PreserveLCSSA)) 533 Changed = true; 534 535 // If the header has more than two predecessors at this point (from the 536 // preheader and from multiple backedges), we must adjust the loop. 537 BasicBlock *LoopLatch = L->getLoopLatch(); 538 if (!LoopLatch) { 539 // If this is really a nested loop, rip it out into a child loop. Don't do 540 // this for loops with a giant number of backedges, just factor them into a 541 // common backedge instead. 542 if (L->getNumBackEdges() < 8) { 543 if (Loop *OuterL = 544 separateNestedLoop(L, Preheader, DT, LI, SE, PreserveLCSSA, AC)) { 545 ++NumNested; 546 // Enqueue the outer loop as it should be processed next in our 547 // depth-first nest walk. 548 Worklist.push_back(OuterL); 549 550 // This is a big restructuring change, reprocess the whole loop. 551 Changed = true; 552 // GCC doesn't tail recursion eliminate this. 553 // FIXME: It isn't clear we can't rely on LLVM to TRE this. 554 goto ReprocessLoop; 555 } 556 } 557 558 // If we either couldn't, or didn't want to, identify nesting of the loops, 559 // insert a new block that all backedges target, then make it jump to the 560 // loop header. 561 LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI); 562 if (LoopLatch) 563 Changed = true; 564 } 565 566 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 567 568 // Scan over the PHI nodes in the loop header. Since they now have only two 569 // incoming values (the loop is canonicalized), we may have simplified the PHI 570 // down to 'X = phi [X, Y]', which should be replaced with 'Y'. 571 PHINode *PN; 572 for (BasicBlock::iterator I = L->getHeader()->begin(); 573 (PN = dyn_cast<PHINode>(I++)); ) 574 if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) { 575 if (SE) SE->forgetValue(PN); 576 if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) { 577 PN->replaceAllUsesWith(V); 578 PN->eraseFromParent(); 579 } 580 } 581 582 // If this loop has multiple exits and the exits all go to the same 583 // block, attempt to merge the exits. This helps several passes, such 584 // as LoopRotation, which do not support loops with multiple exits. 585 // SimplifyCFG also does this (and this code uses the same utility 586 // function), however this code is loop-aware, where SimplifyCFG is 587 // not. That gives it the advantage of being able to hoist 588 // loop-invariant instructions out of the way to open up more 589 // opportunities, and the disadvantage of having the responsibility 590 // to preserve dominator information. 591 auto HasUniqueExitBlock = [&]() { 592 BasicBlock *UniqueExit = nullptr; 593 for (auto *ExitingBB : ExitingBlocks) 594 for (auto *SuccBB : successors(ExitingBB)) { 595 if (L->contains(SuccBB)) 596 continue; 597 598 if (!UniqueExit) 599 UniqueExit = SuccBB; 600 else if (UniqueExit != SuccBB) 601 return false; 602 } 603 604 return true; 605 }; 606 if (HasUniqueExitBlock()) { 607 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 608 BasicBlock *ExitingBlock = ExitingBlocks[i]; 609 if (!ExitingBlock->getSinglePredecessor()) continue; 610 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 611 if (!BI || !BI->isConditional()) continue; 612 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 613 if (!CI || CI->getParent() != ExitingBlock) continue; 614 615 // Attempt to hoist out all instructions except for the 616 // comparison and the branch. 617 bool AllInvariant = true; 618 bool AnyInvariant = false; 619 for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) { 620 Instruction *Inst = &*I++; 621 if (Inst == CI) 622 continue; 623 if (!L->makeLoopInvariant(Inst, AnyInvariant, 624 Preheader ? Preheader->getTerminator() 625 : nullptr)) { 626 AllInvariant = false; 627 break; 628 } 629 } 630 if (AnyInvariant) { 631 Changed = true; 632 // The loop disposition of all SCEV expressions that depend on any 633 // hoisted values have also changed. 634 if (SE) 635 SE->forgetLoopDispositions(L); 636 } 637 if (!AllInvariant) continue; 638 639 // The block has now been cleared of all instructions except for 640 // a comparison and a conditional branch. SimplifyCFG may be able 641 // to fold it now. 642 if (!FoldBranchToCommonDest(BI)) 643 continue; 644 645 // Success. The block is now dead, so remove it from the loop, 646 // update the dominator tree and delete it. 647 LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block " 648 << ExitingBlock->getName() << "\n"); 649 650 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock)); 651 Changed = true; 652 LI->removeBlock(ExitingBlock); 653 654 DomTreeNode *Node = DT->getNode(ExitingBlock); 655 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children = 656 Node->getChildren(); 657 while (!Children.empty()) { 658 DomTreeNode *Child = Children.front(); 659 DT->changeImmediateDominator(Child, Node->getIDom()); 660 } 661 DT->eraseNode(ExitingBlock); 662 663 BI->getSuccessor(0)->removePredecessor( 664 ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA); 665 BI->getSuccessor(1)->removePredecessor( 666 ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA); 667 ExitingBlock->eraseFromParent(); 668 } 669 } 670 671 // Changing exit conditions for blocks may affect exit counts of this loop and 672 // any of its paretns, so we must invalidate the entire subtree if we've made 673 // any changes. 674 if (Changed && SE) 675 SE->forgetTopmostLoop(L); 676 677 return Changed; 678 } 679 680 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, 681 ScalarEvolution *SE, AssumptionCache *AC, 682 bool PreserveLCSSA) { 683 bool Changed = false; 684 685 #ifndef NDEBUG 686 // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA 687 // form. 688 if (PreserveLCSSA) { 689 assert(DT && "DT not available."); 690 assert(LI && "LI not available."); 691 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 692 "Requested to preserve LCSSA, but it's already broken."); 693 } 694 #endif 695 696 // Worklist maintains our depth-first queue of loops in this nest to process. 697 SmallVector<Loop *, 4> Worklist; 698 Worklist.push_back(L); 699 700 // Walk the worklist from front to back, pushing newly found sub loops onto 701 // the back. This will let us process loops from back to front in depth-first 702 // order. We can use this simple process because loops form a tree. 703 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 704 Loop *L2 = Worklist[Idx]; 705 Worklist.append(L2->begin(), L2->end()); 706 } 707 708 while (!Worklist.empty()) 709 Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE, 710 AC, PreserveLCSSA); 711 712 return Changed; 713 } 714 715 namespace { 716 struct LoopSimplify : public FunctionPass { 717 static char ID; // Pass identification, replacement for typeid 718 LoopSimplify() : FunctionPass(ID) { 719 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry()); 720 } 721 722 bool runOnFunction(Function &F) override; 723 724 void getAnalysisUsage(AnalysisUsage &AU) const override { 725 AU.addRequired<AssumptionCacheTracker>(); 726 727 // We need loop information to identify the loops... 728 AU.addRequired<DominatorTreeWrapperPass>(); 729 AU.addPreserved<DominatorTreeWrapperPass>(); 730 731 AU.addRequired<LoopInfoWrapperPass>(); 732 AU.addPreserved<LoopInfoWrapperPass>(); 733 734 AU.addPreserved<BasicAAWrapperPass>(); 735 AU.addPreserved<AAResultsWrapperPass>(); 736 AU.addPreserved<GlobalsAAWrapperPass>(); 737 AU.addPreserved<ScalarEvolutionWrapperPass>(); 738 AU.addPreserved<SCEVAAWrapperPass>(); 739 AU.addPreservedID(LCSSAID); 740 AU.addPreserved<DependenceAnalysisWrapperPass>(); 741 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. 742 AU.addPreserved<BranchProbabilityInfoWrapperPass>(); 743 } 744 745 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. 746 void verifyAnalysis() const override; 747 }; 748 } 749 750 char LoopSimplify::ID = 0; 751 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify", 752 "Canonicalize natural loops", false, false) 753 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 754 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 755 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 756 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify", 757 "Canonicalize natural loops", false, false) 758 759 // Publicly exposed interface to pass... 760 char &llvm::LoopSimplifyID = LoopSimplify::ID; 761 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } 762 763 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do 764 /// it in any convenient order) inserting preheaders... 765 /// 766 bool LoopSimplify::runOnFunction(Function &F) { 767 bool Changed = false; 768 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 769 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 770 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 771 ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr; 772 AssumptionCache *AC = 773 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 774 775 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 776 777 // Simplify each loop nest in the function. 778 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 779 Changed |= simplifyLoop(*I, DT, LI, SE, AC, PreserveLCSSA); 780 781 #ifndef NDEBUG 782 if (PreserveLCSSA) { 783 bool InLCSSA = all_of( 784 *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); }); 785 assert(InLCSSA && "LCSSA is broken after loop-simplify."); 786 } 787 #endif 788 return Changed; 789 } 790 791 PreservedAnalyses LoopSimplifyPass::run(Function &F, 792 FunctionAnalysisManager &AM) { 793 bool Changed = false; 794 LoopInfo *LI = &AM.getResult<LoopAnalysis>(F); 795 DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F); 796 ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F); 797 AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F); 798 799 // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA 800 // after simplifying the loops. 801 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 802 Changed |= simplifyLoop(*I, DT, LI, SE, AC, /*PreserveLCSSA*/ false); 803 804 if (!Changed) 805 return PreservedAnalyses::all(); 806 807 PreservedAnalyses PA; 808 PA.preserve<DominatorTreeAnalysis>(); 809 PA.preserve<LoopAnalysis>(); 810 PA.preserve<BasicAA>(); 811 PA.preserve<GlobalsAA>(); 812 PA.preserve<SCEVAA>(); 813 PA.preserve<ScalarEvolutionAnalysis>(); 814 PA.preserve<DependenceAnalysis>(); 815 // BPI maps conditional terminators to probabilities, LoopSimplify can insert 816 // blocks, but it does so only by splitting existing blocks and edges. This 817 // results in the interesting property that all new terminators inserted are 818 // unconditional branches which do not appear in BPI. All deletions are 819 // handled via ValueHandle callbacks w/in BPI. 820 PA.preserve<BranchProbabilityAnalysis>(); 821 return PA; 822 } 823 824 // FIXME: Restore this code when we re-enable verification in verifyAnalysis 825 // below. 826 #if 0 827 static void verifyLoop(Loop *L) { 828 // Verify subloops. 829 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 830 verifyLoop(*I); 831 832 // It used to be possible to just assert L->isLoopSimplifyForm(), however 833 // with the introduction of indirectbr, there are now cases where it's 834 // not possible to transform a loop as necessary. We can at least check 835 // that there is an indirectbr near any time there's trouble. 836 837 // Indirectbr can interfere with preheader and unique backedge insertion. 838 if (!L->getLoopPreheader() || !L->getLoopLatch()) { 839 bool HasIndBrPred = false; 840 for (pred_iterator PI = pred_begin(L->getHeader()), 841 PE = pred_end(L->getHeader()); PI != PE; ++PI) 842 if (isa<IndirectBrInst>((*PI)->getTerminator())) { 843 HasIndBrPred = true; 844 break; 845 } 846 assert(HasIndBrPred && 847 "LoopSimplify has no excuse for missing loop header info!"); 848 (void)HasIndBrPred; 849 } 850 851 // Indirectbr can interfere with exit block canonicalization. 852 if (!L->hasDedicatedExits()) { 853 bool HasIndBrExiting = false; 854 SmallVector<BasicBlock*, 8> ExitingBlocks; 855 L->getExitingBlocks(ExitingBlocks); 856 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 857 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { 858 HasIndBrExiting = true; 859 break; 860 } 861 } 862 863 assert(HasIndBrExiting && 864 "LoopSimplify has no excuse for missing exit block info!"); 865 (void)HasIndBrExiting; 866 } 867 } 868 #endif 869 870 void LoopSimplify::verifyAnalysis() const { 871 // FIXME: This routine is being called mid-way through the loop pass manager 872 // as loop passes destroy this analysis. That's actually fine, but we have no 873 // way of expressing that here. Once all of the passes that destroy this are 874 // hoisted out of the loop pass manager we can add back verification here. 875 #if 0 876 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 877 verifyLoop(*I); 878 #endif 879 } 880