1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs several transformations to transform natural loops into a
10 // simpler form, which makes subsequent analyses and transformations simpler and
11 // more effective.
12 //
13 // Loop pre-header insertion guarantees that there is a single, non-critical
14 // entry edge from outside of the loop to the loop header.  This simplifies a
15 // number of analyses and transformations, such as LICM.
16 //
17 // Loop exit-block insertion guarantees that all exit blocks from the loop
18 // (blocks which are outside of the loop that have predecessors inside of the
19 // loop) only have predecessors from inside of the loop (and are thus dominated
20 // by the loop header).  This simplifies transformations such as store-sinking
21 // that are built into LICM.
22 //
23 // This pass also guarantees that loops will have exactly one backedge.
24 //
25 // Indirectbr instructions introduce several complications. If the loop
26 // contains or is entered by an indirectbr instruction, it may not be possible
27 // to transform the loop and make these guarantees. Client code should check
28 // that these conditions are true before relying on them.
29 //
30 // Similar complications arise from callbr instructions, particularly in
31 // asm-goto where blockaddress expressions are used.
32 //
33 // Note that the simplifycfg pass will clean up blocks which are split out but
34 // end up being unnecessary, so usage of this pass should not pessimize
35 // generated code.
36 //
37 // This pass obviously modifies the CFG, but updates loop information and
38 // dominator information.
39 //
40 //===----------------------------------------------------------------------===//
41 
42 #include "llvm/Transforms/Utils/LoopSimplify.h"
43 #include "llvm/ADT/DepthFirstIterator.h"
44 #include "llvm/ADT/SetOperations.h"
45 #include "llvm/ADT/SetVector.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/ADT/Statistic.h"
48 #include "llvm/Analysis/AliasAnalysis.h"
49 #include "llvm/Analysis/AssumptionCache.h"
50 #include "llvm/Analysis/BasicAliasAnalysis.h"
51 #include "llvm/Analysis/BranchProbabilityInfo.h"
52 #include "llvm/Analysis/DependenceAnalysis.h"
53 #include "llvm/Analysis/GlobalsModRef.h"
54 #include "llvm/Analysis/InstructionSimplify.h"
55 #include "llvm/Analysis/LoopInfo.h"
56 #include "llvm/Analysis/MemorySSA.h"
57 #include "llvm/Analysis/MemorySSAUpdater.h"
58 #include "llvm/Analysis/ScalarEvolution.h"
59 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
60 #include "llvm/IR/CFG.h"
61 #include "llvm/IR/Constants.h"
62 #include "llvm/IR/DataLayout.h"
63 #include "llvm/IR/Dominators.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/Instructions.h"
66 #include "llvm/IR/IntrinsicInst.h"
67 #include "llvm/IR/LLVMContext.h"
68 #include "llvm/IR/Module.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/InitializePasses.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Transforms/Utils.h"
74 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
75 #include "llvm/Transforms/Utils/Local.h"
76 #include "llvm/Transforms/Utils/LoopUtils.h"
77 using namespace llvm;
78 
79 #define DEBUG_TYPE "loop-simplify"
80 
81 STATISTIC(NumNested  , "Number of nested loops split out");
82 
83 // If the block isn't already, move the new block to right after some 'outside
84 // block' block.  This prevents the preheader from being placed inside the loop
85 // body, e.g. when the loop hasn't been rotated.
86 static void placeSplitBlockCarefully(BasicBlock *NewBB,
87                                      SmallVectorImpl<BasicBlock *> &SplitPreds,
88                                      Loop *L) {
89   // Check to see if NewBB is already well placed.
90   Function::iterator BBI = --NewBB->getIterator();
91   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
92     if (&*BBI == SplitPreds[i])
93       return;
94   }
95 
96   // If it isn't already after an outside block, move it after one.  This is
97   // always good as it makes the uncond branch from the outside block into a
98   // fall-through.
99 
100   // Figure out *which* outside block to put this after.  Prefer an outside
101   // block that neighbors a BB actually in the loop.
102   BasicBlock *FoundBB = nullptr;
103   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
104     Function::iterator BBI = SplitPreds[i]->getIterator();
105     if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) {
106       FoundBB = SplitPreds[i];
107       break;
108     }
109   }
110 
111   // If our heuristic for a *good* bb to place this after doesn't find
112   // anything, just pick something.  It's likely better than leaving it within
113   // the loop.
114   if (!FoundBB)
115     FoundBB = SplitPreds[0];
116   NewBB->moveAfter(FoundBB);
117 }
118 
119 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
120 /// preheader, this method is called to insert one.  This method has two phases:
121 /// preheader insertion and analysis updating.
122 ///
123 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT,
124                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
125                                          bool PreserveLCSSA) {
126   BasicBlock *Header = L->getHeader();
127 
128   // Compute the set of predecessors of the loop that are not in the loop.
129   SmallVector<BasicBlock*, 8> OutsideBlocks;
130   for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
131        PI != PE; ++PI) {
132     BasicBlock *P = *PI;
133     if (!L->contains(P)) {         // Coming in from outside the loop?
134       // If the loop is branched to from an indirect terminator, we won't
135       // be able to fully transform the loop, because it prohibits
136       // edge splitting.
137       if (P->getTerminator()->isIndirectTerminator())
138         return nullptr;
139 
140       // Keep track of it.
141       OutsideBlocks.push_back(P);
142     }
143   }
144 
145   // Split out the loop pre-header.
146   BasicBlock *PreheaderBB;
147   PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT,
148                                        LI, MSSAU, PreserveLCSSA);
149   if (!PreheaderBB)
150     return nullptr;
151 
152   LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
153                     << PreheaderBB->getName() << "\n");
154 
155   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
156   // code layout too horribly.
157   placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
158 
159   return PreheaderBB;
160 }
161 
162 /// Add the specified block, and all of its predecessors, to the specified set,
163 /// if it's not already in there.  Stop predecessor traversal when we reach
164 /// StopBlock.
165 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
166                                   SmallPtrSetImpl<BasicBlock *> &Blocks) {
167   SmallVector<BasicBlock *, 8> Worklist;
168   Worklist.push_back(InputBB);
169   do {
170     BasicBlock *BB = Worklist.pop_back_val();
171     if (Blocks.insert(BB).second && BB != StopBlock)
172       // If BB is not already processed and it is not a stop block then
173       // insert its predecessor in the work list
174       for (BasicBlock *WBB : predecessors(BB)) {
175         Worklist.push_back(WBB);
176       }
177   } while (!Worklist.empty());
178 }
179 
180 /// The first part of loop-nestification is to find a PHI node that tells
181 /// us how to partition the loops.
182 static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT,
183                                         AssumptionCache *AC) {
184   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
185   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
186     PHINode *PN = cast<PHINode>(I);
187     ++I;
188     if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
189       // This is a degenerate PHI already, don't modify it!
190       PN->replaceAllUsesWith(V);
191       PN->eraseFromParent();
192       continue;
193     }
194 
195     // Scan this PHI node looking for a use of the PHI node by itself.
196     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
197       if (PN->getIncomingValue(i) == PN &&
198           L->contains(PN->getIncomingBlock(i)))
199         // We found something tasty to remove.
200         return PN;
201   }
202   return nullptr;
203 }
204 
205 /// If this loop has multiple backedges, try to pull one of them out into
206 /// a nested loop.
207 ///
208 /// This is important for code that looks like
209 /// this:
210 ///
211 ///  Loop:
212 ///     ...
213 ///     br cond, Loop, Next
214 ///     ...
215 ///     br cond2, Loop, Out
216 ///
217 /// To identify this common case, we look at the PHI nodes in the header of the
218 /// loop.  PHI nodes with unchanging values on one backedge correspond to values
219 /// that change in the "outer" loop, but not in the "inner" loop.
220 ///
221 /// If we are able to separate out a loop, return the new outer loop that was
222 /// created.
223 ///
224 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
225                                 DominatorTree *DT, LoopInfo *LI,
226                                 ScalarEvolution *SE, bool PreserveLCSSA,
227                                 AssumptionCache *AC, MemorySSAUpdater *MSSAU) {
228   // Don't try to separate loops without a preheader.
229   if (!Preheader)
230     return nullptr;
231 
232   // Treat the presence of convergent functions conservatively. The
233   // transformation is invalid if calls to certain convergent
234   // functions (like an AMDGPU barrier) get included in the resulting
235   // inner loop. But blocks meant for the inner loop will be
236   // identified later at a point where it's too late to abort the
237   // transformation. Also, the convergent attribute is not really
238   // sufficient to express the semantics of functions that are
239   // affected by this transformation. So we choose to back off if such
240   // a function call is present until a better alternative becomes
241   // available. This is similar to the conservative treatment of
242   // convergent function calls in GVNHoist and JumpThreading.
243   for (auto BB : L->blocks()) {
244     for (auto &II : *BB) {
245       if (auto CI = dyn_cast<CallBase>(&II)) {
246         if (CI->isConvergent()) {
247           return nullptr;
248         }
249       }
250     }
251   }
252 
253   // The header is not a landing pad; preheader insertion should ensure this.
254   BasicBlock *Header = L->getHeader();
255   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
256 
257   PHINode *PN = findPHIToPartitionLoops(L, DT, AC);
258   if (!PN) return nullptr;  // No known way to partition.
259 
260   // Pull out all predecessors that have varying values in the loop.  This
261   // handles the case when a PHI node has multiple instances of itself as
262   // arguments.
263   SmallVector<BasicBlock*, 8> OuterLoopPreds;
264   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
265     if (PN->getIncomingValue(i) != PN ||
266         !L->contains(PN->getIncomingBlock(i))) {
267       // We can't split indirect control flow edges.
268       if (PN->getIncomingBlock(i)->getTerminator()->isIndirectTerminator())
269         return nullptr;
270       OuterLoopPreds.push_back(PN->getIncomingBlock(i));
271     }
272   }
273   LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
274 
275   // If ScalarEvolution is around and knows anything about values in
276   // this loop, tell it to forget them, because we're about to
277   // substantially change it.
278   if (SE)
279     SE->forgetLoop(L);
280 
281   BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer",
282                                              DT, LI, MSSAU, PreserveLCSSA);
283 
284   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
285   // code layout too horribly.
286   placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
287 
288   // Create the new outer loop.
289   Loop *NewOuter = LI->AllocateLoop();
290 
291   // Change the parent loop to use the outer loop as its child now.
292   if (Loop *Parent = L->getParentLoop())
293     Parent->replaceChildLoopWith(L, NewOuter);
294   else
295     LI->changeTopLevelLoop(L, NewOuter);
296 
297   // L is now a subloop of our outer loop.
298   NewOuter->addChildLoop(L);
299 
300   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
301        I != E; ++I)
302     NewOuter->addBlockEntry(*I);
303 
304   // Now reset the header in L, which had been moved by
305   // SplitBlockPredecessors for the outer loop.
306   L->moveToHeader(Header);
307 
308   // Determine which blocks should stay in L and which should be moved out to
309   // the Outer loop now.
310   SmallPtrSet<BasicBlock *, 4> BlocksInL;
311   for (BasicBlock *P : predecessors(Header)) {
312     if (DT->dominates(Header, P))
313       addBlockAndPredsToSet(P, Header, BlocksInL);
314   }
315 
316   // Scan all of the loop children of L, moving them to OuterLoop if they are
317   // not part of the inner loop.
318   const std::vector<Loop*> &SubLoops = L->getSubLoops();
319   for (size_t I = 0; I != SubLoops.size(); )
320     if (BlocksInL.count(SubLoops[I]->getHeader()))
321       ++I;   // Loop remains in L
322     else
323       NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
324 
325   SmallVector<BasicBlock *, 8> OuterLoopBlocks;
326   OuterLoopBlocks.push_back(NewBB);
327   // Now that we know which blocks are in L and which need to be moved to
328   // OuterLoop, move any blocks that need it.
329   for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
330     BasicBlock *BB = L->getBlocks()[i];
331     if (!BlocksInL.count(BB)) {
332       // Move this block to the parent, updating the exit blocks sets
333       L->removeBlockFromLoop(BB);
334       if ((*LI)[BB] == L) {
335         LI->changeLoopFor(BB, NewOuter);
336         OuterLoopBlocks.push_back(BB);
337       }
338       --i;
339     }
340   }
341 
342   // Split edges to exit blocks from the inner loop, if they emerged in the
343   // process of separating the outer one.
344   formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA);
345 
346   if (PreserveLCSSA) {
347     // Fix LCSSA form for L. Some values, which previously were only used inside
348     // L, can now be used in NewOuter loop. We need to insert phi-nodes for them
349     // in corresponding exit blocks.
350     // We don't need to form LCSSA recursively, because there cannot be uses
351     // inside a newly created loop of defs from inner loops as those would
352     // already be a use of an LCSSA phi node.
353     formLCSSA(*L, *DT, LI, SE);
354 
355     assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) &&
356            "LCSSA is broken after separating nested loops!");
357   }
358 
359   return NewOuter;
360 }
361 
362 /// This method is called when the specified loop has more than one
363 /// backedge in it.
364 ///
365 /// If this occurs, revector all of these backedges to target a new basic block
366 /// and have that block branch to the loop header.  This ensures that loops
367 /// have exactly one backedge.
368 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
369                                              DominatorTree *DT, LoopInfo *LI,
370                                              MemorySSAUpdater *MSSAU) {
371   assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
372 
373   // Get information about the loop
374   BasicBlock *Header = L->getHeader();
375   Function *F = Header->getParent();
376 
377   // Unique backedge insertion currently depends on having a preheader.
378   if (!Preheader)
379     return nullptr;
380 
381   // The header is not an EH pad; preheader insertion should ensure this.
382   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
383 
384   // Figure out which basic blocks contain back-edges to the loop header.
385   std::vector<BasicBlock*> BackedgeBlocks;
386   for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
387     BasicBlock *P = *I;
388 
389     // Indirect edges cannot be split, so we must fail if we find one.
390     if (P->getTerminator()->isIndirectTerminator())
391       return nullptr;
392 
393     if (P != Preheader) BackedgeBlocks.push_back(P);
394   }
395 
396   // Create and insert the new backedge block...
397   BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
398                                            Header->getName() + ".backedge", F);
399   BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
400   BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc());
401 
402   LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
403                     << BEBlock->getName() << "\n");
404 
405   // Move the new backedge block to right after the last backedge block.
406   Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator();
407   F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
408 
409   // Now that the block has been inserted into the function, create PHI nodes in
410   // the backedge block which correspond to any PHI nodes in the header block.
411   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
412     PHINode *PN = cast<PHINode>(I);
413     PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
414                                      PN->getName()+".be", BETerminator);
415 
416     // Loop over the PHI node, moving all entries except the one for the
417     // preheader over to the new PHI node.
418     unsigned PreheaderIdx = ~0U;
419     bool HasUniqueIncomingValue = true;
420     Value *UniqueValue = nullptr;
421     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
422       BasicBlock *IBB = PN->getIncomingBlock(i);
423       Value *IV = PN->getIncomingValue(i);
424       if (IBB == Preheader) {
425         PreheaderIdx = i;
426       } else {
427         NewPN->addIncoming(IV, IBB);
428         if (HasUniqueIncomingValue) {
429           if (!UniqueValue)
430             UniqueValue = IV;
431           else if (UniqueValue != IV)
432             HasUniqueIncomingValue = false;
433         }
434       }
435     }
436 
437     // Delete all of the incoming values from the old PN except the preheader's
438     assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
439     if (PreheaderIdx != 0) {
440       PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
441       PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
442     }
443     // Nuke all entries except the zero'th.
444     for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
445       PN->removeIncomingValue(e-i, false);
446 
447     // Finally, add the newly constructed PHI node as the entry for the BEBlock.
448     PN->addIncoming(NewPN, BEBlock);
449 
450     // As an optimization, if all incoming values in the new PhiNode (which is a
451     // subset of the incoming values of the old PHI node) have the same value,
452     // eliminate the PHI Node.
453     if (HasUniqueIncomingValue) {
454       NewPN->replaceAllUsesWith(UniqueValue);
455       BEBlock->getInstList().erase(NewPN);
456     }
457   }
458 
459   // Now that all of the PHI nodes have been inserted and adjusted, modify the
460   // backedge blocks to jump to the BEBlock instead of the header.
461   // If one of the backedges has llvm.loop metadata attached, we remove
462   // it from the backedge and add it to BEBlock.
463   unsigned LoopMDKind = BEBlock->getContext().getMDKindID("llvm.loop");
464   MDNode *LoopMD = nullptr;
465   for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
466     Instruction *TI = BackedgeBlocks[i]->getTerminator();
467     if (!LoopMD)
468       LoopMD = TI->getMetadata(LoopMDKind);
469     TI->setMetadata(LoopMDKind, nullptr);
470     TI->replaceSuccessorWith(Header, BEBlock);
471   }
472   BEBlock->getTerminator()->setMetadata(LoopMDKind, LoopMD);
473 
474   //===--- Update all analyses which we must preserve now -----------------===//
475 
476   // Update Loop Information - we know that this block is now in the current
477   // loop and all parent loops.
478   L->addBasicBlockToLoop(BEBlock, *LI);
479 
480   // Update dominator information
481   DT->splitBlock(BEBlock);
482 
483   if (MSSAU)
484     MSSAU->updatePhisWhenInsertingUniqueBackedgeBlock(Header, Preheader,
485                                                       BEBlock);
486 
487   return BEBlock;
488 }
489 
490 /// Simplify one loop and queue further loops for simplification.
491 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
492                             DominatorTree *DT, LoopInfo *LI,
493                             ScalarEvolution *SE, AssumptionCache *AC,
494                             MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
495   bool Changed = false;
496   if (MSSAU && VerifyMemorySSA)
497     MSSAU->getMemorySSA()->verifyMemorySSA();
498 
499 ReprocessLoop:
500 
501   // Check to see that no blocks (other than the header) in this loop have
502   // predecessors that are not in the loop.  This is not valid for natural
503   // loops, but can occur if the blocks are unreachable.  Since they are
504   // unreachable we can just shamelessly delete those CFG edges!
505   for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
506        BB != E; ++BB) {
507     if (*BB == L->getHeader()) continue;
508 
509     SmallPtrSet<BasicBlock*, 4> BadPreds;
510     for (pred_iterator PI = pred_begin(*BB),
511          PE = pred_end(*BB); PI != PE; ++PI) {
512       BasicBlock *P = *PI;
513       if (!L->contains(P))
514         BadPreds.insert(P);
515     }
516 
517     // Delete each unique out-of-loop (and thus dead) predecessor.
518     for (BasicBlock *P : BadPreds) {
519 
520       LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
521                         << P->getName() << "\n");
522 
523       // Zap the dead pred's terminator and replace it with unreachable.
524       Instruction *TI = P->getTerminator();
525       changeToUnreachable(TI, /*UseLLVMTrap=*/false, PreserveLCSSA,
526                           /*DTU=*/nullptr, MSSAU);
527       Changed = true;
528     }
529   }
530 
531   if (MSSAU && VerifyMemorySSA)
532     MSSAU->getMemorySSA()->verifyMemorySSA();
533 
534   // If there are exiting blocks with branches on undef, resolve the undef in
535   // the direction which will exit the loop. This will help simplify loop
536   // trip count computations.
537   SmallVector<BasicBlock*, 8> ExitingBlocks;
538   L->getExitingBlocks(ExitingBlocks);
539   for (BasicBlock *ExitingBlock : ExitingBlocks)
540     if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
541       if (BI->isConditional()) {
542         if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
543 
544           LLVM_DEBUG(dbgs()
545                      << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
546                      << ExitingBlock->getName() << "\n");
547 
548           BI->setCondition(ConstantInt::get(Cond->getType(),
549                                             !L->contains(BI->getSuccessor(0))));
550 
551           Changed = true;
552         }
553       }
554 
555   // Does the loop already have a preheader?  If so, don't insert one.
556   BasicBlock *Preheader = L->getLoopPreheader();
557   if (!Preheader) {
558     Preheader = InsertPreheaderForLoop(L, DT, LI, MSSAU, PreserveLCSSA);
559     if (Preheader)
560       Changed = true;
561   }
562 
563   // Next, check to make sure that all exit nodes of the loop only have
564   // predecessors that are inside of the loop.  This check guarantees that the
565   // loop preheader/header will dominate the exit blocks.  If the exit block has
566   // predecessors from outside of the loop, split the edge now.
567   if (formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA))
568     Changed = true;
569 
570   if (MSSAU && VerifyMemorySSA)
571     MSSAU->getMemorySSA()->verifyMemorySSA();
572 
573   // If the header has more than two predecessors at this point (from the
574   // preheader and from multiple backedges), we must adjust the loop.
575   BasicBlock *LoopLatch = L->getLoopLatch();
576   if (!LoopLatch) {
577     // If this is really a nested loop, rip it out into a child loop.  Don't do
578     // this for loops with a giant number of backedges, just factor them into a
579     // common backedge instead.
580     if (L->getNumBackEdges() < 8) {
581       if (Loop *OuterL = separateNestedLoop(L, Preheader, DT, LI, SE,
582                                             PreserveLCSSA, AC, MSSAU)) {
583         ++NumNested;
584         // Enqueue the outer loop as it should be processed next in our
585         // depth-first nest walk.
586         Worklist.push_back(OuterL);
587 
588         // This is a big restructuring change, reprocess the whole loop.
589         Changed = true;
590         // GCC doesn't tail recursion eliminate this.
591         // FIXME: It isn't clear we can't rely on LLVM to TRE this.
592         goto ReprocessLoop;
593       }
594     }
595 
596     // If we either couldn't, or didn't want to, identify nesting of the loops,
597     // insert a new block that all backedges target, then make it jump to the
598     // loop header.
599     LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI, MSSAU);
600     if (LoopLatch)
601       Changed = true;
602   }
603 
604   if (MSSAU && VerifyMemorySSA)
605     MSSAU->getMemorySSA()->verifyMemorySSA();
606 
607   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
608 
609   // Scan over the PHI nodes in the loop header.  Since they now have only two
610   // incoming values (the loop is canonicalized), we may have simplified the PHI
611   // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
612   PHINode *PN;
613   for (BasicBlock::iterator I = L->getHeader()->begin();
614        (PN = dyn_cast<PHINode>(I++)); )
615     if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
616       if (SE) SE->forgetValue(PN);
617       if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) {
618         PN->replaceAllUsesWith(V);
619         PN->eraseFromParent();
620         Changed = true;
621       }
622     }
623 
624   // If this loop has multiple exits and the exits all go to the same
625   // block, attempt to merge the exits. This helps several passes, such
626   // as LoopRotation, which do not support loops with multiple exits.
627   // SimplifyCFG also does this (and this code uses the same utility
628   // function), however this code is loop-aware, where SimplifyCFG is
629   // not. That gives it the advantage of being able to hoist
630   // loop-invariant instructions out of the way to open up more
631   // opportunities, and the disadvantage of having the responsibility
632   // to preserve dominator information.
633   auto HasUniqueExitBlock = [&]() {
634     BasicBlock *UniqueExit = nullptr;
635     for (auto *ExitingBB : ExitingBlocks)
636       for (auto *SuccBB : successors(ExitingBB)) {
637         if (L->contains(SuccBB))
638           continue;
639 
640         if (!UniqueExit)
641           UniqueExit = SuccBB;
642         else if (UniqueExit != SuccBB)
643           return false;
644       }
645 
646     return true;
647   };
648   if (HasUniqueExitBlock()) {
649     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
650       BasicBlock *ExitingBlock = ExitingBlocks[i];
651       if (!ExitingBlock->getSinglePredecessor()) continue;
652       BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
653       if (!BI || !BI->isConditional()) continue;
654       CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
655       if (!CI || CI->getParent() != ExitingBlock) continue;
656 
657       // Attempt to hoist out all instructions except for the
658       // comparison and the branch.
659       bool AllInvariant = true;
660       bool AnyInvariant = false;
661       for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) {
662         Instruction *Inst = &*I++;
663         if (Inst == CI)
664           continue;
665         if (!L->makeLoopInvariant(
666                 Inst, AnyInvariant,
667                 Preheader ? Preheader->getTerminator() : nullptr, MSSAU)) {
668           AllInvariant = false;
669           break;
670         }
671       }
672       if (AnyInvariant) {
673         Changed = true;
674         // The loop disposition of all SCEV expressions that depend on any
675         // hoisted values have also changed.
676         if (SE)
677           SE->forgetLoopDispositions(L);
678       }
679       if (!AllInvariant) continue;
680 
681       // The block has now been cleared of all instructions except for
682       // a comparison and a conditional branch. SimplifyCFG may be able
683       // to fold it now.
684       if (!FoldBranchToCommonDest(BI, MSSAU))
685         continue;
686 
687       // Success. The block is now dead, so remove it from the loop,
688       // update the dominator tree and delete it.
689       LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
690                         << ExitingBlock->getName() << "\n");
691 
692       assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
693       Changed = true;
694       LI->removeBlock(ExitingBlock);
695 
696       DomTreeNode *Node = DT->getNode(ExitingBlock);
697       while (!Node->isLeaf()) {
698         DomTreeNode *Child = Node->back();
699         DT->changeImmediateDominator(Child, Node->getIDom());
700       }
701       DT->eraseNode(ExitingBlock);
702       if (MSSAU) {
703         SmallSetVector<BasicBlock *, 8> ExitBlockSet;
704         ExitBlockSet.insert(ExitingBlock);
705         MSSAU->removeBlocks(ExitBlockSet);
706       }
707 
708       BI->getSuccessor(0)->removePredecessor(
709           ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA);
710       BI->getSuccessor(1)->removePredecessor(
711           ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA);
712       ExitingBlock->eraseFromParent();
713     }
714   }
715 
716   // Changing exit conditions for blocks may affect exit counts of this loop and
717   // any of its paretns, so we must invalidate the entire subtree if we've made
718   // any changes.
719   if (Changed && SE)
720     SE->forgetTopmostLoop(L);
721 
722   if (MSSAU && VerifyMemorySSA)
723     MSSAU->getMemorySSA()->verifyMemorySSA();
724 
725   return Changed;
726 }
727 
728 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
729                         ScalarEvolution *SE, AssumptionCache *AC,
730                         MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
731   bool Changed = false;
732 
733 #ifndef NDEBUG
734   // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA
735   // form.
736   if (PreserveLCSSA) {
737     assert(DT && "DT not available.");
738     assert(LI && "LI not available.");
739     assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
740            "Requested to preserve LCSSA, but it's already broken.");
741   }
742 #endif
743 
744   // Worklist maintains our depth-first queue of loops in this nest to process.
745   SmallVector<Loop *, 4> Worklist;
746   Worklist.push_back(L);
747 
748   // Walk the worklist from front to back, pushing newly found sub loops onto
749   // the back. This will let us process loops from back to front in depth-first
750   // order. We can use this simple process because loops form a tree.
751   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
752     Loop *L2 = Worklist[Idx];
753     Worklist.append(L2->begin(), L2->end());
754   }
755 
756   while (!Worklist.empty())
757     Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE,
758                                AC, MSSAU, PreserveLCSSA);
759 
760   return Changed;
761 }
762 
763 namespace {
764   struct LoopSimplify : public FunctionPass {
765     static char ID; // Pass identification, replacement for typeid
766     LoopSimplify() : FunctionPass(ID) {
767       initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
768     }
769 
770     bool runOnFunction(Function &F) override;
771 
772     void getAnalysisUsage(AnalysisUsage &AU) const override {
773       AU.addRequired<AssumptionCacheTracker>();
774 
775       // We need loop information to identify the loops...
776       AU.addRequired<DominatorTreeWrapperPass>();
777       AU.addPreserved<DominatorTreeWrapperPass>();
778 
779       AU.addRequired<LoopInfoWrapperPass>();
780       AU.addPreserved<LoopInfoWrapperPass>();
781 
782       AU.addPreserved<BasicAAWrapperPass>();
783       AU.addPreserved<AAResultsWrapperPass>();
784       AU.addPreserved<GlobalsAAWrapperPass>();
785       AU.addPreserved<ScalarEvolutionWrapperPass>();
786       AU.addPreserved<SCEVAAWrapperPass>();
787       AU.addPreservedID(LCSSAID);
788       AU.addPreserved<DependenceAnalysisWrapperPass>();
789       AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
790       AU.addPreserved<BranchProbabilityInfoWrapperPass>();
791       if (EnableMSSALoopDependency)
792         AU.addPreserved<MemorySSAWrapperPass>();
793     }
794 
795     /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
796     void verifyAnalysis() const override;
797   };
798 }
799 
800 char LoopSimplify::ID = 0;
801 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
802                 "Canonicalize natural loops", false, false)
803 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
804 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
805 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
806 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
807                 "Canonicalize natural loops", false, false)
808 
809 // Publicly exposed interface to pass...
810 char &llvm::LoopSimplifyID = LoopSimplify::ID;
811 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
812 
813 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
814 /// it in any convenient order) inserting preheaders...
815 ///
816 bool LoopSimplify::runOnFunction(Function &F) {
817   bool Changed = false;
818   LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
819   DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
820   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
821   ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr;
822   AssumptionCache *AC =
823       &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
824   MemorySSA *MSSA = nullptr;
825   std::unique_ptr<MemorySSAUpdater> MSSAU;
826   if (EnableMSSALoopDependency) {
827     auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
828     if (MSSAAnalysis) {
829       MSSA = &MSSAAnalysis->getMSSA();
830       MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
831     }
832   }
833 
834   bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
835 
836   // Simplify each loop nest in the function.
837   for (auto *L : *LI)
838     Changed |= simplifyLoop(L, DT, LI, SE, AC, MSSAU.get(), PreserveLCSSA);
839 
840 #ifndef NDEBUG
841   if (PreserveLCSSA) {
842     bool InLCSSA = all_of(
843         *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); });
844     assert(InLCSSA && "LCSSA is broken after loop-simplify.");
845   }
846 #endif
847   return Changed;
848 }
849 
850 PreservedAnalyses LoopSimplifyPass::run(Function &F,
851                                         FunctionAnalysisManager &AM) {
852   bool Changed = false;
853   LoopInfo *LI = &AM.getResult<LoopAnalysis>(F);
854   DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
855   ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
856   AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F);
857   auto *MSSAAnalysis = AM.getCachedResult<MemorySSAAnalysis>(F);
858   std::unique_ptr<MemorySSAUpdater> MSSAU;
859   if (MSSAAnalysis) {
860     auto *MSSA = &MSSAAnalysis->getMSSA();
861     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
862   }
863 
864 
865   // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA
866   // after simplifying the loops. MemorySSA is preserved if it exists.
867   for (auto *L : *LI)
868     Changed |=
869         simplifyLoop(L, DT, LI, SE, AC, MSSAU.get(), /*PreserveLCSSA*/ false);
870 
871   if (!Changed)
872     return PreservedAnalyses::all();
873 
874   PreservedAnalyses PA;
875   PA.preserve<DominatorTreeAnalysis>();
876   PA.preserve<LoopAnalysis>();
877   PA.preserve<BasicAA>();
878   PA.preserve<GlobalsAA>();
879   PA.preserve<SCEVAA>();
880   PA.preserve<ScalarEvolutionAnalysis>();
881   PA.preserve<DependenceAnalysis>();
882   if (MSSAAnalysis)
883     PA.preserve<MemorySSAAnalysis>();
884   // BPI maps conditional terminators to probabilities, LoopSimplify can insert
885   // blocks, but it does so only by splitting existing blocks and edges. This
886   // results in the interesting property that all new terminators inserted are
887   // unconditional branches which do not appear in BPI. All deletions are
888   // handled via ValueHandle callbacks w/in BPI.
889   PA.preserve<BranchProbabilityAnalysis>();
890   return PA;
891 }
892 
893 // FIXME: Restore this code when we re-enable verification in verifyAnalysis
894 // below.
895 #if 0
896 static void verifyLoop(Loop *L) {
897   // Verify subloops.
898   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
899     verifyLoop(*I);
900 
901   // It used to be possible to just assert L->isLoopSimplifyForm(), however
902   // with the introduction of indirectbr, there are now cases where it's
903   // not possible to transform a loop as necessary. We can at least check
904   // that there is an indirectbr near any time there's trouble.
905 
906   // Indirectbr can interfere with preheader and unique backedge insertion.
907   if (!L->getLoopPreheader() || !L->getLoopLatch()) {
908     bool HasIndBrPred = false;
909     for (pred_iterator PI = pred_begin(L->getHeader()),
910          PE = pred_end(L->getHeader()); PI != PE; ++PI)
911       if (isa<IndirectBrInst>((*PI)->getTerminator())) {
912         HasIndBrPred = true;
913         break;
914       }
915     assert(HasIndBrPred &&
916            "LoopSimplify has no excuse for missing loop header info!");
917     (void)HasIndBrPred;
918   }
919 
920   // Indirectbr can interfere with exit block canonicalization.
921   if (!L->hasDedicatedExits()) {
922     bool HasIndBrExiting = false;
923     SmallVector<BasicBlock*, 8> ExitingBlocks;
924     L->getExitingBlocks(ExitingBlocks);
925     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
926       if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
927         HasIndBrExiting = true;
928         break;
929       }
930     }
931 
932     assert(HasIndBrExiting &&
933            "LoopSimplify has no excuse for missing exit block info!");
934     (void)HasIndBrExiting;
935   }
936 }
937 #endif
938 
939 void LoopSimplify::verifyAnalysis() const {
940   // FIXME: This routine is being called mid-way through the loop pass manager
941   // as loop passes destroy this analysis. That's actually fine, but we have no
942   // way of expressing that here. Once all of the passes that destroy this are
943   // hoisted out of the loop pass manager we can add back verification here.
944 #if 0
945   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
946     verifyLoop(*I);
947 #endif
948 }
949