1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs several transformations to transform natural loops into a 11 // simpler form, which makes subsequent analyses and transformations simpler and 12 // more effective. 13 // 14 // Loop pre-header insertion guarantees that there is a single, non-critical 15 // entry edge from outside of the loop to the loop header. This simplifies a 16 // number of analyses and transformations, such as LICM. 17 // 18 // Loop exit-block insertion guarantees that all exit blocks from the loop 19 // (blocks which are outside of the loop that have predecessors inside of the 20 // loop) only have predecessors from inside of the loop (and are thus dominated 21 // by the loop header). This simplifies transformations such as store-sinking 22 // that are built into LICM. 23 // 24 // This pass also guarantees that loops will have exactly one backedge. 25 // 26 // Indirectbr instructions introduce several complications. If the loop 27 // contains or is entered by an indirectbr instruction, it may not be possible 28 // to transform the loop and make these guarantees. Client code should check 29 // that these conditions are true before relying on them. 30 // 31 // Note that the simplifycfg pass will clean up blocks which are split out but 32 // end up being unnecessary, so usage of this pass should not pessimize 33 // generated code. 34 // 35 // This pass obviously modifies the CFG, but updates loop information and 36 // dominator information. 37 // 38 //===----------------------------------------------------------------------===// 39 40 #define DEBUG_TYPE "loopsimplify" 41 #include "llvm/Transforms/Scalar.h" 42 #include "llvm/Constants.h" 43 #include "llvm/Instructions.h" 44 #include "llvm/Function.h" 45 #include "llvm/LLVMContext.h" 46 #include "llvm/Type.h" 47 #include "llvm/Analysis/AliasAnalysis.h" 48 #include "llvm/Analysis/Dominators.h" 49 #include "llvm/Analysis/LoopPass.h" 50 #include "llvm/Analysis/ScalarEvolution.h" 51 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 52 #include "llvm/Transforms/Utils/Local.h" 53 #include "llvm/Support/CFG.h" 54 #include "llvm/ADT/SetOperations.h" 55 #include "llvm/ADT/SetVector.h" 56 #include "llvm/ADT/Statistic.h" 57 #include "llvm/ADT/DepthFirstIterator.h" 58 using namespace llvm; 59 60 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted"); 61 STATISTIC(NumNested , "Number of nested loops split out"); 62 63 namespace { 64 struct LoopSimplify : public LoopPass { 65 static char ID; // Pass identification, replacement for typeid 66 LoopSimplify() : LoopPass(&ID) {} 67 68 // AA - If we have an alias analysis object to update, this is it, otherwise 69 // this is null. 70 AliasAnalysis *AA; 71 LoopInfo *LI; 72 DominatorTree *DT; 73 Loop *L; 74 virtual bool runOnLoop(Loop *L, LPPassManager &LPM); 75 76 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 77 // We need loop information to identify the loops... 78 AU.addRequiredTransitive<LoopInfo>(); 79 AU.addRequiredTransitive<DominatorTree>(); 80 81 AU.addPreserved<LoopInfo>(); 82 AU.addPreserved<DominatorTree>(); 83 AU.addPreserved<DominanceFrontier>(); 84 AU.addPreserved<AliasAnalysis>(); 85 AU.addPreserved<ScalarEvolution>(); 86 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. 87 } 88 89 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. 90 void verifyAnalysis() const; 91 92 private: 93 bool ProcessLoop(Loop *L, LPPassManager &LPM); 94 BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit); 95 BasicBlock *InsertPreheaderForLoop(Loop *L); 96 Loop *SeparateNestedLoop(Loop *L, LPPassManager &LPM); 97 BasicBlock *InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader); 98 void PlaceSplitBlockCarefully(BasicBlock *NewBB, 99 SmallVectorImpl<BasicBlock*> &SplitPreds, 100 Loop *L); 101 }; 102 } 103 104 char LoopSimplify::ID = 0; 105 static RegisterPass<LoopSimplify> 106 X("loopsimplify", "Canonicalize natural loops", true); 107 108 // Publically exposed interface to pass... 109 const PassInfo *const llvm::LoopSimplifyID = &X; 110 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } 111 112 /// runOnLoop - Run down all loops in the CFG (recursively, but we could do 113 /// it in any convenient order) inserting preheaders... 114 /// 115 bool LoopSimplify::runOnLoop(Loop *l, LPPassManager &LPM) { 116 L = l; 117 bool Changed = false; 118 LI = &getAnalysis<LoopInfo>(); 119 AA = getAnalysisIfAvailable<AliasAnalysis>(); 120 DT = &getAnalysis<DominatorTree>(); 121 122 Changed |= ProcessLoop(L, LPM); 123 124 return Changed; 125 } 126 127 /// ProcessLoop - Walk the loop structure in depth first order, ensuring that 128 /// all loops have preheaders. 129 /// 130 bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) { 131 bool Changed = false; 132 ReprocessLoop: 133 134 // Check to see that no blocks (other than the header) in this loop that has 135 // predecessors that are not in the loop. This is not valid for natural 136 // loops, but can occur if the blocks are unreachable. Since they are 137 // unreachable we can just shamelessly delete those CFG edges! 138 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 139 BB != E; ++BB) { 140 if (*BB == L->getHeader()) continue; 141 142 SmallPtrSet<BasicBlock *, 4> BadPreds; 143 for (pred_iterator PI = pred_begin(*BB), PE = pred_end(*BB); PI != PE; ++PI) 144 if (!L->contains(*PI)) 145 BadPreds.insert(*PI); 146 147 // Delete each unique out-of-loop (and thus dead) predecessor. 148 for (SmallPtrSet<BasicBlock *, 4>::iterator I = BadPreds.begin(), 149 E = BadPreds.end(); I != E; ++I) { 150 // Inform each successor of each dead pred. 151 for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI) 152 (*SI)->removePredecessor(*I); 153 // Zap the dead pred's terminator and replace it with unreachable. 154 TerminatorInst *TI = (*I)->getTerminator(); 155 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 156 (*I)->getTerminator()->eraseFromParent(); 157 new UnreachableInst((*I)->getContext(), *I); 158 Changed = true; 159 } 160 } 161 162 // Does the loop already have a preheader? If so, don't insert one. 163 BasicBlock *Preheader = L->getLoopPreheader(); 164 if (!Preheader) { 165 Preheader = InsertPreheaderForLoop(L); 166 if (Preheader) { 167 NumInserted++; 168 Changed = true; 169 } 170 } 171 172 // Next, check to make sure that all exit nodes of the loop only have 173 // predecessors that are inside of the loop. This check guarantees that the 174 // loop preheader/header will dominate the exit blocks. If the exit block has 175 // predecessors from outside of the loop, split the edge now. 176 SmallVector<BasicBlock*, 8> ExitBlocks; 177 L->getExitBlocks(ExitBlocks); 178 179 SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(), 180 ExitBlocks.end()); 181 for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(), 182 E = ExitBlockSet.end(); I != E; ++I) { 183 BasicBlock *ExitBlock = *I; 184 for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock); 185 PI != PE; ++PI) 186 // Must be exactly this loop: no subloops, parent loops, or non-loop preds 187 // allowed. 188 if (!L->contains(*PI)) { 189 if (RewriteLoopExitBlock(L, ExitBlock)) { 190 NumInserted++; 191 Changed = true; 192 } 193 break; 194 } 195 } 196 197 // If the header has more than two predecessors at this point (from the 198 // preheader and from multiple backedges), we must adjust the loop. 199 BasicBlock *LoopLatch = L->getLoopLatch(); 200 if (!LoopLatch) { 201 // If this is really a nested loop, rip it out into a child loop. Don't do 202 // this for loops with a giant number of backedges, just factor them into a 203 // common backedge instead. 204 if (L->getNumBackEdges() < 8) { 205 if (SeparateNestedLoop(L, LPM)) { 206 ++NumNested; 207 // This is a big restructuring change, reprocess the whole loop. 208 Changed = true; 209 // GCC doesn't tail recursion eliminate this. 210 goto ReprocessLoop; 211 } 212 } 213 214 // If we either couldn't, or didn't want to, identify nesting of the loops, 215 // insert a new block that all backedges target, then make it jump to the 216 // loop header. 217 LoopLatch = InsertUniqueBackedgeBlock(L, Preheader); 218 if (LoopLatch) { 219 NumInserted++; 220 Changed = true; 221 } 222 } 223 224 // Scan over the PHI nodes in the loop header. Since they now have only two 225 // incoming values (the loop is canonicalized), we may have simplified the PHI 226 // down to 'X = phi [X, Y]', which should be replaced with 'Y'. 227 PHINode *PN; 228 for (BasicBlock::iterator I = L->getHeader()->begin(); 229 (PN = dyn_cast<PHINode>(I++)); ) 230 if (Value *V = PN->hasConstantValue(DT)) { 231 if (AA) AA->deleteValue(PN); 232 PN->replaceAllUsesWith(V); 233 PN->eraseFromParent(); 234 } 235 236 // If this loop has multiple exits and the exits all go to the same 237 // block, attempt to merge the exits. This helps several passes, such 238 // as LoopRotation, which do not support loops with multiple exits. 239 // SimplifyCFG also does this (and this code uses the same utility 240 // function), however this code is loop-aware, where SimplifyCFG is 241 // not. That gives it the advantage of being able to hoist 242 // loop-invariant instructions out of the way to open up more 243 // opportunities, and the disadvantage of having the responsibility 244 // to preserve dominator information. 245 bool UniqueExit = true; 246 if (!ExitBlocks.empty()) 247 for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i) 248 if (ExitBlocks[i] != ExitBlocks[0]) { 249 UniqueExit = false; 250 break; 251 } 252 if (UniqueExit) { 253 SmallVector<BasicBlock*, 8> ExitingBlocks; 254 L->getExitingBlocks(ExitingBlocks); 255 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 256 BasicBlock *ExitingBlock = ExitingBlocks[i]; 257 if (!ExitingBlock->getSinglePredecessor()) continue; 258 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 259 if (!BI || !BI->isConditional()) continue; 260 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 261 if (!CI || CI->getParent() != ExitingBlock) continue; 262 263 // Attempt to hoist out all instructions except for the 264 // comparison and the branch. 265 bool AllInvariant = true; 266 for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) { 267 Instruction *Inst = I++; 268 if (Inst == CI) 269 continue; 270 if (!L->makeLoopInvariant(Inst, Changed, 271 Preheader ? Preheader->getTerminator() : 0)) { 272 AllInvariant = false; 273 break; 274 } 275 } 276 if (!AllInvariant) continue; 277 278 // The block has now been cleared of all instructions except for 279 // a comparison and a conditional branch. SimplifyCFG may be able 280 // to fold it now. 281 if (!FoldBranchToCommonDest(BI)) continue; 282 283 // Success. The block is now dead, so remove it from the loop, 284 // update the dominator tree and dominance frontier, and delete it. 285 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock)); 286 Changed = true; 287 LI->removeBlock(ExitingBlock); 288 289 DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>(); 290 DomTreeNode *Node = DT->getNode(ExitingBlock); 291 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children = 292 Node->getChildren(); 293 while (!Children.empty()) { 294 DomTreeNode *Child = Children.front(); 295 DT->changeImmediateDominator(Child, Node->getIDom()); 296 if (DF) DF->changeImmediateDominator(Child->getBlock(), 297 Node->getIDom()->getBlock(), 298 DT); 299 } 300 DT->eraseNode(ExitingBlock); 301 if (DF) DF->removeBlock(ExitingBlock); 302 303 BI->getSuccessor(0)->removePredecessor(ExitingBlock); 304 BI->getSuccessor(1)->removePredecessor(ExitingBlock); 305 ExitingBlock->eraseFromParent(); 306 } 307 } 308 309 return Changed; 310 } 311 312 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a 313 /// preheader, this method is called to insert one. This method has two phases: 314 /// preheader insertion and analysis updating. 315 /// 316 BasicBlock *LoopSimplify::InsertPreheaderForLoop(Loop *L) { 317 BasicBlock *Header = L->getHeader(); 318 319 // Compute the set of predecessors of the loop that are not in the loop. 320 SmallVector<BasicBlock*, 8> OutsideBlocks; 321 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); 322 PI != PE; ++PI) 323 if (!L->contains(*PI)) { // Coming in from outside the loop? 324 // If the loop is branched to from an indirect branch, we won't 325 // be able to fully transform the loop, because it prohibits 326 // edge splitting. 327 if (isa<IndirectBrInst>((*PI)->getTerminator())) return 0; 328 329 // Keep track of it. 330 OutsideBlocks.push_back(*PI); 331 } 332 333 // Split out the loop pre-header. 334 BasicBlock *NewBB = 335 SplitBlockPredecessors(Header, &OutsideBlocks[0], OutsideBlocks.size(), 336 ".preheader", this); 337 338 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 339 // code layout too horribly. 340 PlaceSplitBlockCarefully(NewBB, OutsideBlocks, L); 341 342 return NewBB; 343 } 344 345 /// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit 346 /// blocks. This method is used to split exit blocks that have predecessors 347 /// outside of the loop. 348 BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) { 349 SmallVector<BasicBlock*, 8> LoopBlocks; 350 for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) 351 if (L->contains(*I)) { 352 // Don't do this if the loop is exited via an indirect branch. 353 if (isa<IndirectBrInst>((*I)->getTerminator())) return 0; 354 355 LoopBlocks.push_back(*I); 356 } 357 358 assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?"); 359 BasicBlock *NewBB = SplitBlockPredecessors(Exit, &LoopBlocks[0], 360 LoopBlocks.size(), ".loopexit", 361 this); 362 363 return NewBB; 364 } 365 366 /// AddBlockAndPredsToSet - Add the specified block, and all of its 367 /// predecessors, to the specified set, if it's not already in there. Stop 368 /// predecessor traversal when we reach StopBlock. 369 static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, 370 std::set<BasicBlock*> &Blocks) { 371 std::vector<BasicBlock *> WorkList; 372 WorkList.push_back(InputBB); 373 do { 374 BasicBlock *BB = WorkList.back(); WorkList.pop_back(); 375 if (Blocks.insert(BB).second && BB != StopBlock) 376 // If BB is not already processed and it is not a stop block then 377 // insert its predecessor in the work list 378 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 379 BasicBlock *WBB = *I; 380 WorkList.push_back(WBB); 381 } 382 } while(!WorkList.empty()); 383 } 384 385 /// FindPHIToPartitionLoops - The first part of loop-nestification is to find a 386 /// PHI node that tells us how to partition the loops. 387 static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT, 388 AliasAnalysis *AA) { 389 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { 390 PHINode *PN = cast<PHINode>(I); 391 ++I; 392 if (Value *V = PN->hasConstantValue(DT)) { 393 // This is a degenerate PHI already, don't modify it! 394 PN->replaceAllUsesWith(V); 395 if (AA) AA->deleteValue(PN); 396 PN->eraseFromParent(); 397 continue; 398 } 399 400 // Scan this PHI node looking for a use of the PHI node by itself. 401 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 402 if (PN->getIncomingValue(i) == PN && 403 L->contains(PN->getIncomingBlock(i))) 404 // We found something tasty to remove. 405 return PN; 406 } 407 return 0; 408 } 409 410 // PlaceSplitBlockCarefully - If the block isn't already, move the new block to 411 // right after some 'outside block' block. This prevents the preheader from 412 // being placed inside the loop body, e.g. when the loop hasn't been rotated. 413 void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB, 414 SmallVectorImpl<BasicBlock*> &SplitPreds, 415 Loop *L) { 416 // Check to see if NewBB is already well placed. 417 Function::iterator BBI = NewBB; --BBI; 418 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 419 if (&*BBI == SplitPreds[i]) 420 return; 421 } 422 423 // If it isn't already after an outside block, move it after one. This is 424 // always good as it makes the uncond branch from the outside block into a 425 // fall-through. 426 427 // Figure out *which* outside block to put this after. Prefer an outside 428 // block that neighbors a BB actually in the loop. 429 BasicBlock *FoundBB = 0; 430 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 431 Function::iterator BBI = SplitPreds[i]; 432 if (++BBI != NewBB->getParent()->end() && 433 L->contains(BBI)) { 434 FoundBB = SplitPreds[i]; 435 break; 436 } 437 } 438 439 // If our heuristic for a *good* bb to place this after doesn't find 440 // anything, just pick something. It's likely better than leaving it within 441 // the loop. 442 if (!FoundBB) 443 FoundBB = SplitPreds[0]; 444 NewBB->moveAfter(FoundBB); 445 } 446 447 448 /// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of 449 /// them out into a nested loop. This is important for code that looks like 450 /// this: 451 /// 452 /// Loop: 453 /// ... 454 /// br cond, Loop, Next 455 /// ... 456 /// br cond2, Loop, Out 457 /// 458 /// To identify this common case, we look at the PHI nodes in the header of the 459 /// loop. PHI nodes with unchanging values on one backedge correspond to values 460 /// that change in the "outer" loop, but not in the "inner" loop. 461 /// 462 /// If we are able to separate out a loop, return the new outer loop that was 463 /// created. 464 /// 465 Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM) { 466 PHINode *PN = FindPHIToPartitionLoops(L, DT, AA); 467 if (PN == 0) return 0; // No known way to partition. 468 469 // Pull out all predecessors that have varying values in the loop. This 470 // handles the case when a PHI node has multiple instances of itself as 471 // arguments. 472 SmallVector<BasicBlock*, 8> OuterLoopPreds; 473 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 474 if (PN->getIncomingValue(i) != PN || 475 !L->contains(PN->getIncomingBlock(i))) { 476 // We can't split indirectbr edges. 477 if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator())) 478 return 0; 479 480 OuterLoopPreds.push_back(PN->getIncomingBlock(i)); 481 } 482 483 BasicBlock *Header = L->getHeader(); 484 BasicBlock *NewBB = SplitBlockPredecessors(Header, &OuterLoopPreds[0], 485 OuterLoopPreds.size(), 486 ".outer", this); 487 488 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 489 // code layout too horribly. 490 PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L); 491 492 // Create the new outer loop. 493 Loop *NewOuter = new Loop(); 494 495 // Change the parent loop to use the outer loop as its child now. 496 if (Loop *Parent = L->getParentLoop()) 497 Parent->replaceChildLoopWith(L, NewOuter); 498 else 499 LI->changeTopLevelLoop(L, NewOuter); 500 501 // L is now a subloop of our outer loop. 502 NewOuter->addChildLoop(L); 503 504 // Add the new loop to the pass manager queue. 505 LPM.insertLoopIntoQueue(NewOuter); 506 507 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 508 I != E; ++I) 509 NewOuter->addBlockEntry(*I); 510 511 // Now reset the header in L, which had been moved by 512 // SplitBlockPredecessors for the outer loop. 513 L->moveToHeader(Header); 514 515 // Determine which blocks should stay in L and which should be moved out to 516 // the Outer loop now. 517 std::set<BasicBlock*> BlocksInL; 518 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) 519 if (DT->dominates(Header, *PI)) 520 AddBlockAndPredsToSet(*PI, Header, BlocksInL); 521 522 523 // Scan all of the loop children of L, moving them to OuterLoop if they are 524 // not part of the inner loop. 525 const std::vector<Loop*> &SubLoops = L->getSubLoops(); 526 for (size_t I = 0; I != SubLoops.size(); ) 527 if (BlocksInL.count(SubLoops[I]->getHeader())) 528 ++I; // Loop remains in L 529 else 530 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); 531 532 // Now that we know which blocks are in L and which need to be moved to 533 // OuterLoop, move any blocks that need it. 534 for (unsigned i = 0; i != L->getBlocks().size(); ++i) { 535 BasicBlock *BB = L->getBlocks()[i]; 536 if (!BlocksInL.count(BB)) { 537 // Move this block to the parent, updating the exit blocks sets 538 L->removeBlockFromLoop(BB); 539 if ((*LI)[BB] == L) 540 LI->changeLoopFor(BB, NewOuter); 541 --i; 542 } 543 } 544 545 return NewOuter; 546 } 547 548 549 550 /// InsertUniqueBackedgeBlock - This method is called when the specified loop 551 /// has more than one backedge in it. If this occurs, revector all of these 552 /// backedges to target a new basic block and have that block branch to the loop 553 /// header. This ensures that loops have exactly one backedge. 554 /// 555 BasicBlock * 556 LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) { 557 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); 558 559 // Get information about the loop 560 BasicBlock *Header = L->getHeader(); 561 Function *F = Header->getParent(); 562 563 // Unique backedge insertion currently depends on having a preheader. 564 if (!Preheader) 565 return 0; 566 567 // Figure out which basic blocks contain back-edges to the loop header. 568 std::vector<BasicBlock*> BackedgeBlocks; 569 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I) 570 if (*I != Preheader) BackedgeBlocks.push_back(*I); 571 572 // Create and insert the new backedge block... 573 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), 574 Header->getName()+".backedge", F); 575 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); 576 577 // Move the new backedge block to right after the last backedge block. 578 Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos; 579 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); 580 581 // Now that the block has been inserted into the function, create PHI nodes in 582 // the backedge block which correspond to any PHI nodes in the header block. 583 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 584 PHINode *PN = cast<PHINode>(I); 585 PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".be", 586 BETerminator); 587 NewPN->reserveOperandSpace(BackedgeBlocks.size()); 588 if (AA) AA->copyValue(PN, NewPN); 589 590 // Loop over the PHI node, moving all entries except the one for the 591 // preheader over to the new PHI node. 592 unsigned PreheaderIdx = ~0U; 593 bool HasUniqueIncomingValue = true; 594 Value *UniqueValue = 0; 595 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 596 BasicBlock *IBB = PN->getIncomingBlock(i); 597 Value *IV = PN->getIncomingValue(i); 598 if (IBB == Preheader) { 599 PreheaderIdx = i; 600 } else { 601 NewPN->addIncoming(IV, IBB); 602 if (HasUniqueIncomingValue) { 603 if (UniqueValue == 0) 604 UniqueValue = IV; 605 else if (UniqueValue != IV) 606 HasUniqueIncomingValue = false; 607 } 608 } 609 } 610 611 // Delete all of the incoming values from the old PN except the preheader's 612 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); 613 if (PreheaderIdx != 0) { 614 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); 615 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); 616 } 617 // Nuke all entries except the zero'th. 618 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) 619 PN->removeIncomingValue(e-i, false); 620 621 // Finally, add the newly constructed PHI node as the entry for the BEBlock. 622 PN->addIncoming(NewPN, BEBlock); 623 624 // As an optimization, if all incoming values in the new PhiNode (which is a 625 // subset of the incoming values of the old PHI node) have the same value, 626 // eliminate the PHI Node. 627 if (HasUniqueIncomingValue) { 628 NewPN->replaceAllUsesWith(UniqueValue); 629 if (AA) AA->deleteValue(NewPN); 630 BEBlock->getInstList().erase(NewPN); 631 } 632 } 633 634 // Now that all of the PHI nodes have been inserted and adjusted, modify the 635 // backedge blocks to just to the BEBlock instead of the header. 636 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { 637 TerminatorInst *TI = BackedgeBlocks[i]->getTerminator(); 638 for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op) 639 if (TI->getSuccessor(Op) == Header) 640 TI->setSuccessor(Op, BEBlock); 641 } 642 643 //===--- Update all analyses which we must preserve now -----------------===// 644 645 // Update Loop Information - we know that this block is now in the current 646 // loop and all parent loops. 647 L->addBasicBlockToLoop(BEBlock, LI->getBase()); 648 649 // Update dominator information 650 DT->splitBlock(BEBlock); 651 if (DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>()) 652 DF->splitBlock(BEBlock); 653 654 return BEBlock; 655 } 656 657 void LoopSimplify::verifyAnalysis() const { 658 // It used to be possible to just assert L->isLoopSimplifyForm(), however 659 // with the introduction of indirectbr, there are now cases where it's 660 // not possible to transform a loop as necessary. We can at least check 661 // that there is an indirectbr near any time there's trouble. 662 663 // Indirectbr can interfere with preheader and unique backedge insertion. 664 if (!L->getLoopPreheader() || !L->getLoopLatch()) { 665 bool HasIndBrPred = false; 666 for (pred_iterator PI = pred_begin(L->getHeader()), 667 PE = pred_end(L->getHeader()); PI != PE; ++PI) 668 if (isa<IndirectBrInst>((*PI)->getTerminator())) { 669 HasIndBrPred = true; 670 break; 671 } 672 assert(HasIndBrPred && 673 "LoopSimplify has no excuse for missing loop header info!"); 674 } 675 676 // Indirectbr can interfere with exit block canonicalization. 677 if (!L->hasDedicatedExits()) { 678 bool HasIndBrExiting = false; 679 SmallVector<BasicBlock*, 8> ExitingBlocks; 680 L->getExitingBlocks(ExitingBlocks); 681 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) 682 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { 683 HasIndBrExiting = true; 684 break; 685 } 686 assert(HasIndBrExiting && 687 "LoopSimplify has no excuse for missing exit block info!"); 688 } 689 } 690