1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs several transformations to transform natural loops into a
10 // simpler form, which makes subsequent analyses and transformations simpler and
11 // more effective.
12 //
13 // Loop pre-header insertion guarantees that there is a single, non-critical
14 // entry edge from outside of the loop to the loop header.  This simplifies a
15 // number of analyses and transformations, such as LICM.
16 //
17 // Loop exit-block insertion guarantees that all exit blocks from the loop
18 // (blocks which are outside of the loop that have predecessors inside of the
19 // loop) only have predecessors from inside of the loop (and are thus dominated
20 // by the loop header).  This simplifies transformations such as store-sinking
21 // that are built into LICM.
22 //
23 // This pass also guarantees that loops will have exactly one backedge.
24 //
25 // Indirectbr instructions introduce several complications. If the loop
26 // contains or is entered by an indirectbr instruction, it may not be possible
27 // to transform the loop and make these guarantees. Client code should check
28 // that these conditions are true before relying on them.
29 //
30 // Note that the simplifycfg pass will clean up blocks which are split out but
31 // end up being unnecessary, so usage of this pass should not pessimize
32 // generated code.
33 //
34 // This pass obviously modifies the CFG, but updates loop information and
35 // dominator information.
36 //
37 //===----------------------------------------------------------------------===//
38 
39 #include "llvm/Transforms/Utils/LoopSimplify.h"
40 #include "llvm/ADT/DepthFirstIterator.h"
41 #include "llvm/ADT/SetOperations.h"
42 #include "llvm/ADT/SetVector.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/Analysis/AliasAnalysis.h"
46 #include "llvm/Analysis/AssumptionCache.h"
47 #include "llvm/Analysis/BasicAliasAnalysis.h"
48 #include "llvm/Analysis/DependenceAnalysis.h"
49 #include "llvm/Analysis/GlobalsModRef.h"
50 #include "llvm/Analysis/InstructionSimplify.h"
51 #include "llvm/Analysis/LoopInfo.h"
52 #include "llvm/Analysis/ScalarEvolution.h"
53 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
54 #include "llvm/Transforms/Utils/Local.h"
55 #include "llvm/IR/CFG.h"
56 #include "llvm/IR/Constants.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/Dominators.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/Type.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Transforms/Utils.h"
68 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
69 #include "llvm/Transforms/Utils/LoopUtils.h"
70 using namespace llvm;
71 
72 #define DEBUG_TYPE "loop-simplify"
73 
74 STATISTIC(NumNested  , "Number of nested loops split out");
75 
76 // If the block isn't already, move the new block to right after some 'outside
77 // block' block.  This prevents the preheader from being placed inside the loop
78 // body, e.g. when the loop hasn't been rotated.
79 static void placeSplitBlockCarefully(BasicBlock *NewBB,
80                                      SmallVectorImpl<BasicBlock *> &SplitPreds,
81                                      Loop *L) {
82   // Check to see if NewBB is already well placed.
83   Function::iterator BBI = --NewBB->getIterator();
84   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
85     if (&*BBI == SplitPreds[i])
86       return;
87   }
88 
89   // If it isn't already after an outside block, move it after one.  This is
90   // always good as it makes the uncond branch from the outside block into a
91   // fall-through.
92 
93   // Figure out *which* outside block to put this after.  Prefer an outside
94   // block that neighbors a BB actually in the loop.
95   BasicBlock *FoundBB = nullptr;
96   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
97     Function::iterator BBI = SplitPreds[i]->getIterator();
98     if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) {
99       FoundBB = SplitPreds[i];
100       break;
101     }
102   }
103 
104   // If our heuristic for a *good* bb to place this after doesn't find
105   // anything, just pick something.  It's likely better than leaving it within
106   // the loop.
107   if (!FoundBB)
108     FoundBB = SplitPreds[0];
109   NewBB->moveAfter(FoundBB);
110 }
111 
112 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
113 /// preheader, this method is called to insert one.  This method has two phases:
114 /// preheader insertion and analysis updating.
115 ///
116 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT,
117                                          LoopInfo *LI, bool PreserveLCSSA) {
118   BasicBlock *Header = L->getHeader();
119 
120   // Compute the set of predecessors of the loop that are not in the loop.
121   SmallVector<BasicBlock*, 8> OutsideBlocks;
122   for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
123        PI != PE; ++PI) {
124     BasicBlock *P = *PI;
125     if (!L->contains(P)) {         // Coming in from outside the loop?
126       // If the loop is branched to from an indirect branch, we won't
127       // be able to fully transform the loop, because it prohibits
128       // edge splitting.
129       if (isa<IndirectBrInst>(P->getTerminator())) return nullptr;
130 
131       // Keep track of it.
132       OutsideBlocks.push_back(P);
133     }
134   }
135 
136   // Split out the loop pre-header.
137   BasicBlock *PreheaderBB;
138   PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT,
139                                        LI, nullptr, PreserveLCSSA);
140   if (!PreheaderBB)
141     return nullptr;
142 
143   LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
144                     << PreheaderBB->getName() << "\n");
145 
146   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
147   // code layout too horribly.
148   placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
149 
150   return PreheaderBB;
151 }
152 
153 /// Add the specified block, and all of its predecessors, to the specified set,
154 /// if it's not already in there.  Stop predecessor traversal when we reach
155 /// StopBlock.
156 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
157                                   std::set<BasicBlock*> &Blocks) {
158   SmallVector<BasicBlock *, 8> Worklist;
159   Worklist.push_back(InputBB);
160   do {
161     BasicBlock *BB = Worklist.pop_back_val();
162     if (Blocks.insert(BB).second && BB != StopBlock)
163       // If BB is not already processed and it is not a stop block then
164       // insert its predecessor in the work list
165       for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
166         BasicBlock *WBB = *I;
167         Worklist.push_back(WBB);
168       }
169   } while (!Worklist.empty());
170 }
171 
172 /// The first part of loop-nestification is to find a PHI node that tells
173 /// us how to partition the loops.
174 static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT,
175                                         AssumptionCache *AC) {
176   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
177   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
178     PHINode *PN = cast<PHINode>(I);
179     ++I;
180     if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
181       // This is a degenerate PHI already, don't modify it!
182       PN->replaceAllUsesWith(V);
183       PN->eraseFromParent();
184       continue;
185     }
186 
187     // Scan this PHI node looking for a use of the PHI node by itself.
188     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
189       if (PN->getIncomingValue(i) == PN &&
190           L->contains(PN->getIncomingBlock(i)))
191         // We found something tasty to remove.
192         return PN;
193   }
194   return nullptr;
195 }
196 
197 /// If this loop has multiple backedges, try to pull one of them out into
198 /// a nested loop.
199 ///
200 /// This is important for code that looks like
201 /// this:
202 ///
203 ///  Loop:
204 ///     ...
205 ///     br cond, Loop, Next
206 ///     ...
207 ///     br cond2, Loop, Out
208 ///
209 /// To identify this common case, we look at the PHI nodes in the header of the
210 /// loop.  PHI nodes with unchanging values on one backedge correspond to values
211 /// that change in the "outer" loop, but not in the "inner" loop.
212 ///
213 /// If we are able to separate out a loop, return the new outer loop that was
214 /// created.
215 ///
216 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
217                                 DominatorTree *DT, LoopInfo *LI,
218                                 ScalarEvolution *SE, bool PreserveLCSSA,
219                                 AssumptionCache *AC) {
220   // Don't try to separate loops without a preheader.
221   if (!Preheader)
222     return nullptr;
223 
224   // The header is not a landing pad; preheader insertion should ensure this.
225   BasicBlock *Header = L->getHeader();
226   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
227 
228   PHINode *PN = findPHIToPartitionLoops(L, DT, AC);
229   if (!PN) return nullptr;  // No known way to partition.
230 
231   // Pull out all predecessors that have varying values in the loop.  This
232   // handles the case when a PHI node has multiple instances of itself as
233   // arguments.
234   SmallVector<BasicBlock*, 8> OuterLoopPreds;
235   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
236     if (PN->getIncomingValue(i) != PN ||
237         !L->contains(PN->getIncomingBlock(i))) {
238       // We can't split indirectbr edges.
239       if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
240         return nullptr;
241       OuterLoopPreds.push_back(PN->getIncomingBlock(i));
242     }
243   }
244   LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
245 
246   // If ScalarEvolution is around and knows anything about values in
247   // this loop, tell it to forget them, because we're about to
248   // substantially change it.
249   if (SE)
250     SE->forgetLoop(L);
251 
252   BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer",
253                                              DT, LI, nullptr, PreserveLCSSA);
254 
255   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
256   // code layout too horribly.
257   placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
258 
259   // Create the new outer loop.
260   Loop *NewOuter = LI->AllocateLoop();
261 
262   // Change the parent loop to use the outer loop as its child now.
263   if (Loop *Parent = L->getParentLoop())
264     Parent->replaceChildLoopWith(L, NewOuter);
265   else
266     LI->changeTopLevelLoop(L, NewOuter);
267 
268   // L is now a subloop of our outer loop.
269   NewOuter->addChildLoop(L);
270 
271   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
272        I != E; ++I)
273     NewOuter->addBlockEntry(*I);
274 
275   // Now reset the header in L, which had been moved by
276   // SplitBlockPredecessors for the outer loop.
277   L->moveToHeader(Header);
278 
279   // Determine which blocks should stay in L and which should be moved out to
280   // the Outer loop now.
281   std::set<BasicBlock*> BlocksInL;
282   for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
283     BasicBlock *P = *PI;
284     if (DT->dominates(Header, P))
285       addBlockAndPredsToSet(P, Header, BlocksInL);
286   }
287 
288   // Scan all of the loop children of L, moving them to OuterLoop if they are
289   // not part of the inner loop.
290   const std::vector<Loop*> &SubLoops = L->getSubLoops();
291   for (size_t I = 0; I != SubLoops.size(); )
292     if (BlocksInL.count(SubLoops[I]->getHeader()))
293       ++I;   // Loop remains in L
294     else
295       NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
296 
297   SmallVector<BasicBlock *, 8> OuterLoopBlocks;
298   OuterLoopBlocks.push_back(NewBB);
299   // Now that we know which blocks are in L and which need to be moved to
300   // OuterLoop, move any blocks that need it.
301   for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
302     BasicBlock *BB = L->getBlocks()[i];
303     if (!BlocksInL.count(BB)) {
304       // Move this block to the parent, updating the exit blocks sets
305       L->removeBlockFromLoop(BB);
306       if ((*LI)[BB] == L) {
307         LI->changeLoopFor(BB, NewOuter);
308         OuterLoopBlocks.push_back(BB);
309       }
310       --i;
311     }
312   }
313 
314   // Split edges to exit blocks from the inner loop, if they emerged in the
315   // process of separating the outer one.
316   formDedicatedExitBlocks(L, DT, LI, PreserveLCSSA);
317 
318   if (PreserveLCSSA) {
319     // Fix LCSSA form for L. Some values, which previously were only used inside
320     // L, can now be used in NewOuter loop. We need to insert phi-nodes for them
321     // in corresponding exit blocks.
322     // We don't need to form LCSSA recursively, because there cannot be uses
323     // inside a newly created loop of defs from inner loops as those would
324     // already be a use of an LCSSA phi node.
325     formLCSSA(*L, *DT, LI, SE);
326 
327     assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) &&
328            "LCSSA is broken after separating nested loops!");
329   }
330 
331   return NewOuter;
332 }
333 
334 /// This method is called when the specified loop has more than one
335 /// backedge in it.
336 ///
337 /// If this occurs, revector all of these backedges to target a new basic block
338 /// and have that block branch to the loop header.  This ensures that loops
339 /// have exactly one backedge.
340 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
341                                              DominatorTree *DT, LoopInfo *LI) {
342   assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
343 
344   // Get information about the loop
345   BasicBlock *Header = L->getHeader();
346   Function *F = Header->getParent();
347 
348   // Unique backedge insertion currently depends on having a preheader.
349   if (!Preheader)
350     return nullptr;
351 
352   // The header is not an EH pad; preheader insertion should ensure this.
353   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
354 
355   // Figure out which basic blocks contain back-edges to the loop header.
356   std::vector<BasicBlock*> BackedgeBlocks;
357   for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
358     BasicBlock *P = *I;
359 
360     // Indirectbr edges cannot be split, so we must fail if we find one.
361     if (isa<IndirectBrInst>(P->getTerminator()))
362       return nullptr;
363 
364     if (P != Preheader) BackedgeBlocks.push_back(P);
365   }
366 
367   // Create and insert the new backedge block...
368   BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
369                                            Header->getName() + ".backedge", F);
370   BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
371   BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc());
372 
373   LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
374                     << BEBlock->getName() << "\n");
375 
376   // Move the new backedge block to right after the last backedge block.
377   Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator();
378   F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
379 
380   // Now that the block has been inserted into the function, create PHI nodes in
381   // the backedge block which correspond to any PHI nodes in the header block.
382   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
383     PHINode *PN = cast<PHINode>(I);
384     PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
385                                      PN->getName()+".be", BETerminator);
386 
387     // Loop over the PHI node, moving all entries except the one for the
388     // preheader over to the new PHI node.
389     unsigned PreheaderIdx = ~0U;
390     bool HasUniqueIncomingValue = true;
391     Value *UniqueValue = nullptr;
392     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
393       BasicBlock *IBB = PN->getIncomingBlock(i);
394       Value *IV = PN->getIncomingValue(i);
395       if (IBB == Preheader) {
396         PreheaderIdx = i;
397       } else {
398         NewPN->addIncoming(IV, IBB);
399         if (HasUniqueIncomingValue) {
400           if (!UniqueValue)
401             UniqueValue = IV;
402           else if (UniqueValue != IV)
403             HasUniqueIncomingValue = false;
404         }
405       }
406     }
407 
408     // Delete all of the incoming values from the old PN except the preheader's
409     assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
410     if (PreheaderIdx != 0) {
411       PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
412       PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
413     }
414     // Nuke all entries except the zero'th.
415     for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
416       PN->removeIncomingValue(e-i, false);
417 
418     // Finally, add the newly constructed PHI node as the entry for the BEBlock.
419     PN->addIncoming(NewPN, BEBlock);
420 
421     // As an optimization, if all incoming values in the new PhiNode (which is a
422     // subset of the incoming values of the old PHI node) have the same value,
423     // eliminate the PHI Node.
424     if (HasUniqueIncomingValue) {
425       NewPN->replaceAllUsesWith(UniqueValue);
426       BEBlock->getInstList().erase(NewPN);
427     }
428   }
429 
430   // Now that all of the PHI nodes have been inserted and adjusted, modify the
431   // backedge blocks to jump to the BEBlock instead of the header.
432   // If one of the backedges has llvm.loop metadata attached, we remove
433   // it from the backedge and add it to BEBlock.
434   unsigned LoopMDKind = BEBlock->getContext().getMDKindID("llvm.loop");
435   MDNode *LoopMD = nullptr;
436   for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
437     Instruction *TI = BackedgeBlocks[i]->getTerminator();
438     if (!LoopMD)
439       LoopMD = TI->getMetadata(LoopMDKind);
440     TI->setMetadata(LoopMDKind, nullptr);
441     for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
442       if (TI->getSuccessor(Op) == Header)
443         TI->setSuccessor(Op, BEBlock);
444   }
445   BEBlock->getTerminator()->setMetadata(LoopMDKind, LoopMD);
446 
447   //===--- Update all analyses which we must preserve now -----------------===//
448 
449   // Update Loop Information - we know that this block is now in the current
450   // loop and all parent loops.
451   L->addBasicBlockToLoop(BEBlock, *LI);
452 
453   // Update dominator information
454   DT->splitBlock(BEBlock);
455 
456   return BEBlock;
457 }
458 
459 /// Simplify one loop and queue further loops for simplification.
460 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
461                             DominatorTree *DT, LoopInfo *LI,
462                             ScalarEvolution *SE, AssumptionCache *AC,
463                             bool PreserveLCSSA) {
464   bool Changed = false;
465 ReprocessLoop:
466 
467   // Check to see that no blocks (other than the header) in this loop have
468   // predecessors that are not in the loop.  This is not valid for natural
469   // loops, but can occur if the blocks are unreachable.  Since they are
470   // unreachable we can just shamelessly delete those CFG edges!
471   for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
472        BB != E; ++BB) {
473     if (*BB == L->getHeader()) continue;
474 
475     SmallPtrSet<BasicBlock*, 4> BadPreds;
476     for (pred_iterator PI = pred_begin(*BB),
477          PE = pred_end(*BB); PI != PE; ++PI) {
478       BasicBlock *P = *PI;
479       if (!L->contains(P))
480         BadPreds.insert(P);
481     }
482 
483     // Delete each unique out-of-loop (and thus dead) predecessor.
484     for (BasicBlock *P : BadPreds) {
485 
486       LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
487                         << P->getName() << "\n");
488 
489       // Zap the dead pred's terminator and replace it with unreachable.
490       Instruction *TI = P->getTerminator();
491       changeToUnreachable(TI, /*UseLLVMTrap=*/false, PreserveLCSSA);
492       Changed = true;
493     }
494   }
495 
496   // If there are exiting blocks with branches on undef, resolve the undef in
497   // the direction which will exit the loop. This will help simplify loop
498   // trip count computations.
499   SmallVector<BasicBlock*, 8> ExitingBlocks;
500   L->getExitingBlocks(ExitingBlocks);
501   for (BasicBlock *ExitingBlock : ExitingBlocks)
502     if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
503       if (BI->isConditional()) {
504         if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
505 
506           LLVM_DEBUG(dbgs()
507                      << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
508                      << ExitingBlock->getName() << "\n");
509 
510           BI->setCondition(ConstantInt::get(Cond->getType(),
511                                             !L->contains(BI->getSuccessor(0))));
512 
513           Changed = true;
514         }
515       }
516 
517   // Does the loop already have a preheader?  If so, don't insert one.
518   BasicBlock *Preheader = L->getLoopPreheader();
519   if (!Preheader) {
520     Preheader = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA);
521     if (Preheader)
522       Changed = true;
523   }
524 
525   // Next, check to make sure that all exit nodes of the loop only have
526   // predecessors that are inside of the loop.  This check guarantees that the
527   // loop preheader/header will dominate the exit blocks.  If the exit block has
528   // predecessors from outside of the loop, split the edge now.
529   if (formDedicatedExitBlocks(L, DT, LI, PreserveLCSSA))
530     Changed = true;
531 
532   // If the header has more than two predecessors at this point (from the
533   // preheader and from multiple backedges), we must adjust the loop.
534   BasicBlock *LoopLatch = L->getLoopLatch();
535   if (!LoopLatch) {
536     // If this is really a nested loop, rip it out into a child loop.  Don't do
537     // this for loops with a giant number of backedges, just factor them into a
538     // common backedge instead.
539     if (L->getNumBackEdges() < 8) {
540       if (Loop *OuterL =
541               separateNestedLoop(L, Preheader, DT, LI, SE, PreserveLCSSA, AC)) {
542         ++NumNested;
543         // Enqueue the outer loop as it should be processed next in our
544         // depth-first nest walk.
545         Worklist.push_back(OuterL);
546 
547         // This is a big restructuring change, reprocess the whole loop.
548         Changed = true;
549         // GCC doesn't tail recursion eliminate this.
550         // FIXME: It isn't clear we can't rely on LLVM to TRE this.
551         goto ReprocessLoop;
552       }
553     }
554 
555     // If we either couldn't, or didn't want to, identify nesting of the loops,
556     // insert a new block that all backedges target, then make it jump to the
557     // loop header.
558     LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI);
559     if (LoopLatch)
560       Changed = true;
561   }
562 
563   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
564 
565   // Scan over the PHI nodes in the loop header.  Since they now have only two
566   // incoming values (the loop is canonicalized), we may have simplified the PHI
567   // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
568   PHINode *PN;
569   for (BasicBlock::iterator I = L->getHeader()->begin();
570        (PN = dyn_cast<PHINode>(I++)); )
571     if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
572       if (SE) SE->forgetValue(PN);
573       if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) {
574         PN->replaceAllUsesWith(V);
575         PN->eraseFromParent();
576       }
577     }
578 
579   // If this loop has multiple exits and the exits all go to the same
580   // block, attempt to merge the exits. This helps several passes, such
581   // as LoopRotation, which do not support loops with multiple exits.
582   // SimplifyCFG also does this (and this code uses the same utility
583   // function), however this code is loop-aware, where SimplifyCFG is
584   // not. That gives it the advantage of being able to hoist
585   // loop-invariant instructions out of the way to open up more
586   // opportunities, and the disadvantage of having the responsibility
587   // to preserve dominator information.
588   auto HasUniqueExitBlock = [&]() {
589     BasicBlock *UniqueExit = nullptr;
590     for (auto *ExitingBB : ExitingBlocks)
591       for (auto *SuccBB : successors(ExitingBB)) {
592         if (L->contains(SuccBB))
593           continue;
594 
595         if (!UniqueExit)
596           UniqueExit = SuccBB;
597         else if (UniqueExit != SuccBB)
598           return false;
599       }
600 
601     return true;
602   };
603   if (HasUniqueExitBlock()) {
604     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
605       BasicBlock *ExitingBlock = ExitingBlocks[i];
606       if (!ExitingBlock->getSinglePredecessor()) continue;
607       BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
608       if (!BI || !BI->isConditional()) continue;
609       CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
610       if (!CI || CI->getParent() != ExitingBlock) continue;
611 
612       // Attempt to hoist out all instructions except for the
613       // comparison and the branch.
614       bool AllInvariant = true;
615       bool AnyInvariant = false;
616       for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) {
617         Instruction *Inst = &*I++;
618         if (Inst == CI)
619           continue;
620         if (!L->makeLoopInvariant(Inst, AnyInvariant,
621                                   Preheader ? Preheader->getTerminator()
622                                             : nullptr)) {
623           AllInvariant = false;
624           break;
625         }
626       }
627       if (AnyInvariant) {
628         Changed = true;
629         // The loop disposition of all SCEV expressions that depend on any
630         // hoisted values have also changed.
631         if (SE)
632           SE->forgetLoopDispositions(L);
633       }
634       if (!AllInvariant) continue;
635 
636       // The block has now been cleared of all instructions except for
637       // a comparison and a conditional branch. SimplifyCFG may be able
638       // to fold it now.
639       if (!FoldBranchToCommonDest(BI))
640         continue;
641 
642       // Success. The block is now dead, so remove it from the loop,
643       // update the dominator tree and delete it.
644       LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
645                         << ExitingBlock->getName() << "\n");
646 
647       assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
648       Changed = true;
649       LI->removeBlock(ExitingBlock);
650 
651       DomTreeNode *Node = DT->getNode(ExitingBlock);
652       const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
653         Node->getChildren();
654       while (!Children.empty()) {
655         DomTreeNode *Child = Children.front();
656         DT->changeImmediateDominator(Child, Node->getIDom());
657       }
658       DT->eraseNode(ExitingBlock);
659 
660       BI->getSuccessor(0)->removePredecessor(
661           ExitingBlock, /* DontDeleteUselessPHIs */ PreserveLCSSA);
662       BI->getSuccessor(1)->removePredecessor(
663           ExitingBlock, /* DontDeleteUselessPHIs */ PreserveLCSSA);
664       ExitingBlock->eraseFromParent();
665     }
666   }
667 
668   // Changing exit conditions for blocks may affect exit counts of this loop and
669   // any of its paretns, so we must invalidate the entire subtree if we've made
670   // any changes.
671   if (Changed && SE)
672     SE->forgetTopmostLoop(L);
673 
674   return Changed;
675 }
676 
677 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
678                         ScalarEvolution *SE, AssumptionCache *AC,
679                         bool PreserveLCSSA) {
680   bool Changed = false;
681 
682 #ifndef NDEBUG
683   // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA
684   // form.
685   if (PreserveLCSSA) {
686     assert(DT && "DT not available.");
687     assert(LI && "LI not available.");
688     assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
689            "Requested to preserve LCSSA, but it's already broken.");
690   }
691 #endif
692 
693   // Worklist maintains our depth-first queue of loops in this nest to process.
694   SmallVector<Loop *, 4> Worklist;
695   Worklist.push_back(L);
696 
697   // Walk the worklist from front to back, pushing newly found sub loops onto
698   // the back. This will let us process loops from back to front in depth-first
699   // order. We can use this simple process because loops form a tree.
700   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
701     Loop *L2 = Worklist[Idx];
702     Worklist.append(L2->begin(), L2->end());
703   }
704 
705   while (!Worklist.empty())
706     Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE,
707                                AC, PreserveLCSSA);
708 
709   return Changed;
710 }
711 
712 namespace {
713   struct LoopSimplify : public FunctionPass {
714     static char ID; // Pass identification, replacement for typeid
715     LoopSimplify() : FunctionPass(ID) {
716       initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
717     }
718 
719     bool runOnFunction(Function &F) override;
720 
721     void getAnalysisUsage(AnalysisUsage &AU) const override {
722       AU.addRequired<AssumptionCacheTracker>();
723 
724       // We need loop information to identify the loops...
725       AU.addRequired<DominatorTreeWrapperPass>();
726       AU.addPreserved<DominatorTreeWrapperPass>();
727 
728       AU.addRequired<LoopInfoWrapperPass>();
729       AU.addPreserved<LoopInfoWrapperPass>();
730 
731       AU.addPreserved<BasicAAWrapperPass>();
732       AU.addPreserved<AAResultsWrapperPass>();
733       AU.addPreserved<GlobalsAAWrapperPass>();
734       AU.addPreserved<ScalarEvolutionWrapperPass>();
735       AU.addPreserved<SCEVAAWrapperPass>();
736       AU.addPreservedID(LCSSAID);
737       AU.addPreserved<DependenceAnalysisWrapperPass>();
738       AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
739     }
740 
741     /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
742     void verifyAnalysis() const override;
743   };
744 }
745 
746 char LoopSimplify::ID = 0;
747 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
748                 "Canonicalize natural loops", false, false)
749 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
750 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
751 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
752 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
753                 "Canonicalize natural loops", false, false)
754 
755 // Publicly exposed interface to pass...
756 char &llvm::LoopSimplifyID = LoopSimplify::ID;
757 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
758 
759 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
760 /// it in any convenient order) inserting preheaders...
761 ///
762 bool LoopSimplify::runOnFunction(Function &F) {
763   bool Changed = false;
764   LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
765   DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
766   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
767   ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr;
768   AssumptionCache *AC =
769       &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
770 
771   bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
772 
773   // Simplify each loop nest in the function.
774   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
775     Changed |= simplifyLoop(*I, DT, LI, SE, AC, PreserveLCSSA);
776 
777 #ifndef NDEBUG
778   if (PreserveLCSSA) {
779     bool InLCSSA = all_of(
780         *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); });
781     assert(InLCSSA && "LCSSA is broken after loop-simplify.");
782   }
783 #endif
784   return Changed;
785 }
786 
787 PreservedAnalyses LoopSimplifyPass::run(Function &F,
788                                         FunctionAnalysisManager &AM) {
789   bool Changed = false;
790   LoopInfo *LI = &AM.getResult<LoopAnalysis>(F);
791   DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
792   ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
793   AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F);
794 
795   // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA
796   // after simplifying the loops.
797   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
798     Changed |= simplifyLoop(*I, DT, LI, SE, AC, /*PreserveLCSSA*/ false);
799 
800   if (!Changed)
801     return PreservedAnalyses::all();
802 
803   PreservedAnalyses PA;
804   PA.preserve<DominatorTreeAnalysis>();
805   PA.preserve<LoopAnalysis>();
806   PA.preserve<BasicAA>();
807   PA.preserve<GlobalsAA>();
808   PA.preserve<SCEVAA>();
809   PA.preserve<ScalarEvolutionAnalysis>();
810   PA.preserve<DependenceAnalysis>();
811   return PA;
812 }
813 
814 // FIXME: Restore this code when we re-enable verification in verifyAnalysis
815 // below.
816 #if 0
817 static void verifyLoop(Loop *L) {
818   // Verify subloops.
819   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
820     verifyLoop(*I);
821 
822   // It used to be possible to just assert L->isLoopSimplifyForm(), however
823   // with the introduction of indirectbr, there are now cases where it's
824   // not possible to transform a loop as necessary. We can at least check
825   // that there is an indirectbr near any time there's trouble.
826 
827   // Indirectbr can interfere with preheader and unique backedge insertion.
828   if (!L->getLoopPreheader() || !L->getLoopLatch()) {
829     bool HasIndBrPred = false;
830     for (pred_iterator PI = pred_begin(L->getHeader()),
831          PE = pred_end(L->getHeader()); PI != PE; ++PI)
832       if (isa<IndirectBrInst>((*PI)->getTerminator())) {
833         HasIndBrPred = true;
834         break;
835       }
836     assert(HasIndBrPred &&
837            "LoopSimplify has no excuse for missing loop header info!");
838     (void)HasIndBrPred;
839   }
840 
841   // Indirectbr can interfere with exit block canonicalization.
842   if (!L->hasDedicatedExits()) {
843     bool HasIndBrExiting = false;
844     SmallVector<BasicBlock*, 8> ExitingBlocks;
845     L->getExitingBlocks(ExitingBlocks);
846     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
847       if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
848         HasIndBrExiting = true;
849         break;
850       }
851     }
852 
853     assert(HasIndBrExiting &&
854            "LoopSimplify has no excuse for missing exit block info!");
855     (void)HasIndBrExiting;
856   }
857 }
858 #endif
859 
860 void LoopSimplify::verifyAnalysis() const {
861   // FIXME: This routine is being called mid-way through the loop pass manager
862   // as loop passes destroy this analysis. That's actually fine, but we have no
863   // way of expressing that here. Once all of the passes that destroy this are
864   // hoisted out of the loop pass manager we can add back verification here.
865 #if 0
866   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
867     verifyLoop(*I);
868 #endif
869 }
870