1 //===----------------- LoopRotationUtils.cpp -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides utilities to convert a loop into a loop with bottom test.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/LoopRotationUtils.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/Analysis/AssumptionCache.h"
17 #include "llvm/Analysis/BasicAliasAnalysis.h"
18 #include "llvm/Analysis/CodeMetrics.h"
19 #include "llvm/Analysis/DomTreeUpdater.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/LoopPass.h"
23 #include "llvm/Analysis/MemorySSA.h"
24 #include "llvm/Analysis/MemorySSAUpdater.h"
25 #include "llvm/Analysis/ScalarEvolution.h"
26 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/DebugInfoMetadata.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
39 #include "llvm/Transforms/Utils/Local.h"
40 #include "llvm/Transforms/Utils/LoopUtils.h"
41 #include "llvm/Transforms/Utils/SSAUpdater.h"
42 #include "llvm/Transforms/Utils/ValueMapper.h"
43 using namespace llvm;
44 
45 #define DEBUG_TYPE "loop-rotate"
46 
47 STATISTIC(NumRotated, "Number of loops rotated");
48 
49 static cl::opt<bool>
50     MultiRotate("loop-rotate-multi", cl::init(false), cl::Hidden,
51                 cl::desc("Allow loop rotation multiple times in order to reach "
52                          "a better latch exit"));
53 
54 namespace {
55 /// A simple loop rotation transformation.
56 class LoopRotate {
57   const unsigned MaxHeaderSize;
58   LoopInfo *LI;
59   const TargetTransformInfo *TTI;
60   AssumptionCache *AC;
61   DominatorTree *DT;
62   ScalarEvolution *SE;
63   MemorySSAUpdater *MSSAU;
64   const SimplifyQuery &SQ;
65   bool RotationOnly;
66   bool IsUtilMode;
67 
68 public:
69   LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI,
70              const TargetTransformInfo *TTI, AssumptionCache *AC,
71              DominatorTree *DT, ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
72              const SimplifyQuery &SQ, bool RotationOnly, bool IsUtilMode)
73       : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE),
74         MSSAU(MSSAU), SQ(SQ), RotationOnly(RotationOnly),
75         IsUtilMode(IsUtilMode) {}
76   bool processLoop(Loop *L);
77 
78 private:
79   bool rotateLoop(Loop *L, bool SimplifiedLatch);
80   bool simplifyLoopLatch(Loop *L);
81 };
82 } // end anonymous namespace
83 
84 /// Insert (K, V) pair into the ValueToValueMap, and verify the key did not
85 /// previously exist in the map, and the value was inserted.
86 static void InsertNewValueIntoMap(ValueToValueMapTy &VM, Value *K, Value *V) {
87   bool Inserted = VM.insert({K, V}).second;
88   assert(Inserted);
89   (void)Inserted;
90 }
91 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
92 /// old header into the preheader.  If there were uses of the values produced by
93 /// these instruction that were outside of the loop, we have to insert PHI nodes
94 /// to merge the two values.  Do this now.
95 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
96                                             BasicBlock *OrigPreheader,
97                                             ValueToValueMapTy &ValueMap,
98                                 SmallVectorImpl<PHINode*> *InsertedPHIs) {
99   // Remove PHI node entries that are no longer live.
100   BasicBlock::iterator I, E = OrigHeader->end();
101   for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
102     PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
103 
104   // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
105   // as necessary.
106   SSAUpdater SSA(InsertedPHIs);
107   for (I = OrigHeader->begin(); I != E; ++I) {
108     Value *OrigHeaderVal = &*I;
109 
110     // If there are no uses of the value (e.g. because it returns void), there
111     // is nothing to rewrite.
112     if (OrigHeaderVal->use_empty())
113       continue;
114 
115     Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal);
116 
117     // The value now exits in two versions: the initial value in the preheader
118     // and the loop "next" value in the original header.
119     SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
120     SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
121     SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
122 
123     // Visit each use of the OrigHeader instruction.
124     for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
125                              UE = OrigHeaderVal->use_end();
126          UI != UE;) {
127       // Grab the use before incrementing the iterator.
128       Use &U = *UI;
129 
130       // Increment the iterator before removing the use from the list.
131       ++UI;
132 
133       // SSAUpdater can't handle a non-PHI use in the same block as an
134       // earlier def. We can easily handle those cases manually.
135       Instruction *UserInst = cast<Instruction>(U.getUser());
136       if (!isa<PHINode>(UserInst)) {
137         BasicBlock *UserBB = UserInst->getParent();
138 
139         // The original users in the OrigHeader are already using the
140         // original definitions.
141         if (UserBB == OrigHeader)
142           continue;
143 
144         // Users in the OrigPreHeader need to use the value to which the
145         // original definitions are mapped.
146         if (UserBB == OrigPreheader) {
147           U = OrigPreHeaderVal;
148           continue;
149         }
150       }
151 
152       // Anything else can be handled by SSAUpdater.
153       SSA.RewriteUse(U);
154     }
155 
156     // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug
157     // intrinsics.
158     SmallVector<DbgValueInst *, 1> DbgValues;
159     llvm::findDbgValues(DbgValues, OrigHeaderVal);
160     for (auto &DbgValue : DbgValues) {
161       // The original users in the OrigHeader are already using the original
162       // definitions.
163       BasicBlock *UserBB = DbgValue->getParent();
164       if (UserBB == OrigHeader)
165         continue;
166 
167       // Users in the OrigPreHeader need to use the value to which the
168       // original definitions are mapped and anything else can be handled by
169       // the SSAUpdater. To avoid adding PHINodes, check if the value is
170       // available in UserBB, if not substitute undef.
171       Value *NewVal;
172       if (UserBB == OrigPreheader)
173         NewVal = OrigPreHeaderVal;
174       else if (SSA.HasValueForBlock(UserBB))
175         NewVal = SSA.GetValueInMiddleOfBlock(UserBB);
176       else
177         NewVal = UndefValue::get(OrigHeaderVal->getType());
178       DbgValue->setOperand(0,
179                            MetadataAsValue::get(OrigHeaderVal->getContext(),
180                                                 ValueAsMetadata::get(NewVal)));
181     }
182   }
183 }
184 
185 // Assuming both header and latch are exiting, look for a phi which is only
186 // used outside the loop (via a LCSSA phi) in the exit from the header.
187 // This means that rotating the loop can remove the phi.
188 static bool profitableToRotateLoopExitingLatch(Loop *L) {
189   BasicBlock *Header = L->getHeader();
190   BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator());
191   assert(BI && BI->isConditional() && "need header with conditional exit");
192   BasicBlock *HeaderExit = BI->getSuccessor(0);
193   if (L->contains(HeaderExit))
194     HeaderExit = BI->getSuccessor(1);
195 
196   for (auto &Phi : Header->phis()) {
197     // Look for uses of this phi in the loop/via exits other than the header.
198     if (llvm::any_of(Phi.users(), [HeaderExit](const User *U) {
199           return cast<Instruction>(U)->getParent() != HeaderExit;
200         }))
201       continue;
202     return true;
203   }
204   return false;
205 }
206 
207 // Check that latch exit is deoptimizing (which means - very unlikely to happen)
208 // and there is another exit from the loop which is non-deoptimizing.
209 // If we rotate latch to that exit our loop has a better chance of being fully
210 // canonical.
211 //
212 // It can give false positives in some rare cases.
213 static bool canRotateDeoptimizingLatchExit(Loop *L) {
214   BasicBlock *Latch = L->getLoopLatch();
215   assert(Latch && "need latch");
216   BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
217   // Need normal exiting latch.
218   if (!BI || !BI->isConditional())
219     return false;
220 
221   BasicBlock *Exit = BI->getSuccessor(1);
222   if (L->contains(Exit))
223     Exit = BI->getSuccessor(0);
224 
225   // Latch exit is non-deoptimizing, no need to rotate.
226   if (!Exit->getPostdominatingDeoptimizeCall())
227     return false;
228 
229   SmallVector<BasicBlock *, 4> Exits;
230   L->getUniqueExitBlocks(Exits);
231   if (!Exits.empty()) {
232     // There is at least one non-deoptimizing exit.
233     //
234     // Note, that BasicBlock::getPostdominatingDeoptimizeCall is not exact,
235     // as it can conservatively return false for deoptimizing exits with
236     // complex enough control flow down to deoptimize call.
237     //
238     // That means here we can report success for a case where
239     // all exits are deoptimizing but one of them has complex enough
240     // control flow (e.g. with loops).
241     //
242     // That should be a very rare case and false positives for this function
243     // have compile-time effect only.
244     return any_of(Exits, [](const BasicBlock *BB) {
245       return !BB->getPostdominatingDeoptimizeCall();
246     });
247   }
248   return false;
249 }
250 
251 /// Rotate loop LP. Return true if the loop is rotated.
252 ///
253 /// \param SimplifiedLatch is true if the latch was just folded into the final
254 /// loop exit. In this case we may want to rotate even though the new latch is
255 /// now an exiting branch. This rotation would have happened had the latch not
256 /// been simplified. However, if SimplifiedLatch is false, then we avoid
257 /// rotating loops in which the latch exits to avoid excessive or endless
258 /// rotation. LoopRotate should be repeatable and converge to a canonical
259 /// form. This property is satisfied because simplifying the loop latch can only
260 /// happen once across multiple invocations of the LoopRotate pass.
261 ///
262 /// If -loop-rotate-multi is enabled we can do multiple rotations in one go
263 /// so to reach a suitable (non-deoptimizing) exit.
264 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
265   // If the loop has only one block then there is not much to rotate.
266   if (L->getBlocks().size() == 1)
267     return false;
268 
269   bool Rotated = false;
270   do {
271     BasicBlock *OrigHeader = L->getHeader();
272     BasicBlock *OrigLatch = L->getLoopLatch();
273 
274     BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
275     if (!BI || BI->isUnconditional())
276       return Rotated;
277 
278     // If the loop header is not one of the loop exiting blocks then
279     // either this loop is already rotated or it is not
280     // suitable for loop rotation transformations.
281     if (!L->isLoopExiting(OrigHeader))
282       return Rotated;
283 
284     // If the loop latch already contains a branch that leaves the loop then the
285     // loop is already rotated.
286     if (!OrigLatch)
287       return Rotated;
288 
289     // Rotate if either the loop latch does *not* exit the loop, or if the loop
290     // latch was just simplified. Or if we think it will be profitable.
291     if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false &&
292         !profitableToRotateLoopExitingLatch(L) &&
293         !canRotateDeoptimizingLatchExit(L))
294       return Rotated;
295 
296     // Check size of original header and reject loop if it is very big or we can't
297     // duplicate blocks inside it.
298     {
299       SmallPtrSet<const Value *, 32> EphValues;
300       CodeMetrics::collectEphemeralValues(L, AC, EphValues);
301 
302       CodeMetrics Metrics;
303       Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues);
304       if (Metrics.notDuplicatable) {
305         LLVM_DEBUG(
306                    dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
307                    << " instructions: ";
308                    L->dump());
309         return Rotated;
310       }
311       if (Metrics.convergent) {
312         LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "
313                    "instructions: ";
314                    L->dump());
315         return Rotated;
316       }
317       if (Metrics.NumInsts > MaxHeaderSize)
318         return Rotated;
319     }
320 
321     // Now, this loop is suitable for rotation.
322     BasicBlock *OrigPreheader = L->getLoopPreheader();
323 
324     // If the loop could not be converted to canonical form, it must have an
325     // indirectbr in it, just give up.
326     if (!OrigPreheader || !L->hasDedicatedExits())
327       return Rotated;
328 
329     // Anything ScalarEvolution may know about this loop or the PHI nodes
330     // in its header will soon be invalidated. We should also invalidate
331     // all outer loops because insertion and deletion of blocks that happens
332     // during the rotation may violate invariants related to backedge taken
333     // infos in them.
334     if (SE)
335       SE->forgetTopmostLoop(L);
336 
337     LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
338     if (MSSAU && VerifyMemorySSA)
339       MSSAU->getMemorySSA()->verifyMemorySSA();
340 
341     // Find new Loop header. NewHeader is a Header's one and only successor
342     // that is inside loop.  Header's other successor is outside the
343     // loop.  Otherwise loop is not suitable for rotation.
344     BasicBlock *Exit = BI->getSuccessor(0);
345     BasicBlock *NewHeader = BI->getSuccessor(1);
346     if (L->contains(Exit))
347       std::swap(Exit, NewHeader);
348     assert(NewHeader && "Unable to determine new loop header");
349     assert(L->contains(NewHeader) && !L->contains(Exit) &&
350            "Unable to determine loop header and exit blocks");
351 
352     // This code assumes that the new header has exactly one predecessor.
353     // Remove any single-entry PHI nodes in it.
354     assert(NewHeader->getSinglePredecessor() &&
355            "New header doesn't have one pred!");
356     FoldSingleEntryPHINodes(NewHeader);
357 
358     // Begin by walking OrigHeader and populating ValueMap with an entry for
359     // each Instruction.
360     BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
361     ValueToValueMapTy ValueMap, ValueMapMSSA;
362 
363     // For PHI nodes, the value available in OldPreHeader is just the
364     // incoming value from OldPreHeader.
365     for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
366       InsertNewValueIntoMap(ValueMap, PN,
367                             PN->getIncomingValueForBlock(OrigPreheader));
368 
369     // For the rest of the instructions, either hoist to the OrigPreheader if
370     // possible or create a clone in the OldPreHeader if not.
371     Instruction *LoopEntryBranch = OrigPreheader->getTerminator();
372 
373     // Record all debug intrinsics preceding LoopEntryBranch to avoid duplication.
374     using DbgIntrinsicHash =
375       std::pair<std::pair<Value *, DILocalVariable *>, DIExpression *>;
376     auto makeHash = [](DbgVariableIntrinsic *D) -> DbgIntrinsicHash {
377       return {{D->getVariableLocation(), D->getVariable()}, D->getExpression()};
378     };
379     SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics;
380     for (auto I = std::next(OrigPreheader->rbegin()), E = OrigPreheader->rend();
381          I != E; ++I) {
382       if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&*I))
383         DbgIntrinsics.insert(makeHash(DII));
384       else
385         break;
386     }
387 
388     while (I != E) {
389       Instruction *Inst = &*I++;
390 
391       // If the instruction's operands are invariant and it doesn't read or write
392       // memory, then it is safe to hoist.  Doing this doesn't change the order of
393       // execution in the preheader, but does prevent the instruction from
394       // executing in each iteration of the loop.  This means it is safe to hoist
395       // something that might trap, but isn't safe to hoist something that reads
396       // memory (without proving that the loop doesn't write).
397       if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() &&
398           !Inst->mayWriteToMemory() && !Inst->isTerminator() &&
399           !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) {
400         Inst->moveBefore(LoopEntryBranch);
401         continue;
402       }
403 
404       // Otherwise, create a duplicate of the instruction.
405       Instruction *C = Inst->clone();
406 
407       // Eagerly remap the operands of the instruction.
408       RemapInstruction(C, ValueMap,
409                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
410 
411       // Avoid inserting the same intrinsic twice.
412       if (auto *DII = dyn_cast<DbgVariableIntrinsic>(C))
413         if (DbgIntrinsics.count(makeHash(DII))) {
414           C->deleteValue();
415           continue;
416         }
417 
418       // With the operands remapped, see if the instruction constant folds or is
419       // otherwise simplifyable.  This commonly occurs because the entry from PHI
420       // nodes allows icmps and other instructions to fold.
421       Value *V = SimplifyInstruction(C, SQ);
422       if (V && LI->replacementPreservesLCSSAForm(C, V)) {
423         // If so, then delete the temporary instruction and stick the folded value
424         // in the map.
425         InsertNewValueIntoMap(ValueMap, Inst, V);
426         if (!C->mayHaveSideEffects()) {
427           C->deleteValue();
428           C = nullptr;
429         }
430       } else {
431         InsertNewValueIntoMap(ValueMap, Inst, C);
432       }
433       if (C) {
434         // Otherwise, stick the new instruction into the new block!
435         C->setName(Inst->getName());
436         C->insertBefore(LoopEntryBranch);
437 
438         if (auto *II = dyn_cast<IntrinsicInst>(C))
439           if (II->getIntrinsicID() == Intrinsic::assume)
440             AC->registerAssumption(II);
441         // MemorySSA cares whether the cloned instruction was inserted or not, and
442         // not whether it can be remapped to a simplified value.
443         if (MSSAU)
444           InsertNewValueIntoMap(ValueMapMSSA, Inst, C);
445       }
446     }
447 
448     // Along with all the other instructions, we just cloned OrigHeader's
449     // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
450     // successors by duplicating their incoming values for OrigHeader.
451     for (BasicBlock *SuccBB : successors(OrigHeader))
452       for (BasicBlock::iterator BI = SuccBB->begin();
453            PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
454         PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
455 
456     // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
457     // OrigPreHeader's old terminator (the original branch into the loop), and
458     // remove the corresponding incoming values from the PHI nodes in OrigHeader.
459     LoopEntryBranch->eraseFromParent();
460 
461     // Update MemorySSA before the rewrite call below changes the 1:1
462     // instruction:cloned_instruction_or_value mapping.
463     if (MSSAU) {
464       InsertNewValueIntoMap(ValueMapMSSA, OrigHeader, OrigPreheader);
465       MSSAU->updateForClonedBlockIntoPred(OrigHeader, OrigPreheader,
466                                           ValueMapMSSA);
467     }
468 
469     SmallVector<PHINode*, 2> InsertedPHIs;
470     // If there were any uses of instructions in the duplicated block outside the
471     // loop, update them, inserting PHI nodes as required
472     RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap,
473                                     &InsertedPHIs);
474 
475     // Attach dbg.value intrinsics to the new phis if that phi uses a value that
476     // previously had debug metadata attached. This keeps the debug info
477     // up-to-date in the loop body.
478     if (!InsertedPHIs.empty())
479       insertDebugValuesForPHIs(OrigHeader, InsertedPHIs);
480 
481     // NewHeader is now the header of the loop.
482     L->moveToHeader(NewHeader);
483     assert(L->getHeader() == NewHeader && "Latch block is our new header");
484 
485     // Inform DT about changes to the CFG.
486     if (DT) {
487       // The OrigPreheader branches to the NewHeader and Exit now. Then, inform
488       // the DT about the removed edge to the OrigHeader (that got removed).
489       SmallVector<DominatorTree::UpdateType, 3> Updates;
490       Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit});
491       Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader});
492       Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader});
493       DT->applyUpdates(Updates);
494 
495       if (MSSAU) {
496         MSSAU->applyUpdates(Updates, *DT);
497         if (VerifyMemorySSA)
498           MSSAU->getMemorySSA()->verifyMemorySSA();
499       }
500     }
501 
502     // At this point, we've finished our major CFG changes.  As part of cloning
503     // the loop into the preheader we've simplified instructions and the
504     // duplicated conditional branch may now be branching on a constant.  If it is
505     // branching on a constant and if that constant means that we enter the loop,
506     // then we fold away the cond branch to an uncond branch.  This simplifies the
507     // loop in cases important for nested loops, and it also means we don't have
508     // to split as many edges.
509     BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
510     assert(PHBI->isConditional() && "Should be clone of BI condbr!");
511     if (!isa<ConstantInt>(PHBI->getCondition()) ||
512         PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) !=
513         NewHeader) {
514       // The conditional branch can't be folded, handle the general case.
515       // Split edges as necessary to preserve LoopSimplify form.
516 
517       // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
518       // thus is not a preheader anymore.
519       // Split the edge to form a real preheader.
520       BasicBlock *NewPH = SplitCriticalEdge(
521                                             OrigPreheader, NewHeader,
522                                             CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
523       NewPH->setName(NewHeader->getName() + ".lr.ph");
524 
525       // Preserve canonical loop form, which means that 'Exit' should have only
526       // one predecessor. Note that Exit could be an exit block for multiple
527       // nested loops, causing both of the edges to now be critical and need to
528       // be split.
529       SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit));
530       bool SplitLatchEdge = false;
531       for (BasicBlock *ExitPred : ExitPreds) {
532         // We only need to split loop exit edges.
533         Loop *PredLoop = LI->getLoopFor(ExitPred);
534         if (!PredLoop || PredLoop->contains(Exit) ||
535             ExitPred->getTerminator()->isIndirectTerminator())
536           continue;
537         SplitLatchEdge |= L->getLoopLatch() == ExitPred;
538         BasicBlock *ExitSplit = SplitCriticalEdge(
539                                                   ExitPred, Exit,
540                                                   CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
541         ExitSplit->moveBefore(Exit);
542       }
543       assert(SplitLatchEdge &&
544              "Despite splitting all preds, failed to split latch exit?");
545     } else {
546       // We can fold the conditional branch in the preheader, this makes things
547       // simpler. The first step is to remove the extra edge to the Exit block.
548       Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
549       BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
550       NewBI->setDebugLoc(PHBI->getDebugLoc());
551       PHBI->eraseFromParent();
552 
553       // With our CFG finalized, update DomTree if it is available.
554       if (DT) DT->deleteEdge(OrigPreheader, Exit);
555 
556       // Update MSSA too, if available.
557       if (MSSAU)
558         MSSAU->removeEdge(OrigPreheader, Exit);
559     }
560 
561     assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
562     assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
563 
564     if (MSSAU && VerifyMemorySSA)
565       MSSAU->getMemorySSA()->verifyMemorySSA();
566 
567     // Now that the CFG and DomTree are in a consistent state again, try to merge
568     // the OrigHeader block into OrigLatch.  This will succeed if they are
569     // connected by an unconditional branch.  This is just a cleanup so the
570     // emitted code isn't too gross in this common case.
571     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
572     MergeBlockIntoPredecessor(OrigHeader, &DTU, LI, MSSAU);
573 
574     if (MSSAU && VerifyMemorySSA)
575       MSSAU->getMemorySSA()->verifyMemorySSA();
576 
577     LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump());
578 
579     ++NumRotated;
580 
581     Rotated = true;
582     SimplifiedLatch = false;
583 
584     // Check that new latch is a deoptimizing exit and then repeat rotation if possible.
585     // Deoptimizing latch exit is not a generally typical case, so we just loop over.
586     // TODO: if it becomes a performance bottleneck extend rotation algorithm
587     // to handle multiple rotations in one go.
588   } while (MultiRotate && canRotateDeoptimizingLatchExit(L));
589 
590 
591   return true;
592 }
593 
594 /// Determine whether the instructions in this range may be safely and cheaply
595 /// speculated. This is not an important enough situation to develop complex
596 /// heuristics. We handle a single arithmetic instruction along with any type
597 /// conversions.
598 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
599                                   BasicBlock::iterator End, Loop *L) {
600   bool seenIncrement = false;
601   bool MultiExitLoop = false;
602 
603   if (!L->getExitingBlock())
604     MultiExitLoop = true;
605 
606   for (BasicBlock::iterator I = Begin; I != End; ++I) {
607 
608     if (!isSafeToSpeculativelyExecute(&*I))
609       return false;
610 
611     if (isa<DbgInfoIntrinsic>(I))
612       continue;
613 
614     switch (I->getOpcode()) {
615     default:
616       return false;
617     case Instruction::GetElementPtr:
618       // GEPs are cheap if all indices are constant.
619       if (!cast<GEPOperator>(I)->hasAllConstantIndices())
620         return false;
621       // fall-thru to increment case
622       LLVM_FALLTHROUGH;
623     case Instruction::Add:
624     case Instruction::Sub:
625     case Instruction::And:
626     case Instruction::Or:
627     case Instruction::Xor:
628     case Instruction::Shl:
629     case Instruction::LShr:
630     case Instruction::AShr: {
631       Value *IVOpnd =
632           !isa<Constant>(I->getOperand(0))
633               ? I->getOperand(0)
634               : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr;
635       if (!IVOpnd)
636         return false;
637 
638       // If increment operand is used outside of the loop, this speculation
639       // could cause extra live range interference.
640       if (MultiExitLoop) {
641         for (User *UseI : IVOpnd->users()) {
642           auto *UserInst = cast<Instruction>(UseI);
643           if (!L->contains(UserInst))
644             return false;
645         }
646       }
647 
648       if (seenIncrement)
649         return false;
650       seenIncrement = true;
651       break;
652     }
653     case Instruction::Trunc:
654     case Instruction::ZExt:
655     case Instruction::SExt:
656       // ignore type conversions
657       break;
658     }
659   }
660   return true;
661 }
662 
663 /// Fold the loop tail into the loop exit by speculating the loop tail
664 /// instructions. Typically, this is a single post-increment. In the case of a
665 /// simple 2-block loop, hoisting the increment can be much better than
666 /// duplicating the entire loop header. In the case of loops with early exits,
667 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
668 /// canonical form so downstream passes can handle it.
669 ///
670 /// I don't believe this invalidates SCEV.
671 bool LoopRotate::simplifyLoopLatch(Loop *L) {
672   BasicBlock *Latch = L->getLoopLatch();
673   if (!Latch || Latch->hasAddressTaken())
674     return false;
675 
676   BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
677   if (!Jmp || !Jmp->isUnconditional())
678     return false;
679 
680   BasicBlock *LastExit = Latch->getSinglePredecessor();
681   if (!LastExit || !L->isLoopExiting(LastExit))
682     return false;
683 
684   BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
685   if (!BI)
686     return false;
687 
688   if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L))
689     return false;
690 
691   LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
692                     << LastExit->getName() << "\n");
693 
694   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
695   MergeBlockIntoPredecessor(Latch, &DTU, LI, MSSAU, nullptr,
696                             /*PredecessorWithTwoSuccessors=*/true);
697 
698   if (MSSAU && VerifyMemorySSA)
699     MSSAU->getMemorySSA()->verifyMemorySSA();
700 
701   return true;
702 }
703 
704 /// Rotate \c L, and return true if any modification was made.
705 bool LoopRotate::processLoop(Loop *L) {
706   // Save the loop metadata.
707   MDNode *LoopMD = L->getLoopID();
708 
709   bool SimplifiedLatch = false;
710 
711   // Simplify the loop latch before attempting to rotate the header
712   // upward. Rotation may not be needed if the loop tail can be folded into the
713   // loop exit.
714   if (!RotationOnly)
715     SimplifiedLatch = simplifyLoopLatch(L);
716 
717   bool MadeChange = rotateLoop(L, SimplifiedLatch);
718   assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) &&
719          "Loop latch should be exiting after loop-rotate.");
720 
721   // Restore the loop metadata.
722   // NB! We presume LoopRotation DOESN'T ADD its own metadata.
723   if ((MadeChange || SimplifiedLatch) && LoopMD)
724     L->setLoopID(LoopMD);
725 
726   return MadeChange || SimplifiedLatch;
727 }
728 
729 
730 /// The utility to convert a loop into a loop with bottom test.
731 bool llvm::LoopRotation(Loop *L, LoopInfo *LI, const TargetTransformInfo *TTI,
732                         AssumptionCache *AC, DominatorTree *DT,
733                         ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
734                         const SimplifyQuery &SQ, bool RotationOnly = true,
735                         unsigned Threshold = unsigned(-1),
736                         bool IsUtilMode = true) {
737   if (MSSAU && VerifyMemorySSA)
738     MSSAU->getMemorySSA()->verifyMemorySSA();
739   LoopRotate LR(Threshold, LI, TTI, AC, DT, SE, MSSAU, SQ, RotationOnly,
740                 IsUtilMode);
741   if (MSSAU && VerifyMemorySSA)
742     MSSAU->getMemorySSA()->verifyMemorySSA();
743 
744   return LR.processLoop(L);
745 }
746