1 //===----------------- LoopRotationUtils.cpp -----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file provides utilities to convert a loop into a loop with bottom test. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/LoopRotationUtils.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/BasicAliasAnalysis.h" 19 #include "llvm/Analysis/CodeMetrics.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/LoopPass.h" 23 #include "llvm/Analysis/MemorySSA.h" 24 #include "llvm/Analysis/MemorySSAUpdater.h" 25 #include "llvm/Analysis/ScalarEvolution.h" 26 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 27 #include "llvm/Analysis/TargetTransformInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/DebugInfoMetadata.h" 31 #include "llvm/IR/DomTreeUpdater.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 40 #include "llvm/Transforms/Utils/Local.h" 41 #include "llvm/Transforms/Utils/LoopUtils.h" 42 #include "llvm/Transforms/Utils/SSAUpdater.h" 43 #include "llvm/Transforms/Utils/ValueMapper.h" 44 using namespace llvm; 45 46 #define DEBUG_TYPE "loop-rotate" 47 48 STATISTIC(NumRotated, "Number of loops rotated"); 49 50 namespace { 51 /// A simple loop rotation transformation. 52 class LoopRotate { 53 const unsigned MaxHeaderSize; 54 LoopInfo *LI; 55 const TargetTransformInfo *TTI; 56 AssumptionCache *AC; 57 DominatorTree *DT; 58 ScalarEvolution *SE; 59 MemorySSAUpdater *MSSAU; 60 const SimplifyQuery &SQ; 61 bool RotationOnly; 62 bool IsUtilMode; 63 64 public: 65 LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI, 66 const TargetTransformInfo *TTI, AssumptionCache *AC, 67 DominatorTree *DT, ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 68 const SimplifyQuery &SQ, bool RotationOnly, bool IsUtilMode) 69 : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE), 70 MSSAU(MSSAU), SQ(SQ), RotationOnly(RotationOnly), 71 IsUtilMode(IsUtilMode) {} 72 bool processLoop(Loop *L); 73 74 private: 75 bool rotateLoop(Loop *L, bool SimplifiedLatch); 76 bool simplifyLoopLatch(Loop *L); 77 }; 78 } // end anonymous namespace 79 80 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the 81 /// old header into the preheader. If there were uses of the values produced by 82 /// these instruction that were outside of the loop, we have to insert PHI nodes 83 /// to merge the two values. Do this now. 84 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader, 85 BasicBlock *OrigPreheader, 86 ValueToValueMapTy &ValueMap, 87 SmallVectorImpl<PHINode*> *InsertedPHIs) { 88 // Remove PHI node entries that are no longer live. 89 BasicBlock::iterator I, E = OrigHeader->end(); 90 for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I) 91 PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader)); 92 93 // Now fix up users of the instructions in OrigHeader, inserting PHI nodes 94 // as necessary. 95 SSAUpdater SSA(InsertedPHIs); 96 for (I = OrigHeader->begin(); I != E; ++I) { 97 Value *OrigHeaderVal = &*I; 98 99 // If there are no uses of the value (e.g. because it returns void), there 100 // is nothing to rewrite. 101 if (OrigHeaderVal->use_empty()) 102 continue; 103 104 Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal); 105 106 // The value now exits in two versions: the initial value in the preheader 107 // and the loop "next" value in the original header. 108 SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName()); 109 SSA.AddAvailableValue(OrigHeader, OrigHeaderVal); 110 SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal); 111 112 // Visit each use of the OrigHeader instruction. 113 for (Value::use_iterator UI = OrigHeaderVal->use_begin(), 114 UE = OrigHeaderVal->use_end(); 115 UI != UE;) { 116 // Grab the use before incrementing the iterator. 117 Use &U = *UI; 118 119 // Increment the iterator before removing the use from the list. 120 ++UI; 121 122 // SSAUpdater can't handle a non-PHI use in the same block as an 123 // earlier def. We can easily handle those cases manually. 124 Instruction *UserInst = cast<Instruction>(U.getUser()); 125 if (!isa<PHINode>(UserInst)) { 126 BasicBlock *UserBB = UserInst->getParent(); 127 128 // The original users in the OrigHeader are already using the 129 // original definitions. 130 if (UserBB == OrigHeader) 131 continue; 132 133 // Users in the OrigPreHeader need to use the value to which the 134 // original definitions are mapped. 135 if (UserBB == OrigPreheader) { 136 U = OrigPreHeaderVal; 137 continue; 138 } 139 } 140 141 // Anything else can be handled by SSAUpdater. 142 SSA.RewriteUse(U); 143 } 144 145 // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug 146 // intrinsics. 147 SmallVector<DbgValueInst *, 1> DbgValues; 148 llvm::findDbgValues(DbgValues, OrigHeaderVal); 149 for (auto &DbgValue : DbgValues) { 150 // The original users in the OrigHeader are already using the original 151 // definitions. 152 BasicBlock *UserBB = DbgValue->getParent(); 153 if (UserBB == OrigHeader) 154 continue; 155 156 // Users in the OrigPreHeader need to use the value to which the 157 // original definitions are mapped and anything else can be handled by 158 // the SSAUpdater. To avoid adding PHINodes, check if the value is 159 // available in UserBB, if not substitute undef. 160 Value *NewVal; 161 if (UserBB == OrigPreheader) 162 NewVal = OrigPreHeaderVal; 163 else if (SSA.HasValueForBlock(UserBB)) 164 NewVal = SSA.GetValueInMiddleOfBlock(UserBB); 165 else 166 NewVal = UndefValue::get(OrigHeaderVal->getType()); 167 DbgValue->setOperand(0, 168 MetadataAsValue::get(OrigHeaderVal->getContext(), 169 ValueAsMetadata::get(NewVal))); 170 } 171 } 172 } 173 174 // Look for a phi which is only used outside the loop (via a LCSSA phi) 175 // in the exit from the header. This means that rotating the loop can 176 // remove the phi. 177 static bool shouldRotateLoopExitingLatch(Loop *L) { 178 BasicBlock *Header = L->getHeader(); 179 BasicBlock *HeaderExit = Header->getTerminator()->getSuccessor(0); 180 if (L->contains(HeaderExit)) 181 HeaderExit = Header->getTerminator()->getSuccessor(1); 182 183 for (auto &Phi : Header->phis()) { 184 // Look for uses of this phi in the loop/via exits other than the header. 185 if (llvm::any_of(Phi.users(), [HeaderExit](const User *U) { 186 return cast<Instruction>(U)->getParent() != HeaderExit; 187 })) 188 continue; 189 return true; 190 } 191 192 return false; 193 } 194 195 /// Rotate loop LP. Return true if the loop is rotated. 196 /// 197 /// \param SimplifiedLatch is true if the latch was just folded into the final 198 /// loop exit. In this case we may want to rotate even though the new latch is 199 /// now an exiting branch. This rotation would have happened had the latch not 200 /// been simplified. However, if SimplifiedLatch is false, then we avoid 201 /// rotating loops in which the latch exits to avoid excessive or endless 202 /// rotation. LoopRotate should be repeatable and converge to a canonical 203 /// form. This property is satisfied because simplifying the loop latch can only 204 /// happen once across multiple invocations of the LoopRotate pass. 205 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) { 206 // If the loop has only one block then there is not much to rotate. 207 if (L->getBlocks().size() == 1) 208 return false; 209 210 BasicBlock *OrigHeader = L->getHeader(); 211 BasicBlock *OrigLatch = L->getLoopLatch(); 212 213 BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator()); 214 if (!BI || BI->isUnconditional()) 215 return false; 216 217 // If the loop header is not one of the loop exiting blocks then 218 // either this loop is already rotated or it is not 219 // suitable for loop rotation transformations. 220 if (!L->isLoopExiting(OrigHeader)) 221 return false; 222 223 // If the loop latch already contains a branch that leaves the loop then the 224 // loop is already rotated. 225 if (!OrigLatch) 226 return false; 227 228 // Rotate if either the loop latch does *not* exit the loop, or if the loop 229 // latch was just simplified. Or if we think it will be profitable. 230 if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false && 231 !shouldRotateLoopExitingLatch(L)) 232 return false; 233 234 // Check size of original header and reject loop if it is very big or we can't 235 // duplicate blocks inside it. 236 { 237 SmallPtrSet<const Value *, 32> EphValues; 238 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 239 240 CodeMetrics Metrics; 241 Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues); 242 if (Metrics.notDuplicatable) { 243 LLVM_DEBUG( 244 dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable" 245 << " instructions: "; 246 L->dump()); 247 return false; 248 } 249 if (Metrics.convergent) { 250 LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent " 251 "instructions: "; 252 L->dump()); 253 return false; 254 } 255 if (Metrics.NumInsts > MaxHeaderSize) 256 return false; 257 } 258 259 // Now, this loop is suitable for rotation. 260 BasicBlock *OrigPreheader = L->getLoopPreheader(); 261 262 // If the loop could not be converted to canonical form, it must have an 263 // indirectbr in it, just give up. 264 if (!OrigPreheader || !L->hasDedicatedExits()) 265 return false; 266 267 // Anything ScalarEvolution may know about this loop or the PHI nodes 268 // in its header will soon be invalidated. We should also invalidate 269 // all outer loops because insertion and deletion of blocks that happens 270 // during the rotation may violate invariants related to backedge taken 271 // infos in them. 272 if (SE) 273 SE->forgetTopmostLoop(L); 274 275 LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump()); 276 if (MSSAU && VerifyMemorySSA) 277 MSSAU->getMemorySSA()->verifyMemorySSA(); 278 279 // Find new Loop header. NewHeader is a Header's one and only successor 280 // that is inside loop. Header's other successor is outside the 281 // loop. Otherwise loop is not suitable for rotation. 282 BasicBlock *Exit = BI->getSuccessor(0); 283 BasicBlock *NewHeader = BI->getSuccessor(1); 284 if (L->contains(Exit)) 285 std::swap(Exit, NewHeader); 286 assert(NewHeader && "Unable to determine new loop header"); 287 assert(L->contains(NewHeader) && !L->contains(Exit) && 288 "Unable to determine loop header and exit blocks"); 289 290 // This code assumes that the new header has exactly one predecessor. 291 // Remove any single-entry PHI nodes in it. 292 assert(NewHeader->getSinglePredecessor() && 293 "New header doesn't have one pred!"); 294 FoldSingleEntryPHINodes(NewHeader); 295 296 // Begin by walking OrigHeader and populating ValueMap with an entry for 297 // each Instruction. 298 BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end(); 299 ValueToValueMapTy ValueMap; 300 301 // For PHI nodes, the value available in OldPreHeader is just the 302 // incoming value from OldPreHeader. 303 for (; PHINode *PN = dyn_cast<PHINode>(I); ++I) 304 ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader); 305 306 // For the rest of the instructions, either hoist to the OrigPreheader if 307 // possible or create a clone in the OldPreHeader if not. 308 Instruction *LoopEntryBranch = OrigPreheader->getTerminator(); 309 310 // Record all debug intrinsics preceding LoopEntryBranch to avoid duplication. 311 using DbgIntrinsicHash = 312 std::pair<std::pair<Value *, DILocalVariable *>, DIExpression *>; 313 auto makeHash = [](DbgVariableIntrinsic *D) -> DbgIntrinsicHash { 314 return {{D->getVariableLocation(), D->getVariable()}, D->getExpression()}; 315 }; 316 SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics; 317 for (auto I = std::next(OrigPreheader->rbegin()), E = OrigPreheader->rend(); 318 I != E; ++I) { 319 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&*I)) 320 DbgIntrinsics.insert(makeHash(DII)); 321 else 322 break; 323 } 324 325 while (I != E) { 326 Instruction *Inst = &*I++; 327 328 // If the instruction's operands are invariant and it doesn't read or write 329 // memory, then it is safe to hoist. Doing this doesn't change the order of 330 // execution in the preheader, but does prevent the instruction from 331 // executing in each iteration of the loop. This means it is safe to hoist 332 // something that might trap, but isn't safe to hoist something that reads 333 // memory (without proving that the loop doesn't write). 334 if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() && 335 !Inst->mayWriteToMemory() && !Inst->isTerminator() && 336 !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) { 337 Inst->moveBefore(LoopEntryBranch); 338 continue; 339 } 340 341 // Otherwise, create a duplicate of the instruction. 342 Instruction *C = Inst->clone(); 343 344 // Eagerly remap the operands of the instruction. 345 RemapInstruction(C, ValueMap, 346 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 347 348 // Avoid inserting the same intrinsic twice. 349 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(C)) 350 if (DbgIntrinsics.count(makeHash(DII))) { 351 C->deleteValue(); 352 continue; 353 } 354 355 // With the operands remapped, see if the instruction constant folds or is 356 // otherwise simplifyable. This commonly occurs because the entry from PHI 357 // nodes allows icmps and other instructions to fold. 358 Value *V = SimplifyInstruction(C, SQ); 359 if (V && LI->replacementPreservesLCSSAForm(C, V)) { 360 // If so, then delete the temporary instruction and stick the folded value 361 // in the map. 362 ValueMap[Inst] = V; 363 if (!C->mayHaveSideEffects()) { 364 C->deleteValue(); 365 C = nullptr; 366 } 367 } else { 368 ValueMap[Inst] = C; 369 } 370 if (C) { 371 // Otherwise, stick the new instruction into the new block! 372 C->setName(Inst->getName()); 373 C->insertBefore(LoopEntryBranch); 374 375 if (auto *II = dyn_cast<IntrinsicInst>(C)) 376 if (II->getIntrinsicID() == Intrinsic::assume) 377 AC->registerAssumption(II); 378 } 379 } 380 381 // Along with all the other instructions, we just cloned OrigHeader's 382 // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's 383 // successors by duplicating their incoming values for OrigHeader. 384 for (BasicBlock *SuccBB : successors(OrigHeader)) 385 for (BasicBlock::iterator BI = SuccBB->begin(); 386 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 387 PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader); 388 389 // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove 390 // OrigPreHeader's old terminator (the original branch into the loop), and 391 // remove the corresponding incoming values from the PHI nodes in OrigHeader. 392 LoopEntryBranch->eraseFromParent(); 393 394 // Update MemorySSA before the rewrite call below changes the 1:1 395 // instruction:cloned_instruction_or_value mapping in ValueMap. 396 if (MSSAU) { 397 ValueMap[OrigHeader] = OrigPreheader; 398 MSSAU->updateForClonedBlockIntoPred(OrigHeader, OrigPreheader, ValueMap); 399 } 400 401 SmallVector<PHINode*, 2> InsertedPHIs; 402 // If there were any uses of instructions in the duplicated block outside the 403 // loop, update them, inserting PHI nodes as required 404 RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap, 405 &InsertedPHIs); 406 407 // Attach dbg.value intrinsics to the new phis if that phi uses a value that 408 // previously had debug metadata attached. This keeps the debug info 409 // up-to-date in the loop body. 410 if (!InsertedPHIs.empty()) 411 insertDebugValuesForPHIs(OrigHeader, InsertedPHIs); 412 413 // NewHeader is now the header of the loop. 414 L->moveToHeader(NewHeader); 415 assert(L->getHeader() == NewHeader && "Latch block is our new header"); 416 417 // Inform DT about changes to the CFG. 418 if (DT) { 419 // The OrigPreheader branches to the NewHeader and Exit now. Then, inform 420 // the DT about the removed edge to the OrigHeader (that got removed). 421 SmallVector<DominatorTree::UpdateType, 3> Updates; 422 Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit}); 423 Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader}); 424 Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader}); 425 DT->applyUpdates(Updates); 426 427 if (MSSAU) { 428 MSSAU->applyUpdates(Updates, *DT); 429 if (VerifyMemorySSA) 430 MSSAU->getMemorySSA()->verifyMemorySSA(); 431 } 432 } 433 434 // At this point, we've finished our major CFG changes. As part of cloning 435 // the loop into the preheader we've simplified instructions and the 436 // duplicated conditional branch may now be branching on a constant. If it is 437 // branching on a constant and if that constant means that we enter the loop, 438 // then we fold away the cond branch to an uncond branch. This simplifies the 439 // loop in cases important for nested loops, and it also means we don't have 440 // to split as many edges. 441 BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator()); 442 assert(PHBI->isConditional() && "Should be clone of BI condbr!"); 443 if (!isa<ConstantInt>(PHBI->getCondition()) || 444 PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) != 445 NewHeader) { 446 // The conditional branch can't be folded, handle the general case. 447 // Split edges as necessary to preserve LoopSimplify form. 448 449 // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and 450 // thus is not a preheader anymore. 451 // Split the edge to form a real preheader. 452 BasicBlock *NewPH = SplitCriticalEdge( 453 OrigPreheader, NewHeader, 454 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()); 455 NewPH->setName(NewHeader->getName() + ".lr.ph"); 456 457 // Preserve canonical loop form, which means that 'Exit' should have only 458 // one predecessor. Note that Exit could be an exit block for multiple 459 // nested loops, causing both of the edges to now be critical and need to 460 // be split. 461 SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit)); 462 bool SplitLatchEdge = false; 463 for (BasicBlock *ExitPred : ExitPreds) { 464 // We only need to split loop exit edges. 465 Loop *PredLoop = LI->getLoopFor(ExitPred); 466 if (!PredLoop || PredLoop->contains(Exit)) 467 continue; 468 if (isa<IndirectBrInst>(ExitPred->getTerminator())) 469 continue; 470 SplitLatchEdge |= L->getLoopLatch() == ExitPred; 471 BasicBlock *ExitSplit = SplitCriticalEdge( 472 ExitPred, Exit, 473 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()); 474 ExitSplit->moveBefore(Exit); 475 } 476 assert(SplitLatchEdge && 477 "Despite splitting all preds, failed to split latch exit?"); 478 } else { 479 // We can fold the conditional branch in the preheader, this makes things 480 // simpler. The first step is to remove the extra edge to the Exit block. 481 Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/); 482 BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI); 483 NewBI->setDebugLoc(PHBI->getDebugLoc()); 484 PHBI->eraseFromParent(); 485 486 // With our CFG finalized, update DomTree if it is available. 487 if (DT) DT->deleteEdge(OrigPreheader, Exit); 488 489 // Update MSSA too, if available. 490 if (MSSAU) 491 MSSAU->removeEdge(OrigPreheader, Exit); 492 } 493 494 assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation"); 495 assert(L->getLoopLatch() && "Invalid loop latch after loop rotation"); 496 497 if (MSSAU && VerifyMemorySSA) 498 MSSAU->getMemorySSA()->verifyMemorySSA(); 499 500 // Now that the CFG and DomTree are in a consistent state again, try to merge 501 // the OrigHeader block into OrigLatch. This will succeed if they are 502 // connected by an unconditional branch. This is just a cleanup so the 503 // emitted code isn't too gross in this common case. 504 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 505 MergeBlockIntoPredecessor(OrigHeader, &DTU, LI, MSSAU); 506 507 if (MSSAU && VerifyMemorySSA) 508 MSSAU->getMemorySSA()->verifyMemorySSA(); 509 510 LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump()); 511 512 ++NumRotated; 513 return true; 514 } 515 516 /// Determine whether the instructions in this range may be safely and cheaply 517 /// speculated. This is not an important enough situation to develop complex 518 /// heuristics. We handle a single arithmetic instruction along with any type 519 /// conversions. 520 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin, 521 BasicBlock::iterator End, Loop *L) { 522 bool seenIncrement = false; 523 bool MultiExitLoop = false; 524 525 if (!L->getExitingBlock()) 526 MultiExitLoop = true; 527 528 for (BasicBlock::iterator I = Begin; I != End; ++I) { 529 530 if (!isSafeToSpeculativelyExecute(&*I)) 531 return false; 532 533 if (isa<DbgInfoIntrinsic>(I)) 534 continue; 535 536 switch (I->getOpcode()) { 537 default: 538 return false; 539 case Instruction::GetElementPtr: 540 // GEPs are cheap if all indices are constant. 541 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 542 return false; 543 // fall-thru to increment case 544 LLVM_FALLTHROUGH; 545 case Instruction::Add: 546 case Instruction::Sub: 547 case Instruction::And: 548 case Instruction::Or: 549 case Instruction::Xor: 550 case Instruction::Shl: 551 case Instruction::LShr: 552 case Instruction::AShr: { 553 Value *IVOpnd = 554 !isa<Constant>(I->getOperand(0)) 555 ? I->getOperand(0) 556 : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr; 557 if (!IVOpnd) 558 return false; 559 560 // If increment operand is used outside of the loop, this speculation 561 // could cause extra live range interference. 562 if (MultiExitLoop) { 563 for (User *UseI : IVOpnd->users()) { 564 auto *UserInst = cast<Instruction>(UseI); 565 if (!L->contains(UserInst)) 566 return false; 567 } 568 } 569 570 if (seenIncrement) 571 return false; 572 seenIncrement = true; 573 break; 574 } 575 case Instruction::Trunc: 576 case Instruction::ZExt: 577 case Instruction::SExt: 578 // ignore type conversions 579 break; 580 } 581 } 582 return true; 583 } 584 585 /// Fold the loop tail into the loop exit by speculating the loop tail 586 /// instructions. Typically, this is a single post-increment. In the case of a 587 /// simple 2-block loop, hoisting the increment can be much better than 588 /// duplicating the entire loop header. In the case of loops with early exits, 589 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in 590 /// canonical form so downstream passes can handle it. 591 /// 592 /// I don't believe this invalidates SCEV. 593 bool LoopRotate::simplifyLoopLatch(Loop *L) { 594 BasicBlock *Latch = L->getLoopLatch(); 595 if (!Latch || Latch->hasAddressTaken()) 596 return false; 597 598 BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator()); 599 if (!Jmp || !Jmp->isUnconditional()) 600 return false; 601 602 BasicBlock *LastExit = Latch->getSinglePredecessor(); 603 if (!LastExit || !L->isLoopExiting(LastExit)) 604 return false; 605 606 BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator()); 607 if (!BI) 608 return false; 609 610 if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L)) 611 return false; 612 613 LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into " 614 << LastExit->getName() << "\n"); 615 616 // Hoist the instructions from Latch into LastExit. 617 Instruction *FirstLatchInst = &*(Latch->begin()); 618 LastExit->getInstList().splice(BI->getIterator(), Latch->getInstList(), 619 Latch->begin(), Jmp->getIterator()); 620 621 // Update MemorySSA 622 if (MSSAU) 623 MSSAU->moveAllAfterMergeBlocks(Latch, LastExit, FirstLatchInst); 624 625 unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1; 626 BasicBlock *Header = Jmp->getSuccessor(0); 627 assert(Header == L->getHeader() && "expected a backward branch"); 628 629 // Remove Latch from the CFG so that LastExit becomes the new Latch. 630 BI->setSuccessor(FallThruPath, Header); 631 Latch->replaceSuccessorsPhiUsesWith(LastExit); 632 Jmp->eraseFromParent(); 633 634 // Nuke the Latch block. 635 assert(Latch->empty() && "unable to evacuate Latch"); 636 LI->removeBlock(Latch); 637 if (DT) 638 DT->eraseNode(Latch); 639 Latch->eraseFromParent(); 640 641 if (MSSAU && VerifyMemorySSA) 642 MSSAU->getMemorySSA()->verifyMemorySSA(); 643 644 return true; 645 } 646 647 /// Rotate \c L, and return true if any modification was made. 648 bool LoopRotate::processLoop(Loop *L) { 649 // Save the loop metadata. 650 MDNode *LoopMD = L->getLoopID(); 651 652 bool SimplifiedLatch = false; 653 654 // Simplify the loop latch before attempting to rotate the header 655 // upward. Rotation may not be needed if the loop tail can be folded into the 656 // loop exit. 657 if (!RotationOnly) 658 SimplifiedLatch = simplifyLoopLatch(L); 659 660 bool MadeChange = rotateLoop(L, SimplifiedLatch); 661 assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) && 662 "Loop latch should be exiting after loop-rotate."); 663 664 // Restore the loop metadata. 665 // NB! We presume LoopRotation DOESN'T ADD its own metadata. 666 if ((MadeChange || SimplifiedLatch) && LoopMD) 667 L->setLoopID(LoopMD); 668 669 return MadeChange || SimplifiedLatch; 670 } 671 672 673 /// The utility to convert a loop into a loop with bottom test. 674 bool llvm::LoopRotation(Loop *L, LoopInfo *LI, const TargetTransformInfo *TTI, 675 AssumptionCache *AC, DominatorTree *DT, 676 ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 677 const SimplifyQuery &SQ, bool RotationOnly = true, 678 unsigned Threshold = unsigned(-1), 679 bool IsUtilMode = true) { 680 if (MSSAU && VerifyMemorySSA) 681 MSSAU->getMemorySSA()->verifyMemorySSA(); 682 LoopRotate LR(Threshold, LI, TTI, AC, DT, SE, MSSAU, SQ, RotationOnly, 683 IsUtilMode); 684 if (MSSAU && VerifyMemorySSA) 685 MSSAU->getMemorySSA()->verifyMemorySSA(); 686 687 return LR.processLoop(L); 688 } 689