1 //===----------------- LoopRotationUtils.cpp -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides utilities to convert a loop into a loop with bottom test.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/LoopRotationUtils.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/AssumptionCache.h"
16 #include "llvm/Analysis/BasicAliasAnalysis.h"
17 #include "llvm/Analysis/CodeMetrics.h"
18 #include "llvm/Analysis/DomTreeUpdater.h"
19 #include "llvm/Analysis/GlobalsModRef.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/MemorySSA.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/Analysis/ScalarEvolution.h"
25 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
26 #include "llvm/Analysis/TargetTransformInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/CFG.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
38 #include "llvm/Transforms/Utils/Cloning.h"
39 #include "llvm/Transforms/Utils/Local.h"
40 #include "llvm/Transforms/Utils/LoopUtils.h"
41 #include "llvm/Transforms/Utils/SSAUpdater.h"
42 #include "llvm/Transforms/Utils/ValueMapper.h"
43 using namespace llvm;
44 
45 #define DEBUG_TYPE "loop-rotate"
46 
47 STATISTIC(NumNotRotatedDueToHeaderSize,
48           "Number of loops not rotated due to the header size");
49 STATISTIC(NumRotated, "Number of loops rotated");
50 
51 static cl::opt<bool>
52     MultiRotate("loop-rotate-multi", cl::init(false), cl::Hidden,
53                 cl::desc("Allow loop rotation multiple times in order to reach "
54                          "a better latch exit"));
55 
56 namespace {
57 /// A simple loop rotation transformation.
58 class LoopRotate {
59   const unsigned MaxHeaderSize;
60   LoopInfo *LI;
61   const TargetTransformInfo *TTI;
62   AssumptionCache *AC;
63   DominatorTree *DT;
64   ScalarEvolution *SE;
65   MemorySSAUpdater *MSSAU;
66   const SimplifyQuery &SQ;
67   bool RotationOnly;
68   bool IsUtilMode;
69   bool PrepareForLTO;
70 
71 public:
72   LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI,
73              const TargetTransformInfo *TTI, AssumptionCache *AC,
74              DominatorTree *DT, ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
75              const SimplifyQuery &SQ, bool RotationOnly, bool IsUtilMode,
76              bool PrepareForLTO)
77       : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE),
78         MSSAU(MSSAU), SQ(SQ), RotationOnly(RotationOnly),
79         IsUtilMode(IsUtilMode), PrepareForLTO(PrepareForLTO) {}
80   bool processLoop(Loop *L);
81 
82 private:
83   bool rotateLoop(Loop *L, bool SimplifiedLatch);
84   bool simplifyLoopLatch(Loop *L);
85 };
86 } // end anonymous namespace
87 
88 /// Insert (K, V) pair into the ValueToValueMap, and verify the key did not
89 /// previously exist in the map, and the value was inserted.
90 static void InsertNewValueIntoMap(ValueToValueMapTy &VM, Value *K, Value *V) {
91   bool Inserted = VM.insert({K, V}).second;
92   assert(Inserted);
93   (void)Inserted;
94 }
95 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
96 /// old header into the preheader.  If there were uses of the values produced by
97 /// these instruction that were outside of the loop, we have to insert PHI nodes
98 /// to merge the two values.  Do this now.
99 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
100                                             BasicBlock *OrigPreheader,
101                                             ValueToValueMapTy &ValueMap,
102                                 SmallVectorImpl<PHINode*> *InsertedPHIs) {
103   // Remove PHI node entries that are no longer live.
104   BasicBlock::iterator I, E = OrigHeader->end();
105   for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
106     PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
107 
108   // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
109   // as necessary.
110   SSAUpdater SSA(InsertedPHIs);
111   for (I = OrigHeader->begin(); I != E; ++I) {
112     Value *OrigHeaderVal = &*I;
113 
114     // If there are no uses of the value (e.g. because it returns void), there
115     // is nothing to rewrite.
116     if (OrigHeaderVal->use_empty())
117       continue;
118 
119     Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal);
120 
121     // The value now exits in two versions: the initial value in the preheader
122     // and the loop "next" value in the original header.
123     SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
124     SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
125     SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
126 
127     // Visit each use of the OrigHeader instruction.
128     for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
129                              UE = OrigHeaderVal->use_end();
130          UI != UE;) {
131       // Grab the use before incrementing the iterator.
132       Use &U = *UI;
133 
134       // Increment the iterator before removing the use from the list.
135       ++UI;
136 
137       // SSAUpdater can't handle a non-PHI use in the same block as an
138       // earlier def. We can easily handle those cases manually.
139       Instruction *UserInst = cast<Instruction>(U.getUser());
140       if (!isa<PHINode>(UserInst)) {
141         BasicBlock *UserBB = UserInst->getParent();
142 
143         // The original users in the OrigHeader are already using the
144         // original definitions.
145         if (UserBB == OrigHeader)
146           continue;
147 
148         // Users in the OrigPreHeader need to use the value to which the
149         // original definitions are mapped.
150         if (UserBB == OrigPreheader) {
151           U = OrigPreHeaderVal;
152           continue;
153         }
154       }
155 
156       // Anything else can be handled by SSAUpdater.
157       SSA.RewriteUse(U);
158     }
159 
160     // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug
161     // intrinsics.
162     SmallVector<DbgValueInst *, 1> DbgValues;
163     llvm::findDbgValues(DbgValues, OrigHeaderVal);
164     for (auto &DbgValue : DbgValues) {
165       // The original users in the OrigHeader are already using the original
166       // definitions.
167       BasicBlock *UserBB = DbgValue->getParent();
168       if (UserBB == OrigHeader)
169         continue;
170 
171       // Users in the OrigPreHeader need to use the value to which the
172       // original definitions are mapped and anything else can be handled by
173       // the SSAUpdater. To avoid adding PHINodes, check if the value is
174       // available in UserBB, if not substitute undef.
175       Value *NewVal;
176       if (UserBB == OrigPreheader)
177         NewVal = OrigPreHeaderVal;
178       else if (SSA.HasValueForBlock(UserBB))
179         NewVal = SSA.GetValueInMiddleOfBlock(UserBB);
180       else
181         NewVal = UndefValue::get(OrigHeaderVal->getType());
182       DbgValue->replaceVariableLocationOp(OrigHeaderVal, NewVal);
183     }
184   }
185 }
186 
187 // Assuming both header and latch are exiting, look for a phi which is only
188 // used outside the loop (via a LCSSA phi) in the exit from the header.
189 // This means that rotating the loop can remove the phi.
190 static bool profitableToRotateLoopExitingLatch(Loop *L) {
191   BasicBlock *Header = L->getHeader();
192   BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator());
193   assert(BI && BI->isConditional() && "need header with conditional exit");
194   BasicBlock *HeaderExit = BI->getSuccessor(0);
195   if (L->contains(HeaderExit))
196     HeaderExit = BI->getSuccessor(1);
197 
198   for (auto &Phi : Header->phis()) {
199     // Look for uses of this phi in the loop/via exits other than the header.
200     if (llvm::any_of(Phi.users(), [HeaderExit](const User *U) {
201           return cast<Instruction>(U)->getParent() != HeaderExit;
202         }))
203       continue;
204     return true;
205   }
206   return false;
207 }
208 
209 // Check that latch exit is deoptimizing (which means - very unlikely to happen)
210 // and there is another exit from the loop which is non-deoptimizing.
211 // If we rotate latch to that exit our loop has a better chance of being fully
212 // canonical.
213 //
214 // It can give false positives in some rare cases.
215 static bool canRotateDeoptimizingLatchExit(Loop *L) {
216   BasicBlock *Latch = L->getLoopLatch();
217   assert(Latch && "need latch");
218   BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
219   // Need normal exiting latch.
220   if (!BI || !BI->isConditional())
221     return false;
222 
223   BasicBlock *Exit = BI->getSuccessor(1);
224   if (L->contains(Exit))
225     Exit = BI->getSuccessor(0);
226 
227   // Latch exit is non-deoptimizing, no need to rotate.
228   if (!Exit->getPostdominatingDeoptimizeCall())
229     return false;
230 
231   SmallVector<BasicBlock *, 4> Exits;
232   L->getUniqueExitBlocks(Exits);
233   if (!Exits.empty()) {
234     // There is at least one non-deoptimizing exit.
235     //
236     // Note, that BasicBlock::getPostdominatingDeoptimizeCall is not exact,
237     // as it can conservatively return false for deoptimizing exits with
238     // complex enough control flow down to deoptimize call.
239     //
240     // That means here we can report success for a case where
241     // all exits are deoptimizing but one of them has complex enough
242     // control flow (e.g. with loops).
243     //
244     // That should be a very rare case and false positives for this function
245     // have compile-time effect only.
246     return any_of(Exits, [](const BasicBlock *BB) {
247       return !BB->getPostdominatingDeoptimizeCall();
248     });
249   }
250   return false;
251 }
252 
253 /// Rotate loop LP. Return true if the loop is rotated.
254 ///
255 /// \param SimplifiedLatch is true if the latch was just folded into the final
256 /// loop exit. In this case we may want to rotate even though the new latch is
257 /// now an exiting branch. This rotation would have happened had the latch not
258 /// been simplified. However, if SimplifiedLatch is false, then we avoid
259 /// rotating loops in which the latch exits to avoid excessive or endless
260 /// rotation. LoopRotate should be repeatable and converge to a canonical
261 /// form. This property is satisfied because simplifying the loop latch can only
262 /// happen once across multiple invocations of the LoopRotate pass.
263 ///
264 /// If -loop-rotate-multi is enabled we can do multiple rotations in one go
265 /// so to reach a suitable (non-deoptimizing) exit.
266 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
267   // If the loop has only one block then there is not much to rotate.
268   if (L->getBlocks().size() == 1)
269     return false;
270 
271   bool Rotated = false;
272   do {
273     BasicBlock *OrigHeader = L->getHeader();
274     BasicBlock *OrigLatch = L->getLoopLatch();
275 
276     BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
277     if (!BI || BI->isUnconditional())
278       return Rotated;
279 
280     // If the loop header is not one of the loop exiting blocks then
281     // either this loop is already rotated or it is not
282     // suitable for loop rotation transformations.
283     if (!L->isLoopExiting(OrigHeader))
284       return Rotated;
285 
286     // If the loop latch already contains a branch that leaves the loop then the
287     // loop is already rotated.
288     if (!OrigLatch)
289       return Rotated;
290 
291     // Rotate if either the loop latch does *not* exit the loop, or if the loop
292     // latch was just simplified. Or if we think it will be profitable.
293     if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false &&
294         !profitableToRotateLoopExitingLatch(L) &&
295         !canRotateDeoptimizingLatchExit(L))
296       return Rotated;
297 
298     // Check size of original header and reject loop if it is very big or we can't
299     // duplicate blocks inside it.
300     {
301       SmallPtrSet<const Value *, 32> EphValues;
302       CodeMetrics::collectEphemeralValues(L, AC, EphValues);
303 
304       CodeMetrics Metrics;
305       Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues, PrepareForLTO);
306       if (Metrics.notDuplicatable) {
307         LLVM_DEBUG(
308                    dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
309                    << " instructions: ";
310                    L->dump());
311         return Rotated;
312       }
313       if (Metrics.convergent) {
314         LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "
315                    "instructions: ";
316                    L->dump());
317         return Rotated;
318       }
319       if (Metrics.NumInsts > MaxHeaderSize) {
320         LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains "
321                           << Metrics.NumInsts
322                           << " instructions, which is more than the threshold ("
323                           << MaxHeaderSize << " instructions): ";
324                    L->dump());
325         ++NumNotRotatedDueToHeaderSize;
326         return Rotated;
327       }
328 
329       // When preparing for LTO, avoid rotating loops with calls that could be
330       // inlined during the LTO stage.
331       if (PrepareForLTO && Metrics.NumInlineCandidates > 0)
332         return Rotated;
333     }
334 
335     // Now, this loop is suitable for rotation.
336     BasicBlock *OrigPreheader = L->getLoopPreheader();
337 
338     // If the loop could not be converted to canonical form, it must have an
339     // indirectbr in it, just give up.
340     if (!OrigPreheader || !L->hasDedicatedExits())
341       return Rotated;
342 
343     // Anything ScalarEvolution may know about this loop or the PHI nodes
344     // in its header will soon be invalidated. We should also invalidate
345     // all outer loops because insertion and deletion of blocks that happens
346     // during the rotation may violate invariants related to backedge taken
347     // infos in them.
348     if (SE)
349       SE->forgetTopmostLoop(L);
350 
351     LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
352     if (MSSAU && VerifyMemorySSA)
353       MSSAU->getMemorySSA()->verifyMemorySSA();
354 
355     // Find new Loop header. NewHeader is a Header's one and only successor
356     // that is inside loop.  Header's other successor is outside the
357     // loop.  Otherwise loop is not suitable for rotation.
358     BasicBlock *Exit = BI->getSuccessor(0);
359     BasicBlock *NewHeader = BI->getSuccessor(1);
360     if (L->contains(Exit))
361       std::swap(Exit, NewHeader);
362     assert(NewHeader && "Unable to determine new loop header");
363     assert(L->contains(NewHeader) && !L->contains(Exit) &&
364            "Unable to determine loop header and exit blocks");
365 
366     // This code assumes that the new header has exactly one predecessor.
367     // Remove any single-entry PHI nodes in it.
368     assert(NewHeader->getSinglePredecessor() &&
369            "New header doesn't have one pred!");
370     FoldSingleEntryPHINodes(NewHeader);
371 
372     // Begin by walking OrigHeader and populating ValueMap with an entry for
373     // each Instruction.
374     BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
375     ValueToValueMapTy ValueMap, ValueMapMSSA;
376 
377     // For PHI nodes, the value available in OldPreHeader is just the
378     // incoming value from OldPreHeader.
379     for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
380       InsertNewValueIntoMap(ValueMap, PN,
381                             PN->getIncomingValueForBlock(OrigPreheader));
382 
383     // For the rest of the instructions, either hoist to the OrigPreheader if
384     // possible or create a clone in the OldPreHeader if not.
385     Instruction *LoopEntryBranch = OrigPreheader->getTerminator();
386 
387     // Record all debug intrinsics preceding LoopEntryBranch to avoid
388     // duplication.
389     using DbgIntrinsicHash =
390         std::pair<std::pair<hash_code, DILocalVariable *>, DIExpression *>;
391     auto makeHash = [](DbgVariableIntrinsic *D) -> DbgIntrinsicHash {
392       auto VarLocOps = D->location_ops();
393       return {{hash_combine_range(VarLocOps.begin(), VarLocOps.end()),
394                D->getVariable()},
395               D->getExpression()};
396     };
397     SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics;
398     for (auto I = std::next(OrigPreheader->rbegin()), E = OrigPreheader->rend();
399          I != E; ++I) {
400       if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&*I))
401         DbgIntrinsics.insert(makeHash(DII));
402       else
403         break;
404     }
405 
406     // Remember the local noalias scope declarations in the header. After the
407     // rotation, they must be duplicated and the scope must be cloned. This
408     // avoids unwanted interaction across iterations.
409     SmallVector<NoAliasScopeDeclInst *, 6> NoAliasDeclInstructions;
410     for (Instruction &I : *OrigHeader)
411       if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
412         NoAliasDeclInstructions.push_back(Decl);
413 
414     while (I != E) {
415       Instruction *Inst = &*I++;
416 
417       // If the instruction's operands are invariant and it doesn't read or write
418       // memory, then it is safe to hoist.  Doing this doesn't change the order of
419       // execution in the preheader, but does prevent the instruction from
420       // executing in each iteration of the loop.  This means it is safe to hoist
421       // something that might trap, but isn't safe to hoist something that reads
422       // memory (without proving that the loop doesn't write).
423       if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() &&
424           !Inst->mayWriteToMemory() && !Inst->isTerminator() &&
425           !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) {
426         Inst->moveBefore(LoopEntryBranch);
427         continue;
428       }
429 
430       // Otherwise, create a duplicate of the instruction.
431       Instruction *C = Inst->clone();
432 
433       // Eagerly remap the operands of the instruction.
434       RemapInstruction(C, ValueMap,
435                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
436 
437       // Avoid inserting the same intrinsic twice.
438       if (auto *DII = dyn_cast<DbgVariableIntrinsic>(C))
439         if (DbgIntrinsics.count(makeHash(DII))) {
440           C->deleteValue();
441           continue;
442         }
443 
444       // With the operands remapped, see if the instruction constant folds or is
445       // otherwise simplifyable.  This commonly occurs because the entry from PHI
446       // nodes allows icmps and other instructions to fold.
447       Value *V = SimplifyInstruction(C, SQ);
448       if (V && LI->replacementPreservesLCSSAForm(C, V)) {
449         // If so, then delete the temporary instruction and stick the folded value
450         // in the map.
451         InsertNewValueIntoMap(ValueMap, Inst, V);
452         if (!C->mayHaveSideEffects()) {
453           C->deleteValue();
454           C = nullptr;
455         }
456       } else {
457         InsertNewValueIntoMap(ValueMap, Inst, C);
458       }
459       if (C) {
460         // Otherwise, stick the new instruction into the new block!
461         C->setName(Inst->getName());
462         C->insertBefore(LoopEntryBranch);
463 
464         if (auto *II = dyn_cast<IntrinsicInst>(C))
465           if (II->getIntrinsicID() == Intrinsic::assume)
466             AC->registerAssumption(II);
467         // MemorySSA cares whether the cloned instruction was inserted or not, and
468         // not whether it can be remapped to a simplified value.
469         if (MSSAU)
470           InsertNewValueIntoMap(ValueMapMSSA, Inst, C);
471       }
472     }
473 
474     if (!NoAliasDeclInstructions.empty()) {
475       // There are noalias scope declarations:
476       // (general):
477       // Original:    OrigPre              { OrigHeader NewHeader ... Latch }
478       // after:      (OrigPre+OrigHeader') { NewHeader ... Latch OrigHeader }
479       //
480       // with D: llvm.experimental.noalias.scope.decl,
481       //      U: !noalias or !alias.scope depending on D
482       //       ... { D U1 U2 }   can transform into:
483       // (0) : ... { D U1 U2 }        // no relevant rotation for this part
484       // (1) : ... D' { U1 U2 D }     // D is part of OrigHeader
485       // (2) : ... D' U1' { U2 D U1 } // D, U1 are part of OrigHeader
486       //
487       // We now want to transform:
488       // (1) -> : ... D' { D U1 U2 D'' }
489       // (2) -> : ... D' U1' { D U2 D'' U1'' }
490       // D: original llvm.experimental.noalias.scope.decl
491       // D', U1': duplicate with replaced scopes
492       // D'', U1'': different duplicate with replaced scopes
493       // This ensures a safe fallback to 'may_alias' introduced by the rotate,
494       // as U1'' and U1' scopes will not be compatible wrt to the local restrict
495 
496       // Clone the llvm.experimental.noalias.decl again for the NewHeader.
497       Instruction *NewHeaderInsertionPoint = &(*NewHeader->getFirstNonPHI());
498       for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions) {
499         LLVM_DEBUG(dbgs() << "  Cloning llvm.experimental.noalias.scope.decl:"
500                           << *NAD << "\n");
501         Instruction *NewNAD = NAD->clone();
502         NewNAD->insertBefore(NewHeaderInsertionPoint);
503       }
504 
505       // Scopes must now be duplicated, once for OrigHeader and once for
506       // OrigPreHeader'.
507       {
508         auto &Context = NewHeader->getContext();
509 
510         SmallVector<MDNode *, 8> NoAliasDeclScopes;
511         for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions)
512           NoAliasDeclScopes.push_back(NAD->getScopeList());
513 
514         LLVM_DEBUG(dbgs() << "  Updating OrigHeader scopes\n");
515         cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, {OrigHeader}, Context,
516                                    "h.rot");
517         LLVM_DEBUG(OrigHeader->dump());
518 
519         // Keep the compile time impact low by only adapting the inserted block
520         // of instructions in the OrigPreHeader. This might result in slightly
521         // more aliasing between these instructions and those that were already
522         // present, but it will be much faster when the original PreHeader is
523         // large.
524         LLVM_DEBUG(dbgs() << "  Updating part of OrigPreheader scopes\n");
525         auto *FirstDecl =
526             cast<Instruction>(ValueMap[*NoAliasDeclInstructions.begin()]);
527         auto *LastInst = &OrigPreheader->back();
528         cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, FirstDecl, LastInst,
529                                    Context, "pre.rot");
530         LLVM_DEBUG(OrigPreheader->dump());
531 
532         LLVM_DEBUG(dbgs() << "  Updated NewHeader:\n");
533         LLVM_DEBUG(NewHeader->dump());
534       }
535     }
536 
537     // Along with all the other instructions, we just cloned OrigHeader's
538     // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
539     // successors by duplicating their incoming values for OrigHeader.
540     for (BasicBlock *SuccBB : successors(OrigHeader))
541       for (BasicBlock::iterator BI = SuccBB->begin();
542            PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
543         PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
544 
545     // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
546     // OrigPreHeader's old terminator (the original branch into the loop), and
547     // remove the corresponding incoming values from the PHI nodes in OrigHeader.
548     LoopEntryBranch->eraseFromParent();
549 
550     // Update MemorySSA before the rewrite call below changes the 1:1
551     // instruction:cloned_instruction_or_value mapping.
552     if (MSSAU) {
553       InsertNewValueIntoMap(ValueMapMSSA, OrigHeader, OrigPreheader);
554       MSSAU->updateForClonedBlockIntoPred(OrigHeader, OrigPreheader,
555                                           ValueMapMSSA);
556     }
557 
558     SmallVector<PHINode*, 2> InsertedPHIs;
559     // If there were any uses of instructions in the duplicated block outside the
560     // loop, update them, inserting PHI nodes as required
561     RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap,
562                                     &InsertedPHIs);
563 
564     // Attach dbg.value intrinsics to the new phis if that phi uses a value that
565     // previously had debug metadata attached. This keeps the debug info
566     // up-to-date in the loop body.
567     if (!InsertedPHIs.empty())
568       insertDebugValuesForPHIs(OrigHeader, InsertedPHIs);
569 
570     // NewHeader is now the header of the loop.
571     L->moveToHeader(NewHeader);
572     assert(L->getHeader() == NewHeader && "Latch block is our new header");
573 
574     // Inform DT about changes to the CFG.
575     if (DT) {
576       // The OrigPreheader branches to the NewHeader and Exit now. Then, inform
577       // the DT about the removed edge to the OrigHeader (that got removed).
578       SmallVector<DominatorTree::UpdateType, 3> Updates;
579       Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit});
580       Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader});
581       Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader});
582 
583       if (MSSAU) {
584         MSSAU->applyUpdates(Updates, *DT, /*UpdateDT=*/true);
585         if (VerifyMemorySSA)
586           MSSAU->getMemorySSA()->verifyMemorySSA();
587       } else {
588         DT->applyUpdates(Updates);
589       }
590     }
591 
592     // At this point, we've finished our major CFG changes.  As part of cloning
593     // the loop into the preheader we've simplified instructions and the
594     // duplicated conditional branch may now be branching on a constant.  If it is
595     // branching on a constant and if that constant means that we enter the loop,
596     // then we fold away the cond branch to an uncond branch.  This simplifies the
597     // loop in cases important for nested loops, and it also means we don't have
598     // to split as many edges.
599     BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
600     assert(PHBI->isConditional() && "Should be clone of BI condbr!");
601     if (!isa<ConstantInt>(PHBI->getCondition()) ||
602         PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) !=
603         NewHeader) {
604       // The conditional branch can't be folded, handle the general case.
605       // Split edges as necessary to preserve LoopSimplify form.
606 
607       // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
608       // thus is not a preheader anymore.
609       // Split the edge to form a real preheader.
610       BasicBlock *NewPH = SplitCriticalEdge(
611                                             OrigPreheader, NewHeader,
612                                             CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
613       NewPH->setName(NewHeader->getName() + ".lr.ph");
614 
615       // Preserve canonical loop form, which means that 'Exit' should have only
616       // one predecessor. Note that Exit could be an exit block for multiple
617       // nested loops, causing both of the edges to now be critical and need to
618       // be split.
619       SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit));
620       bool SplitLatchEdge = false;
621       for (BasicBlock *ExitPred : ExitPreds) {
622         // We only need to split loop exit edges.
623         Loop *PredLoop = LI->getLoopFor(ExitPred);
624         if (!PredLoop || PredLoop->contains(Exit) ||
625             ExitPred->getTerminator()->isIndirectTerminator())
626           continue;
627         SplitLatchEdge |= L->getLoopLatch() == ExitPred;
628         BasicBlock *ExitSplit = SplitCriticalEdge(
629                                                   ExitPred, Exit,
630                                                   CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
631         ExitSplit->moveBefore(Exit);
632       }
633       assert(SplitLatchEdge &&
634              "Despite splitting all preds, failed to split latch exit?");
635     } else {
636       // We can fold the conditional branch in the preheader, this makes things
637       // simpler. The first step is to remove the extra edge to the Exit block.
638       Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
639       BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
640       NewBI->setDebugLoc(PHBI->getDebugLoc());
641       PHBI->eraseFromParent();
642 
643       // With our CFG finalized, update DomTree if it is available.
644       if (DT) DT->deleteEdge(OrigPreheader, Exit);
645 
646       // Update MSSA too, if available.
647       if (MSSAU)
648         MSSAU->removeEdge(OrigPreheader, Exit);
649     }
650 
651     assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
652     assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
653 
654     if (MSSAU && VerifyMemorySSA)
655       MSSAU->getMemorySSA()->verifyMemorySSA();
656 
657     // Now that the CFG and DomTree are in a consistent state again, try to merge
658     // the OrigHeader block into OrigLatch.  This will succeed if they are
659     // connected by an unconditional branch.  This is just a cleanup so the
660     // emitted code isn't too gross in this common case.
661     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
662     BasicBlock *PredBB = OrigHeader->getUniquePredecessor();
663     bool DidMerge = MergeBlockIntoPredecessor(OrigHeader, &DTU, LI, MSSAU);
664     if (DidMerge)
665       RemoveRedundantDbgInstrs(PredBB);
666 
667     if (MSSAU && VerifyMemorySSA)
668       MSSAU->getMemorySSA()->verifyMemorySSA();
669 
670     LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump());
671 
672     ++NumRotated;
673 
674     Rotated = true;
675     SimplifiedLatch = false;
676 
677     // Check that new latch is a deoptimizing exit and then repeat rotation if possible.
678     // Deoptimizing latch exit is not a generally typical case, so we just loop over.
679     // TODO: if it becomes a performance bottleneck extend rotation algorithm
680     // to handle multiple rotations in one go.
681   } while (MultiRotate && canRotateDeoptimizingLatchExit(L));
682 
683 
684   return true;
685 }
686 
687 /// Determine whether the instructions in this range may be safely and cheaply
688 /// speculated. This is not an important enough situation to develop complex
689 /// heuristics. We handle a single arithmetic instruction along with any type
690 /// conversions.
691 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
692                                   BasicBlock::iterator End, Loop *L) {
693   bool seenIncrement = false;
694   bool MultiExitLoop = false;
695 
696   if (!L->getExitingBlock())
697     MultiExitLoop = true;
698 
699   for (BasicBlock::iterator I = Begin; I != End; ++I) {
700 
701     if (!isSafeToSpeculativelyExecute(&*I))
702       return false;
703 
704     if (isa<DbgInfoIntrinsic>(I))
705       continue;
706 
707     switch (I->getOpcode()) {
708     default:
709       return false;
710     case Instruction::GetElementPtr:
711       // GEPs are cheap if all indices are constant.
712       if (!cast<GEPOperator>(I)->hasAllConstantIndices())
713         return false;
714       // fall-thru to increment case
715       LLVM_FALLTHROUGH;
716     case Instruction::Add:
717     case Instruction::Sub:
718     case Instruction::And:
719     case Instruction::Or:
720     case Instruction::Xor:
721     case Instruction::Shl:
722     case Instruction::LShr:
723     case Instruction::AShr: {
724       Value *IVOpnd =
725           !isa<Constant>(I->getOperand(0))
726               ? I->getOperand(0)
727               : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr;
728       if (!IVOpnd)
729         return false;
730 
731       // If increment operand is used outside of the loop, this speculation
732       // could cause extra live range interference.
733       if (MultiExitLoop) {
734         for (User *UseI : IVOpnd->users()) {
735           auto *UserInst = cast<Instruction>(UseI);
736           if (!L->contains(UserInst))
737             return false;
738         }
739       }
740 
741       if (seenIncrement)
742         return false;
743       seenIncrement = true;
744       break;
745     }
746     case Instruction::Trunc:
747     case Instruction::ZExt:
748     case Instruction::SExt:
749       // ignore type conversions
750       break;
751     }
752   }
753   return true;
754 }
755 
756 /// Fold the loop tail into the loop exit by speculating the loop tail
757 /// instructions. Typically, this is a single post-increment. In the case of a
758 /// simple 2-block loop, hoisting the increment can be much better than
759 /// duplicating the entire loop header. In the case of loops with early exits,
760 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
761 /// canonical form so downstream passes can handle it.
762 ///
763 /// I don't believe this invalidates SCEV.
764 bool LoopRotate::simplifyLoopLatch(Loop *L) {
765   BasicBlock *Latch = L->getLoopLatch();
766   if (!Latch || Latch->hasAddressTaken())
767     return false;
768 
769   BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
770   if (!Jmp || !Jmp->isUnconditional())
771     return false;
772 
773   BasicBlock *LastExit = Latch->getSinglePredecessor();
774   if (!LastExit || !L->isLoopExiting(LastExit))
775     return false;
776 
777   BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
778   if (!BI)
779     return false;
780 
781   if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L))
782     return false;
783 
784   LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
785                     << LastExit->getName() << "\n");
786 
787   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
788   MergeBlockIntoPredecessor(Latch, &DTU, LI, MSSAU, nullptr,
789                             /*PredecessorWithTwoSuccessors=*/true);
790 
791   if (MSSAU && VerifyMemorySSA)
792     MSSAU->getMemorySSA()->verifyMemorySSA();
793 
794   return true;
795 }
796 
797 /// Rotate \c L, and return true if any modification was made.
798 bool LoopRotate::processLoop(Loop *L) {
799   // Save the loop metadata.
800   MDNode *LoopMD = L->getLoopID();
801 
802   bool SimplifiedLatch = false;
803 
804   // Simplify the loop latch before attempting to rotate the header
805   // upward. Rotation may not be needed if the loop tail can be folded into the
806   // loop exit.
807   if (!RotationOnly)
808     SimplifiedLatch = simplifyLoopLatch(L);
809 
810   bool MadeChange = rotateLoop(L, SimplifiedLatch);
811   assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) &&
812          "Loop latch should be exiting after loop-rotate.");
813 
814   // Restore the loop metadata.
815   // NB! We presume LoopRotation DOESN'T ADD its own metadata.
816   if ((MadeChange || SimplifiedLatch) && LoopMD)
817     L->setLoopID(LoopMD);
818 
819   return MadeChange || SimplifiedLatch;
820 }
821 
822 
823 /// The utility to convert a loop into a loop with bottom test.
824 bool llvm::LoopRotation(Loop *L, LoopInfo *LI, const TargetTransformInfo *TTI,
825                         AssumptionCache *AC, DominatorTree *DT,
826                         ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
827                         const SimplifyQuery &SQ, bool RotationOnly = true,
828                         unsigned Threshold = unsigned(-1),
829                         bool IsUtilMode = true, bool PrepareForLTO) {
830   LoopRotate LR(Threshold, LI, TTI, AC, DT, SE, MSSAU, SQ, RotationOnly,
831                 IsUtilMode, PrepareForLTO);
832   return LR.processLoop(L);
833 }
834