1 //===----------------- LoopRotationUtils.cpp -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides utilities to convert a loop into a loop with bottom test.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/LoopRotationUtils.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/Analysis/AssumptionCache.h"
17 #include "llvm/Analysis/BasicAliasAnalysis.h"
18 #include "llvm/Analysis/CodeMetrics.h"
19 #include "llvm/Analysis/DomTreeUpdater.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/LoopPass.h"
23 #include "llvm/Analysis/MemorySSA.h"
24 #include "llvm/Analysis/MemorySSAUpdater.h"
25 #include "llvm/Analysis/ScalarEvolution.h"
26 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/DebugInfoMetadata.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
39 #include "llvm/Transforms/Utils/Local.h"
40 #include "llvm/Transforms/Utils/LoopUtils.h"
41 #include "llvm/Transforms/Utils/SSAUpdater.h"
42 #include "llvm/Transforms/Utils/ValueMapper.h"
43 using namespace llvm;
44 
45 #define DEBUG_TYPE "loop-rotate"
46 
47 STATISTIC(NumNotRotatedDueToHeaderSize,
48           "Number of loops not rotated due to the header size");
49 STATISTIC(NumRotated, "Number of loops rotated");
50 
51 static cl::opt<bool>
52     MultiRotate("loop-rotate-multi", cl::init(false), cl::Hidden,
53                 cl::desc("Allow loop rotation multiple times in order to reach "
54                          "a better latch exit"));
55 
56 namespace {
57 /// A simple loop rotation transformation.
58 class LoopRotate {
59   const unsigned MaxHeaderSize;
60   LoopInfo *LI;
61   const TargetTransformInfo *TTI;
62   AssumptionCache *AC;
63   DominatorTree *DT;
64   ScalarEvolution *SE;
65   MemorySSAUpdater *MSSAU;
66   const SimplifyQuery &SQ;
67   bool RotationOnly;
68   bool IsUtilMode;
69 
70 public:
71   LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI,
72              const TargetTransformInfo *TTI, AssumptionCache *AC,
73              DominatorTree *DT, ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
74              const SimplifyQuery &SQ, bool RotationOnly, bool IsUtilMode)
75       : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE),
76         MSSAU(MSSAU), SQ(SQ), RotationOnly(RotationOnly),
77         IsUtilMode(IsUtilMode) {}
78   bool processLoop(Loop *L);
79 
80 private:
81   bool rotateLoop(Loop *L, bool SimplifiedLatch);
82   bool simplifyLoopLatch(Loop *L);
83 };
84 } // end anonymous namespace
85 
86 /// Insert (K, V) pair into the ValueToValueMap, and verify the key did not
87 /// previously exist in the map, and the value was inserted.
88 static void InsertNewValueIntoMap(ValueToValueMapTy &VM, Value *K, Value *V) {
89   bool Inserted = VM.insert({K, V}).second;
90   assert(Inserted);
91   (void)Inserted;
92 }
93 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
94 /// old header into the preheader.  If there were uses of the values produced by
95 /// these instruction that were outside of the loop, we have to insert PHI nodes
96 /// to merge the two values.  Do this now.
97 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
98                                             BasicBlock *OrigPreheader,
99                                             ValueToValueMapTy &ValueMap,
100                                 SmallVectorImpl<PHINode*> *InsertedPHIs) {
101   // Remove PHI node entries that are no longer live.
102   BasicBlock::iterator I, E = OrigHeader->end();
103   for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
104     PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
105 
106   // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
107   // as necessary.
108   SSAUpdater SSA(InsertedPHIs);
109   for (I = OrigHeader->begin(); I != E; ++I) {
110     Value *OrigHeaderVal = &*I;
111 
112     // If there are no uses of the value (e.g. because it returns void), there
113     // is nothing to rewrite.
114     if (OrigHeaderVal->use_empty())
115       continue;
116 
117     Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal);
118 
119     // The value now exits in two versions: the initial value in the preheader
120     // and the loop "next" value in the original header.
121     SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
122     SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
123     SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
124 
125     // Visit each use of the OrigHeader instruction.
126     for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
127                              UE = OrigHeaderVal->use_end();
128          UI != UE;) {
129       // Grab the use before incrementing the iterator.
130       Use &U = *UI;
131 
132       // Increment the iterator before removing the use from the list.
133       ++UI;
134 
135       // SSAUpdater can't handle a non-PHI use in the same block as an
136       // earlier def. We can easily handle those cases manually.
137       Instruction *UserInst = cast<Instruction>(U.getUser());
138       if (!isa<PHINode>(UserInst)) {
139         BasicBlock *UserBB = UserInst->getParent();
140 
141         // The original users in the OrigHeader are already using the
142         // original definitions.
143         if (UserBB == OrigHeader)
144           continue;
145 
146         // Users in the OrigPreHeader need to use the value to which the
147         // original definitions are mapped.
148         if (UserBB == OrigPreheader) {
149           U = OrigPreHeaderVal;
150           continue;
151         }
152       }
153 
154       // Anything else can be handled by SSAUpdater.
155       SSA.RewriteUse(U);
156     }
157 
158     // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug
159     // intrinsics.
160     SmallVector<DbgValueInst *, 1> DbgValues;
161     llvm::findDbgValues(DbgValues, OrigHeaderVal);
162     for (auto &DbgValue : DbgValues) {
163       // The original users in the OrigHeader are already using the original
164       // definitions.
165       BasicBlock *UserBB = DbgValue->getParent();
166       if (UserBB == OrigHeader)
167         continue;
168 
169       // Users in the OrigPreHeader need to use the value to which the
170       // original definitions are mapped and anything else can be handled by
171       // the SSAUpdater. To avoid adding PHINodes, check if the value is
172       // available in UserBB, if not substitute undef.
173       Value *NewVal;
174       if (UserBB == OrigPreheader)
175         NewVal = OrigPreHeaderVal;
176       else if (SSA.HasValueForBlock(UserBB))
177         NewVal = SSA.GetValueInMiddleOfBlock(UserBB);
178       else
179         NewVal = UndefValue::get(OrigHeaderVal->getType());
180       DbgValue->setOperand(0,
181                            MetadataAsValue::get(OrigHeaderVal->getContext(),
182                                                 ValueAsMetadata::get(NewVal)));
183     }
184   }
185 }
186 
187 // Assuming both header and latch are exiting, look for a phi which is only
188 // used outside the loop (via a LCSSA phi) in the exit from the header.
189 // This means that rotating the loop can remove the phi.
190 static bool profitableToRotateLoopExitingLatch(Loop *L) {
191   BasicBlock *Header = L->getHeader();
192   BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator());
193   assert(BI && BI->isConditional() && "need header with conditional exit");
194   BasicBlock *HeaderExit = BI->getSuccessor(0);
195   if (L->contains(HeaderExit))
196     HeaderExit = BI->getSuccessor(1);
197 
198   for (auto &Phi : Header->phis()) {
199     // Look for uses of this phi in the loop/via exits other than the header.
200     if (llvm::any_of(Phi.users(), [HeaderExit](const User *U) {
201           return cast<Instruction>(U)->getParent() != HeaderExit;
202         }))
203       continue;
204     return true;
205   }
206   return false;
207 }
208 
209 // Check that latch exit is deoptimizing (which means - very unlikely to happen)
210 // and there is another exit from the loop which is non-deoptimizing.
211 // If we rotate latch to that exit our loop has a better chance of being fully
212 // canonical.
213 //
214 // It can give false positives in some rare cases.
215 static bool canRotateDeoptimizingLatchExit(Loop *L) {
216   BasicBlock *Latch = L->getLoopLatch();
217   assert(Latch && "need latch");
218   BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
219   // Need normal exiting latch.
220   if (!BI || !BI->isConditional())
221     return false;
222 
223   BasicBlock *Exit = BI->getSuccessor(1);
224   if (L->contains(Exit))
225     Exit = BI->getSuccessor(0);
226 
227   // Latch exit is non-deoptimizing, no need to rotate.
228   if (!Exit->getPostdominatingDeoptimizeCall())
229     return false;
230 
231   SmallVector<BasicBlock *, 4> Exits;
232   L->getUniqueExitBlocks(Exits);
233   if (!Exits.empty()) {
234     // There is at least one non-deoptimizing exit.
235     //
236     // Note, that BasicBlock::getPostdominatingDeoptimizeCall is not exact,
237     // as it can conservatively return false for deoptimizing exits with
238     // complex enough control flow down to deoptimize call.
239     //
240     // That means here we can report success for a case where
241     // all exits are deoptimizing but one of them has complex enough
242     // control flow (e.g. with loops).
243     //
244     // That should be a very rare case and false positives for this function
245     // have compile-time effect only.
246     return any_of(Exits, [](const BasicBlock *BB) {
247       return !BB->getPostdominatingDeoptimizeCall();
248     });
249   }
250   return false;
251 }
252 
253 /// Rotate loop LP. Return true if the loop is rotated.
254 ///
255 /// \param SimplifiedLatch is true if the latch was just folded into the final
256 /// loop exit. In this case we may want to rotate even though the new latch is
257 /// now an exiting branch. This rotation would have happened had the latch not
258 /// been simplified. However, if SimplifiedLatch is false, then we avoid
259 /// rotating loops in which the latch exits to avoid excessive or endless
260 /// rotation. LoopRotate should be repeatable and converge to a canonical
261 /// form. This property is satisfied because simplifying the loop latch can only
262 /// happen once across multiple invocations of the LoopRotate pass.
263 ///
264 /// If -loop-rotate-multi is enabled we can do multiple rotations in one go
265 /// so to reach a suitable (non-deoptimizing) exit.
266 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
267   // If the loop has only one block then there is not much to rotate.
268   if (L->getBlocks().size() == 1)
269     return false;
270 
271   bool Rotated = false;
272   do {
273     BasicBlock *OrigHeader = L->getHeader();
274     BasicBlock *OrigLatch = L->getLoopLatch();
275 
276     BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
277     if (!BI || BI->isUnconditional())
278       return Rotated;
279 
280     // If the loop header is not one of the loop exiting blocks then
281     // either this loop is already rotated or it is not
282     // suitable for loop rotation transformations.
283     if (!L->isLoopExiting(OrigHeader))
284       return Rotated;
285 
286     // If the loop latch already contains a branch that leaves the loop then the
287     // loop is already rotated.
288     if (!OrigLatch)
289       return Rotated;
290 
291     // Rotate if either the loop latch does *not* exit the loop, or if the loop
292     // latch was just simplified. Or if we think it will be profitable.
293     if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false &&
294         !profitableToRotateLoopExitingLatch(L) &&
295         !canRotateDeoptimizingLatchExit(L))
296       return Rotated;
297 
298     // Check size of original header and reject loop if it is very big or we can't
299     // duplicate blocks inside it.
300     {
301       SmallPtrSet<const Value *, 32> EphValues;
302       CodeMetrics::collectEphemeralValues(L, AC, EphValues);
303 
304       CodeMetrics Metrics;
305       Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues);
306       if (Metrics.notDuplicatable) {
307         LLVM_DEBUG(
308                    dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
309                    << " instructions: ";
310                    L->dump());
311         return Rotated;
312       }
313       if (Metrics.convergent) {
314         LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "
315                    "instructions: ";
316                    L->dump());
317         return Rotated;
318       }
319       if (Metrics.NumInsts > MaxHeaderSize) {
320         LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains "
321                           << Metrics.NumInsts
322                           << " instructions, which is more than the threshold ("
323                           << MaxHeaderSize << " instructions): ";
324                    L->dump());
325         ++NumNotRotatedDueToHeaderSize;
326         return Rotated;
327       }
328     }
329 
330     // Now, this loop is suitable for rotation.
331     BasicBlock *OrigPreheader = L->getLoopPreheader();
332 
333     // If the loop could not be converted to canonical form, it must have an
334     // indirectbr in it, just give up.
335     if (!OrigPreheader || !L->hasDedicatedExits())
336       return Rotated;
337 
338     // Anything ScalarEvolution may know about this loop or the PHI nodes
339     // in its header will soon be invalidated. We should also invalidate
340     // all outer loops because insertion and deletion of blocks that happens
341     // during the rotation may violate invariants related to backedge taken
342     // infos in them.
343     if (SE)
344       SE->forgetTopmostLoop(L);
345 
346     LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
347     if (MSSAU && VerifyMemorySSA)
348       MSSAU->getMemorySSA()->verifyMemorySSA();
349 
350     // Find new Loop header. NewHeader is a Header's one and only successor
351     // that is inside loop.  Header's other successor is outside the
352     // loop.  Otherwise loop is not suitable for rotation.
353     BasicBlock *Exit = BI->getSuccessor(0);
354     BasicBlock *NewHeader = BI->getSuccessor(1);
355     if (L->contains(Exit))
356       std::swap(Exit, NewHeader);
357     assert(NewHeader && "Unable to determine new loop header");
358     assert(L->contains(NewHeader) && !L->contains(Exit) &&
359            "Unable to determine loop header and exit blocks");
360 
361     // This code assumes that the new header has exactly one predecessor.
362     // Remove any single-entry PHI nodes in it.
363     assert(NewHeader->getSinglePredecessor() &&
364            "New header doesn't have one pred!");
365     FoldSingleEntryPHINodes(NewHeader);
366 
367     // Begin by walking OrigHeader and populating ValueMap with an entry for
368     // each Instruction.
369     BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
370     ValueToValueMapTy ValueMap, ValueMapMSSA;
371 
372     // For PHI nodes, the value available in OldPreHeader is just the
373     // incoming value from OldPreHeader.
374     for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
375       InsertNewValueIntoMap(ValueMap, PN,
376                             PN->getIncomingValueForBlock(OrigPreheader));
377 
378     // For the rest of the instructions, either hoist to the OrigPreheader if
379     // possible or create a clone in the OldPreHeader if not.
380     Instruction *LoopEntryBranch = OrigPreheader->getTerminator();
381 
382     // Record all debug intrinsics preceding LoopEntryBranch to avoid duplication.
383     using DbgIntrinsicHash =
384       std::pair<std::pair<Value *, DILocalVariable *>, DIExpression *>;
385     auto makeHash = [](DbgVariableIntrinsic *D) -> DbgIntrinsicHash {
386       return {{D->getVariableLocation(), D->getVariable()}, D->getExpression()};
387     };
388     SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics;
389     for (auto I = std::next(OrigPreheader->rbegin()), E = OrigPreheader->rend();
390          I != E; ++I) {
391       if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&*I))
392         DbgIntrinsics.insert(makeHash(DII));
393       else
394         break;
395     }
396 
397     while (I != E) {
398       Instruction *Inst = &*I++;
399 
400       // If the instruction's operands are invariant and it doesn't read or write
401       // memory, then it is safe to hoist.  Doing this doesn't change the order of
402       // execution in the preheader, but does prevent the instruction from
403       // executing in each iteration of the loop.  This means it is safe to hoist
404       // something that might trap, but isn't safe to hoist something that reads
405       // memory (without proving that the loop doesn't write).
406       if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() &&
407           !Inst->mayWriteToMemory() && !Inst->isTerminator() &&
408           !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) {
409         Inst->moveBefore(LoopEntryBranch);
410         continue;
411       }
412 
413       // Otherwise, create a duplicate of the instruction.
414       Instruction *C = Inst->clone();
415 
416       // Eagerly remap the operands of the instruction.
417       RemapInstruction(C, ValueMap,
418                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
419 
420       // Avoid inserting the same intrinsic twice.
421       if (auto *DII = dyn_cast<DbgVariableIntrinsic>(C))
422         if (DbgIntrinsics.count(makeHash(DII))) {
423           C->deleteValue();
424           continue;
425         }
426 
427       // With the operands remapped, see if the instruction constant folds or is
428       // otherwise simplifyable.  This commonly occurs because the entry from PHI
429       // nodes allows icmps and other instructions to fold.
430       Value *V = SimplifyInstruction(C, SQ);
431       if (V && LI->replacementPreservesLCSSAForm(C, V)) {
432         // If so, then delete the temporary instruction and stick the folded value
433         // in the map.
434         InsertNewValueIntoMap(ValueMap, Inst, V);
435         if (!C->mayHaveSideEffects()) {
436           C->deleteValue();
437           C = nullptr;
438         }
439       } else {
440         InsertNewValueIntoMap(ValueMap, Inst, C);
441       }
442       if (C) {
443         // Otherwise, stick the new instruction into the new block!
444         C->setName(Inst->getName());
445         C->insertBefore(LoopEntryBranch);
446 
447         if (auto *II = dyn_cast<IntrinsicInst>(C))
448           if (II->getIntrinsicID() == Intrinsic::assume)
449             AC->registerAssumption(II);
450         // MemorySSA cares whether the cloned instruction was inserted or not, and
451         // not whether it can be remapped to a simplified value.
452         if (MSSAU)
453           InsertNewValueIntoMap(ValueMapMSSA, Inst, C);
454       }
455     }
456 
457     // Along with all the other instructions, we just cloned OrigHeader's
458     // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
459     // successors by duplicating their incoming values for OrigHeader.
460     for (BasicBlock *SuccBB : successors(OrigHeader))
461       for (BasicBlock::iterator BI = SuccBB->begin();
462            PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
463         PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
464 
465     // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
466     // OrigPreHeader's old terminator (the original branch into the loop), and
467     // remove the corresponding incoming values from the PHI nodes in OrigHeader.
468     LoopEntryBranch->eraseFromParent();
469 
470     // Update MemorySSA before the rewrite call below changes the 1:1
471     // instruction:cloned_instruction_or_value mapping.
472     if (MSSAU) {
473       InsertNewValueIntoMap(ValueMapMSSA, OrigHeader, OrigPreheader);
474       MSSAU->updateForClonedBlockIntoPred(OrigHeader, OrigPreheader,
475                                           ValueMapMSSA);
476     }
477 
478     SmallVector<PHINode*, 2> InsertedPHIs;
479     // If there were any uses of instructions in the duplicated block outside the
480     // loop, update them, inserting PHI nodes as required
481     RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap,
482                                     &InsertedPHIs);
483 
484     // Attach dbg.value intrinsics to the new phis if that phi uses a value that
485     // previously had debug metadata attached. This keeps the debug info
486     // up-to-date in the loop body.
487     if (!InsertedPHIs.empty())
488       insertDebugValuesForPHIs(OrigHeader, InsertedPHIs);
489 
490     // NewHeader is now the header of the loop.
491     L->moveToHeader(NewHeader);
492     assert(L->getHeader() == NewHeader && "Latch block is our new header");
493 
494     // Inform DT about changes to the CFG.
495     if (DT) {
496       // The OrigPreheader branches to the NewHeader and Exit now. Then, inform
497       // the DT about the removed edge to the OrigHeader (that got removed).
498       SmallVector<DominatorTree::UpdateType, 3> Updates;
499       Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit});
500       Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader});
501       Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader});
502       DT->applyUpdates(Updates);
503 
504       if (MSSAU) {
505         MSSAU->applyUpdates(Updates, *DT);
506         if (VerifyMemorySSA)
507           MSSAU->getMemorySSA()->verifyMemorySSA();
508       }
509     }
510 
511     // At this point, we've finished our major CFG changes.  As part of cloning
512     // the loop into the preheader we've simplified instructions and the
513     // duplicated conditional branch may now be branching on a constant.  If it is
514     // branching on a constant and if that constant means that we enter the loop,
515     // then we fold away the cond branch to an uncond branch.  This simplifies the
516     // loop in cases important for nested loops, and it also means we don't have
517     // to split as many edges.
518     BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
519     assert(PHBI->isConditional() && "Should be clone of BI condbr!");
520     if (!isa<ConstantInt>(PHBI->getCondition()) ||
521         PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) !=
522         NewHeader) {
523       // The conditional branch can't be folded, handle the general case.
524       // Split edges as necessary to preserve LoopSimplify form.
525 
526       // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
527       // thus is not a preheader anymore.
528       // Split the edge to form a real preheader.
529       BasicBlock *NewPH = SplitCriticalEdge(
530                                             OrigPreheader, NewHeader,
531                                             CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
532       NewPH->setName(NewHeader->getName() + ".lr.ph");
533 
534       // Preserve canonical loop form, which means that 'Exit' should have only
535       // one predecessor. Note that Exit could be an exit block for multiple
536       // nested loops, causing both of the edges to now be critical and need to
537       // be split.
538       SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit));
539       bool SplitLatchEdge = false;
540       for (BasicBlock *ExitPred : ExitPreds) {
541         // We only need to split loop exit edges.
542         Loop *PredLoop = LI->getLoopFor(ExitPred);
543         if (!PredLoop || PredLoop->contains(Exit) ||
544             ExitPred->getTerminator()->isIndirectTerminator())
545           continue;
546         SplitLatchEdge |= L->getLoopLatch() == ExitPred;
547         BasicBlock *ExitSplit = SplitCriticalEdge(
548                                                   ExitPred, Exit,
549                                                   CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
550         ExitSplit->moveBefore(Exit);
551       }
552       assert(SplitLatchEdge &&
553              "Despite splitting all preds, failed to split latch exit?");
554     } else {
555       // We can fold the conditional branch in the preheader, this makes things
556       // simpler. The first step is to remove the extra edge to the Exit block.
557       Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
558       BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
559       NewBI->setDebugLoc(PHBI->getDebugLoc());
560       PHBI->eraseFromParent();
561 
562       // With our CFG finalized, update DomTree if it is available.
563       if (DT) DT->deleteEdge(OrigPreheader, Exit);
564 
565       // Update MSSA too, if available.
566       if (MSSAU)
567         MSSAU->removeEdge(OrigPreheader, Exit);
568     }
569 
570     assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
571     assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
572 
573     if (MSSAU && VerifyMemorySSA)
574       MSSAU->getMemorySSA()->verifyMemorySSA();
575 
576     // Now that the CFG and DomTree are in a consistent state again, try to merge
577     // the OrigHeader block into OrigLatch.  This will succeed if they are
578     // connected by an unconditional branch.  This is just a cleanup so the
579     // emitted code isn't too gross in this common case.
580     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
581     MergeBlockIntoPredecessor(OrigHeader, &DTU, LI, MSSAU);
582 
583     if (MSSAU && VerifyMemorySSA)
584       MSSAU->getMemorySSA()->verifyMemorySSA();
585 
586     LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump());
587 
588     ++NumRotated;
589 
590     Rotated = true;
591     SimplifiedLatch = false;
592 
593     // Check that new latch is a deoptimizing exit and then repeat rotation if possible.
594     // Deoptimizing latch exit is not a generally typical case, so we just loop over.
595     // TODO: if it becomes a performance bottleneck extend rotation algorithm
596     // to handle multiple rotations in one go.
597   } while (MultiRotate && canRotateDeoptimizingLatchExit(L));
598 
599 
600   return true;
601 }
602 
603 /// Determine whether the instructions in this range may be safely and cheaply
604 /// speculated. This is not an important enough situation to develop complex
605 /// heuristics. We handle a single arithmetic instruction along with any type
606 /// conversions.
607 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
608                                   BasicBlock::iterator End, Loop *L) {
609   bool seenIncrement = false;
610   bool MultiExitLoop = false;
611 
612   if (!L->getExitingBlock())
613     MultiExitLoop = true;
614 
615   for (BasicBlock::iterator I = Begin; I != End; ++I) {
616 
617     if (!isSafeToSpeculativelyExecute(&*I))
618       return false;
619 
620     if (isa<DbgInfoIntrinsic>(I))
621       continue;
622 
623     switch (I->getOpcode()) {
624     default:
625       return false;
626     case Instruction::GetElementPtr:
627       // GEPs are cheap if all indices are constant.
628       if (!cast<GEPOperator>(I)->hasAllConstantIndices())
629         return false;
630       // fall-thru to increment case
631       LLVM_FALLTHROUGH;
632     case Instruction::Add:
633     case Instruction::Sub:
634     case Instruction::And:
635     case Instruction::Or:
636     case Instruction::Xor:
637     case Instruction::Shl:
638     case Instruction::LShr:
639     case Instruction::AShr: {
640       Value *IVOpnd =
641           !isa<Constant>(I->getOperand(0))
642               ? I->getOperand(0)
643               : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr;
644       if (!IVOpnd)
645         return false;
646 
647       // If increment operand is used outside of the loop, this speculation
648       // could cause extra live range interference.
649       if (MultiExitLoop) {
650         for (User *UseI : IVOpnd->users()) {
651           auto *UserInst = cast<Instruction>(UseI);
652           if (!L->contains(UserInst))
653             return false;
654         }
655       }
656 
657       if (seenIncrement)
658         return false;
659       seenIncrement = true;
660       break;
661     }
662     case Instruction::Trunc:
663     case Instruction::ZExt:
664     case Instruction::SExt:
665       // ignore type conversions
666       break;
667     }
668   }
669   return true;
670 }
671 
672 /// Fold the loop tail into the loop exit by speculating the loop tail
673 /// instructions. Typically, this is a single post-increment. In the case of a
674 /// simple 2-block loop, hoisting the increment can be much better than
675 /// duplicating the entire loop header. In the case of loops with early exits,
676 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
677 /// canonical form so downstream passes can handle it.
678 ///
679 /// I don't believe this invalidates SCEV.
680 bool LoopRotate::simplifyLoopLatch(Loop *L) {
681   BasicBlock *Latch = L->getLoopLatch();
682   if (!Latch || Latch->hasAddressTaken())
683     return false;
684 
685   BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
686   if (!Jmp || !Jmp->isUnconditional())
687     return false;
688 
689   BasicBlock *LastExit = Latch->getSinglePredecessor();
690   if (!LastExit || !L->isLoopExiting(LastExit))
691     return false;
692 
693   BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
694   if (!BI)
695     return false;
696 
697   if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L))
698     return false;
699 
700   LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
701                     << LastExit->getName() << "\n");
702 
703   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
704   MergeBlockIntoPredecessor(Latch, &DTU, LI, MSSAU, nullptr,
705                             /*PredecessorWithTwoSuccessors=*/true);
706 
707   if (MSSAU && VerifyMemorySSA)
708     MSSAU->getMemorySSA()->verifyMemorySSA();
709 
710   return true;
711 }
712 
713 /// Rotate \c L, and return true if any modification was made.
714 bool LoopRotate::processLoop(Loop *L) {
715   // Save the loop metadata.
716   MDNode *LoopMD = L->getLoopID();
717 
718   bool SimplifiedLatch = false;
719 
720   // Simplify the loop latch before attempting to rotate the header
721   // upward. Rotation may not be needed if the loop tail can be folded into the
722   // loop exit.
723   if (!RotationOnly)
724     SimplifiedLatch = simplifyLoopLatch(L);
725 
726   bool MadeChange = rotateLoop(L, SimplifiedLatch);
727   assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) &&
728          "Loop latch should be exiting after loop-rotate.");
729 
730   // Restore the loop metadata.
731   // NB! We presume LoopRotation DOESN'T ADD its own metadata.
732   if ((MadeChange || SimplifiedLatch) && LoopMD)
733     L->setLoopID(LoopMD);
734 
735   return MadeChange || SimplifiedLatch;
736 }
737 
738 
739 /// The utility to convert a loop into a loop with bottom test.
740 bool llvm::LoopRotation(Loop *L, LoopInfo *LI, const TargetTransformInfo *TTI,
741                         AssumptionCache *AC, DominatorTree *DT,
742                         ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
743                         const SimplifyQuery &SQ, bool RotationOnly = true,
744                         unsigned Threshold = unsigned(-1),
745                         bool IsUtilMode = true) {
746   LoopRotate LR(Threshold, LI, TTI, AC, DT, SE, MSSAU, SQ, RotationOnly,
747                 IsUtilMode);
748   return LR.processLoop(L);
749 }
750