1 //===----------------- LoopRotationUtils.cpp -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file provides utilities to convert a loop into a loop with bottom test. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/LoopRotationUtils.h" 14 #include "llvm/ADT/Statistic.h" 15 #include "llvm/Analysis/AssumptionCache.h" 16 #include "llvm/Analysis/BasicAliasAnalysis.h" 17 #include "llvm/Analysis/CodeMetrics.h" 18 #include "llvm/Analysis/DomTreeUpdater.h" 19 #include "llvm/Analysis/GlobalsModRef.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/MemorySSA.h" 23 #include "llvm/Analysis/MemorySSAUpdater.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 26 #include "llvm/Analysis/TargetTransformInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/DebugInfo.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 38 #include "llvm/Transforms/Utils/Cloning.h" 39 #include "llvm/Transforms/Utils/Local.h" 40 #include "llvm/Transforms/Utils/LoopUtils.h" 41 #include "llvm/Transforms/Utils/SSAUpdater.h" 42 #include "llvm/Transforms/Utils/ValueMapper.h" 43 using namespace llvm; 44 45 #define DEBUG_TYPE "loop-rotate" 46 47 STATISTIC(NumNotRotatedDueToHeaderSize, 48 "Number of loops not rotated due to the header size"); 49 STATISTIC(NumInstrsHoisted, 50 "Number of instructions hoisted into loop preheader"); 51 STATISTIC(NumInstrsDuplicated, 52 "Number of instructions cloned into loop preheader"); 53 STATISTIC(NumRotated, "Number of loops rotated"); 54 55 static cl::opt<bool> 56 MultiRotate("loop-rotate-multi", cl::init(false), cl::Hidden, 57 cl::desc("Allow loop rotation multiple times in order to reach " 58 "a better latch exit")); 59 60 namespace { 61 /// A simple loop rotation transformation. 62 class LoopRotate { 63 const unsigned MaxHeaderSize; 64 LoopInfo *LI; 65 const TargetTransformInfo *TTI; 66 AssumptionCache *AC; 67 DominatorTree *DT; 68 ScalarEvolution *SE; 69 MemorySSAUpdater *MSSAU; 70 const SimplifyQuery &SQ; 71 bool RotationOnly; 72 bool IsUtilMode; 73 bool PrepareForLTO; 74 75 public: 76 LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI, 77 const TargetTransformInfo *TTI, AssumptionCache *AC, 78 DominatorTree *DT, ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 79 const SimplifyQuery &SQ, bool RotationOnly, bool IsUtilMode, 80 bool PrepareForLTO) 81 : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE), 82 MSSAU(MSSAU), SQ(SQ), RotationOnly(RotationOnly), 83 IsUtilMode(IsUtilMode), PrepareForLTO(PrepareForLTO) {} 84 bool processLoop(Loop *L); 85 86 private: 87 bool rotateLoop(Loop *L, bool SimplifiedLatch); 88 bool simplifyLoopLatch(Loop *L); 89 }; 90 } // end anonymous namespace 91 92 /// Insert (K, V) pair into the ValueToValueMap, and verify the key did not 93 /// previously exist in the map, and the value was inserted. 94 static void InsertNewValueIntoMap(ValueToValueMapTy &VM, Value *K, Value *V) { 95 bool Inserted = VM.insert({K, V}).second; 96 assert(Inserted); 97 (void)Inserted; 98 } 99 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the 100 /// old header into the preheader. If there were uses of the values produced by 101 /// these instruction that were outside of the loop, we have to insert PHI nodes 102 /// to merge the two values. Do this now. 103 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader, 104 BasicBlock *OrigPreheader, 105 ValueToValueMapTy &ValueMap, 106 ScalarEvolution *SE, 107 SmallVectorImpl<PHINode*> *InsertedPHIs) { 108 // Remove PHI node entries that are no longer live. 109 BasicBlock::iterator I, E = OrigHeader->end(); 110 for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I) 111 PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader)); 112 113 // Now fix up users of the instructions in OrigHeader, inserting PHI nodes 114 // as necessary. 115 SSAUpdater SSA(InsertedPHIs); 116 for (I = OrigHeader->begin(); I != E; ++I) { 117 Value *OrigHeaderVal = &*I; 118 119 // If there are no uses of the value (e.g. because it returns void), there 120 // is nothing to rewrite. 121 if (OrigHeaderVal->use_empty()) 122 continue; 123 124 Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal); 125 126 // The value now exits in two versions: the initial value in the preheader 127 // and the loop "next" value in the original header. 128 SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName()); 129 // Force re-computation of OrigHeaderVal, as some users now need to use the 130 // new PHI node. 131 if (SE) 132 SE->forgetValue(OrigHeaderVal); 133 SSA.AddAvailableValue(OrigHeader, OrigHeaderVal); 134 SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal); 135 136 // Visit each use of the OrigHeader instruction. 137 for (Value::use_iterator UI = OrigHeaderVal->use_begin(), 138 UE = OrigHeaderVal->use_end(); 139 UI != UE;) { 140 // Grab the use before incrementing the iterator. 141 Use &U = *UI; 142 143 // Increment the iterator before removing the use from the list. 144 ++UI; 145 146 // SSAUpdater can't handle a non-PHI use in the same block as an 147 // earlier def. We can easily handle those cases manually. 148 Instruction *UserInst = cast<Instruction>(U.getUser()); 149 if (!isa<PHINode>(UserInst)) { 150 BasicBlock *UserBB = UserInst->getParent(); 151 152 // The original users in the OrigHeader are already using the 153 // original definitions. 154 if (UserBB == OrigHeader) 155 continue; 156 157 // Users in the OrigPreHeader need to use the value to which the 158 // original definitions are mapped. 159 if (UserBB == OrigPreheader) { 160 U = OrigPreHeaderVal; 161 continue; 162 } 163 } 164 165 // Anything else can be handled by SSAUpdater. 166 SSA.RewriteUse(U); 167 } 168 169 // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug 170 // intrinsics. 171 SmallVector<DbgValueInst *, 1> DbgValues; 172 llvm::findDbgValues(DbgValues, OrigHeaderVal); 173 for (auto &DbgValue : DbgValues) { 174 // The original users in the OrigHeader are already using the original 175 // definitions. 176 BasicBlock *UserBB = DbgValue->getParent(); 177 if (UserBB == OrigHeader) 178 continue; 179 180 // Users in the OrigPreHeader need to use the value to which the 181 // original definitions are mapped and anything else can be handled by 182 // the SSAUpdater. To avoid adding PHINodes, check if the value is 183 // available in UserBB, if not substitute undef. 184 Value *NewVal; 185 if (UserBB == OrigPreheader) 186 NewVal = OrigPreHeaderVal; 187 else if (SSA.HasValueForBlock(UserBB)) 188 NewVal = SSA.GetValueInMiddleOfBlock(UserBB); 189 else 190 NewVal = UndefValue::get(OrigHeaderVal->getType()); 191 DbgValue->replaceVariableLocationOp(OrigHeaderVal, NewVal); 192 } 193 } 194 } 195 196 // Assuming both header and latch are exiting, look for a phi which is only 197 // used outside the loop (via a LCSSA phi) in the exit from the header. 198 // This means that rotating the loop can remove the phi. 199 static bool profitableToRotateLoopExitingLatch(Loop *L) { 200 BasicBlock *Header = L->getHeader(); 201 BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator()); 202 assert(BI && BI->isConditional() && "need header with conditional exit"); 203 BasicBlock *HeaderExit = BI->getSuccessor(0); 204 if (L->contains(HeaderExit)) 205 HeaderExit = BI->getSuccessor(1); 206 207 for (auto &Phi : Header->phis()) { 208 // Look for uses of this phi in the loop/via exits other than the header. 209 if (llvm::any_of(Phi.users(), [HeaderExit](const User *U) { 210 return cast<Instruction>(U)->getParent() != HeaderExit; 211 })) 212 continue; 213 return true; 214 } 215 return false; 216 } 217 218 // Check that latch exit is deoptimizing (which means - very unlikely to happen) 219 // and there is another exit from the loop which is non-deoptimizing. 220 // If we rotate latch to that exit our loop has a better chance of being fully 221 // canonical. 222 // 223 // It can give false positives in some rare cases. 224 static bool canRotateDeoptimizingLatchExit(Loop *L) { 225 BasicBlock *Latch = L->getLoopLatch(); 226 assert(Latch && "need latch"); 227 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 228 // Need normal exiting latch. 229 if (!BI || !BI->isConditional()) 230 return false; 231 232 BasicBlock *Exit = BI->getSuccessor(1); 233 if (L->contains(Exit)) 234 Exit = BI->getSuccessor(0); 235 236 // Latch exit is non-deoptimizing, no need to rotate. 237 if (!Exit->getPostdominatingDeoptimizeCall()) 238 return false; 239 240 SmallVector<BasicBlock *, 4> Exits; 241 L->getUniqueExitBlocks(Exits); 242 if (!Exits.empty()) { 243 // There is at least one non-deoptimizing exit. 244 // 245 // Note, that BasicBlock::getPostdominatingDeoptimizeCall is not exact, 246 // as it can conservatively return false for deoptimizing exits with 247 // complex enough control flow down to deoptimize call. 248 // 249 // That means here we can report success for a case where 250 // all exits are deoptimizing but one of them has complex enough 251 // control flow (e.g. with loops). 252 // 253 // That should be a very rare case and false positives for this function 254 // have compile-time effect only. 255 return any_of(Exits, [](const BasicBlock *BB) { 256 return !BB->getPostdominatingDeoptimizeCall(); 257 }); 258 } 259 return false; 260 } 261 262 /// Rotate loop LP. Return true if the loop is rotated. 263 /// 264 /// \param SimplifiedLatch is true if the latch was just folded into the final 265 /// loop exit. In this case we may want to rotate even though the new latch is 266 /// now an exiting branch. This rotation would have happened had the latch not 267 /// been simplified. However, if SimplifiedLatch is false, then we avoid 268 /// rotating loops in which the latch exits to avoid excessive or endless 269 /// rotation. LoopRotate should be repeatable and converge to a canonical 270 /// form. This property is satisfied because simplifying the loop latch can only 271 /// happen once across multiple invocations of the LoopRotate pass. 272 /// 273 /// If -loop-rotate-multi is enabled we can do multiple rotations in one go 274 /// so to reach a suitable (non-deoptimizing) exit. 275 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) { 276 // If the loop has only one block then there is not much to rotate. 277 if (L->getBlocks().size() == 1) 278 return false; 279 280 bool Rotated = false; 281 do { 282 BasicBlock *OrigHeader = L->getHeader(); 283 BasicBlock *OrigLatch = L->getLoopLatch(); 284 285 BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator()); 286 if (!BI || BI->isUnconditional()) 287 return Rotated; 288 289 // If the loop header is not one of the loop exiting blocks then 290 // either this loop is already rotated or it is not 291 // suitable for loop rotation transformations. 292 if (!L->isLoopExiting(OrigHeader)) 293 return Rotated; 294 295 // If the loop latch already contains a branch that leaves the loop then the 296 // loop is already rotated. 297 if (!OrigLatch) 298 return Rotated; 299 300 // Rotate if either the loop latch does *not* exit the loop, or if the loop 301 // latch was just simplified. Or if we think it will be profitable. 302 if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false && 303 !profitableToRotateLoopExitingLatch(L) && 304 !canRotateDeoptimizingLatchExit(L)) 305 return Rotated; 306 307 // Check size of original header and reject loop if it is very big or we can't 308 // duplicate blocks inside it. 309 { 310 SmallPtrSet<const Value *, 32> EphValues; 311 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 312 313 CodeMetrics Metrics; 314 Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues, PrepareForLTO); 315 if (Metrics.notDuplicatable) { 316 LLVM_DEBUG( 317 dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable" 318 << " instructions: "; 319 L->dump()); 320 return Rotated; 321 } 322 if (Metrics.convergent) { 323 LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent " 324 "instructions: "; 325 L->dump()); 326 return Rotated; 327 } 328 if (Metrics.NumInsts > MaxHeaderSize) { 329 LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains " 330 << Metrics.NumInsts 331 << " instructions, which is more than the threshold (" 332 << MaxHeaderSize << " instructions): "; 333 L->dump()); 334 ++NumNotRotatedDueToHeaderSize; 335 return Rotated; 336 } 337 338 // When preparing for LTO, avoid rotating loops with calls that could be 339 // inlined during the LTO stage. 340 if (PrepareForLTO && Metrics.NumInlineCandidates > 0) 341 return Rotated; 342 } 343 344 // Now, this loop is suitable for rotation. 345 BasicBlock *OrigPreheader = L->getLoopPreheader(); 346 347 // If the loop could not be converted to canonical form, it must have an 348 // indirectbr in it, just give up. 349 if (!OrigPreheader || !L->hasDedicatedExits()) 350 return Rotated; 351 352 // Anything ScalarEvolution may know about this loop or the PHI nodes 353 // in its header will soon be invalidated. We should also invalidate 354 // all outer loops because insertion and deletion of blocks that happens 355 // during the rotation may violate invariants related to backedge taken 356 // infos in them. 357 if (SE) 358 SE->forgetTopmostLoop(L); 359 360 LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump()); 361 if (MSSAU && VerifyMemorySSA) 362 MSSAU->getMemorySSA()->verifyMemorySSA(); 363 364 // Find new Loop header. NewHeader is a Header's one and only successor 365 // that is inside loop. Header's other successor is outside the 366 // loop. Otherwise loop is not suitable for rotation. 367 BasicBlock *Exit = BI->getSuccessor(0); 368 BasicBlock *NewHeader = BI->getSuccessor(1); 369 if (L->contains(Exit)) 370 std::swap(Exit, NewHeader); 371 assert(NewHeader && "Unable to determine new loop header"); 372 assert(L->contains(NewHeader) && !L->contains(Exit) && 373 "Unable to determine loop header and exit blocks"); 374 375 // This code assumes that the new header has exactly one predecessor. 376 // Remove any single-entry PHI nodes in it. 377 assert(NewHeader->getSinglePredecessor() && 378 "New header doesn't have one pred!"); 379 FoldSingleEntryPHINodes(NewHeader); 380 381 // Begin by walking OrigHeader and populating ValueMap with an entry for 382 // each Instruction. 383 BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end(); 384 ValueToValueMapTy ValueMap, ValueMapMSSA; 385 386 // For PHI nodes, the value available in OldPreHeader is just the 387 // incoming value from OldPreHeader. 388 for (; PHINode *PN = dyn_cast<PHINode>(I); ++I) 389 InsertNewValueIntoMap(ValueMap, PN, 390 PN->getIncomingValueForBlock(OrigPreheader)); 391 392 // For the rest of the instructions, either hoist to the OrigPreheader if 393 // possible or create a clone in the OldPreHeader if not. 394 Instruction *LoopEntryBranch = OrigPreheader->getTerminator(); 395 396 // Record all debug intrinsics preceding LoopEntryBranch to avoid 397 // duplication. 398 using DbgIntrinsicHash = 399 std::pair<std::pair<hash_code, DILocalVariable *>, DIExpression *>; 400 auto makeHash = [](DbgVariableIntrinsic *D) -> DbgIntrinsicHash { 401 auto VarLocOps = D->location_ops(); 402 return {{hash_combine_range(VarLocOps.begin(), VarLocOps.end()), 403 D->getVariable()}, 404 D->getExpression()}; 405 }; 406 SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics; 407 for (auto I = std::next(OrigPreheader->rbegin()), E = OrigPreheader->rend(); 408 I != E; ++I) { 409 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&*I)) 410 DbgIntrinsics.insert(makeHash(DII)); 411 else 412 break; 413 } 414 415 // Remember the local noalias scope declarations in the header. After the 416 // rotation, they must be duplicated and the scope must be cloned. This 417 // avoids unwanted interaction across iterations. 418 SmallVector<NoAliasScopeDeclInst *, 6> NoAliasDeclInstructions; 419 for (Instruction &I : *OrigHeader) 420 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) 421 NoAliasDeclInstructions.push_back(Decl); 422 423 while (I != E) { 424 Instruction *Inst = &*I++; 425 426 // If the instruction's operands are invariant and it doesn't read or write 427 // memory, then it is safe to hoist. Doing this doesn't change the order of 428 // execution in the preheader, but does prevent the instruction from 429 // executing in each iteration of the loop. This means it is safe to hoist 430 // something that might trap, but isn't safe to hoist something that reads 431 // memory (without proving that the loop doesn't write). 432 if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() && 433 !Inst->mayWriteToMemory() && !Inst->isTerminator() && 434 !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) { 435 Inst->moveBefore(LoopEntryBranch); 436 ++NumInstrsHoisted; 437 continue; 438 } 439 440 // Otherwise, create a duplicate of the instruction. 441 Instruction *C = Inst->clone(); 442 ++NumInstrsDuplicated; 443 444 // Eagerly remap the operands of the instruction. 445 RemapInstruction(C, ValueMap, 446 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 447 448 // Avoid inserting the same intrinsic twice. 449 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(C)) 450 if (DbgIntrinsics.count(makeHash(DII))) { 451 C->deleteValue(); 452 continue; 453 } 454 455 // With the operands remapped, see if the instruction constant folds or is 456 // otherwise simplifyable. This commonly occurs because the entry from PHI 457 // nodes allows icmps and other instructions to fold. 458 Value *V = SimplifyInstruction(C, SQ); 459 if (V && LI->replacementPreservesLCSSAForm(C, V)) { 460 // If so, then delete the temporary instruction and stick the folded value 461 // in the map. 462 InsertNewValueIntoMap(ValueMap, Inst, V); 463 if (!C->mayHaveSideEffects()) { 464 C->deleteValue(); 465 C = nullptr; 466 } 467 } else { 468 InsertNewValueIntoMap(ValueMap, Inst, C); 469 } 470 if (C) { 471 // Otherwise, stick the new instruction into the new block! 472 C->setName(Inst->getName()); 473 C->insertBefore(LoopEntryBranch); 474 475 if (auto *II = dyn_cast<AssumeInst>(C)) 476 AC->registerAssumption(II); 477 // MemorySSA cares whether the cloned instruction was inserted or not, and 478 // not whether it can be remapped to a simplified value. 479 if (MSSAU) 480 InsertNewValueIntoMap(ValueMapMSSA, Inst, C); 481 } 482 } 483 484 if (!NoAliasDeclInstructions.empty()) { 485 // There are noalias scope declarations: 486 // (general): 487 // Original: OrigPre { OrigHeader NewHeader ... Latch } 488 // after: (OrigPre+OrigHeader') { NewHeader ... Latch OrigHeader } 489 // 490 // with D: llvm.experimental.noalias.scope.decl, 491 // U: !noalias or !alias.scope depending on D 492 // ... { D U1 U2 } can transform into: 493 // (0) : ... { D U1 U2 } // no relevant rotation for this part 494 // (1) : ... D' { U1 U2 D } // D is part of OrigHeader 495 // (2) : ... D' U1' { U2 D U1 } // D, U1 are part of OrigHeader 496 // 497 // We now want to transform: 498 // (1) -> : ... D' { D U1 U2 D'' } 499 // (2) -> : ... D' U1' { D U2 D'' U1'' } 500 // D: original llvm.experimental.noalias.scope.decl 501 // D', U1': duplicate with replaced scopes 502 // D'', U1'': different duplicate with replaced scopes 503 // This ensures a safe fallback to 'may_alias' introduced by the rotate, 504 // as U1'' and U1' scopes will not be compatible wrt to the local restrict 505 506 // Clone the llvm.experimental.noalias.decl again for the NewHeader. 507 Instruction *NewHeaderInsertionPoint = &(*NewHeader->getFirstNonPHI()); 508 for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions) { 509 LLVM_DEBUG(dbgs() << " Cloning llvm.experimental.noalias.scope.decl:" 510 << *NAD << "\n"); 511 Instruction *NewNAD = NAD->clone(); 512 NewNAD->insertBefore(NewHeaderInsertionPoint); 513 } 514 515 // Scopes must now be duplicated, once for OrigHeader and once for 516 // OrigPreHeader'. 517 { 518 auto &Context = NewHeader->getContext(); 519 520 SmallVector<MDNode *, 8> NoAliasDeclScopes; 521 for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions) 522 NoAliasDeclScopes.push_back(NAD->getScopeList()); 523 524 LLVM_DEBUG(dbgs() << " Updating OrigHeader scopes\n"); 525 cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, {OrigHeader}, Context, 526 "h.rot"); 527 LLVM_DEBUG(OrigHeader->dump()); 528 529 // Keep the compile time impact low by only adapting the inserted block 530 // of instructions in the OrigPreHeader. This might result in slightly 531 // more aliasing between these instructions and those that were already 532 // present, but it will be much faster when the original PreHeader is 533 // large. 534 LLVM_DEBUG(dbgs() << " Updating part of OrigPreheader scopes\n"); 535 auto *FirstDecl = 536 cast<Instruction>(ValueMap[*NoAliasDeclInstructions.begin()]); 537 auto *LastInst = &OrigPreheader->back(); 538 cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, FirstDecl, LastInst, 539 Context, "pre.rot"); 540 LLVM_DEBUG(OrigPreheader->dump()); 541 542 LLVM_DEBUG(dbgs() << " Updated NewHeader:\n"); 543 LLVM_DEBUG(NewHeader->dump()); 544 } 545 } 546 547 // Along with all the other instructions, we just cloned OrigHeader's 548 // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's 549 // successors by duplicating their incoming values for OrigHeader. 550 for (BasicBlock *SuccBB : successors(OrigHeader)) 551 for (BasicBlock::iterator BI = SuccBB->begin(); 552 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 553 PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader); 554 555 // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove 556 // OrigPreHeader's old terminator (the original branch into the loop), and 557 // remove the corresponding incoming values from the PHI nodes in OrigHeader. 558 LoopEntryBranch->eraseFromParent(); 559 560 // Update MemorySSA before the rewrite call below changes the 1:1 561 // instruction:cloned_instruction_or_value mapping. 562 if (MSSAU) { 563 InsertNewValueIntoMap(ValueMapMSSA, OrigHeader, OrigPreheader); 564 MSSAU->updateForClonedBlockIntoPred(OrigHeader, OrigPreheader, 565 ValueMapMSSA); 566 } 567 568 SmallVector<PHINode*, 2> InsertedPHIs; 569 // If there were any uses of instructions in the duplicated block outside the 570 // loop, update them, inserting PHI nodes as required 571 RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap, SE, 572 &InsertedPHIs); 573 574 // Attach dbg.value intrinsics to the new phis if that phi uses a value that 575 // previously had debug metadata attached. This keeps the debug info 576 // up-to-date in the loop body. 577 if (!InsertedPHIs.empty()) 578 insertDebugValuesForPHIs(OrigHeader, InsertedPHIs); 579 580 // NewHeader is now the header of the loop. 581 L->moveToHeader(NewHeader); 582 assert(L->getHeader() == NewHeader && "Latch block is our new header"); 583 584 // Inform DT about changes to the CFG. 585 if (DT) { 586 // The OrigPreheader branches to the NewHeader and Exit now. Then, inform 587 // the DT about the removed edge to the OrigHeader (that got removed). 588 SmallVector<DominatorTree::UpdateType, 3> Updates; 589 Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit}); 590 Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader}); 591 Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader}); 592 593 if (MSSAU) { 594 MSSAU->applyUpdates(Updates, *DT, /*UpdateDT=*/true); 595 if (VerifyMemorySSA) 596 MSSAU->getMemorySSA()->verifyMemorySSA(); 597 } else { 598 DT->applyUpdates(Updates); 599 } 600 } 601 602 // At this point, we've finished our major CFG changes. As part of cloning 603 // the loop into the preheader we've simplified instructions and the 604 // duplicated conditional branch may now be branching on a constant. If it is 605 // branching on a constant and if that constant means that we enter the loop, 606 // then we fold away the cond branch to an uncond branch. This simplifies the 607 // loop in cases important for nested loops, and it also means we don't have 608 // to split as many edges. 609 BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator()); 610 assert(PHBI->isConditional() && "Should be clone of BI condbr!"); 611 if (!isa<ConstantInt>(PHBI->getCondition()) || 612 PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) != 613 NewHeader) { 614 // The conditional branch can't be folded, handle the general case. 615 // Split edges as necessary to preserve LoopSimplify form. 616 617 // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and 618 // thus is not a preheader anymore. 619 // Split the edge to form a real preheader. 620 BasicBlock *NewPH = SplitCriticalEdge( 621 OrigPreheader, NewHeader, 622 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()); 623 NewPH->setName(NewHeader->getName() + ".lr.ph"); 624 625 // Preserve canonical loop form, which means that 'Exit' should have only 626 // one predecessor. Note that Exit could be an exit block for multiple 627 // nested loops, causing both of the edges to now be critical and need to 628 // be split. 629 SmallVector<BasicBlock *, 4> ExitPreds(predecessors(Exit)); 630 bool SplitLatchEdge = false; 631 for (BasicBlock *ExitPred : ExitPreds) { 632 // We only need to split loop exit edges. 633 Loop *PredLoop = LI->getLoopFor(ExitPred); 634 if (!PredLoop || PredLoop->contains(Exit) || 635 ExitPred->getTerminator()->isIndirectTerminator()) 636 continue; 637 SplitLatchEdge |= L->getLoopLatch() == ExitPred; 638 BasicBlock *ExitSplit = SplitCriticalEdge( 639 ExitPred, Exit, 640 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()); 641 ExitSplit->moveBefore(Exit); 642 } 643 assert(SplitLatchEdge && 644 "Despite splitting all preds, failed to split latch exit?"); 645 (void)SplitLatchEdge; 646 } else { 647 // We can fold the conditional branch in the preheader, this makes things 648 // simpler. The first step is to remove the extra edge to the Exit block. 649 Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/); 650 BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI); 651 NewBI->setDebugLoc(PHBI->getDebugLoc()); 652 PHBI->eraseFromParent(); 653 654 // With our CFG finalized, update DomTree if it is available. 655 if (DT) DT->deleteEdge(OrigPreheader, Exit); 656 657 // Update MSSA too, if available. 658 if (MSSAU) 659 MSSAU->removeEdge(OrigPreheader, Exit); 660 } 661 662 assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation"); 663 assert(L->getLoopLatch() && "Invalid loop latch after loop rotation"); 664 665 if (MSSAU && VerifyMemorySSA) 666 MSSAU->getMemorySSA()->verifyMemorySSA(); 667 668 // Now that the CFG and DomTree are in a consistent state again, try to merge 669 // the OrigHeader block into OrigLatch. This will succeed if they are 670 // connected by an unconditional branch. This is just a cleanup so the 671 // emitted code isn't too gross in this common case. 672 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 673 BasicBlock *PredBB = OrigHeader->getUniquePredecessor(); 674 bool DidMerge = MergeBlockIntoPredecessor(OrigHeader, &DTU, LI, MSSAU); 675 if (DidMerge) 676 RemoveRedundantDbgInstrs(PredBB); 677 678 if (MSSAU && VerifyMemorySSA) 679 MSSAU->getMemorySSA()->verifyMemorySSA(); 680 681 LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump()); 682 683 ++NumRotated; 684 685 Rotated = true; 686 SimplifiedLatch = false; 687 688 // Check that new latch is a deoptimizing exit and then repeat rotation if possible. 689 // Deoptimizing latch exit is not a generally typical case, so we just loop over. 690 // TODO: if it becomes a performance bottleneck extend rotation algorithm 691 // to handle multiple rotations in one go. 692 } while (MultiRotate && canRotateDeoptimizingLatchExit(L)); 693 694 695 return true; 696 } 697 698 /// Determine whether the instructions in this range may be safely and cheaply 699 /// speculated. This is not an important enough situation to develop complex 700 /// heuristics. We handle a single arithmetic instruction along with any type 701 /// conversions. 702 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin, 703 BasicBlock::iterator End, Loop *L) { 704 bool seenIncrement = false; 705 bool MultiExitLoop = false; 706 707 if (!L->getExitingBlock()) 708 MultiExitLoop = true; 709 710 for (BasicBlock::iterator I = Begin; I != End; ++I) { 711 712 if (!isSafeToSpeculativelyExecute(&*I)) 713 return false; 714 715 if (isa<DbgInfoIntrinsic>(I)) 716 continue; 717 718 switch (I->getOpcode()) { 719 default: 720 return false; 721 case Instruction::GetElementPtr: 722 // GEPs are cheap if all indices are constant. 723 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 724 return false; 725 // fall-thru to increment case 726 LLVM_FALLTHROUGH; 727 case Instruction::Add: 728 case Instruction::Sub: 729 case Instruction::And: 730 case Instruction::Or: 731 case Instruction::Xor: 732 case Instruction::Shl: 733 case Instruction::LShr: 734 case Instruction::AShr: { 735 Value *IVOpnd = 736 !isa<Constant>(I->getOperand(0)) 737 ? I->getOperand(0) 738 : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr; 739 if (!IVOpnd) 740 return false; 741 742 // If increment operand is used outside of the loop, this speculation 743 // could cause extra live range interference. 744 if (MultiExitLoop) { 745 for (User *UseI : IVOpnd->users()) { 746 auto *UserInst = cast<Instruction>(UseI); 747 if (!L->contains(UserInst)) 748 return false; 749 } 750 } 751 752 if (seenIncrement) 753 return false; 754 seenIncrement = true; 755 break; 756 } 757 case Instruction::Trunc: 758 case Instruction::ZExt: 759 case Instruction::SExt: 760 // ignore type conversions 761 break; 762 } 763 } 764 return true; 765 } 766 767 /// Fold the loop tail into the loop exit by speculating the loop tail 768 /// instructions. Typically, this is a single post-increment. In the case of a 769 /// simple 2-block loop, hoisting the increment can be much better than 770 /// duplicating the entire loop header. In the case of loops with early exits, 771 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in 772 /// canonical form so downstream passes can handle it. 773 /// 774 /// I don't believe this invalidates SCEV. 775 bool LoopRotate::simplifyLoopLatch(Loop *L) { 776 BasicBlock *Latch = L->getLoopLatch(); 777 if (!Latch || Latch->hasAddressTaken()) 778 return false; 779 780 BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator()); 781 if (!Jmp || !Jmp->isUnconditional()) 782 return false; 783 784 BasicBlock *LastExit = Latch->getSinglePredecessor(); 785 if (!LastExit || !L->isLoopExiting(LastExit)) 786 return false; 787 788 BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator()); 789 if (!BI) 790 return false; 791 792 if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L)) 793 return false; 794 795 LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into " 796 << LastExit->getName() << "\n"); 797 798 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 799 MergeBlockIntoPredecessor(Latch, &DTU, LI, MSSAU, nullptr, 800 /*PredecessorWithTwoSuccessors=*/true); 801 802 if (MSSAU && VerifyMemorySSA) 803 MSSAU->getMemorySSA()->verifyMemorySSA(); 804 805 return true; 806 } 807 808 /// Rotate \c L, and return true if any modification was made. 809 bool LoopRotate::processLoop(Loop *L) { 810 // Save the loop metadata. 811 MDNode *LoopMD = L->getLoopID(); 812 813 bool SimplifiedLatch = false; 814 815 // Simplify the loop latch before attempting to rotate the header 816 // upward. Rotation may not be needed if the loop tail can be folded into the 817 // loop exit. 818 if (!RotationOnly) 819 SimplifiedLatch = simplifyLoopLatch(L); 820 821 bool MadeChange = rotateLoop(L, SimplifiedLatch); 822 assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) && 823 "Loop latch should be exiting after loop-rotate."); 824 825 // Restore the loop metadata. 826 // NB! We presume LoopRotation DOESN'T ADD its own metadata. 827 if ((MadeChange || SimplifiedLatch) && LoopMD) 828 L->setLoopID(LoopMD); 829 830 return MadeChange || SimplifiedLatch; 831 } 832 833 834 /// The utility to convert a loop into a loop with bottom test. 835 bool llvm::LoopRotation(Loop *L, LoopInfo *LI, const TargetTransformInfo *TTI, 836 AssumptionCache *AC, DominatorTree *DT, 837 ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 838 const SimplifyQuery &SQ, bool RotationOnly = true, 839 unsigned Threshold = unsigned(-1), 840 bool IsUtilMode = true, bool PrepareForLTO) { 841 LoopRotate LR(Threshold, LI, TTI, AC, DT, SE, MSSAU, SQ, RotationOnly, 842 IsUtilMode, PrepareForLTO); 843 return LR.processLoop(L); 844 } 845