1 //===----------------- LoopRotationUtils.cpp -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides utilities to convert a loop into a loop with bottom test.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/LoopRotationUtils.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/AssumptionCache.h"
16 #include "llvm/Analysis/BasicAliasAnalysis.h"
17 #include "llvm/Analysis/CodeMetrics.h"
18 #include "llvm/Analysis/DomTreeUpdater.h"
19 #include "llvm/Analysis/GlobalsModRef.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/MemorySSA.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/Analysis/ScalarEvolution.h"
25 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
26 #include "llvm/Analysis/TargetTransformInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/CFG.h"
29 #include "llvm/IR/DebugInfo.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
38 #include "llvm/Transforms/Utils/Cloning.h"
39 #include "llvm/Transforms/Utils/Local.h"
40 #include "llvm/Transforms/Utils/LoopUtils.h"
41 #include "llvm/Transforms/Utils/SSAUpdater.h"
42 #include "llvm/Transforms/Utils/ValueMapper.h"
43 using namespace llvm;
44 
45 #define DEBUG_TYPE "loop-rotate"
46 
47 STATISTIC(NumNotRotatedDueToHeaderSize,
48           "Number of loops not rotated due to the header size");
49 STATISTIC(NumInstrsHoisted,
50           "Number of instructions hoisted into loop preheader");
51 STATISTIC(NumInstrsDuplicated,
52           "Number of instructions cloned into loop preheader");
53 STATISTIC(NumRotated, "Number of loops rotated");
54 
55 static cl::opt<bool>
56     MultiRotate("loop-rotate-multi", cl::init(false), cl::Hidden,
57                 cl::desc("Allow loop rotation multiple times in order to reach "
58                          "a better latch exit"));
59 
60 namespace {
61 /// A simple loop rotation transformation.
62 class LoopRotate {
63   const unsigned MaxHeaderSize;
64   LoopInfo *LI;
65   const TargetTransformInfo *TTI;
66   AssumptionCache *AC;
67   DominatorTree *DT;
68   ScalarEvolution *SE;
69   MemorySSAUpdater *MSSAU;
70   const SimplifyQuery &SQ;
71   bool RotationOnly;
72   bool IsUtilMode;
73   bool PrepareForLTO;
74 
75 public:
76   LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI,
77              const TargetTransformInfo *TTI, AssumptionCache *AC,
78              DominatorTree *DT, ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
79              const SimplifyQuery &SQ, bool RotationOnly, bool IsUtilMode,
80              bool PrepareForLTO)
81       : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE),
82         MSSAU(MSSAU), SQ(SQ), RotationOnly(RotationOnly),
83         IsUtilMode(IsUtilMode), PrepareForLTO(PrepareForLTO) {}
84   bool processLoop(Loop *L);
85 
86 private:
87   bool rotateLoop(Loop *L, bool SimplifiedLatch);
88   bool simplifyLoopLatch(Loop *L);
89 };
90 } // end anonymous namespace
91 
92 /// Insert (K, V) pair into the ValueToValueMap, and verify the key did not
93 /// previously exist in the map, and the value was inserted.
94 static void InsertNewValueIntoMap(ValueToValueMapTy &VM, Value *K, Value *V) {
95   bool Inserted = VM.insert({K, V}).second;
96   assert(Inserted);
97   (void)Inserted;
98 }
99 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
100 /// old header into the preheader.  If there were uses of the values produced by
101 /// these instruction that were outside of the loop, we have to insert PHI nodes
102 /// to merge the two values.  Do this now.
103 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
104                                             BasicBlock *OrigPreheader,
105                                             ValueToValueMapTy &ValueMap,
106                                             ScalarEvolution *SE,
107                                 SmallVectorImpl<PHINode*> *InsertedPHIs) {
108   // Remove PHI node entries that are no longer live.
109   BasicBlock::iterator I, E = OrigHeader->end();
110   for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
111     PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
112 
113   // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
114   // as necessary.
115   SSAUpdater SSA(InsertedPHIs);
116   for (I = OrigHeader->begin(); I != E; ++I) {
117     Value *OrigHeaderVal = &*I;
118 
119     // If there are no uses of the value (e.g. because it returns void), there
120     // is nothing to rewrite.
121     if (OrigHeaderVal->use_empty())
122       continue;
123 
124     Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal);
125 
126     // The value now exits in two versions: the initial value in the preheader
127     // and the loop "next" value in the original header.
128     SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
129     // Force re-computation of OrigHeaderVal, as some users now need to use the
130     // new PHI node.
131     if (SE)
132       SE->forgetValue(OrigHeaderVal);
133     SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
134     SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
135 
136     // Visit each use of the OrigHeader instruction.
137     for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
138                              UE = OrigHeaderVal->use_end();
139          UI != UE;) {
140       // Grab the use before incrementing the iterator.
141       Use &U = *UI;
142 
143       // Increment the iterator before removing the use from the list.
144       ++UI;
145 
146       // SSAUpdater can't handle a non-PHI use in the same block as an
147       // earlier def. We can easily handle those cases manually.
148       Instruction *UserInst = cast<Instruction>(U.getUser());
149       if (!isa<PHINode>(UserInst)) {
150         BasicBlock *UserBB = UserInst->getParent();
151 
152         // The original users in the OrigHeader are already using the
153         // original definitions.
154         if (UserBB == OrigHeader)
155           continue;
156 
157         // Users in the OrigPreHeader need to use the value to which the
158         // original definitions are mapped.
159         if (UserBB == OrigPreheader) {
160           U = OrigPreHeaderVal;
161           continue;
162         }
163       }
164 
165       // Anything else can be handled by SSAUpdater.
166       SSA.RewriteUse(U);
167     }
168 
169     // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug
170     // intrinsics.
171     SmallVector<DbgValueInst *, 1> DbgValues;
172     llvm::findDbgValues(DbgValues, OrigHeaderVal);
173     for (auto &DbgValue : DbgValues) {
174       // The original users in the OrigHeader are already using the original
175       // definitions.
176       BasicBlock *UserBB = DbgValue->getParent();
177       if (UserBB == OrigHeader)
178         continue;
179 
180       // Users in the OrigPreHeader need to use the value to which the
181       // original definitions are mapped and anything else can be handled by
182       // the SSAUpdater. To avoid adding PHINodes, check if the value is
183       // available in UserBB, if not substitute undef.
184       Value *NewVal;
185       if (UserBB == OrigPreheader)
186         NewVal = OrigPreHeaderVal;
187       else if (SSA.HasValueForBlock(UserBB))
188         NewVal = SSA.GetValueInMiddleOfBlock(UserBB);
189       else
190         NewVal = UndefValue::get(OrigHeaderVal->getType());
191       DbgValue->replaceVariableLocationOp(OrigHeaderVal, NewVal);
192     }
193   }
194 }
195 
196 // Assuming both header and latch are exiting, look for a phi which is only
197 // used outside the loop (via a LCSSA phi) in the exit from the header.
198 // This means that rotating the loop can remove the phi.
199 static bool profitableToRotateLoopExitingLatch(Loop *L) {
200   BasicBlock *Header = L->getHeader();
201   BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator());
202   assert(BI && BI->isConditional() && "need header with conditional exit");
203   BasicBlock *HeaderExit = BI->getSuccessor(0);
204   if (L->contains(HeaderExit))
205     HeaderExit = BI->getSuccessor(1);
206 
207   for (auto &Phi : Header->phis()) {
208     // Look for uses of this phi in the loop/via exits other than the header.
209     if (llvm::any_of(Phi.users(), [HeaderExit](const User *U) {
210           return cast<Instruction>(U)->getParent() != HeaderExit;
211         }))
212       continue;
213     return true;
214   }
215   return false;
216 }
217 
218 // Check that latch exit is deoptimizing (which means - very unlikely to happen)
219 // and there is another exit from the loop which is non-deoptimizing.
220 // If we rotate latch to that exit our loop has a better chance of being fully
221 // canonical.
222 //
223 // It can give false positives in some rare cases.
224 static bool canRotateDeoptimizingLatchExit(Loop *L) {
225   BasicBlock *Latch = L->getLoopLatch();
226   assert(Latch && "need latch");
227   BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
228   // Need normal exiting latch.
229   if (!BI || !BI->isConditional())
230     return false;
231 
232   BasicBlock *Exit = BI->getSuccessor(1);
233   if (L->contains(Exit))
234     Exit = BI->getSuccessor(0);
235 
236   // Latch exit is non-deoptimizing, no need to rotate.
237   if (!Exit->getPostdominatingDeoptimizeCall())
238     return false;
239 
240   SmallVector<BasicBlock *, 4> Exits;
241   L->getUniqueExitBlocks(Exits);
242   if (!Exits.empty()) {
243     // There is at least one non-deoptimizing exit.
244     //
245     // Note, that BasicBlock::getPostdominatingDeoptimizeCall is not exact,
246     // as it can conservatively return false for deoptimizing exits with
247     // complex enough control flow down to deoptimize call.
248     //
249     // That means here we can report success for a case where
250     // all exits are deoptimizing but one of them has complex enough
251     // control flow (e.g. with loops).
252     //
253     // That should be a very rare case and false positives for this function
254     // have compile-time effect only.
255     return any_of(Exits, [](const BasicBlock *BB) {
256       return !BB->getPostdominatingDeoptimizeCall();
257     });
258   }
259   return false;
260 }
261 
262 /// Rotate loop LP. Return true if the loop is rotated.
263 ///
264 /// \param SimplifiedLatch is true if the latch was just folded into the final
265 /// loop exit. In this case we may want to rotate even though the new latch is
266 /// now an exiting branch. This rotation would have happened had the latch not
267 /// been simplified. However, if SimplifiedLatch is false, then we avoid
268 /// rotating loops in which the latch exits to avoid excessive or endless
269 /// rotation. LoopRotate should be repeatable and converge to a canonical
270 /// form. This property is satisfied because simplifying the loop latch can only
271 /// happen once across multiple invocations of the LoopRotate pass.
272 ///
273 /// If -loop-rotate-multi is enabled we can do multiple rotations in one go
274 /// so to reach a suitable (non-deoptimizing) exit.
275 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
276   // If the loop has only one block then there is not much to rotate.
277   if (L->getBlocks().size() == 1)
278     return false;
279 
280   bool Rotated = false;
281   do {
282     BasicBlock *OrigHeader = L->getHeader();
283     BasicBlock *OrigLatch = L->getLoopLatch();
284 
285     BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
286     if (!BI || BI->isUnconditional())
287       return Rotated;
288 
289     // If the loop header is not one of the loop exiting blocks then
290     // either this loop is already rotated or it is not
291     // suitable for loop rotation transformations.
292     if (!L->isLoopExiting(OrigHeader))
293       return Rotated;
294 
295     // If the loop latch already contains a branch that leaves the loop then the
296     // loop is already rotated.
297     if (!OrigLatch)
298       return Rotated;
299 
300     // Rotate if either the loop latch does *not* exit the loop, or if the loop
301     // latch was just simplified. Or if we think it will be profitable.
302     if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false &&
303         !profitableToRotateLoopExitingLatch(L) &&
304         !canRotateDeoptimizingLatchExit(L))
305       return Rotated;
306 
307     // Check size of original header and reject loop if it is very big or we can't
308     // duplicate blocks inside it.
309     {
310       SmallPtrSet<const Value *, 32> EphValues;
311       CodeMetrics::collectEphemeralValues(L, AC, EphValues);
312 
313       CodeMetrics Metrics;
314       Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues, PrepareForLTO);
315       if (Metrics.notDuplicatable) {
316         LLVM_DEBUG(
317                    dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
318                    << " instructions: ";
319                    L->dump());
320         return Rotated;
321       }
322       if (Metrics.convergent) {
323         LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "
324                    "instructions: ";
325                    L->dump());
326         return Rotated;
327       }
328       if (Metrics.NumInsts > MaxHeaderSize) {
329         LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains "
330                           << Metrics.NumInsts
331                           << " instructions, which is more than the threshold ("
332                           << MaxHeaderSize << " instructions): ";
333                    L->dump());
334         ++NumNotRotatedDueToHeaderSize;
335         return Rotated;
336       }
337 
338       // When preparing for LTO, avoid rotating loops with calls that could be
339       // inlined during the LTO stage.
340       if (PrepareForLTO && Metrics.NumInlineCandidates > 0)
341         return Rotated;
342     }
343 
344     // Now, this loop is suitable for rotation.
345     BasicBlock *OrigPreheader = L->getLoopPreheader();
346 
347     // If the loop could not be converted to canonical form, it must have an
348     // indirectbr in it, just give up.
349     if (!OrigPreheader || !L->hasDedicatedExits())
350       return Rotated;
351 
352     // Anything ScalarEvolution may know about this loop or the PHI nodes
353     // in its header will soon be invalidated. We should also invalidate
354     // all outer loops because insertion and deletion of blocks that happens
355     // during the rotation may violate invariants related to backedge taken
356     // infos in them.
357     if (SE)
358       SE->forgetTopmostLoop(L);
359 
360     LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
361     if (MSSAU && VerifyMemorySSA)
362       MSSAU->getMemorySSA()->verifyMemorySSA();
363 
364     // Find new Loop header. NewHeader is a Header's one and only successor
365     // that is inside loop.  Header's other successor is outside the
366     // loop.  Otherwise loop is not suitable for rotation.
367     BasicBlock *Exit = BI->getSuccessor(0);
368     BasicBlock *NewHeader = BI->getSuccessor(1);
369     if (L->contains(Exit))
370       std::swap(Exit, NewHeader);
371     assert(NewHeader && "Unable to determine new loop header");
372     assert(L->contains(NewHeader) && !L->contains(Exit) &&
373            "Unable to determine loop header and exit blocks");
374 
375     // This code assumes that the new header has exactly one predecessor.
376     // Remove any single-entry PHI nodes in it.
377     assert(NewHeader->getSinglePredecessor() &&
378            "New header doesn't have one pred!");
379     FoldSingleEntryPHINodes(NewHeader);
380 
381     // Begin by walking OrigHeader and populating ValueMap with an entry for
382     // each Instruction.
383     BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
384     ValueToValueMapTy ValueMap, ValueMapMSSA;
385 
386     // For PHI nodes, the value available in OldPreHeader is just the
387     // incoming value from OldPreHeader.
388     for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
389       InsertNewValueIntoMap(ValueMap, PN,
390                             PN->getIncomingValueForBlock(OrigPreheader));
391 
392     // For the rest of the instructions, either hoist to the OrigPreheader if
393     // possible or create a clone in the OldPreHeader if not.
394     Instruction *LoopEntryBranch = OrigPreheader->getTerminator();
395 
396     // Record all debug intrinsics preceding LoopEntryBranch to avoid
397     // duplication.
398     using DbgIntrinsicHash =
399         std::pair<std::pair<hash_code, DILocalVariable *>, DIExpression *>;
400     auto makeHash = [](DbgVariableIntrinsic *D) -> DbgIntrinsicHash {
401       auto VarLocOps = D->location_ops();
402       return {{hash_combine_range(VarLocOps.begin(), VarLocOps.end()),
403                D->getVariable()},
404               D->getExpression()};
405     };
406     SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics;
407     for (auto I = std::next(OrigPreheader->rbegin()), E = OrigPreheader->rend();
408          I != E; ++I) {
409       if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&*I))
410         DbgIntrinsics.insert(makeHash(DII));
411       else
412         break;
413     }
414 
415     // Remember the local noalias scope declarations in the header. After the
416     // rotation, they must be duplicated and the scope must be cloned. This
417     // avoids unwanted interaction across iterations.
418     SmallVector<NoAliasScopeDeclInst *, 6> NoAliasDeclInstructions;
419     for (Instruction &I : *OrigHeader)
420       if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
421         NoAliasDeclInstructions.push_back(Decl);
422 
423     while (I != E) {
424       Instruction *Inst = &*I++;
425 
426       // If the instruction's operands are invariant and it doesn't read or write
427       // memory, then it is safe to hoist.  Doing this doesn't change the order of
428       // execution in the preheader, but does prevent the instruction from
429       // executing in each iteration of the loop.  This means it is safe to hoist
430       // something that might trap, but isn't safe to hoist something that reads
431       // memory (without proving that the loop doesn't write).
432       if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() &&
433           !Inst->mayWriteToMemory() && !Inst->isTerminator() &&
434           !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) {
435         Inst->moveBefore(LoopEntryBranch);
436         ++NumInstrsHoisted;
437         continue;
438       }
439 
440       // Otherwise, create a duplicate of the instruction.
441       Instruction *C = Inst->clone();
442       ++NumInstrsDuplicated;
443 
444       // Eagerly remap the operands of the instruction.
445       RemapInstruction(C, ValueMap,
446                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
447 
448       // Avoid inserting the same intrinsic twice.
449       if (auto *DII = dyn_cast<DbgVariableIntrinsic>(C))
450         if (DbgIntrinsics.count(makeHash(DII))) {
451           C->deleteValue();
452           continue;
453         }
454 
455       // With the operands remapped, see if the instruction constant folds or is
456       // otherwise simplifyable.  This commonly occurs because the entry from PHI
457       // nodes allows icmps and other instructions to fold.
458       Value *V = SimplifyInstruction(C, SQ);
459       if (V && LI->replacementPreservesLCSSAForm(C, V)) {
460         // If so, then delete the temporary instruction and stick the folded value
461         // in the map.
462         InsertNewValueIntoMap(ValueMap, Inst, V);
463         if (!C->mayHaveSideEffects()) {
464           C->deleteValue();
465           C = nullptr;
466         }
467       } else {
468         InsertNewValueIntoMap(ValueMap, Inst, C);
469       }
470       if (C) {
471         // Otherwise, stick the new instruction into the new block!
472         C->setName(Inst->getName());
473         C->insertBefore(LoopEntryBranch);
474 
475         if (auto *II = dyn_cast<AssumeInst>(C))
476           AC->registerAssumption(II);
477         // MemorySSA cares whether the cloned instruction was inserted or not, and
478         // not whether it can be remapped to a simplified value.
479         if (MSSAU)
480           InsertNewValueIntoMap(ValueMapMSSA, Inst, C);
481       }
482     }
483 
484     if (!NoAliasDeclInstructions.empty()) {
485       // There are noalias scope declarations:
486       // (general):
487       // Original:    OrigPre              { OrigHeader NewHeader ... Latch }
488       // after:      (OrigPre+OrigHeader') { NewHeader ... Latch OrigHeader }
489       //
490       // with D: llvm.experimental.noalias.scope.decl,
491       //      U: !noalias or !alias.scope depending on D
492       //       ... { D U1 U2 }   can transform into:
493       // (0) : ... { D U1 U2 }        // no relevant rotation for this part
494       // (1) : ... D' { U1 U2 D }     // D is part of OrigHeader
495       // (2) : ... D' U1' { U2 D U1 } // D, U1 are part of OrigHeader
496       //
497       // We now want to transform:
498       // (1) -> : ... D' { D U1 U2 D'' }
499       // (2) -> : ... D' U1' { D U2 D'' U1'' }
500       // D: original llvm.experimental.noalias.scope.decl
501       // D', U1': duplicate with replaced scopes
502       // D'', U1'': different duplicate with replaced scopes
503       // This ensures a safe fallback to 'may_alias' introduced by the rotate,
504       // as U1'' and U1' scopes will not be compatible wrt to the local restrict
505 
506       // Clone the llvm.experimental.noalias.decl again for the NewHeader.
507       Instruction *NewHeaderInsertionPoint = &(*NewHeader->getFirstNonPHI());
508       for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions) {
509         LLVM_DEBUG(dbgs() << "  Cloning llvm.experimental.noalias.scope.decl:"
510                           << *NAD << "\n");
511         Instruction *NewNAD = NAD->clone();
512         NewNAD->insertBefore(NewHeaderInsertionPoint);
513       }
514 
515       // Scopes must now be duplicated, once for OrigHeader and once for
516       // OrigPreHeader'.
517       {
518         auto &Context = NewHeader->getContext();
519 
520         SmallVector<MDNode *, 8> NoAliasDeclScopes;
521         for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions)
522           NoAliasDeclScopes.push_back(NAD->getScopeList());
523 
524         LLVM_DEBUG(dbgs() << "  Updating OrigHeader scopes\n");
525         cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, {OrigHeader}, Context,
526                                    "h.rot");
527         LLVM_DEBUG(OrigHeader->dump());
528 
529         // Keep the compile time impact low by only adapting the inserted block
530         // of instructions in the OrigPreHeader. This might result in slightly
531         // more aliasing between these instructions and those that were already
532         // present, but it will be much faster when the original PreHeader is
533         // large.
534         LLVM_DEBUG(dbgs() << "  Updating part of OrigPreheader scopes\n");
535         auto *FirstDecl =
536             cast<Instruction>(ValueMap[*NoAliasDeclInstructions.begin()]);
537         auto *LastInst = &OrigPreheader->back();
538         cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, FirstDecl, LastInst,
539                                    Context, "pre.rot");
540         LLVM_DEBUG(OrigPreheader->dump());
541 
542         LLVM_DEBUG(dbgs() << "  Updated NewHeader:\n");
543         LLVM_DEBUG(NewHeader->dump());
544       }
545     }
546 
547     // Along with all the other instructions, we just cloned OrigHeader's
548     // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
549     // successors by duplicating their incoming values for OrigHeader.
550     for (BasicBlock *SuccBB : successors(OrigHeader))
551       for (BasicBlock::iterator BI = SuccBB->begin();
552            PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
553         PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
554 
555     // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
556     // OrigPreHeader's old terminator (the original branch into the loop), and
557     // remove the corresponding incoming values from the PHI nodes in OrigHeader.
558     LoopEntryBranch->eraseFromParent();
559 
560     // Update MemorySSA before the rewrite call below changes the 1:1
561     // instruction:cloned_instruction_or_value mapping.
562     if (MSSAU) {
563       InsertNewValueIntoMap(ValueMapMSSA, OrigHeader, OrigPreheader);
564       MSSAU->updateForClonedBlockIntoPred(OrigHeader, OrigPreheader,
565                                           ValueMapMSSA);
566     }
567 
568     SmallVector<PHINode*, 2> InsertedPHIs;
569     // If there were any uses of instructions in the duplicated block outside the
570     // loop, update them, inserting PHI nodes as required
571     RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap, SE,
572                                     &InsertedPHIs);
573 
574     // Attach dbg.value intrinsics to the new phis if that phi uses a value that
575     // previously had debug metadata attached. This keeps the debug info
576     // up-to-date in the loop body.
577     if (!InsertedPHIs.empty())
578       insertDebugValuesForPHIs(OrigHeader, InsertedPHIs);
579 
580     // NewHeader is now the header of the loop.
581     L->moveToHeader(NewHeader);
582     assert(L->getHeader() == NewHeader && "Latch block is our new header");
583 
584     // Inform DT about changes to the CFG.
585     if (DT) {
586       // The OrigPreheader branches to the NewHeader and Exit now. Then, inform
587       // the DT about the removed edge to the OrigHeader (that got removed).
588       SmallVector<DominatorTree::UpdateType, 3> Updates;
589       Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit});
590       Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader});
591       Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader});
592 
593       if (MSSAU) {
594         MSSAU->applyUpdates(Updates, *DT, /*UpdateDT=*/true);
595         if (VerifyMemorySSA)
596           MSSAU->getMemorySSA()->verifyMemorySSA();
597       } else {
598         DT->applyUpdates(Updates);
599       }
600     }
601 
602     // At this point, we've finished our major CFG changes.  As part of cloning
603     // the loop into the preheader we've simplified instructions and the
604     // duplicated conditional branch may now be branching on a constant.  If it is
605     // branching on a constant and if that constant means that we enter the loop,
606     // then we fold away the cond branch to an uncond branch.  This simplifies the
607     // loop in cases important for nested loops, and it also means we don't have
608     // to split as many edges.
609     BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
610     assert(PHBI->isConditional() && "Should be clone of BI condbr!");
611     if (!isa<ConstantInt>(PHBI->getCondition()) ||
612         PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) !=
613         NewHeader) {
614       // The conditional branch can't be folded, handle the general case.
615       // Split edges as necessary to preserve LoopSimplify form.
616 
617       // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
618       // thus is not a preheader anymore.
619       // Split the edge to form a real preheader.
620       BasicBlock *NewPH = SplitCriticalEdge(
621                                             OrigPreheader, NewHeader,
622                                             CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
623       NewPH->setName(NewHeader->getName() + ".lr.ph");
624 
625       // Preserve canonical loop form, which means that 'Exit' should have only
626       // one predecessor. Note that Exit could be an exit block for multiple
627       // nested loops, causing both of the edges to now be critical and need to
628       // be split.
629       SmallVector<BasicBlock *, 4> ExitPreds(predecessors(Exit));
630       bool SplitLatchEdge = false;
631       for (BasicBlock *ExitPred : ExitPreds) {
632         // We only need to split loop exit edges.
633         Loop *PredLoop = LI->getLoopFor(ExitPred);
634         if (!PredLoop || PredLoop->contains(Exit) ||
635             ExitPred->getTerminator()->isIndirectTerminator())
636           continue;
637         SplitLatchEdge |= L->getLoopLatch() == ExitPred;
638         BasicBlock *ExitSplit = SplitCriticalEdge(
639                                                   ExitPred, Exit,
640                                                   CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
641         ExitSplit->moveBefore(Exit);
642       }
643       assert(SplitLatchEdge &&
644              "Despite splitting all preds, failed to split latch exit?");
645       (void)SplitLatchEdge;
646     } else {
647       // We can fold the conditional branch in the preheader, this makes things
648       // simpler. The first step is to remove the extra edge to the Exit block.
649       Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
650       BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
651       NewBI->setDebugLoc(PHBI->getDebugLoc());
652       PHBI->eraseFromParent();
653 
654       // With our CFG finalized, update DomTree if it is available.
655       if (DT) DT->deleteEdge(OrigPreheader, Exit);
656 
657       // Update MSSA too, if available.
658       if (MSSAU)
659         MSSAU->removeEdge(OrigPreheader, Exit);
660     }
661 
662     assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
663     assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
664 
665     if (MSSAU && VerifyMemorySSA)
666       MSSAU->getMemorySSA()->verifyMemorySSA();
667 
668     // Now that the CFG and DomTree are in a consistent state again, try to merge
669     // the OrigHeader block into OrigLatch.  This will succeed if they are
670     // connected by an unconditional branch.  This is just a cleanup so the
671     // emitted code isn't too gross in this common case.
672     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
673     BasicBlock *PredBB = OrigHeader->getUniquePredecessor();
674     bool DidMerge = MergeBlockIntoPredecessor(OrigHeader, &DTU, LI, MSSAU);
675     if (DidMerge)
676       RemoveRedundantDbgInstrs(PredBB);
677 
678     if (MSSAU && VerifyMemorySSA)
679       MSSAU->getMemorySSA()->verifyMemorySSA();
680 
681     LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump());
682 
683     ++NumRotated;
684 
685     Rotated = true;
686     SimplifiedLatch = false;
687 
688     // Check that new latch is a deoptimizing exit and then repeat rotation if possible.
689     // Deoptimizing latch exit is not a generally typical case, so we just loop over.
690     // TODO: if it becomes a performance bottleneck extend rotation algorithm
691     // to handle multiple rotations in one go.
692   } while (MultiRotate && canRotateDeoptimizingLatchExit(L));
693 
694 
695   return true;
696 }
697 
698 /// Determine whether the instructions in this range may be safely and cheaply
699 /// speculated. This is not an important enough situation to develop complex
700 /// heuristics. We handle a single arithmetic instruction along with any type
701 /// conversions.
702 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
703                                   BasicBlock::iterator End, Loop *L) {
704   bool seenIncrement = false;
705   bool MultiExitLoop = false;
706 
707   if (!L->getExitingBlock())
708     MultiExitLoop = true;
709 
710   for (BasicBlock::iterator I = Begin; I != End; ++I) {
711 
712     if (!isSafeToSpeculativelyExecute(&*I))
713       return false;
714 
715     if (isa<DbgInfoIntrinsic>(I))
716       continue;
717 
718     switch (I->getOpcode()) {
719     default:
720       return false;
721     case Instruction::GetElementPtr:
722       // GEPs are cheap if all indices are constant.
723       if (!cast<GEPOperator>(I)->hasAllConstantIndices())
724         return false;
725       // fall-thru to increment case
726       LLVM_FALLTHROUGH;
727     case Instruction::Add:
728     case Instruction::Sub:
729     case Instruction::And:
730     case Instruction::Or:
731     case Instruction::Xor:
732     case Instruction::Shl:
733     case Instruction::LShr:
734     case Instruction::AShr: {
735       Value *IVOpnd =
736           !isa<Constant>(I->getOperand(0))
737               ? I->getOperand(0)
738               : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr;
739       if (!IVOpnd)
740         return false;
741 
742       // If increment operand is used outside of the loop, this speculation
743       // could cause extra live range interference.
744       if (MultiExitLoop) {
745         for (User *UseI : IVOpnd->users()) {
746           auto *UserInst = cast<Instruction>(UseI);
747           if (!L->contains(UserInst))
748             return false;
749         }
750       }
751 
752       if (seenIncrement)
753         return false;
754       seenIncrement = true;
755       break;
756     }
757     case Instruction::Trunc:
758     case Instruction::ZExt:
759     case Instruction::SExt:
760       // ignore type conversions
761       break;
762     }
763   }
764   return true;
765 }
766 
767 /// Fold the loop tail into the loop exit by speculating the loop tail
768 /// instructions. Typically, this is a single post-increment. In the case of a
769 /// simple 2-block loop, hoisting the increment can be much better than
770 /// duplicating the entire loop header. In the case of loops with early exits,
771 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
772 /// canonical form so downstream passes can handle it.
773 ///
774 /// I don't believe this invalidates SCEV.
775 bool LoopRotate::simplifyLoopLatch(Loop *L) {
776   BasicBlock *Latch = L->getLoopLatch();
777   if (!Latch || Latch->hasAddressTaken())
778     return false;
779 
780   BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
781   if (!Jmp || !Jmp->isUnconditional())
782     return false;
783 
784   BasicBlock *LastExit = Latch->getSinglePredecessor();
785   if (!LastExit || !L->isLoopExiting(LastExit))
786     return false;
787 
788   BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
789   if (!BI)
790     return false;
791 
792   if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L))
793     return false;
794 
795   LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
796                     << LastExit->getName() << "\n");
797 
798   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
799   MergeBlockIntoPredecessor(Latch, &DTU, LI, MSSAU, nullptr,
800                             /*PredecessorWithTwoSuccessors=*/true);
801 
802   if (MSSAU && VerifyMemorySSA)
803     MSSAU->getMemorySSA()->verifyMemorySSA();
804 
805   return true;
806 }
807 
808 /// Rotate \c L, and return true if any modification was made.
809 bool LoopRotate::processLoop(Loop *L) {
810   // Save the loop metadata.
811   MDNode *LoopMD = L->getLoopID();
812 
813   bool SimplifiedLatch = false;
814 
815   // Simplify the loop latch before attempting to rotate the header
816   // upward. Rotation may not be needed if the loop tail can be folded into the
817   // loop exit.
818   if (!RotationOnly)
819     SimplifiedLatch = simplifyLoopLatch(L);
820 
821   bool MadeChange = rotateLoop(L, SimplifiedLatch);
822   assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) &&
823          "Loop latch should be exiting after loop-rotate.");
824 
825   // Restore the loop metadata.
826   // NB! We presume LoopRotation DOESN'T ADD its own metadata.
827   if ((MadeChange || SimplifiedLatch) && LoopMD)
828     L->setLoopID(LoopMD);
829 
830   return MadeChange || SimplifiedLatch;
831 }
832 
833 
834 /// The utility to convert a loop into a loop with bottom test.
835 bool llvm::LoopRotation(Loop *L, LoopInfo *LI, const TargetTransformInfo *TTI,
836                         AssumptionCache *AC, DominatorTree *DT,
837                         ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
838                         const SimplifyQuery &SQ, bool RotationOnly = true,
839                         unsigned Threshold = unsigned(-1),
840                         bool IsUtilMode = true, bool PrepareForLTO) {
841   LoopRotate LR(Threshold, LI, TTI, AC, DT, SE, MSSAU, SQ, RotationOnly,
842                 IsUtilMode, PrepareForLTO);
843   return LR.processLoop(L);
844 }
845