1 //===----------------- LoopRotationUtils.cpp -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file provides utilities to convert a loop into a loop with bottom test. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/LoopRotationUtils.h" 14 #include "llvm/ADT/Statistic.h" 15 #include "llvm/Analysis/AssumptionCache.h" 16 #include "llvm/Analysis/BasicAliasAnalysis.h" 17 #include "llvm/Analysis/CodeMetrics.h" 18 #include "llvm/Analysis/DomTreeUpdater.h" 19 #include "llvm/Analysis/GlobalsModRef.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/MemorySSA.h" 23 #include "llvm/Analysis/MemorySSAUpdater.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 26 #include "llvm/Analysis/TargetTransformInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 #include "llvm/Transforms/Utils/LoopUtils.h" 40 #include "llvm/Transforms/Utils/SSAUpdater.h" 41 #include "llvm/Transforms/Utils/ValueMapper.h" 42 using namespace llvm; 43 44 #define DEBUG_TYPE "loop-rotate" 45 46 STATISTIC(NumNotRotatedDueToHeaderSize, 47 "Number of loops not rotated due to the header size"); 48 STATISTIC(NumRotated, "Number of loops rotated"); 49 50 static cl::opt<bool> 51 MultiRotate("loop-rotate-multi", cl::init(false), cl::Hidden, 52 cl::desc("Allow loop rotation multiple times in order to reach " 53 "a better latch exit")); 54 55 namespace { 56 /// A simple loop rotation transformation. 57 class LoopRotate { 58 const unsigned MaxHeaderSize; 59 LoopInfo *LI; 60 const TargetTransformInfo *TTI; 61 AssumptionCache *AC; 62 DominatorTree *DT; 63 ScalarEvolution *SE; 64 MemorySSAUpdater *MSSAU; 65 const SimplifyQuery &SQ; 66 bool RotationOnly; 67 bool IsUtilMode; 68 69 public: 70 LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI, 71 const TargetTransformInfo *TTI, AssumptionCache *AC, 72 DominatorTree *DT, ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 73 const SimplifyQuery &SQ, bool RotationOnly, bool IsUtilMode) 74 : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE), 75 MSSAU(MSSAU), SQ(SQ), RotationOnly(RotationOnly), 76 IsUtilMode(IsUtilMode) {} 77 bool processLoop(Loop *L); 78 79 private: 80 bool rotateLoop(Loop *L, bool SimplifiedLatch); 81 bool simplifyLoopLatch(Loop *L); 82 }; 83 } // end anonymous namespace 84 85 /// Insert (K, V) pair into the ValueToValueMap, and verify the key did not 86 /// previously exist in the map, and the value was inserted. 87 static void InsertNewValueIntoMap(ValueToValueMapTy &VM, Value *K, Value *V) { 88 bool Inserted = VM.insert({K, V}).second; 89 assert(Inserted); 90 (void)Inserted; 91 } 92 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the 93 /// old header into the preheader. If there were uses of the values produced by 94 /// these instruction that were outside of the loop, we have to insert PHI nodes 95 /// to merge the two values. Do this now. 96 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader, 97 BasicBlock *OrigPreheader, 98 ValueToValueMapTy &ValueMap, 99 SmallVectorImpl<PHINode*> *InsertedPHIs) { 100 // Remove PHI node entries that are no longer live. 101 BasicBlock::iterator I, E = OrigHeader->end(); 102 for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I) 103 PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader)); 104 105 // Now fix up users of the instructions in OrigHeader, inserting PHI nodes 106 // as necessary. 107 SSAUpdater SSA(InsertedPHIs); 108 for (I = OrigHeader->begin(); I != E; ++I) { 109 Value *OrigHeaderVal = &*I; 110 111 // If there are no uses of the value (e.g. because it returns void), there 112 // is nothing to rewrite. 113 if (OrigHeaderVal->use_empty()) 114 continue; 115 116 Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal); 117 118 // The value now exits in two versions: the initial value in the preheader 119 // and the loop "next" value in the original header. 120 SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName()); 121 SSA.AddAvailableValue(OrigHeader, OrigHeaderVal); 122 SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal); 123 124 // Visit each use of the OrigHeader instruction. 125 for (Value::use_iterator UI = OrigHeaderVal->use_begin(), 126 UE = OrigHeaderVal->use_end(); 127 UI != UE;) { 128 // Grab the use before incrementing the iterator. 129 Use &U = *UI; 130 131 // Increment the iterator before removing the use from the list. 132 ++UI; 133 134 // SSAUpdater can't handle a non-PHI use in the same block as an 135 // earlier def. We can easily handle those cases manually. 136 Instruction *UserInst = cast<Instruction>(U.getUser()); 137 if (!isa<PHINode>(UserInst)) { 138 BasicBlock *UserBB = UserInst->getParent(); 139 140 // The original users in the OrigHeader are already using the 141 // original definitions. 142 if (UserBB == OrigHeader) 143 continue; 144 145 // Users in the OrigPreHeader need to use the value to which the 146 // original definitions are mapped. 147 if (UserBB == OrigPreheader) { 148 U = OrigPreHeaderVal; 149 continue; 150 } 151 } 152 153 // Anything else can be handled by SSAUpdater. 154 SSA.RewriteUse(U); 155 } 156 157 // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug 158 // intrinsics. 159 SmallVector<DbgValueInst *, 1> DbgValues; 160 llvm::findDbgValues(DbgValues, OrigHeaderVal); 161 for (auto &DbgValue : DbgValues) { 162 // The original users in the OrigHeader are already using the original 163 // definitions. 164 BasicBlock *UserBB = DbgValue->getParent(); 165 if (UserBB == OrigHeader) 166 continue; 167 168 // Users in the OrigPreHeader need to use the value to which the 169 // original definitions are mapped and anything else can be handled by 170 // the SSAUpdater. To avoid adding PHINodes, check if the value is 171 // available in UserBB, if not substitute undef. 172 Value *NewVal; 173 if (UserBB == OrigPreheader) 174 NewVal = OrigPreHeaderVal; 175 else if (SSA.HasValueForBlock(UserBB)) 176 NewVal = SSA.GetValueInMiddleOfBlock(UserBB); 177 else 178 NewVal = UndefValue::get(OrigHeaderVal->getType()); 179 DbgValue->setOperand(0, 180 MetadataAsValue::get(OrigHeaderVal->getContext(), 181 ValueAsMetadata::get(NewVal))); 182 } 183 } 184 } 185 186 // Assuming both header and latch are exiting, look for a phi which is only 187 // used outside the loop (via a LCSSA phi) in the exit from the header. 188 // This means that rotating the loop can remove the phi. 189 static bool profitableToRotateLoopExitingLatch(Loop *L) { 190 BasicBlock *Header = L->getHeader(); 191 BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator()); 192 assert(BI && BI->isConditional() && "need header with conditional exit"); 193 BasicBlock *HeaderExit = BI->getSuccessor(0); 194 if (L->contains(HeaderExit)) 195 HeaderExit = BI->getSuccessor(1); 196 197 for (auto &Phi : Header->phis()) { 198 // Look for uses of this phi in the loop/via exits other than the header. 199 if (llvm::any_of(Phi.users(), [HeaderExit](const User *U) { 200 return cast<Instruction>(U)->getParent() != HeaderExit; 201 })) 202 continue; 203 return true; 204 } 205 return false; 206 } 207 208 // Check that latch exit is deoptimizing (which means - very unlikely to happen) 209 // and there is another exit from the loop which is non-deoptimizing. 210 // If we rotate latch to that exit our loop has a better chance of being fully 211 // canonical. 212 // 213 // It can give false positives in some rare cases. 214 static bool canRotateDeoptimizingLatchExit(Loop *L) { 215 BasicBlock *Latch = L->getLoopLatch(); 216 assert(Latch && "need latch"); 217 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 218 // Need normal exiting latch. 219 if (!BI || !BI->isConditional()) 220 return false; 221 222 BasicBlock *Exit = BI->getSuccessor(1); 223 if (L->contains(Exit)) 224 Exit = BI->getSuccessor(0); 225 226 // Latch exit is non-deoptimizing, no need to rotate. 227 if (!Exit->getPostdominatingDeoptimizeCall()) 228 return false; 229 230 SmallVector<BasicBlock *, 4> Exits; 231 L->getUniqueExitBlocks(Exits); 232 if (!Exits.empty()) { 233 // There is at least one non-deoptimizing exit. 234 // 235 // Note, that BasicBlock::getPostdominatingDeoptimizeCall is not exact, 236 // as it can conservatively return false for deoptimizing exits with 237 // complex enough control flow down to deoptimize call. 238 // 239 // That means here we can report success for a case where 240 // all exits are deoptimizing but one of them has complex enough 241 // control flow (e.g. with loops). 242 // 243 // That should be a very rare case and false positives for this function 244 // have compile-time effect only. 245 return any_of(Exits, [](const BasicBlock *BB) { 246 return !BB->getPostdominatingDeoptimizeCall(); 247 }); 248 } 249 return false; 250 } 251 252 /// Rotate loop LP. Return true if the loop is rotated. 253 /// 254 /// \param SimplifiedLatch is true if the latch was just folded into the final 255 /// loop exit. In this case we may want to rotate even though the new latch is 256 /// now an exiting branch. This rotation would have happened had the latch not 257 /// been simplified. However, if SimplifiedLatch is false, then we avoid 258 /// rotating loops in which the latch exits to avoid excessive or endless 259 /// rotation. LoopRotate should be repeatable and converge to a canonical 260 /// form. This property is satisfied because simplifying the loop latch can only 261 /// happen once across multiple invocations of the LoopRotate pass. 262 /// 263 /// If -loop-rotate-multi is enabled we can do multiple rotations in one go 264 /// so to reach a suitable (non-deoptimizing) exit. 265 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) { 266 // If the loop has only one block then there is not much to rotate. 267 if (L->getBlocks().size() == 1) 268 return false; 269 270 bool Rotated = false; 271 do { 272 BasicBlock *OrigHeader = L->getHeader(); 273 BasicBlock *OrigLatch = L->getLoopLatch(); 274 275 BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator()); 276 if (!BI || BI->isUnconditional()) 277 return Rotated; 278 279 // If the loop header is not one of the loop exiting blocks then 280 // either this loop is already rotated or it is not 281 // suitable for loop rotation transformations. 282 if (!L->isLoopExiting(OrigHeader)) 283 return Rotated; 284 285 // If the loop latch already contains a branch that leaves the loop then the 286 // loop is already rotated. 287 if (!OrigLatch) 288 return Rotated; 289 290 // Rotate if either the loop latch does *not* exit the loop, or if the loop 291 // latch was just simplified. Or if we think it will be profitable. 292 if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false && 293 !profitableToRotateLoopExitingLatch(L) && 294 !canRotateDeoptimizingLatchExit(L)) 295 return Rotated; 296 297 // Check size of original header and reject loop if it is very big or we can't 298 // duplicate blocks inside it. 299 { 300 SmallPtrSet<const Value *, 32> EphValues; 301 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 302 303 CodeMetrics Metrics; 304 Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues); 305 if (Metrics.notDuplicatable) { 306 LLVM_DEBUG( 307 dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable" 308 << " instructions: "; 309 L->dump()); 310 return Rotated; 311 } 312 if (Metrics.convergent) { 313 LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent " 314 "instructions: "; 315 L->dump()); 316 return Rotated; 317 } 318 if (Metrics.NumInsts > MaxHeaderSize) { 319 LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains " 320 << Metrics.NumInsts 321 << " instructions, which is more than the threshold (" 322 << MaxHeaderSize << " instructions): "; 323 L->dump()); 324 ++NumNotRotatedDueToHeaderSize; 325 return Rotated; 326 } 327 } 328 329 // Now, this loop is suitable for rotation. 330 BasicBlock *OrigPreheader = L->getLoopPreheader(); 331 332 // If the loop could not be converted to canonical form, it must have an 333 // indirectbr in it, just give up. 334 if (!OrigPreheader || !L->hasDedicatedExits()) 335 return Rotated; 336 337 // Anything ScalarEvolution may know about this loop or the PHI nodes 338 // in its header will soon be invalidated. We should also invalidate 339 // all outer loops because insertion and deletion of blocks that happens 340 // during the rotation may violate invariants related to backedge taken 341 // infos in them. 342 if (SE) 343 SE->forgetTopmostLoop(L); 344 345 LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump()); 346 if (MSSAU && VerifyMemorySSA) 347 MSSAU->getMemorySSA()->verifyMemorySSA(); 348 349 // Find new Loop header. NewHeader is a Header's one and only successor 350 // that is inside loop. Header's other successor is outside the 351 // loop. Otherwise loop is not suitable for rotation. 352 BasicBlock *Exit = BI->getSuccessor(0); 353 BasicBlock *NewHeader = BI->getSuccessor(1); 354 if (L->contains(Exit)) 355 std::swap(Exit, NewHeader); 356 assert(NewHeader && "Unable to determine new loop header"); 357 assert(L->contains(NewHeader) && !L->contains(Exit) && 358 "Unable to determine loop header and exit blocks"); 359 360 // This code assumes that the new header has exactly one predecessor. 361 // Remove any single-entry PHI nodes in it. 362 assert(NewHeader->getSinglePredecessor() && 363 "New header doesn't have one pred!"); 364 FoldSingleEntryPHINodes(NewHeader); 365 366 // Begin by walking OrigHeader and populating ValueMap with an entry for 367 // each Instruction. 368 BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end(); 369 ValueToValueMapTy ValueMap, ValueMapMSSA; 370 371 // For PHI nodes, the value available in OldPreHeader is just the 372 // incoming value from OldPreHeader. 373 for (; PHINode *PN = dyn_cast<PHINode>(I); ++I) 374 InsertNewValueIntoMap(ValueMap, PN, 375 PN->getIncomingValueForBlock(OrigPreheader)); 376 377 // For the rest of the instructions, either hoist to the OrigPreheader if 378 // possible or create a clone in the OldPreHeader if not. 379 Instruction *LoopEntryBranch = OrigPreheader->getTerminator(); 380 381 // Record all debug intrinsics preceding LoopEntryBranch to avoid duplication. 382 using DbgIntrinsicHash = 383 std::pair<std::pair<Value *, DILocalVariable *>, DIExpression *>; 384 auto makeHash = [](DbgVariableIntrinsic *D) -> DbgIntrinsicHash { 385 return {{D->getVariableLocation(), D->getVariable()}, D->getExpression()}; 386 }; 387 SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics; 388 for (auto I = std::next(OrigPreheader->rbegin()), E = OrigPreheader->rend(); 389 I != E; ++I) { 390 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&*I)) 391 DbgIntrinsics.insert(makeHash(DII)); 392 else 393 break; 394 } 395 396 while (I != E) { 397 Instruction *Inst = &*I++; 398 399 // If the instruction's operands are invariant and it doesn't read or write 400 // memory, then it is safe to hoist. Doing this doesn't change the order of 401 // execution in the preheader, but does prevent the instruction from 402 // executing in each iteration of the loop. This means it is safe to hoist 403 // something that might trap, but isn't safe to hoist something that reads 404 // memory (without proving that the loop doesn't write). 405 if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() && 406 !Inst->mayWriteToMemory() && !Inst->isTerminator() && 407 !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) { 408 Inst->moveBefore(LoopEntryBranch); 409 continue; 410 } 411 412 // Otherwise, create a duplicate of the instruction. 413 Instruction *C = Inst->clone(); 414 415 // Eagerly remap the operands of the instruction. 416 RemapInstruction(C, ValueMap, 417 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 418 419 // Avoid inserting the same intrinsic twice. 420 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(C)) 421 if (DbgIntrinsics.count(makeHash(DII))) { 422 C->deleteValue(); 423 continue; 424 } 425 426 // With the operands remapped, see if the instruction constant folds or is 427 // otherwise simplifyable. This commonly occurs because the entry from PHI 428 // nodes allows icmps and other instructions to fold. 429 Value *V = SimplifyInstruction(C, SQ); 430 if (V && LI->replacementPreservesLCSSAForm(C, V)) { 431 // If so, then delete the temporary instruction and stick the folded value 432 // in the map. 433 InsertNewValueIntoMap(ValueMap, Inst, V); 434 if (!C->mayHaveSideEffects()) { 435 C->deleteValue(); 436 C = nullptr; 437 } 438 } else { 439 InsertNewValueIntoMap(ValueMap, Inst, C); 440 } 441 if (C) { 442 // Otherwise, stick the new instruction into the new block! 443 C->setName(Inst->getName()); 444 C->insertBefore(LoopEntryBranch); 445 446 if (auto *II = dyn_cast<IntrinsicInst>(C)) 447 if (II->getIntrinsicID() == Intrinsic::assume) 448 AC->registerAssumption(II); 449 // MemorySSA cares whether the cloned instruction was inserted or not, and 450 // not whether it can be remapped to a simplified value. 451 if (MSSAU) 452 InsertNewValueIntoMap(ValueMapMSSA, Inst, C); 453 } 454 } 455 456 // Along with all the other instructions, we just cloned OrigHeader's 457 // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's 458 // successors by duplicating their incoming values for OrigHeader. 459 for (BasicBlock *SuccBB : successors(OrigHeader)) 460 for (BasicBlock::iterator BI = SuccBB->begin(); 461 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 462 PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader); 463 464 // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove 465 // OrigPreHeader's old terminator (the original branch into the loop), and 466 // remove the corresponding incoming values from the PHI nodes in OrigHeader. 467 LoopEntryBranch->eraseFromParent(); 468 469 // Update MemorySSA before the rewrite call below changes the 1:1 470 // instruction:cloned_instruction_or_value mapping. 471 if (MSSAU) { 472 InsertNewValueIntoMap(ValueMapMSSA, OrigHeader, OrigPreheader); 473 MSSAU->updateForClonedBlockIntoPred(OrigHeader, OrigPreheader, 474 ValueMapMSSA); 475 } 476 477 SmallVector<PHINode*, 2> InsertedPHIs; 478 // If there were any uses of instructions in the duplicated block outside the 479 // loop, update them, inserting PHI nodes as required 480 RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap, 481 &InsertedPHIs); 482 483 // Attach dbg.value intrinsics to the new phis if that phi uses a value that 484 // previously had debug metadata attached. This keeps the debug info 485 // up-to-date in the loop body. 486 if (!InsertedPHIs.empty()) 487 insertDebugValuesForPHIs(OrigHeader, InsertedPHIs); 488 489 // NewHeader is now the header of the loop. 490 L->moveToHeader(NewHeader); 491 assert(L->getHeader() == NewHeader && "Latch block is our new header"); 492 493 // Inform DT about changes to the CFG. 494 if (DT) { 495 // The OrigPreheader branches to the NewHeader and Exit now. Then, inform 496 // the DT about the removed edge to the OrigHeader (that got removed). 497 SmallVector<DominatorTree::UpdateType, 3> Updates; 498 Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit}); 499 Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader}); 500 Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader}); 501 DT->applyUpdates(Updates); 502 503 if (MSSAU) { 504 MSSAU->applyUpdates(Updates, *DT); 505 if (VerifyMemorySSA) 506 MSSAU->getMemorySSA()->verifyMemorySSA(); 507 } 508 } 509 510 // At this point, we've finished our major CFG changes. As part of cloning 511 // the loop into the preheader we've simplified instructions and the 512 // duplicated conditional branch may now be branching on a constant. If it is 513 // branching on a constant and if that constant means that we enter the loop, 514 // then we fold away the cond branch to an uncond branch. This simplifies the 515 // loop in cases important for nested loops, and it also means we don't have 516 // to split as many edges. 517 BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator()); 518 assert(PHBI->isConditional() && "Should be clone of BI condbr!"); 519 if (!isa<ConstantInt>(PHBI->getCondition()) || 520 PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) != 521 NewHeader) { 522 // The conditional branch can't be folded, handle the general case. 523 // Split edges as necessary to preserve LoopSimplify form. 524 525 // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and 526 // thus is not a preheader anymore. 527 // Split the edge to form a real preheader. 528 BasicBlock *NewPH = SplitCriticalEdge( 529 OrigPreheader, NewHeader, 530 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()); 531 NewPH->setName(NewHeader->getName() + ".lr.ph"); 532 533 // Preserve canonical loop form, which means that 'Exit' should have only 534 // one predecessor. Note that Exit could be an exit block for multiple 535 // nested loops, causing both of the edges to now be critical and need to 536 // be split. 537 SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit)); 538 bool SplitLatchEdge = false; 539 for (BasicBlock *ExitPred : ExitPreds) { 540 // We only need to split loop exit edges. 541 Loop *PredLoop = LI->getLoopFor(ExitPred); 542 if (!PredLoop || PredLoop->contains(Exit) || 543 ExitPred->getTerminator()->isIndirectTerminator()) 544 continue; 545 SplitLatchEdge |= L->getLoopLatch() == ExitPred; 546 BasicBlock *ExitSplit = SplitCriticalEdge( 547 ExitPred, Exit, 548 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()); 549 ExitSplit->moveBefore(Exit); 550 } 551 assert(SplitLatchEdge && 552 "Despite splitting all preds, failed to split latch exit?"); 553 } else { 554 // We can fold the conditional branch in the preheader, this makes things 555 // simpler. The first step is to remove the extra edge to the Exit block. 556 Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/); 557 BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI); 558 NewBI->setDebugLoc(PHBI->getDebugLoc()); 559 PHBI->eraseFromParent(); 560 561 // With our CFG finalized, update DomTree if it is available. 562 if (DT) DT->deleteEdge(OrigPreheader, Exit); 563 564 // Update MSSA too, if available. 565 if (MSSAU) 566 MSSAU->removeEdge(OrigPreheader, Exit); 567 } 568 569 assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation"); 570 assert(L->getLoopLatch() && "Invalid loop latch after loop rotation"); 571 572 if (MSSAU && VerifyMemorySSA) 573 MSSAU->getMemorySSA()->verifyMemorySSA(); 574 575 // Now that the CFG and DomTree are in a consistent state again, try to merge 576 // the OrigHeader block into OrigLatch. This will succeed if they are 577 // connected by an unconditional branch. This is just a cleanup so the 578 // emitted code isn't too gross in this common case. 579 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 580 BasicBlock *PredBB = OrigHeader->getUniquePredecessor(); 581 bool DidMerge = MergeBlockIntoPredecessor(OrigHeader, &DTU, LI, MSSAU); 582 if (DidMerge) 583 RemoveRedundantDbgInstrs(PredBB); 584 585 if (MSSAU && VerifyMemorySSA) 586 MSSAU->getMemorySSA()->verifyMemorySSA(); 587 588 LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump()); 589 590 ++NumRotated; 591 592 Rotated = true; 593 SimplifiedLatch = false; 594 595 // Check that new latch is a deoptimizing exit and then repeat rotation if possible. 596 // Deoptimizing latch exit is not a generally typical case, so we just loop over. 597 // TODO: if it becomes a performance bottleneck extend rotation algorithm 598 // to handle multiple rotations in one go. 599 } while (MultiRotate && canRotateDeoptimizingLatchExit(L)); 600 601 602 return true; 603 } 604 605 /// Determine whether the instructions in this range may be safely and cheaply 606 /// speculated. This is not an important enough situation to develop complex 607 /// heuristics. We handle a single arithmetic instruction along with any type 608 /// conversions. 609 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin, 610 BasicBlock::iterator End, Loop *L) { 611 bool seenIncrement = false; 612 bool MultiExitLoop = false; 613 614 if (!L->getExitingBlock()) 615 MultiExitLoop = true; 616 617 for (BasicBlock::iterator I = Begin; I != End; ++I) { 618 619 if (!isSafeToSpeculativelyExecute(&*I)) 620 return false; 621 622 if (isa<DbgInfoIntrinsic>(I)) 623 continue; 624 625 switch (I->getOpcode()) { 626 default: 627 return false; 628 case Instruction::GetElementPtr: 629 // GEPs are cheap if all indices are constant. 630 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 631 return false; 632 // fall-thru to increment case 633 LLVM_FALLTHROUGH; 634 case Instruction::Add: 635 case Instruction::Sub: 636 case Instruction::And: 637 case Instruction::Or: 638 case Instruction::Xor: 639 case Instruction::Shl: 640 case Instruction::LShr: 641 case Instruction::AShr: { 642 Value *IVOpnd = 643 !isa<Constant>(I->getOperand(0)) 644 ? I->getOperand(0) 645 : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr; 646 if (!IVOpnd) 647 return false; 648 649 // If increment operand is used outside of the loop, this speculation 650 // could cause extra live range interference. 651 if (MultiExitLoop) { 652 for (User *UseI : IVOpnd->users()) { 653 auto *UserInst = cast<Instruction>(UseI); 654 if (!L->contains(UserInst)) 655 return false; 656 } 657 } 658 659 if (seenIncrement) 660 return false; 661 seenIncrement = true; 662 break; 663 } 664 case Instruction::Trunc: 665 case Instruction::ZExt: 666 case Instruction::SExt: 667 // ignore type conversions 668 break; 669 } 670 } 671 return true; 672 } 673 674 /// Fold the loop tail into the loop exit by speculating the loop tail 675 /// instructions. Typically, this is a single post-increment. In the case of a 676 /// simple 2-block loop, hoisting the increment can be much better than 677 /// duplicating the entire loop header. In the case of loops with early exits, 678 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in 679 /// canonical form so downstream passes can handle it. 680 /// 681 /// I don't believe this invalidates SCEV. 682 bool LoopRotate::simplifyLoopLatch(Loop *L) { 683 BasicBlock *Latch = L->getLoopLatch(); 684 if (!Latch || Latch->hasAddressTaken()) 685 return false; 686 687 BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator()); 688 if (!Jmp || !Jmp->isUnconditional()) 689 return false; 690 691 BasicBlock *LastExit = Latch->getSinglePredecessor(); 692 if (!LastExit || !L->isLoopExiting(LastExit)) 693 return false; 694 695 BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator()); 696 if (!BI) 697 return false; 698 699 if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L)) 700 return false; 701 702 LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into " 703 << LastExit->getName() << "\n"); 704 705 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 706 MergeBlockIntoPredecessor(Latch, &DTU, LI, MSSAU, nullptr, 707 /*PredecessorWithTwoSuccessors=*/true); 708 709 if (MSSAU && VerifyMemorySSA) 710 MSSAU->getMemorySSA()->verifyMemorySSA(); 711 712 return true; 713 } 714 715 /// Rotate \c L, and return true if any modification was made. 716 bool LoopRotate::processLoop(Loop *L) { 717 // Save the loop metadata. 718 MDNode *LoopMD = L->getLoopID(); 719 720 bool SimplifiedLatch = false; 721 722 // Simplify the loop latch before attempting to rotate the header 723 // upward. Rotation may not be needed if the loop tail can be folded into the 724 // loop exit. 725 if (!RotationOnly) 726 SimplifiedLatch = simplifyLoopLatch(L); 727 728 bool MadeChange = rotateLoop(L, SimplifiedLatch); 729 assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) && 730 "Loop latch should be exiting after loop-rotate."); 731 732 // Restore the loop metadata. 733 // NB! We presume LoopRotation DOESN'T ADD its own metadata. 734 if ((MadeChange || SimplifiedLatch) && LoopMD) 735 L->setLoopID(LoopMD); 736 737 return MadeChange || SimplifiedLatch; 738 } 739 740 741 /// The utility to convert a loop into a loop with bottom test. 742 bool llvm::LoopRotation(Loop *L, LoopInfo *LI, const TargetTransformInfo *TTI, 743 AssumptionCache *AC, DominatorTree *DT, 744 ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 745 const SimplifyQuery &SQ, bool RotationOnly = true, 746 unsigned Threshold = unsigned(-1), 747 bool IsUtilMode = true) { 748 LoopRotate LR(Threshold, LI, TTI, AC, DT, SE, MSSAU, SQ, RotationOnly, 749 IsUtilMode); 750 return LR.processLoop(L); 751 } 752