1 //===----------------- LoopRotationUtils.cpp -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides utilities to convert a loop into a loop with bottom test.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/LoopRotationUtils.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/Analysis/AssumptionCache.h"
17 #include "llvm/Analysis/BasicAliasAnalysis.h"
18 #include "llvm/Analysis/CodeMetrics.h"
19 #include "llvm/Analysis/GlobalsModRef.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/MemorySSA.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/Analysis/ScalarEvolution.h"
25 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
26 #include "llvm/Analysis/TargetTransformInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/CFG.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/DomTreeUpdater.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
39 #include "llvm/Transforms/Utils/Local.h"
40 #include "llvm/Transforms/Utils/LoopUtils.h"
41 #include "llvm/Transforms/Utils/SSAUpdater.h"
42 #include "llvm/Transforms/Utils/ValueMapper.h"
43 using namespace llvm;
44 
45 #define DEBUG_TYPE "loop-rotate"
46 
47 STATISTIC(NumRotated, "Number of loops rotated");
48 
49 namespace {
50 /// A simple loop rotation transformation.
51 class LoopRotate {
52   const unsigned MaxHeaderSize;
53   LoopInfo *LI;
54   const TargetTransformInfo *TTI;
55   AssumptionCache *AC;
56   DominatorTree *DT;
57   ScalarEvolution *SE;
58   MemorySSAUpdater *MSSAU;
59   const SimplifyQuery &SQ;
60   bool RotationOnly;
61   bool IsUtilMode;
62 
63 public:
64   LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI,
65              const TargetTransformInfo *TTI, AssumptionCache *AC,
66              DominatorTree *DT, ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
67              const SimplifyQuery &SQ, bool RotationOnly, bool IsUtilMode)
68       : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE),
69         MSSAU(MSSAU), SQ(SQ), RotationOnly(RotationOnly),
70         IsUtilMode(IsUtilMode) {}
71   bool processLoop(Loop *L);
72 
73 private:
74   bool rotateLoop(Loop *L, bool SimplifiedLatch);
75   bool simplifyLoopLatch(Loop *L);
76 };
77 } // end anonymous namespace
78 
79 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
80 /// old header into the preheader.  If there were uses of the values produced by
81 /// these instruction that were outside of the loop, we have to insert PHI nodes
82 /// to merge the two values.  Do this now.
83 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
84                                             BasicBlock *OrigPreheader,
85                                             ValueToValueMapTy &ValueMap,
86                                 SmallVectorImpl<PHINode*> *InsertedPHIs) {
87   // Remove PHI node entries that are no longer live.
88   BasicBlock::iterator I, E = OrigHeader->end();
89   for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
90     PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
91 
92   // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
93   // as necessary.
94   SSAUpdater SSA(InsertedPHIs);
95   for (I = OrigHeader->begin(); I != E; ++I) {
96     Value *OrigHeaderVal = &*I;
97 
98     // If there are no uses of the value (e.g. because it returns void), there
99     // is nothing to rewrite.
100     if (OrigHeaderVal->use_empty())
101       continue;
102 
103     Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal);
104 
105     // The value now exits in two versions: the initial value in the preheader
106     // and the loop "next" value in the original header.
107     SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
108     SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
109     SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
110 
111     // Visit each use of the OrigHeader instruction.
112     for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
113                              UE = OrigHeaderVal->use_end();
114          UI != UE;) {
115       // Grab the use before incrementing the iterator.
116       Use &U = *UI;
117 
118       // Increment the iterator before removing the use from the list.
119       ++UI;
120 
121       // SSAUpdater can't handle a non-PHI use in the same block as an
122       // earlier def. We can easily handle those cases manually.
123       Instruction *UserInst = cast<Instruction>(U.getUser());
124       if (!isa<PHINode>(UserInst)) {
125         BasicBlock *UserBB = UserInst->getParent();
126 
127         // The original users in the OrigHeader are already using the
128         // original definitions.
129         if (UserBB == OrigHeader)
130           continue;
131 
132         // Users in the OrigPreHeader need to use the value to which the
133         // original definitions are mapped.
134         if (UserBB == OrigPreheader) {
135           U = OrigPreHeaderVal;
136           continue;
137         }
138       }
139 
140       // Anything else can be handled by SSAUpdater.
141       SSA.RewriteUse(U);
142     }
143 
144     // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug
145     // intrinsics.
146     SmallVector<DbgValueInst *, 1> DbgValues;
147     llvm::findDbgValues(DbgValues, OrigHeaderVal);
148     for (auto &DbgValue : DbgValues) {
149       // The original users in the OrigHeader are already using the original
150       // definitions.
151       BasicBlock *UserBB = DbgValue->getParent();
152       if (UserBB == OrigHeader)
153         continue;
154 
155       // Users in the OrigPreHeader need to use the value to which the
156       // original definitions are mapped and anything else can be handled by
157       // the SSAUpdater. To avoid adding PHINodes, check if the value is
158       // available in UserBB, if not substitute undef.
159       Value *NewVal;
160       if (UserBB == OrigPreheader)
161         NewVal = OrigPreHeaderVal;
162       else if (SSA.HasValueForBlock(UserBB))
163         NewVal = SSA.GetValueInMiddleOfBlock(UserBB);
164       else
165         NewVal = UndefValue::get(OrigHeaderVal->getType());
166       DbgValue->setOperand(0,
167                            MetadataAsValue::get(OrigHeaderVal->getContext(),
168                                                 ValueAsMetadata::get(NewVal)));
169     }
170   }
171 }
172 
173 // Look for a phi which is only used outside the loop (via a LCSSA phi)
174 // in the exit from the header. This means that rotating the loop can
175 // remove the phi.
176 static bool shouldRotateLoopExitingLatch(Loop *L) {
177   BasicBlock *Header = L->getHeader();
178   BasicBlock *HeaderExit = Header->getTerminator()->getSuccessor(0);
179   if (L->contains(HeaderExit))
180     HeaderExit = Header->getTerminator()->getSuccessor(1);
181 
182   for (auto &Phi : Header->phis()) {
183     // Look for uses of this phi in the loop/via exits other than the header.
184     if (llvm::any_of(Phi.users(), [HeaderExit](const User *U) {
185           return cast<Instruction>(U)->getParent() != HeaderExit;
186         }))
187       continue;
188     return true;
189   }
190 
191   return false;
192 }
193 
194 /// Rotate loop LP. Return true if the loop is rotated.
195 ///
196 /// \param SimplifiedLatch is true if the latch was just folded into the final
197 /// loop exit. In this case we may want to rotate even though the new latch is
198 /// now an exiting branch. This rotation would have happened had the latch not
199 /// been simplified. However, if SimplifiedLatch is false, then we avoid
200 /// rotating loops in which the latch exits to avoid excessive or endless
201 /// rotation. LoopRotate should be repeatable and converge to a canonical
202 /// form. This property is satisfied because simplifying the loop latch can only
203 /// happen once across multiple invocations of the LoopRotate pass.
204 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
205   // If the loop has only one block then there is not much to rotate.
206   if (L->getBlocks().size() == 1)
207     return false;
208 
209   BasicBlock *OrigHeader = L->getHeader();
210   BasicBlock *OrigLatch = L->getLoopLatch();
211 
212   BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
213   if (!BI || BI->isUnconditional())
214     return false;
215 
216   // If the loop header is not one of the loop exiting blocks then
217   // either this loop is already rotated or it is not
218   // suitable for loop rotation transformations.
219   if (!L->isLoopExiting(OrigHeader))
220     return false;
221 
222   // If the loop latch already contains a branch that leaves the loop then the
223   // loop is already rotated.
224   if (!OrigLatch)
225     return false;
226 
227   // Rotate if either the loop latch does *not* exit the loop, or if the loop
228   // latch was just simplified. Or if we think it will be profitable.
229   if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false &&
230       !shouldRotateLoopExitingLatch(L))
231     return false;
232 
233   // Check size of original header and reject loop if it is very big or we can't
234   // duplicate blocks inside it.
235   {
236     SmallPtrSet<const Value *, 32> EphValues;
237     CodeMetrics::collectEphemeralValues(L, AC, EphValues);
238 
239     CodeMetrics Metrics;
240     Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues);
241     if (Metrics.notDuplicatable) {
242       LLVM_DEBUG(
243           dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
244                  << " instructions: ";
245           L->dump());
246       return false;
247     }
248     if (Metrics.convergent) {
249       LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "
250                            "instructions: ";
251                  L->dump());
252       return false;
253     }
254     if (Metrics.NumInsts > MaxHeaderSize)
255       return false;
256   }
257 
258   // Now, this loop is suitable for rotation.
259   BasicBlock *OrigPreheader = L->getLoopPreheader();
260 
261   // If the loop could not be converted to canonical form, it must have an
262   // indirectbr in it, just give up.
263   if (!OrigPreheader || !L->hasDedicatedExits())
264     return false;
265 
266   // Anything ScalarEvolution may know about this loop or the PHI nodes
267   // in its header will soon be invalidated. We should also invalidate
268   // all outer loops because insertion and deletion of blocks that happens
269   // during the rotation may violate invariants related to backedge taken
270   // infos in them.
271   if (SE)
272     SE->forgetTopmostLoop(L);
273 
274   LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
275   if (MSSAU && VerifyMemorySSA)
276     MSSAU->getMemorySSA()->verifyMemorySSA();
277 
278   // Find new Loop header. NewHeader is a Header's one and only successor
279   // that is inside loop.  Header's other successor is outside the
280   // loop.  Otherwise loop is not suitable for rotation.
281   BasicBlock *Exit = BI->getSuccessor(0);
282   BasicBlock *NewHeader = BI->getSuccessor(1);
283   if (L->contains(Exit))
284     std::swap(Exit, NewHeader);
285   assert(NewHeader && "Unable to determine new loop header");
286   assert(L->contains(NewHeader) && !L->contains(Exit) &&
287          "Unable to determine loop header and exit blocks");
288 
289   // This code assumes that the new header has exactly one predecessor.
290   // Remove any single-entry PHI nodes in it.
291   assert(NewHeader->getSinglePredecessor() &&
292          "New header doesn't have one pred!");
293   FoldSingleEntryPHINodes(NewHeader);
294 
295   // Begin by walking OrigHeader and populating ValueMap with an entry for
296   // each Instruction.
297   BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
298   ValueToValueMapTy ValueMap;
299 
300   // For PHI nodes, the value available in OldPreHeader is just the
301   // incoming value from OldPreHeader.
302   for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
303     ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader);
304 
305   // For the rest of the instructions, either hoist to the OrigPreheader if
306   // possible or create a clone in the OldPreHeader if not.
307   Instruction *LoopEntryBranch = OrigPreheader->getTerminator();
308 
309   // Record all debug intrinsics preceding LoopEntryBranch to avoid duplication.
310   using DbgIntrinsicHash =
311       std::pair<std::pair<Value *, DILocalVariable *>, DIExpression *>;
312   auto makeHash = [](DbgVariableIntrinsic *D) -> DbgIntrinsicHash {
313     return {{D->getVariableLocation(), D->getVariable()}, D->getExpression()};
314   };
315   SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics;
316   for (auto I = std::next(OrigPreheader->rbegin()), E = OrigPreheader->rend();
317        I != E; ++I) {
318     if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&*I))
319       DbgIntrinsics.insert(makeHash(DII));
320     else
321       break;
322   }
323 
324   while (I != E) {
325     Instruction *Inst = &*I++;
326 
327     // If the instruction's operands are invariant and it doesn't read or write
328     // memory, then it is safe to hoist.  Doing this doesn't change the order of
329     // execution in the preheader, but does prevent the instruction from
330     // executing in each iteration of the loop.  This means it is safe to hoist
331     // something that might trap, but isn't safe to hoist something that reads
332     // memory (without proving that the loop doesn't write).
333     if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() &&
334         !Inst->mayWriteToMemory() && !Inst->isTerminator() &&
335         !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) {
336       Inst->moveBefore(LoopEntryBranch);
337       continue;
338     }
339 
340     // Otherwise, create a duplicate of the instruction.
341     Instruction *C = Inst->clone();
342 
343     // Eagerly remap the operands of the instruction.
344     RemapInstruction(C, ValueMap,
345                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
346 
347     // Avoid inserting the same intrinsic twice.
348     if (auto *DII = dyn_cast<DbgVariableIntrinsic>(C))
349       if (DbgIntrinsics.count(makeHash(DII))) {
350         C->deleteValue();
351         continue;
352       }
353 
354     // With the operands remapped, see if the instruction constant folds or is
355     // otherwise simplifyable.  This commonly occurs because the entry from PHI
356     // nodes allows icmps and other instructions to fold.
357     Value *V = SimplifyInstruction(C, SQ);
358     if (V && LI->replacementPreservesLCSSAForm(C, V)) {
359       // If so, then delete the temporary instruction and stick the folded value
360       // in the map.
361       ValueMap[Inst] = V;
362       if (!C->mayHaveSideEffects()) {
363         C->deleteValue();
364         C = nullptr;
365       }
366     } else {
367       ValueMap[Inst] = C;
368     }
369     if (C) {
370       // Otherwise, stick the new instruction into the new block!
371       C->setName(Inst->getName());
372       C->insertBefore(LoopEntryBranch);
373 
374       if (auto *II = dyn_cast<IntrinsicInst>(C))
375         if (II->getIntrinsicID() == Intrinsic::assume)
376           AC->registerAssumption(II);
377     }
378   }
379 
380   // Along with all the other instructions, we just cloned OrigHeader's
381   // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
382   // successors by duplicating their incoming values for OrigHeader.
383   for (BasicBlock *SuccBB : successors(OrigHeader))
384     for (BasicBlock::iterator BI = SuccBB->begin();
385          PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
386       PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
387 
388   // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
389   // OrigPreHeader's old terminator (the original branch into the loop), and
390   // remove the corresponding incoming values from the PHI nodes in OrigHeader.
391   LoopEntryBranch->eraseFromParent();
392 
393   // Update MemorySSA before the rewrite call below changes the 1:1
394   // instruction:cloned_instruction_or_value mapping in ValueMap.
395   if (MSSAU) {
396     ValueMap[OrigHeader] = OrigPreheader;
397     MSSAU->updateForClonedBlockIntoPred(OrigHeader, OrigPreheader, ValueMap);
398   }
399 
400   SmallVector<PHINode*, 2> InsertedPHIs;
401   // If there were any uses of instructions in the duplicated block outside the
402   // loop, update them, inserting PHI nodes as required
403   RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap,
404                                   &InsertedPHIs);
405 
406   // Attach dbg.value intrinsics to the new phis if that phi uses a value that
407   // previously had debug metadata attached. This keeps the debug info
408   // up-to-date in the loop body.
409   if (!InsertedPHIs.empty())
410     insertDebugValuesForPHIs(OrigHeader, InsertedPHIs);
411 
412   // NewHeader is now the header of the loop.
413   L->moveToHeader(NewHeader);
414   assert(L->getHeader() == NewHeader && "Latch block is our new header");
415 
416   // Inform DT about changes to the CFG.
417   if (DT) {
418     // The OrigPreheader branches to the NewHeader and Exit now. Then, inform
419     // the DT about the removed edge to the OrigHeader (that got removed).
420     SmallVector<DominatorTree::UpdateType, 3> Updates;
421     Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit});
422     Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader});
423     Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader});
424     DT->applyUpdates(Updates);
425 
426     if (MSSAU) {
427       MSSAU->applyUpdates(Updates, *DT);
428       if (VerifyMemorySSA)
429         MSSAU->getMemorySSA()->verifyMemorySSA();
430     }
431   }
432 
433   // At this point, we've finished our major CFG changes.  As part of cloning
434   // the loop into the preheader we've simplified instructions and the
435   // duplicated conditional branch may now be branching on a constant.  If it is
436   // branching on a constant and if that constant means that we enter the loop,
437   // then we fold away the cond branch to an uncond branch.  This simplifies the
438   // loop in cases important for nested loops, and it also means we don't have
439   // to split as many edges.
440   BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
441   assert(PHBI->isConditional() && "Should be clone of BI condbr!");
442   if (!isa<ConstantInt>(PHBI->getCondition()) ||
443       PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) !=
444           NewHeader) {
445     // The conditional branch can't be folded, handle the general case.
446     // Split edges as necessary to preserve LoopSimplify form.
447 
448     // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
449     // thus is not a preheader anymore.
450     // Split the edge to form a real preheader.
451     BasicBlock *NewPH = SplitCriticalEdge(
452         OrigPreheader, NewHeader,
453         CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
454     NewPH->setName(NewHeader->getName() + ".lr.ph");
455 
456     // Preserve canonical loop form, which means that 'Exit' should have only
457     // one predecessor. Note that Exit could be an exit block for multiple
458     // nested loops, causing both of the edges to now be critical and need to
459     // be split.
460     SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit));
461     bool SplitLatchEdge = false;
462     for (BasicBlock *ExitPred : ExitPreds) {
463       // We only need to split loop exit edges.
464       Loop *PredLoop = LI->getLoopFor(ExitPred);
465       if (!PredLoop || PredLoop->contains(Exit))
466         continue;
467       if (isa<IndirectBrInst>(ExitPred->getTerminator()))
468         continue;
469       SplitLatchEdge |= L->getLoopLatch() == ExitPred;
470       BasicBlock *ExitSplit = SplitCriticalEdge(
471           ExitPred, Exit,
472           CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
473       ExitSplit->moveBefore(Exit);
474     }
475     assert(SplitLatchEdge &&
476            "Despite splitting all preds, failed to split latch exit?");
477   } else {
478     // We can fold the conditional branch in the preheader, this makes things
479     // simpler. The first step is to remove the extra edge to the Exit block.
480     Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
481     BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
482     NewBI->setDebugLoc(PHBI->getDebugLoc());
483     PHBI->eraseFromParent();
484 
485     // With our CFG finalized, update DomTree if it is available.
486     if (DT) DT->deleteEdge(OrigPreheader, Exit);
487 
488     // Update MSSA too, if available.
489     if (MSSAU)
490       MSSAU->removeEdge(OrigPreheader, Exit);
491   }
492 
493   assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
494   assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
495 
496   if (MSSAU && VerifyMemorySSA)
497     MSSAU->getMemorySSA()->verifyMemorySSA();
498 
499   // Now that the CFG and DomTree are in a consistent state again, try to merge
500   // the OrigHeader block into OrigLatch.  This will succeed if they are
501   // connected by an unconditional branch.  This is just a cleanup so the
502   // emitted code isn't too gross in this common case.
503   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
504   MergeBlockIntoPredecessor(OrigHeader, &DTU, LI, MSSAU);
505 
506   if (MSSAU && VerifyMemorySSA)
507     MSSAU->getMemorySSA()->verifyMemorySSA();
508 
509   LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump());
510 
511   ++NumRotated;
512   return true;
513 }
514 
515 /// Determine whether the instructions in this range may be safely and cheaply
516 /// speculated. This is not an important enough situation to develop complex
517 /// heuristics. We handle a single arithmetic instruction along with any type
518 /// conversions.
519 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
520                                   BasicBlock::iterator End, Loop *L) {
521   bool seenIncrement = false;
522   bool MultiExitLoop = false;
523 
524   if (!L->getExitingBlock())
525     MultiExitLoop = true;
526 
527   for (BasicBlock::iterator I = Begin; I != End; ++I) {
528 
529     if (!isSafeToSpeculativelyExecute(&*I))
530       return false;
531 
532     if (isa<DbgInfoIntrinsic>(I))
533       continue;
534 
535     switch (I->getOpcode()) {
536     default:
537       return false;
538     case Instruction::GetElementPtr:
539       // GEPs are cheap if all indices are constant.
540       if (!cast<GEPOperator>(I)->hasAllConstantIndices())
541         return false;
542       // fall-thru to increment case
543       LLVM_FALLTHROUGH;
544     case Instruction::Add:
545     case Instruction::Sub:
546     case Instruction::And:
547     case Instruction::Or:
548     case Instruction::Xor:
549     case Instruction::Shl:
550     case Instruction::LShr:
551     case Instruction::AShr: {
552       Value *IVOpnd =
553           !isa<Constant>(I->getOperand(0))
554               ? I->getOperand(0)
555               : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr;
556       if (!IVOpnd)
557         return false;
558 
559       // If increment operand is used outside of the loop, this speculation
560       // could cause extra live range interference.
561       if (MultiExitLoop) {
562         for (User *UseI : IVOpnd->users()) {
563           auto *UserInst = cast<Instruction>(UseI);
564           if (!L->contains(UserInst))
565             return false;
566         }
567       }
568 
569       if (seenIncrement)
570         return false;
571       seenIncrement = true;
572       break;
573     }
574     case Instruction::Trunc:
575     case Instruction::ZExt:
576     case Instruction::SExt:
577       // ignore type conversions
578       break;
579     }
580   }
581   return true;
582 }
583 
584 /// Fold the loop tail into the loop exit by speculating the loop tail
585 /// instructions. Typically, this is a single post-increment. In the case of a
586 /// simple 2-block loop, hoisting the increment can be much better than
587 /// duplicating the entire loop header. In the case of loops with early exits,
588 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
589 /// canonical form so downstream passes can handle it.
590 ///
591 /// I don't believe this invalidates SCEV.
592 bool LoopRotate::simplifyLoopLatch(Loop *L) {
593   BasicBlock *Latch = L->getLoopLatch();
594   if (!Latch || Latch->hasAddressTaken())
595     return false;
596 
597   BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
598   if (!Jmp || !Jmp->isUnconditional())
599     return false;
600 
601   BasicBlock *LastExit = Latch->getSinglePredecessor();
602   if (!LastExit || !L->isLoopExiting(LastExit))
603     return false;
604 
605   BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
606   if (!BI)
607     return false;
608 
609   if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L))
610     return false;
611 
612   LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
613                     << LastExit->getName() << "\n");
614 
615   // Hoist the instructions from Latch into LastExit.
616   Instruction *FirstLatchInst = &*(Latch->begin());
617   LastExit->getInstList().splice(BI->getIterator(), Latch->getInstList(),
618                                  Latch->begin(), Jmp->getIterator());
619 
620   // Update MemorySSA
621   if (MSSAU)
622     MSSAU->moveAllAfterMergeBlocks(Latch, LastExit, FirstLatchInst);
623 
624   unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1;
625   BasicBlock *Header = Jmp->getSuccessor(0);
626   assert(Header == L->getHeader() && "expected a backward branch");
627 
628   // Remove Latch from the CFG so that LastExit becomes the new Latch.
629   BI->setSuccessor(FallThruPath, Header);
630   Latch->replaceSuccessorsPhiUsesWith(LastExit);
631   Jmp->eraseFromParent();
632 
633   // Nuke the Latch block.
634   assert(Latch->empty() && "unable to evacuate Latch");
635   LI->removeBlock(Latch);
636   if (DT)
637     DT->eraseNode(Latch);
638   Latch->eraseFromParent();
639 
640   if (MSSAU && VerifyMemorySSA)
641     MSSAU->getMemorySSA()->verifyMemorySSA();
642 
643   return true;
644 }
645 
646 /// Rotate \c L, and return true if any modification was made.
647 bool LoopRotate::processLoop(Loop *L) {
648   // Save the loop metadata.
649   MDNode *LoopMD = L->getLoopID();
650 
651   bool SimplifiedLatch = false;
652 
653   // Simplify the loop latch before attempting to rotate the header
654   // upward. Rotation may not be needed if the loop tail can be folded into the
655   // loop exit.
656   if (!RotationOnly)
657     SimplifiedLatch = simplifyLoopLatch(L);
658 
659   bool MadeChange = rotateLoop(L, SimplifiedLatch);
660   assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) &&
661          "Loop latch should be exiting after loop-rotate.");
662 
663   // Restore the loop metadata.
664   // NB! We presume LoopRotation DOESN'T ADD its own metadata.
665   if ((MadeChange || SimplifiedLatch) && LoopMD)
666     L->setLoopID(LoopMD);
667 
668   return MadeChange || SimplifiedLatch;
669 }
670 
671 
672 /// The utility to convert a loop into a loop with bottom test.
673 bool llvm::LoopRotation(Loop *L, LoopInfo *LI, const TargetTransformInfo *TTI,
674                         AssumptionCache *AC, DominatorTree *DT,
675                         ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
676                         const SimplifyQuery &SQ, bool RotationOnly = true,
677                         unsigned Threshold = unsigned(-1),
678                         bool IsUtilMode = true) {
679   if (MSSAU && VerifyMemorySSA)
680     MSSAU->getMemorySSA()->verifyMemorySSA();
681   LoopRotate LR(Threshold, LI, TTI, AC, DT, SE, MSSAU, SQ, RotationOnly,
682                 IsUtilMode);
683   if (MSSAU && VerifyMemorySSA)
684     MSSAU->getMemorySSA()->verifyMemorySSA();
685 
686   return LR.processLoop(L);
687 }
688