1 //===----------------- LoopRotationUtils.cpp -----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file provides utilities to convert a loop into a loop with bottom test. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/LoopRotationUtils.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/BasicAliasAnalysis.h" 19 #include "llvm/Analysis/CodeMetrics.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/LoopPass.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 25 #include "llvm/Analysis/TargetTransformInfo.h" 26 #include "llvm/Analysis/Utils/Local.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 38 #include "llvm/Transforms/Utils/LoopUtils.h" 39 #include "llvm/Transforms/Utils/SSAUpdater.h" 40 #include "llvm/Transforms/Utils/ValueMapper.h" 41 using namespace llvm; 42 43 #define DEBUG_TYPE "loop-rotate" 44 45 STATISTIC(NumRotated, "Number of loops rotated"); 46 47 namespace { 48 /// A simple loop rotation transformation. 49 class LoopRotate { 50 const unsigned MaxHeaderSize; 51 LoopInfo *LI; 52 const TargetTransformInfo *TTI; 53 AssumptionCache *AC; 54 DominatorTree *DT; 55 ScalarEvolution *SE; 56 const SimplifyQuery &SQ; 57 58 public: 59 LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI, 60 const TargetTransformInfo *TTI, AssumptionCache *AC, 61 DominatorTree *DT, ScalarEvolution *SE, const SimplifyQuery &SQ) 62 : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE), 63 SQ(SQ) {} 64 bool processLoop(Loop *L); 65 66 private: 67 bool rotateLoop(Loop *L, bool SimplifiedLatch); 68 bool simplifyLoopLatch(Loop *L); 69 }; 70 } // end anonymous namespace 71 72 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the 73 /// old header into the preheader. If there were uses of the values produced by 74 /// these instruction that were outside of the loop, we have to insert PHI nodes 75 /// to merge the two values. Do this now. 76 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader, 77 BasicBlock *OrigPreheader, 78 ValueToValueMapTy &ValueMap, 79 SmallVectorImpl<PHINode*> *InsertedPHIs) { 80 // Remove PHI node entries that are no longer live. 81 BasicBlock::iterator I, E = OrigHeader->end(); 82 for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I) 83 PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader)); 84 85 // Now fix up users of the instructions in OrigHeader, inserting PHI nodes 86 // as necessary. 87 SSAUpdater SSA(InsertedPHIs); 88 for (I = OrigHeader->begin(); I != E; ++I) { 89 Value *OrigHeaderVal = &*I; 90 91 // If there are no uses of the value (e.g. because it returns void), there 92 // is nothing to rewrite. 93 if (OrigHeaderVal->use_empty()) 94 continue; 95 96 Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal); 97 98 // The value now exits in two versions: the initial value in the preheader 99 // and the loop "next" value in the original header. 100 SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName()); 101 SSA.AddAvailableValue(OrigHeader, OrigHeaderVal); 102 SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal); 103 104 // Visit each use of the OrigHeader instruction. 105 for (Value::use_iterator UI = OrigHeaderVal->use_begin(), 106 UE = OrigHeaderVal->use_end(); 107 UI != UE;) { 108 // Grab the use before incrementing the iterator. 109 Use &U = *UI; 110 111 // Increment the iterator before removing the use from the list. 112 ++UI; 113 114 // SSAUpdater can't handle a non-PHI use in the same block as an 115 // earlier def. We can easily handle those cases manually. 116 Instruction *UserInst = cast<Instruction>(U.getUser()); 117 if (!isa<PHINode>(UserInst)) { 118 BasicBlock *UserBB = UserInst->getParent(); 119 120 // The original users in the OrigHeader are already using the 121 // original definitions. 122 if (UserBB == OrigHeader) 123 continue; 124 125 // Users in the OrigPreHeader need to use the value to which the 126 // original definitions are mapped. 127 if (UserBB == OrigPreheader) { 128 U = OrigPreHeaderVal; 129 continue; 130 } 131 } 132 133 // Anything else can be handled by SSAUpdater. 134 SSA.RewriteUse(U); 135 } 136 137 // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug 138 // intrinsics. 139 SmallVector<DbgValueInst *, 1> DbgValues; 140 llvm::findDbgValues(DbgValues, OrigHeaderVal); 141 for (auto &DbgValue : DbgValues) { 142 // The original users in the OrigHeader are already using the original 143 // definitions. 144 BasicBlock *UserBB = DbgValue->getParent(); 145 if (UserBB == OrigHeader) 146 continue; 147 148 // Users in the OrigPreHeader need to use the value to which the 149 // original definitions are mapped and anything else can be handled by 150 // the SSAUpdater. To avoid adding PHINodes, check if the value is 151 // available in UserBB, if not substitute undef. 152 Value *NewVal; 153 if (UserBB == OrigPreheader) 154 NewVal = OrigPreHeaderVal; 155 else if (SSA.HasValueForBlock(UserBB)) 156 NewVal = SSA.GetValueInMiddleOfBlock(UserBB); 157 else 158 NewVal = UndefValue::get(OrigHeaderVal->getType()); 159 DbgValue->setOperand(0, 160 MetadataAsValue::get(OrigHeaderVal->getContext(), 161 ValueAsMetadata::get(NewVal))); 162 } 163 } 164 } 165 166 // Look for a phi which is only used outside the loop (via a LCSSA phi) 167 // in the exit from the header. This means that rotating the loop can 168 // remove the phi. 169 static bool shouldRotateLoopExitingLatch(Loop *L) { 170 BasicBlock *Header = L->getHeader(); 171 BasicBlock *HeaderExit = Header->getTerminator()->getSuccessor(0); 172 if (L->contains(HeaderExit)) 173 HeaderExit = Header->getTerminator()->getSuccessor(1); 174 175 for (auto &Phi : Header->phis()) { 176 // Look for uses of this phi in the loop/via exits other than the header. 177 if (llvm::any_of(Phi.users(), [HeaderExit](const User *U) { 178 return cast<Instruction>(U)->getParent() != HeaderExit; 179 })) 180 continue; 181 return true; 182 } 183 184 return false; 185 } 186 187 /// Rotate loop LP. Return true if the loop is rotated. 188 /// 189 /// \param SimplifiedLatch is true if the latch was just folded into the final 190 /// loop exit. In this case we may want to rotate even though the new latch is 191 /// now an exiting branch. This rotation would have happened had the latch not 192 /// been simplified. However, if SimplifiedLatch is false, then we avoid 193 /// rotating loops in which the latch exits to avoid excessive or endless 194 /// rotation. LoopRotate should be repeatable and converge to a canonical 195 /// form. This property is satisfied because simplifying the loop latch can only 196 /// happen once across multiple invocations of the LoopRotate pass. 197 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) { 198 // If the loop has only one block then there is not much to rotate. 199 if (L->getBlocks().size() == 1) 200 return false; 201 202 BasicBlock *OrigHeader = L->getHeader(); 203 BasicBlock *OrigLatch = L->getLoopLatch(); 204 205 BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator()); 206 if (!BI || BI->isUnconditional()) 207 return false; 208 209 // If the loop header is not one of the loop exiting blocks then 210 // either this loop is already rotated or it is not 211 // suitable for loop rotation transformations. 212 if (!L->isLoopExiting(OrigHeader)) 213 return false; 214 215 // If the loop latch already contains a branch that leaves the loop then the 216 // loop is already rotated. 217 if (!OrigLatch) 218 return false; 219 220 // Rotate if either the loop latch does *not* exit the loop, or if the loop 221 // latch was just simplified. Or if we think it will be profitable. 222 if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && 223 !shouldRotateLoopExitingLatch(L)) 224 return false; 225 226 // Check size of original header and reject loop if it is very big or we can't 227 // duplicate blocks inside it. 228 { 229 SmallPtrSet<const Value *, 32> EphValues; 230 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 231 232 CodeMetrics Metrics; 233 Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues); 234 if (Metrics.notDuplicatable) { 235 DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable" 236 << " instructions: "; 237 L->dump()); 238 return false; 239 } 240 if (Metrics.convergent) { 241 DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent " 242 "instructions: "; 243 L->dump()); 244 return false; 245 } 246 if (Metrics.NumInsts > MaxHeaderSize) 247 return false; 248 } 249 250 // Now, this loop is suitable for rotation. 251 BasicBlock *OrigPreheader = L->getLoopPreheader(); 252 253 // If the loop could not be converted to canonical form, it must have an 254 // indirectbr in it, just give up. 255 if (!OrigPreheader || !L->hasDedicatedExits()) 256 return false; 257 258 // Anything ScalarEvolution may know about this loop or the PHI nodes 259 // in its header will soon be invalidated. 260 if (SE) 261 SE->forgetLoop(L); 262 263 DEBUG(dbgs() << "LoopRotation: rotating "; L->dump()); 264 265 // Find new Loop header. NewHeader is a Header's one and only successor 266 // that is inside loop. Header's other successor is outside the 267 // loop. Otherwise loop is not suitable for rotation. 268 BasicBlock *Exit = BI->getSuccessor(0); 269 BasicBlock *NewHeader = BI->getSuccessor(1); 270 if (L->contains(Exit)) 271 std::swap(Exit, NewHeader); 272 assert(NewHeader && "Unable to determine new loop header"); 273 assert(L->contains(NewHeader) && !L->contains(Exit) && 274 "Unable to determine loop header and exit blocks"); 275 276 // This code assumes that the new header has exactly one predecessor. 277 // Remove any single-entry PHI nodes in it. 278 assert(NewHeader->getSinglePredecessor() && 279 "New header doesn't have one pred!"); 280 FoldSingleEntryPHINodes(NewHeader); 281 282 // Begin by walking OrigHeader and populating ValueMap with an entry for 283 // each Instruction. 284 BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end(); 285 ValueToValueMapTy ValueMap; 286 287 // For PHI nodes, the value available in OldPreHeader is just the 288 // incoming value from OldPreHeader. 289 for (; PHINode *PN = dyn_cast<PHINode>(I); ++I) 290 ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader); 291 292 // For the rest of the instructions, either hoist to the OrigPreheader if 293 // possible or create a clone in the OldPreHeader if not. 294 TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator(); 295 296 // Record all debug intrinsics preceding LoopEntryBranch to avoid duplication. 297 using DbgIntrinsicHash = 298 std::pair<std::pair<Value *, DILocalVariable *>, DIExpression *>; 299 auto makeHash = [](DbgInfoIntrinsic *D) -> DbgIntrinsicHash { 300 return {{D->getVariableLocation(), D->getVariable()}, D->getExpression()}; 301 }; 302 SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics; 303 for (auto I = std::next(OrigPreheader->rbegin()), E = OrigPreheader->rend(); 304 I != E; ++I) { 305 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&*I)) 306 DbgIntrinsics.insert(makeHash(DII)); 307 else 308 break; 309 } 310 311 while (I != E) { 312 Instruction *Inst = &*I++; 313 314 // If the instruction's operands are invariant and it doesn't read or write 315 // memory, then it is safe to hoist. Doing this doesn't change the order of 316 // execution in the preheader, but does prevent the instruction from 317 // executing in each iteration of the loop. This means it is safe to hoist 318 // something that might trap, but isn't safe to hoist something that reads 319 // memory (without proving that the loop doesn't write). 320 if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() && 321 !Inst->mayWriteToMemory() && !isa<TerminatorInst>(Inst) && 322 !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) { 323 Inst->moveBefore(LoopEntryBranch); 324 continue; 325 } 326 327 // Otherwise, create a duplicate of the instruction. 328 Instruction *C = Inst->clone(); 329 330 // Eagerly remap the operands of the instruction. 331 RemapInstruction(C, ValueMap, 332 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 333 334 // Avoid inserting the same intrinsic twice. 335 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(C)) 336 if (DbgIntrinsics.count(makeHash(DII))) { 337 C->deleteValue(); 338 continue; 339 } 340 341 // With the operands remapped, see if the instruction constant folds or is 342 // otherwise simplifyable. This commonly occurs because the entry from PHI 343 // nodes allows icmps and other instructions to fold. 344 Value *V = SimplifyInstruction(C, SQ); 345 if (V && LI->replacementPreservesLCSSAForm(C, V)) { 346 // If so, then delete the temporary instruction and stick the folded value 347 // in the map. 348 ValueMap[Inst] = V; 349 if (!C->mayHaveSideEffects()) { 350 C->deleteValue(); 351 C = nullptr; 352 } 353 } else { 354 ValueMap[Inst] = C; 355 } 356 if (C) { 357 // Otherwise, stick the new instruction into the new block! 358 C->setName(Inst->getName()); 359 C->insertBefore(LoopEntryBranch); 360 361 if (auto *II = dyn_cast<IntrinsicInst>(C)) 362 if (II->getIntrinsicID() == Intrinsic::assume) 363 AC->registerAssumption(II); 364 } 365 } 366 367 // Along with all the other instructions, we just cloned OrigHeader's 368 // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's 369 // successors by duplicating their incoming values for OrigHeader. 370 TerminatorInst *TI = OrigHeader->getTerminator(); 371 for (BasicBlock *SuccBB : TI->successors()) 372 for (BasicBlock::iterator BI = SuccBB->begin(); 373 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 374 PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader); 375 376 // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove 377 // OrigPreHeader's old terminator (the original branch into the loop), and 378 // remove the corresponding incoming values from the PHI nodes in OrigHeader. 379 LoopEntryBranch->eraseFromParent(); 380 381 382 SmallVector<PHINode*, 2> InsertedPHIs; 383 // If there were any uses of instructions in the duplicated block outside the 384 // loop, update them, inserting PHI nodes as required 385 RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap, 386 &InsertedPHIs); 387 388 // Attach dbg.value intrinsics to the new phis if that phi uses a value that 389 // previously had debug metadata attached. This keeps the debug info 390 // up-to-date in the loop body. 391 if (!InsertedPHIs.empty()) 392 insertDebugValuesForPHIs(OrigHeader, InsertedPHIs); 393 394 // NewHeader is now the header of the loop. 395 L->moveToHeader(NewHeader); 396 assert(L->getHeader() == NewHeader && "Latch block is our new header"); 397 398 // Inform DT about changes to the CFG. 399 if (DT) { 400 // The OrigPreheader branches to the NewHeader and Exit now. Then, inform 401 // the DT about the removed edge to the OrigHeader (that got removed). 402 SmallVector<DominatorTree::UpdateType, 3> Updates; 403 Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit}); 404 Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader}); 405 Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader}); 406 DT->applyUpdates(Updates); 407 } 408 409 // At this point, we've finished our major CFG changes. As part of cloning 410 // the loop into the preheader we've simplified instructions and the 411 // duplicated conditional branch may now be branching on a constant. If it is 412 // branching on a constant and if that constant means that we enter the loop, 413 // then we fold away the cond branch to an uncond branch. This simplifies the 414 // loop in cases important for nested loops, and it also means we don't have 415 // to split as many edges. 416 BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator()); 417 assert(PHBI->isConditional() && "Should be clone of BI condbr!"); 418 if (!isa<ConstantInt>(PHBI->getCondition()) || 419 PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) != 420 NewHeader) { 421 // The conditional branch can't be folded, handle the general case. 422 // Split edges as necessary to preserve LoopSimplify form. 423 424 // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and 425 // thus is not a preheader anymore. 426 // Split the edge to form a real preheader. 427 BasicBlock *NewPH = SplitCriticalEdge( 428 OrigPreheader, NewHeader, 429 CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA()); 430 NewPH->setName(NewHeader->getName() + ".lr.ph"); 431 432 // Preserve canonical loop form, which means that 'Exit' should have only 433 // one predecessor. Note that Exit could be an exit block for multiple 434 // nested loops, causing both of the edges to now be critical and need to 435 // be split. 436 SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit)); 437 bool SplitLatchEdge = false; 438 for (BasicBlock *ExitPred : ExitPreds) { 439 // We only need to split loop exit edges. 440 Loop *PredLoop = LI->getLoopFor(ExitPred); 441 if (!PredLoop || PredLoop->contains(Exit)) 442 continue; 443 if (isa<IndirectBrInst>(ExitPred->getTerminator())) 444 continue; 445 SplitLatchEdge |= L->getLoopLatch() == ExitPred; 446 BasicBlock *ExitSplit = SplitCriticalEdge( 447 ExitPred, Exit, 448 CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA()); 449 ExitSplit->moveBefore(Exit); 450 } 451 assert(SplitLatchEdge && 452 "Despite splitting all preds, failed to split latch exit?"); 453 } else { 454 // We can fold the conditional branch in the preheader, this makes things 455 // simpler. The first step is to remove the extra edge to the Exit block. 456 Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/); 457 BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI); 458 NewBI->setDebugLoc(PHBI->getDebugLoc()); 459 PHBI->eraseFromParent(); 460 461 // With our CFG finalized, update DomTree if it is available. 462 if (DT) DT->deleteEdge(OrigPreheader, Exit); 463 } 464 465 assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation"); 466 assert(L->getLoopLatch() && "Invalid loop latch after loop rotation"); 467 468 // Now that the CFG and DomTree are in a consistent state again, try to merge 469 // the OrigHeader block into OrigLatch. This will succeed if they are 470 // connected by an unconditional branch. This is just a cleanup so the 471 // emitted code isn't too gross in this common case. 472 MergeBlockIntoPredecessor(OrigHeader, DT, LI); 473 474 DEBUG(dbgs() << "LoopRotation: into "; L->dump()); 475 476 ++NumRotated; 477 return true; 478 } 479 480 /// Determine whether the instructions in this range may be safely and cheaply 481 /// speculated. This is not an important enough situation to develop complex 482 /// heuristics. We handle a single arithmetic instruction along with any type 483 /// conversions. 484 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin, 485 BasicBlock::iterator End, Loop *L) { 486 bool seenIncrement = false; 487 bool MultiExitLoop = false; 488 489 if (!L->getExitingBlock()) 490 MultiExitLoop = true; 491 492 for (BasicBlock::iterator I = Begin; I != End; ++I) { 493 494 if (!isSafeToSpeculativelyExecute(&*I)) 495 return false; 496 497 if (isa<DbgInfoIntrinsic>(I)) 498 continue; 499 500 switch (I->getOpcode()) { 501 default: 502 return false; 503 case Instruction::GetElementPtr: 504 // GEPs are cheap if all indices are constant. 505 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 506 return false; 507 // fall-thru to increment case 508 LLVM_FALLTHROUGH; 509 case Instruction::Add: 510 case Instruction::Sub: 511 case Instruction::And: 512 case Instruction::Or: 513 case Instruction::Xor: 514 case Instruction::Shl: 515 case Instruction::LShr: 516 case Instruction::AShr: { 517 Value *IVOpnd = 518 !isa<Constant>(I->getOperand(0)) 519 ? I->getOperand(0) 520 : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr; 521 if (!IVOpnd) 522 return false; 523 524 // If increment operand is used outside of the loop, this speculation 525 // could cause extra live range interference. 526 if (MultiExitLoop) { 527 for (User *UseI : IVOpnd->users()) { 528 auto *UserInst = cast<Instruction>(UseI); 529 if (!L->contains(UserInst)) 530 return false; 531 } 532 } 533 534 if (seenIncrement) 535 return false; 536 seenIncrement = true; 537 break; 538 } 539 case Instruction::Trunc: 540 case Instruction::ZExt: 541 case Instruction::SExt: 542 // ignore type conversions 543 break; 544 } 545 } 546 return true; 547 } 548 549 /// Fold the loop tail into the loop exit by speculating the loop tail 550 /// instructions. Typically, this is a single post-increment. In the case of a 551 /// simple 2-block loop, hoisting the increment can be much better than 552 /// duplicating the entire loop header. In the case of loops with early exits, 553 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in 554 /// canonical form so downstream passes can handle it. 555 /// 556 /// I don't believe this invalidates SCEV. 557 bool LoopRotate::simplifyLoopLatch(Loop *L) { 558 BasicBlock *Latch = L->getLoopLatch(); 559 if (!Latch || Latch->hasAddressTaken()) 560 return false; 561 562 BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator()); 563 if (!Jmp || !Jmp->isUnconditional()) 564 return false; 565 566 BasicBlock *LastExit = Latch->getSinglePredecessor(); 567 if (!LastExit || !L->isLoopExiting(LastExit)) 568 return false; 569 570 BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator()); 571 if (!BI) 572 return false; 573 574 if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L)) 575 return false; 576 577 DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into " 578 << LastExit->getName() << "\n"); 579 580 // Hoist the instructions from Latch into LastExit. 581 LastExit->getInstList().splice(BI->getIterator(), Latch->getInstList(), 582 Latch->begin(), Jmp->getIterator()); 583 584 unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1; 585 BasicBlock *Header = Jmp->getSuccessor(0); 586 assert(Header == L->getHeader() && "expected a backward branch"); 587 588 // Remove Latch from the CFG so that LastExit becomes the new Latch. 589 BI->setSuccessor(FallThruPath, Header); 590 Latch->replaceSuccessorsPhiUsesWith(LastExit); 591 Jmp->eraseFromParent(); 592 593 // Nuke the Latch block. 594 assert(Latch->empty() && "unable to evacuate Latch"); 595 LI->removeBlock(Latch); 596 if (DT) 597 DT->eraseNode(Latch); 598 Latch->eraseFromParent(); 599 return true; 600 } 601 602 /// Rotate \c L, and return true if any modification was made. 603 bool LoopRotate::processLoop(Loop *L) { 604 // Save the loop metadata. 605 MDNode *LoopMD = L->getLoopID(); 606 607 // Simplify the loop latch before attempting to rotate the header 608 // upward. Rotation may not be needed if the loop tail can be folded into the 609 // loop exit. 610 bool SimplifiedLatch = simplifyLoopLatch(L); 611 612 bool MadeChange = rotateLoop(L, SimplifiedLatch); 613 assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) && 614 "Loop latch should be exiting after loop-rotate."); 615 616 // Restore the loop metadata. 617 // NB! We presume LoopRotation DOESN'T ADD its own metadata. 618 if ((MadeChange || SimplifiedLatch) && LoopMD) 619 L->setLoopID(LoopMD); 620 621 return MadeChange || SimplifiedLatch; 622 } 623 624 625 /// The utility to convert a loop into a loop with bottom test. 626 bool llvm::LoopRotation(Loop *L, unsigned MaxHeaderSize, LoopInfo *LI, 627 const TargetTransformInfo *TTI, AssumptionCache *AC, 628 DominatorTree *DT, ScalarEvolution *SE, 629 const SimplifyQuery &SQ) { 630 LoopRotate LR(MaxHeaderSize, LI, TTI, AC, DT, SE, SQ); 631 632 return LR.processLoop(L); 633 } 634