1b0aa36f9SDavid Green //===----------------- LoopRotationUtils.cpp -----------------------------===// 2b0aa36f9SDavid Green // 3b0aa36f9SDavid Green // The LLVM Compiler Infrastructure 4b0aa36f9SDavid Green // 5b0aa36f9SDavid Green // This file is distributed under the University of Illinois Open Source 6b0aa36f9SDavid Green // License. See LICENSE.TXT for details. 7b0aa36f9SDavid Green // 8b0aa36f9SDavid Green //===----------------------------------------------------------------------===// 9b0aa36f9SDavid Green // 10b0aa36f9SDavid Green // This file provides utilities to convert a loop into a loop with bottom test. 11b0aa36f9SDavid Green // 12b0aa36f9SDavid Green //===----------------------------------------------------------------------===// 13b0aa36f9SDavid Green 14b0aa36f9SDavid Green #include "llvm/Transforms/Utils/LoopRotationUtils.h" 15b0aa36f9SDavid Green #include "llvm/ADT/Statistic.h" 16b0aa36f9SDavid Green #include "llvm/Analysis/AliasAnalysis.h" 17b0aa36f9SDavid Green #include "llvm/Analysis/AssumptionCache.h" 18b0aa36f9SDavid Green #include "llvm/Analysis/BasicAliasAnalysis.h" 19b0aa36f9SDavid Green #include "llvm/Analysis/CodeMetrics.h" 20b0aa36f9SDavid Green #include "llvm/Analysis/GlobalsModRef.h" 21b0aa36f9SDavid Green #include "llvm/Analysis/InstructionSimplify.h" 22b0aa36f9SDavid Green #include "llvm/Analysis/LoopPass.h" 23b0aa36f9SDavid Green #include "llvm/Analysis/ScalarEvolution.h" 24b0aa36f9SDavid Green #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 25b0aa36f9SDavid Green #include "llvm/Analysis/TargetTransformInfo.h" 26b0aa36f9SDavid Green #include "llvm/Analysis/ValueTracking.h" 27b0aa36f9SDavid Green #include "llvm/IR/CFG.h" 28b0aa36f9SDavid Green #include "llvm/IR/DebugInfoMetadata.h" 2921a8b605SChijun Sima #include "llvm/IR/DomTreeUpdater.h" 30b0aa36f9SDavid Green #include "llvm/IR/Dominators.h" 31b0aa36f9SDavid Green #include "llvm/IR/Function.h" 32b0aa36f9SDavid Green #include "llvm/IR/IntrinsicInst.h" 33b0aa36f9SDavid Green #include "llvm/IR/Module.h" 34b0aa36f9SDavid Green #include "llvm/Support/CommandLine.h" 35b0aa36f9SDavid Green #include "llvm/Support/Debug.h" 36b0aa36f9SDavid Green #include "llvm/Support/raw_ostream.h" 37b0aa36f9SDavid Green #include "llvm/Transforms/Utils/BasicBlockUtils.h" 3821a8b605SChijun Sima #include "llvm/Transforms/Utils/Local.h" 39b0aa36f9SDavid Green #include "llvm/Transforms/Utils/LoopUtils.h" 40b0aa36f9SDavid Green #include "llvm/Transforms/Utils/SSAUpdater.h" 41b0aa36f9SDavid Green #include "llvm/Transforms/Utils/ValueMapper.h" 42b0aa36f9SDavid Green using namespace llvm; 43b0aa36f9SDavid Green 44b0aa36f9SDavid Green #define DEBUG_TYPE "loop-rotate" 45b0aa36f9SDavid Green 46b0aa36f9SDavid Green STATISTIC(NumRotated, "Number of loops rotated"); 47b0aa36f9SDavid Green 48b0aa36f9SDavid Green namespace { 49b0aa36f9SDavid Green /// A simple loop rotation transformation. 50b0aa36f9SDavid Green class LoopRotate { 51b0aa36f9SDavid Green const unsigned MaxHeaderSize; 52b0aa36f9SDavid Green LoopInfo *LI; 53b0aa36f9SDavid Green const TargetTransformInfo *TTI; 54b0aa36f9SDavid Green AssumptionCache *AC; 55b0aa36f9SDavid Green DominatorTree *DT; 56b0aa36f9SDavid Green ScalarEvolution *SE; 57b0aa36f9SDavid Green const SimplifyQuery &SQ; 58585f2699SJin Lin bool RotationOnly; 59585f2699SJin Lin bool IsUtilMode; 60b0aa36f9SDavid Green 61b0aa36f9SDavid Green public: 62b0aa36f9SDavid Green LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI, 63b0aa36f9SDavid Green const TargetTransformInfo *TTI, AssumptionCache *AC, 64585f2699SJin Lin DominatorTree *DT, ScalarEvolution *SE, const SimplifyQuery &SQ, 65585f2699SJin Lin bool RotationOnly, bool IsUtilMode) 66b0aa36f9SDavid Green : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE), 67585f2699SJin Lin SQ(SQ), RotationOnly(RotationOnly), IsUtilMode(IsUtilMode) {} 68b0aa36f9SDavid Green bool processLoop(Loop *L); 69b0aa36f9SDavid Green 70b0aa36f9SDavid Green private: 71b0aa36f9SDavid Green bool rotateLoop(Loop *L, bool SimplifiedLatch); 72b0aa36f9SDavid Green bool simplifyLoopLatch(Loop *L); 73b0aa36f9SDavid Green }; 74b0aa36f9SDavid Green } // end anonymous namespace 75b0aa36f9SDavid Green 76b0aa36f9SDavid Green /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the 77b0aa36f9SDavid Green /// old header into the preheader. If there were uses of the values produced by 78b0aa36f9SDavid Green /// these instruction that were outside of the loop, we have to insert PHI nodes 79b0aa36f9SDavid Green /// to merge the two values. Do this now. 80b0aa36f9SDavid Green static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader, 81b0aa36f9SDavid Green BasicBlock *OrigPreheader, 82b0aa36f9SDavid Green ValueToValueMapTy &ValueMap, 83b0aa36f9SDavid Green SmallVectorImpl<PHINode*> *InsertedPHIs) { 84b0aa36f9SDavid Green // Remove PHI node entries that are no longer live. 85b0aa36f9SDavid Green BasicBlock::iterator I, E = OrigHeader->end(); 86b0aa36f9SDavid Green for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I) 87b0aa36f9SDavid Green PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader)); 88b0aa36f9SDavid Green 89b0aa36f9SDavid Green // Now fix up users of the instructions in OrigHeader, inserting PHI nodes 90b0aa36f9SDavid Green // as necessary. 91b0aa36f9SDavid Green SSAUpdater SSA(InsertedPHIs); 92b0aa36f9SDavid Green for (I = OrigHeader->begin(); I != E; ++I) { 93b0aa36f9SDavid Green Value *OrigHeaderVal = &*I; 94b0aa36f9SDavid Green 95b0aa36f9SDavid Green // If there are no uses of the value (e.g. because it returns void), there 96b0aa36f9SDavid Green // is nothing to rewrite. 97b0aa36f9SDavid Green if (OrigHeaderVal->use_empty()) 98b0aa36f9SDavid Green continue; 99b0aa36f9SDavid Green 100b0aa36f9SDavid Green Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal); 101b0aa36f9SDavid Green 102b0aa36f9SDavid Green // The value now exits in two versions: the initial value in the preheader 103b0aa36f9SDavid Green // and the loop "next" value in the original header. 104b0aa36f9SDavid Green SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName()); 105b0aa36f9SDavid Green SSA.AddAvailableValue(OrigHeader, OrigHeaderVal); 106b0aa36f9SDavid Green SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal); 107b0aa36f9SDavid Green 108b0aa36f9SDavid Green // Visit each use of the OrigHeader instruction. 109b0aa36f9SDavid Green for (Value::use_iterator UI = OrigHeaderVal->use_begin(), 110b0aa36f9SDavid Green UE = OrigHeaderVal->use_end(); 111b0aa36f9SDavid Green UI != UE;) { 112b0aa36f9SDavid Green // Grab the use before incrementing the iterator. 113b0aa36f9SDavid Green Use &U = *UI; 114b0aa36f9SDavid Green 115b0aa36f9SDavid Green // Increment the iterator before removing the use from the list. 116b0aa36f9SDavid Green ++UI; 117b0aa36f9SDavid Green 118b0aa36f9SDavid Green // SSAUpdater can't handle a non-PHI use in the same block as an 119b0aa36f9SDavid Green // earlier def. We can easily handle those cases manually. 120b0aa36f9SDavid Green Instruction *UserInst = cast<Instruction>(U.getUser()); 121b0aa36f9SDavid Green if (!isa<PHINode>(UserInst)) { 122b0aa36f9SDavid Green BasicBlock *UserBB = UserInst->getParent(); 123b0aa36f9SDavid Green 124b0aa36f9SDavid Green // The original users in the OrigHeader are already using the 125b0aa36f9SDavid Green // original definitions. 126b0aa36f9SDavid Green if (UserBB == OrigHeader) 127b0aa36f9SDavid Green continue; 128b0aa36f9SDavid Green 129b0aa36f9SDavid Green // Users in the OrigPreHeader need to use the value to which the 130b0aa36f9SDavid Green // original definitions are mapped. 131b0aa36f9SDavid Green if (UserBB == OrigPreheader) { 132b0aa36f9SDavid Green U = OrigPreHeaderVal; 133b0aa36f9SDavid Green continue; 134b0aa36f9SDavid Green } 135b0aa36f9SDavid Green } 136b0aa36f9SDavid Green 137b0aa36f9SDavid Green // Anything else can be handled by SSAUpdater. 138b0aa36f9SDavid Green SSA.RewriteUse(U); 139b0aa36f9SDavid Green } 140b0aa36f9SDavid Green 141b0aa36f9SDavid Green // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug 142b0aa36f9SDavid Green // intrinsics. 143b0aa36f9SDavid Green SmallVector<DbgValueInst *, 1> DbgValues; 144b0aa36f9SDavid Green llvm::findDbgValues(DbgValues, OrigHeaderVal); 145b0aa36f9SDavid Green for (auto &DbgValue : DbgValues) { 146b0aa36f9SDavid Green // The original users in the OrigHeader are already using the original 147b0aa36f9SDavid Green // definitions. 148b0aa36f9SDavid Green BasicBlock *UserBB = DbgValue->getParent(); 149b0aa36f9SDavid Green if (UserBB == OrigHeader) 150b0aa36f9SDavid Green continue; 151b0aa36f9SDavid Green 152b0aa36f9SDavid Green // Users in the OrigPreHeader need to use the value to which the 153b0aa36f9SDavid Green // original definitions are mapped and anything else can be handled by 154b0aa36f9SDavid Green // the SSAUpdater. To avoid adding PHINodes, check if the value is 155b0aa36f9SDavid Green // available in UserBB, if not substitute undef. 156b0aa36f9SDavid Green Value *NewVal; 157b0aa36f9SDavid Green if (UserBB == OrigPreheader) 158b0aa36f9SDavid Green NewVal = OrigPreHeaderVal; 159b0aa36f9SDavid Green else if (SSA.HasValueForBlock(UserBB)) 160b0aa36f9SDavid Green NewVal = SSA.GetValueInMiddleOfBlock(UserBB); 161b0aa36f9SDavid Green else 162b0aa36f9SDavid Green NewVal = UndefValue::get(OrigHeaderVal->getType()); 163b0aa36f9SDavid Green DbgValue->setOperand(0, 164b0aa36f9SDavid Green MetadataAsValue::get(OrigHeaderVal->getContext(), 165b0aa36f9SDavid Green ValueAsMetadata::get(NewVal))); 166b0aa36f9SDavid Green } 167b0aa36f9SDavid Green } 168b0aa36f9SDavid Green } 169b0aa36f9SDavid Green 170f80ebc8dSDavid Green // Look for a phi which is only used outside the loop (via a LCSSA phi) 171f80ebc8dSDavid Green // in the exit from the header. This means that rotating the loop can 172f80ebc8dSDavid Green // remove the phi. 173f80ebc8dSDavid Green static bool shouldRotateLoopExitingLatch(Loop *L) { 174f80ebc8dSDavid Green BasicBlock *Header = L->getHeader(); 175f80ebc8dSDavid Green BasicBlock *HeaderExit = Header->getTerminator()->getSuccessor(0); 176f80ebc8dSDavid Green if (L->contains(HeaderExit)) 177f80ebc8dSDavid Green HeaderExit = Header->getTerminator()->getSuccessor(1); 178f80ebc8dSDavid Green 179f80ebc8dSDavid Green for (auto &Phi : Header->phis()) { 180f80ebc8dSDavid Green // Look for uses of this phi in the loop/via exits other than the header. 181f80ebc8dSDavid Green if (llvm::any_of(Phi.users(), [HeaderExit](const User *U) { 182f80ebc8dSDavid Green return cast<Instruction>(U)->getParent() != HeaderExit; 183f80ebc8dSDavid Green })) 184f80ebc8dSDavid Green continue; 185f80ebc8dSDavid Green return true; 186f80ebc8dSDavid Green } 187f80ebc8dSDavid Green 188f80ebc8dSDavid Green return false; 189f80ebc8dSDavid Green } 190f80ebc8dSDavid Green 191b0aa36f9SDavid Green /// Rotate loop LP. Return true if the loop is rotated. 192b0aa36f9SDavid Green /// 193b0aa36f9SDavid Green /// \param SimplifiedLatch is true if the latch was just folded into the final 194b0aa36f9SDavid Green /// loop exit. In this case we may want to rotate even though the new latch is 195b0aa36f9SDavid Green /// now an exiting branch. This rotation would have happened had the latch not 196b0aa36f9SDavid Green /// been simplified. However, if SimplifiedLatch is false, then we avoid 197b0aa36f9SDavid Green /// rotating loops in which the latch exits to avoid excessive or endless 198b0aa36f9SDavid Green /// rotation. LoopRotate should be repeatable and converge to a canonical 199b0aa36f9SDavid Green /// form. This property is satisfied because simplifying the loop latch can only 200b0aa36f9SDavid Green /// happen once across multiple invocations of the LoopRotate pass. 201b0aa36f9SDavid Green bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) { 202b0aa36f9SDavid Green // If the loop has only one block then there is not much to rotate. 203b0aa36f9SDavid Green if (L->getBlocks().size() == 1) 204b0aa36f9SDavid Green return false; 205b0aa36f9SDavid Green 206b0aa36f9SDavid Green BasicBlock *OrigHeader = L->getHeader(); 207b0aa36f9SDavid Green BasicBlock *OrigLatch = L->getLoopLatch(); 208b0aa36f9SDavid Green 209b0aa36f9SDavid Green BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator()); 210b0aa36f9SDavid Green if (!BI || BI->isUnconditional()) 211b0aa36f9SDavid Green return false; 212b0aa36f9SDavid Green 213b0aa36f9SDavid Green // If the loop header is not one of the loop exiting blocks then 214b0aa36f9SDavid Green // either this loop is already rotated or it is not 215b0aa36f9SDavid Green // suitable for loop rotation transformations. 216b0aa36f9SDavid Green if (!L->isLoopExiting(OrigHeader)) 217b0aa36f9SDavid Green return false; 218b0aa36f9SDavid Green 219b0aa36f9SDavid Green // If the loop latch already contains a branch that leaves the loop then the 220b0aa36f9SDavid Green // loop is already rotated. 221b0aa36f9SDavid Green if (!OrigLatch) 222b0aa36f9SDavid Green return false; 223b0aa36f9SDavid Green 224b0aa36f9SDavid Green // Rotate if either the loop latch does *not* exit the loop, or if the loop 225f80ebc8dSDavid Green // latch was just simplified. Or if we think it will be profitable. 226585f2699SJin Lin if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false && 227f80ebc8dSDavid Green !shouldRotateLoopExitingLatch(L)) 228b0aa36f9SDavid Green return false; 229b0aa36f9SDavid Green 230b0aa36f9SDavid Green // Check size of original header and reject loop if it is very big or we can't 231b0aa36f9SDavid Green // duplicate blocks inside it. 232b0aa36f9SDavid Green { 233b0aa36f9SDavid Green SmallPtrSet<const Value *, 32> EphValues; 234b0aa36f9SDavid Green CodeMetrics::collectEphemeralValues(L, AC, EphValues); 235b0aa36f9SDavid Green 236b0aa36f9SDavid Green CodeMetrics Metrics; 237b0aa36f9SDavid Green Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues); 238b0aa36f9SDavid Green if (Metrics.notDuplicatable) { 239d34e60caSNicola Zaghen LLVM_DEBUG( 240d34e60caSNicola Zaghen dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable" 241b0aa36f9SDavid Green << " instructions: "; 242b0aa36f9SDavid Green L->dump()); 243b0aa36f9SDavid Green return false; 244b0aa36f9SDavid Green } 245b0aa36f9SDavid Green if (Metrics.convergent) { 246d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent " 247b0aa36f9SDavid Green "instructions: "; 248b0aa36f9SDavid Green L->dump()); 249b0aa36f9SDavid Green return false; 250b0aa36f9SDavid Green } 251b0aa36f9SDavid Green if (Metrics.NumInsts > MaxHeaderSize) 252b0aa36f9SDavid Green return false; 253b0aa36f9SDavid Green } 254b0aa36f9SDavid Green 255b0aa36f9SDavid Green // Now, this loop is suitable for rotation. 256b0aa36f9SDavid Green BasicBlock *OrigPreheader = L->getLoopPreheader(); 257b0aa36f9SDavid Green 258b0aa36f9SDavid Green // If the loop could not be converted to canonical form, it must have an 259b0aa36f9SDavid Green // indirectbr in it, just give up. 260b0aa36f9SDavid Green if (!OrigPreheader || !L->hasDedicatedExits()) 261b0aa36f9SDavid Green return false; 262b0aa36f9SDavid Green 263b0aa36f9SDavid Green // Anything ScalarEvolution may know about this loop or the PHI nodes 2645a0a40b8SMax Kazantsev // in its header will soon be invalidated. We should also invalidate 2655a0a40b8SMax Kazantsev // all outer loops because insertion and deletion of blocks that happens 2665a0a40b8SMax Kazantsev // during the rotation may violate invariants related to backedge taken 2675a0a40b8SMax Kazantsev // infos in them. 268b0aa36f9SDavid Green if (SE) 26991f48166SMax Kazantsev SE->forgetTopmostLoop(L); 270b0aa36f9SDavid Green 271d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump()); 272b0aa36f9SDavid Green 273b0aa36f9SDavid Green // Find new Loop header. NewHeader is a Header's one and only successor 274b0aa36f9SDavid Green // that is inside loop. Header's other successor is outside the 275b0aa36f9SDavid Green // loop. Otherwise loop is not suitable for rotation. 276b0aa36f9SDavid Green BasicBlock *Exit = BI->getSuccessor(0); 277b0aa36f9SDavid Green BasicBlock *NewHeader = BI->getSuccessor(1); 278b0aa36f9SDavid Green if (L->contains(Exit)) 279b0aa36f9SDavid Green std::swap(Exit, NewHeader); 280b0aa36f9SDavid Green assert(NewHeader && "Unable to determine new loop header"); 281b0aa36f9SDavid Green assert(L->contains(NewHeader) && !L->contains(Exit) && 282b0aa36f9SDavid Green "Unable to determine loop header and exit blocks"); 283b0aa36f9SDavid Green 284b0aa36f9SDavid Green // This code assumes that the new header has exactly one predecessor. 285b0aa36f9SDavid Green // Remove any single-entry PHI nodes in it. 286b0aa36f9SDavid Green assert(NewHeader->getSinglePredecessor() && 287b0aa36f9SDavid Green "New header doesn't have one pred!"); 288b0aa36f9SDavid Green FoldSingleEntryPHINodes(NewHeader); 289b0aa36f9SDavid Green 290b0aa36f9SDavid Green // Begin by walking OrigHeader and populating ValueMap with an entry for 291b0aa36f9SDavid Green // each Instruction. 292b0aa36f9SDavid Green BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end(); 293b0aa36f9SDavid Green ValueToValueMapTy ValueMap; 294b0aa36f9SDavid Green 295b0aa36f9SDavid Green // For PHI nodes, the value available in OldPreHeader is just the 296b0aa36f9SDavid Green // incoming value from OldPreHeader. 297b0aa36f9SDavid Green for (; PHINode *PN = dyn_cast<PHINode>(I); ++I) 298b0aa36f9SDavid Green ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader); 299b0aa36f9SDavid Green 300b0aa36f9SDavid Green // For the rest of the instructions, either hoist to the OrigPreheader if 301b0aa36f9SDavid Green // possible or create a clone in the OldPreHeader if not. 302b0aa36f9SDavid Green TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator(); 303b0aa36f9SDavid Green 304b0aa36f9SDavid Green // Record all debug intrinsics preceding LoopEntryBranch to avoid duplication. 305b0aa36f9SDavid Green using DbgIntrinsicHash = 306b0aa36f9SDavid Green std::pair<std::pair<Value *, DILocalVariable *>, DIExpression *>; 307*ef72e481SHsiangkai Wang auto makeHash = [](DbgVariableIntrinsic *D) -> DbgIntrinsicHash { 308b0aa36f9SDavid Green return {{D->getVariableLocation(), D->getVariable()}, D->getExpression()}; 309b0aa36f9SDavid Green }; 310b0aa36f9SDavid Green SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics; 311b0aa36f9SDavid Green for (auto I = std::next(OrigPreheader->rbegin()), E = OrigPreheader->rend(); 312b0aa36f9SDavid Green I != E; ++I) { 313*ef72e481SHsiangkai Wang if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&*I)) 314b0aa36f9SDavid Green DbgIntrinsics.insert(makeHash(DII)); 315b0aa36f9SDavid Green else 316b0aa36f9SDavid Green break; 317b0aa36f9SDavid Green } 318b0aa36f9SDavid Green 319b0aa36f9SDavid Green while (I != E) { 320b0aa36f9SDavid Green Instruction *Inst = &*I++; 321b0aa36f9SDavid Green 322b0aa36f9SDavid Green // If the instruction's operands are invariant and it doesn't read or write 323b0aa36f9SDavid Green // memory, then it is safe to hoist. Doing this doesn't change the order of 324b0aa36f9SDavid Green // execution in the preheader, but does prevent the instruction from 325b0aa36f9SDavid Green // executing in each iteration of the loop. This means it is safe to hoist 326b0aa36f9SDavid Green // something that might trap, but isn't safe to hoist something that reads 327b0aa36f9SDavid Green // memory (without proving that the loop doesn't write). 328b0aa36f9SDavid Green if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() && 329b0aa36f9SDavid Green !Inst->mayWriteToMemory() && !isa<TerminatorInst>(Inst) && 330b0aa36f9SDavid Green !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) { 331b0aa36f9SDavid Green Inst->moveBefore(LoopEntryBranch); 332b0aa36f9SDavid Green continue; 333b0aa36f9SDavid Green } 334b0aa36f9SDavid Green 335b0aa36f9SDavid Green // Otherwise, create a duplicate of the instruction. 336b0aa36f9SDavid Green Instruction *C = Inst->clone(); 337b0aa36f9SDavid Green 338b0aa36f9SDavid Green // Eagerly remap the operands of the instruction. 339b0aa36f9SDavid Green RemapInstruction(C, ValueMap, 340b0aa36f9SDavid Green RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 341b0aa36f9SDavid Green 342b0aa36f9SDavid Green // Avoid inserting the same intrinsic twice. 343*ef72e481SHsiangkai Wang if (auto *DII = dyn_cast<DbgVariableIntrinsic>(C)) 344b0aa36f9SDavid Green if (DbgIntrinsics.count(makeHash(DII))) { 345b0aa36f9SDavid Green C->deleteValue(); 346b0aa36f9SDavid Green continue; 347b0aa36f9SDavid Green } 348b0aa36f9SDavid Green 349b0aa36f9SDavid Green // With the operands remapped, see if the instruction constant folds or is 350b0aa36f9SDavid Green // otherwise simplifyable. This commonly occurs because the entry from PHI 351b0aa36f9SDavid Green // nodes allows icmps and other instructions to fold. 352b0aa36f9SDavid Green Value *V = SimplifyInstruction(C, SQ); 353b0aa36f9SDavid Green if (V && LI->replacementPreservesLCSSAForm(C, V)) { 354b0aa36f9SDavid Green // If so, then delete the temporary instruction and stick the folded value 355b0aa36f9SDavid Green // in the map. 356b0aa36f9SDavid Green ValueMap[Inst] = V; 357b0aa36f9SDavid Green if (!C->mayHaveSideEffects()) { 358b0aa36f9SDavid Green C->deleteValue(); 359b0aa36f9SDavid Green C = nullptr; 360b0aa36f9SDavid Green } 361b0aa36f9SDavid Green } else { 362b0aa36f9SDavid Green ValueMap[Inst] = C; 363b0aa36f9SDavid Green } 364b0aa36f9SDavid Green if (C) { 365b0aa36f9SDavid Green // Otherwise, stick the new instruction into the new block! 366b0aa36f9SDavid Green C->setName(Inst->getName()); 367b0aa36f9SDavid Green C->insertBefore(LoopEntryBranch); 368b0aa36f9SDavid Green 369b0aa36f9SDavid Green if (auto *II = dyn_cast<IntrinsicInst>(C)) 370b0aa36f9SDavid Green if (II->getIntrinsicID() == Intrinsic::assume) 371b0aa36f9SDavid Green AC->registerAssumption(II); 372b0aa36f9SDavid Green } 373b0aa36f9SDavid Green } 374b0aa36f9SDavid Green 375b0aa36f9SDavid Green // Along with all the other instructions, we just cloned OrigHeader's 376b0aa36f9SDavid Green // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's 377b0aa36f9SDavid Green // successors by duplicating their incoming values for OrigHeader. 378b0aa36f9SDavid Green TerminatorInst *TI = OrigHeader->getTerminator(); 379b0aa36f9SDavid Green for (BasicBlock *SuccBB : TI->successors()) 380b0aa36f9SDavid Green for (BasicBlock::iterator BI = SuccBB->begin(); 381b0aa36f9SDavid Green PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 382b0aa36f9SDavid Green PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader); 383b0aa36f9SDavid Green 384b0aa36f9SDavid Green // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove 385b0aa36f9SDavid Green // OrigPreHeader's old terminator (the original branch into the loop), and 386b0aa36f9SDavid Green // remove the corresponding incoming values from the PHI nodes in OrigHeader. 387b0aa36f9SDavid Green LoopEntryBranch->eraseFromParent(); 388b0aa36f9SDavid Green 389b0aa36f9SDavid Green 390b0aa36f9SDavid Green SmallVector<PHINode*, 2> InsertedPHIs; 391b0aa36f9SDavid Green // If there were any uses of instructions in the duplicated block outside the 392b0aa36f9SDavid Green // loop, update them, inserting PHI nodes as required 393b0aa36f9SDavid Green RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap, 394b0aa36f9SDavid Green &InsertedPHIs); 395b0aa36f9SDavid Green 396b0aa36f9SDavid Green // Attach dbg.value intrinsics to the new phis if that phi uses a value that 397b0aa36f9SDavid Green // previously had debug metadata attached. This keeps the debug info 398b0aa36f9SDavid Green // up-to-date in the loop body. 399b0aa36f9SDavid Green if (!InsertedPHIs.empty()) 400b0aa36f9SDavid Green insertDebugValuesForPHIs(OrigHeader, InsertedPHIs); 401b0aa36f9SDavid Green 402b0aa36f9SDavid Green // NewHeader is now the header of the loop. 403b0aa36f9SDavid Green L->moveToHeader(NewHeader); 404b0aa36f9SDavid Green assert(L->getHeader() == NewHeader && "Latch block is our new header"); 405b0aa36f9SDavid Green 406b0aa36f9SDavid Green // Inform DT about changes to the CFG. 407b0aa36f9SDavid Green if (DT) { 408b0aa36f9SDavid Green // The OrigPreheader branches to the NewHeader and Exit now. Then, inform 409b0aa36f9SDavid Green // the DT about the removed edge to the OrigHeader (that got removed). 410b0aa36f9SDavid Green SmallVector<DominatorTree::UpdateType, 3> Updates; 411b0aa36f9SDavid Green Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit}); 412b0aa36f9SDavid Green Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader}); 413b0aa36f9SDavid Green Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader}); 414b0aa36f9SDavid Green DT->applyUpdates(Updates); 415b0aa36f9SDavid Green } 416b0aa36f9SDavid Green 417b0aa36f9SDavid Green // At this point, we've finished our major CFG changes. As part of cloning 418b0aa36f9SDavid Green // the loop into the preheader we've simplified instructions and the 419b0aa36f9SDavid Green // duplicated conditional branch may now be branching on a constant. If it is 420b0aa36f9SDavid Green // branching on a constant and if that constant means that we enter the loop, 421b0aa36f9SDavid Green // then we fold away the cond branch to an uncond branch. This simplifies the 422b0aa36f9SDavid Green // loop in cases important for nested loops, and it also means we don't have 423b0aa36f9SDavid Green // to split as many edges. 424b0aa36f9SDavid Green BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator()); 425b0aa36f9SDavid Green assert(PHBI->isConditional() && "Should be clone of BI condbr!"); 426b0aa36f9SDavid Green if (!isa<ConstantInt>(PHBI->getCondition()) || 427b0aa36f9SDavid Green PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) != 428b0aa36f9SDavid Green NewHeader) { 429b0aa36f9SDavid Green // The conditional branch can't be folded, handle the general case. 430b0aa36f9SDavid Green // Split edges as necessary to preserve LoopSimplify form. 431b0aa36f9SDavid Green 432b0aa36f9SDavid Green // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and 433b0aa36f9SDavid Green // thus is not a preheader anymore. 434b0aa36f9SDavid Green // Split the edge to form a real preheader. 435b0aa36f9SDavid Green BasicBlock *NewPH = SplitCriticalEdge( 436b0aa36f9SDavid Green OrigPreheader, NewHeader, 437b0aa36f9SDavid Green CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA()); 438b0aa36f9SDavid Green NewPH->setName(NewHeader->getName() + ".lr.ph"); 439b0aa36f9SDavid Green 440b0aa36f9SDavid Green // Preserve canonical loop form, which means that 'Exit' should have only 441b0aa36f9SDavid Green // one predecessor. Note that Exit could be an exit block for multiple 442b0aa36f9SDavid Green // nested loops, causing both of the edges to now be critical and need to 443b0aa36f9SDavid Green // be split. 444b0aa36f9SDavid Green SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit)); 445b0aa36f9SDavid Green bool SplitLatchEdge = false; 446b0aa36f9SDavid Green for (BasicBlock *ExitPred : ExitPreds) { 447b0aa36f9SDavid Green // We only need to split loop exit edges. 448b0aa36f9SDavid Green Loop *PredLoop = LI->getLoopFor(ExitPred); 449b0aa36f9SDavid Green if (!PredLoop || PredLoop->contains(Exit)) 450b0aa36f9SDavid Green continue; 451b0aa36f9SDavid Green if (isa<IndirectBrInst>(ExitPred->getTerminator())) 452b0aa36f9SDavid Green continue; 453b0aa36f9SDavid Green SplitLatchEdge |= L->getLoopLatch() == ExitPred; 454b0aa36f9SDavid Green BasicBlock *ExitSplit = SplitCriticalEdge( 455b0aa36f9SDavid Green ExitPred, Exit, 456b0aa36f9SDavid Green CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA()); 457b0aa36f9SDavid Green ExitSplit->moveBefore(Exit); 458b0aa36f9SDavid Green } 459b0aa36f9SDavid Green assert(SplitLatchEdge && 460b0aa36f9SDavid Green "Despite splitting all preds, failed to split latch exit?"); 461b0aa36f9SDavid Green } else { 462b0aa36f9SDavid Green // We can fold the conditional branch in the preheader, this makes things 463b0aa36f9SDavid Green // simpler. The first step is to remove the extra edge to the Exit block. 464b0aa36f9SDavid Green Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/); 465b0aa36f9SDavid Green BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI); 466b0aa36f9SDavid Green NewBI->setDebugLoc(PHBI->getDebugLoc()); 467b0aa36f9SDavid Green PHBI->eraseFromParent(); 468b0aa36f9SDavid Green 469b0aa36f9SDavid Green // With our CFG finalized, update DomTree if it is available. 470b0aa36f9SDavid Green if (DT) DT->deleteEdge(OrigPreheader, Exit); 471b0aa36f9SDavid Green } 472b0aa36f9SDavid Green 473b0aa36f9SDavid Green assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation"); 474b0aa36f9SDavid Green assert(L->getLoopLatch() && "Invalid loop latch after loop rotation"); 475b0aa36f9SDavid Green 476b0aa36f9SDavid Green // Now that the CFG and DomTree are in a consistent state again, try to merge 477b0aa36f9SDavid Green // the OrigHeader block into OrigLatch. This will succeed if they are 478b0aa36f9SDavid Green // connected by an unconditional branch. This is just a cleanup so the 479b0aa36f9SDavid Green // emitted code isn't too gross in this common case. 48021a8b605SChijun Sima DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 48121a8b605SChijun Sima MergeBlockIntoPredecessor(OrigHeader, &DTU, LI); 482b0aa36f9SDavid Green 483d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump()); 484b0aa36f9SDavid Green 485b0aa36f9SDavid Green ++NumRotated; 486b0aa36f9SDavid Green return true; 487b0aa36f9SDavid Green } 488b0aa36f9SDavid Green 489b0aa36f9SDavid Green /// Determine whether the instructions in this range may be safely and cheaply 490b0aa36f9SDavid Green /// speculated. This is not an important enough situation to develop complex 491b0aa36f9SDavid Green /// heuristics. We handle a single arithmetic instruction along with any type 492b0aa36f9SDavid Green /// conversions. 493b0aa36f9SDavid Green static bool shouldSpeculateInstrs(BasicBlock::iterator Begin, 494b0aa36f9SDavid Green BasicBlock::iterator End, Loop *L) { 495b0aa36f9SDavid Green bool seenIncrement = false; 496b0aa36f9SDavid Green bool MultiExitLoop = false; 497b0aa36f9SDavid Green 498b0aa36f9SDavid Green if (!L->getExitingBlock()) 499b0aa36f9SDavid Green MultiExitLoop = true; 500b0aa36f9SDavid Green 501b0aa36f9SDavid Green for (BasicBlock::iterator I = Begin; I != End; ++I) { 502b0aa36f9SDavid Green 503b0aa36f9SDavid Green if (!isSafeToSpeculativelyExecute(&*I)) 504b0aa36f9SDavid Green return false; 505b0aa36f9SDavid Green 506b0aa36f9SDavid Green if (isa<DbgInfoIntrinsic>(I)) 507b0aa36f9SDavid Green continue; 508b0aa36f9SDavid Green 509b0aa36f9SDavid Green switch (I->getOpcode()) { 510b0aa36f9SDavid Green default: 511b0aa36f9SDavid Green return false; 512b0aa36f9SDavid Green case Instruction::GetElementPtr: 513b0aa36f9SDavid Green // GEPs are cheap if all indices are constant. 514b0aa36f9SDavid Green if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 515b0aa36f9SDavid Green return false; 516b0aa36f9SDavid Green // fall-thru to increment case 517b0aa36f9SDavid Green LLVM_FALLTHROUGH; 518b0aa36f9SDavid Green case Instruction::Add: 519b0aa36f9SDavid Green case Instruction::Sub: 520b0aa36f9SDavid Green case Instruction::And: 521b0aa36f9SDavid Green case Instruction::Or: 522b0aa36f9SDavid Green case Instruction::Xor: 523b0aa36f9SDavid Green case Instruction::Shl: 524b0aa36f9SDavid Green case Instruction::LShr: 525b0aa36f9SDavid Green case Instruction::AShr: { 526b0aa36f9SDavid Green Value *IVOpnd = 527b0aa36f9SDavid Green !isa<Constant>(I->getOperand(0)) 528b0aa36f9SDavid Green ? I->getOperand(0) 529b0aa36f9SDavid Green : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr; 530b0aa36f9SDavid Green if (!IVOpnd) 531b0aa36f9SDavid Green return false; 532b0aa36f9SDavid Green 533b0aa36f9SDavid Green // If increment operand is used outside of the loop, this speculation 534b0aa36f9SDavid Green // could cause extra live range interference. 535b0aa36f9SDavid Green if (MultiExitLoop) { 536b0aa36f9SDavid Green for (User *UseI : IVOpnd->users()) { 537b0aa36f9SDavid Green auto *UserInst = cast<Instruction>(UseI); 538b0aa36f9SDavid Green if (!L->contains(UserInst)) 539b0aa36f9SDavid Green return false; 540b0aa36f9SDavid Green } 541b0aa36f9SDavid Green } 542b0aa36f9SDavid Green 543b0aa36f9SDavid Green if (seenIncrement) 544b0aa36f9SDavid Green return false; 545b0aa36f9SDavid Green seenIncrement = true; 546b0aa36f9SDavid Green break; 547b0aa36f9SDavid Green } 548b0aa36f9SDavid Green case Instruction::Trunc: 549b0aa36f9SDavid Green case Instruction::ZExt: 550b0aa36f9SDavid Green case Instruction::SExt: 551b0aa36f9SDavid Green // ignore type conversions 552b0aa36f9SDavid Green break; 553b0aa36f9SDavid Green } 554b0aa36f9SDavid Green } 555b0aa36f9SDavid Green return true; 556b0aa36f9SDavid Green } 557b0aa36f9SDavid Green 558b0aa36f9SDavid Green /// Fold the loop tail into the loop exit by speculating the loop tail 559b0aa36f9SDavid Green /// instructions. Typically, this is a single post-increment. In the case of a 560b0aa36f9SDavid Green /// simple 2-block loop, hoisting the increment can be much better than 561b0aa36f9SDavid Green /// duplicating the entire loop header. In the case of loops with early exits, 562b0aa36f9SDavid Green /// rotation will not work anyway, but simplifyLoopLatch will put the loop in 563b0aa36f9SDavid Green /// canonical form so downstream passes can handle it. 564b0aa36f9SDavid Green /// 565b0aa36f9SDavid Green /// I don't believe this invalidates SCEV. 566b0aa36f9SDavid Green bool LoopRotate::simplifyLoopLatch(Loop *L) { 567b0aa36f9SDavid Green BasicBlock *Latch = L->getLoopLatch(); 568b0aa36f9SDavid Green if (!Latch || Latch->hasAddressTaken()) 569b0aa36f9SDavid Green return false; 570b0aa36f9SDavid Green 571b0aa36f9SDavid Green BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator()); 572b0aa36f9SDavid Green if (!Jmp || !Jmp->isUnconditional()) 573b0aa36f9SDavid Green return false; 574b0aa36f9SDavid Green 575b0aa36f9SDavid Green BasicBlock *LastExit = Latch->getSinglePredecessor(); 576b0aa36f9SDavid Green if (!LastExit || !L->isLoopExiting(LastExit)) 577b0aa36f9SDavid Green return false; 578b0aa36f9SDavid Green 579b0aa36f9SDavid Green BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator()); 580b0aa36f9SDavid Green if (!BI) 581b0aa36f9SDavid Green return false; 582b0aa36f9SDavid Green 583b0aa36f9SDavid Green if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L)) 584b0aa36f9SDavid Green return false; 585b0aa36f9SDavid Green 586d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into " 587b0aa36f9SDavid Green << LastExit->getName() << "\n"); 588b0aa36f9SDavid Green 589b0aa36f9SDavid Green // Hoist the instructions from Latch into LastExit. 590b0aa36f9SDavid Green LastExit->getInstList().splice(BI->getIterator(), Latch->getInstList(), 591b0aa36f9SDavid Green Latch->begin(), Jmp->getIterator()); 592b0aa36f9SDavid Green 593b0aa36f9SDavid Green unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1; 594b0aa36f9SDavid Green BasicBlock *Header = Jmp->getSuccessor(0); 595b0aa36f9SDavid Green assert(Header == L->getHeader() && "expected a backward branch"); 596b0aa36f9SDavid Green 597b0aa36f9SDavid Green // Remove Latch from the CFG so that LastExit becomes the new Latch. 598b0aa36f9SDavid Green BI->setSuccessor(FallThruPath, Header); 599b0aa36f9SDavid Green Latch->replaceSuccessorsPhiUsesWith(LastExit); 600b0aa36f9SDavid Green Jmp->eraseFromParent(); 601b0aa36f9SDavid Green 602b0aa36f9SDavid Green // Nuke the Latch block. 603b0aa36f9SDavid Green assert(Latch->empty() && "unable to evacuate Latch"); 604b0aa36f9SDavid Green LI->removeBlock(Latch); 605b0aa36f9SDavid Green if (DT) 606b0aa36f9SDavid Green DT->eraseNode(Latch); 607b0aa36f9SDavid Green Latch->eraseFromParent(); 608b0aa36f9SDavid Green return true; 609b0aa36f9SDavid Green } 610b0aa36f9SDavid Green 611b0aa36f9SDavid Green /// Rotate \c L, and return true if any modification was made. 612b0aa36f9SDavid Green bool LoopRotate::processLoop(Loop *L) { 613b0aa36f9SDavid Green // Save the loop metadata. 614b0aa36f9SDavid Green MDNode *LoopMD = L->getLoopID(); 615b0aa36f9SDavid Green 616585f2699SJin Lin bool SimplifiedLatch = false; 617585f2699SJin Lin 618b0aa36f9SDavid Green // Simplify the loop latch before attempting to rotate the header 619b0aa36f9SDavid Green // upward. Rotation may not be needed if the loop tail can be folded into the 620b0aa36f9SDavid Green // loop exit. 621585f2699SJin Lin if (!RotationOnly) 622585f2699SJin Lin SimplifiedLatch = simplifyLoopLatch(L); 623b0aa36f9SDavid Green 624b0aa36f9SDavid Green bool MadeChange = rotateLoop(L, SimplifiedLatch); 625b0aa36f9SDavid Green assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) && 626b0aa36f9SDavid Green "Loop latch should be exiting after loop-rotate."); 627b0aa36f9SDavid Green 628b0aa36f9SDavid Green // Restore the loop metadata. 629b0aa36f9SDavid Green // NB! We presume LoopRotation DOESN'T ADD its own metadata. 630b0aa36f9SDavid Green if ((MadeChange || SimplifiedLatch) && LoopMD) 631b0aa36f9SDavid Green L->setLoopID(LoopMD); 632b0aa36f9SDavid Green 633b0aa36f9SDavid Green return MadeChange || SimplifiedLatch; 634b0aa36f9SDavid Green } 635b0aa36f9SDavid Green 636b0aa36f9SDavid Green 637b0aa36f9SDavid Green /// The utility to convert a loop into a loop with bottom test. 638585f2699SJin Lin bool llvm::LoopRotation(Loop *L, LoopInfo *LI, const TargetTransformInfo *TTI, 639585f2699SJin Lin AssumptionCache *AC, DominatorTree *DT, 640585f2699SJin Lin ScalarEvolution *SE, const SimplifyQuery &SQ, 641585f2699SJin Lin bool RotationOnly = true, 642585f2699SJin Lin unsigned Threshold = unsigned(-1), 643585f2699SJin Lin bool IsUtilMode = true) { 644585f2699SJin Lin LoopRotate LR(Threshold, LI, TTI, AC, DT, SE, SQ, RotationOnly, IsUtilMode); 645b0aa36f9SDavid Green 646b0aa36f9SDavid Green return LR.processLoop(L); 647b0aa36f9SDavid Green } 648