1b0aa36f9SDavid Green //===----------------- LoopRotationUtils.cpp -----------------------------===//
2b0aa36f9SDavid Green //
3b0aa36f9SDavid Green //                     The LLVM Compiler Infrastructure
4b0aa36f9SDavid Green //
5b0aa36f9SDavid Green // This file is distributed under the University of Illinois Open Source
6b0aa36f9SDavid Green // License. See LICENSE.TXT for details.
7b0aa36f9SDavid Green //
8b0aa36f9SDavid Green //===----------------------------------------------------------------------===//
9b0aa36f9SDavid Green //
10b0aa36f9SDavid Green // This file provides utilities to convert a loop into a loop with bottom test.
11b0aa36f9SDavid Green //
12b0aa36f9SDavid Green //===----------------------------------------------------------------------===//
13b0aa36f9SDavid Green 
14b0aa36f9SDavid Green #include "llvm/Transforms/Utils/LoopRotationUtils.h"
15b0aa36f9SDavid Green #include "llvm/ADT/Statistic.h"
16b0aa36f9SDavid Green #include "llvm/Analysis/AliasAnalysis.h"
17b0aa36f9SDavid Green #include "llvm/Analysis/AssumptionCache.h"
18b0aa36f9SDavid Green #include "llvm/Analysis/BasicAliasAnalysis.h"
19b0aa36f9SDavid Green #include "llvm/Analysis/CodeMetrics.h"
20b0aa36f9SDavid Green #include "llvm/Analysis/GlobalsModRef.h"
21b0aa36f9SDavid Green #include "llvm/Analysis/InstructionSimplify.h"
22b0aa36f9SDavid Green #include "llvm/Analysis/LoopPass.h"
23b0aa36f9SDavid Green #include "llvm/Analysis/ScalarEvolution.h"
24b0aa36f9SDavid Green #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
25b0aa36f9SDavid Green #include "llvm/Analysis/TargetTransformInfo.h"
26b0aa36f9SDavid Green #include "llvm/Analysis/ValueTracking.h"
27b0aa36f9SDavid Green #include "llvm/IR/CFG.h"
28b0aa36f9SDavid Green #include "llvm/IR/DebugInfoMetadata.h"
2921a8b605SChijun Sima #include "llvm/IR/DomTreeUpdater.h"
30b0aa36f9SDavid Green #include "llvm/IR/Dominators.h"
31b0aa36f9SDavid Green #include "llvm/IR/Function.h"
32b0aa36f9SDavid Green #include "llvm/IR/IntrinsicInst.h"
33b0aa36f9SDavid Green #include "llvm/IR/Module.h"
34b0aa36f9SDavid Green #include "llvm/Support/CommandLine.h"
35b0aa36f9SDavid Green #include "llvm/Support/Debug.h"
36b0aa36f9SDavid Green #include "llvm/Support/raw_ostream.h"
37b0aa36f9SDavid Green #include "llvm/Transforms/Utils/BasicBlockUtils.h"
3821a8b605SChijun Sima #include "llvm/Transforms/Utils/Local.h"
39b0aa36f9SDavid Green #include "llvm/Transforms/Utils/LoopUtils.h"
40b0aa36f9SDavid Green #include "llvm/Transforms/Utils/SSAUpdater.h"
41b0aa36f9SDavid Green #include "llvm/Transforms/Utils/ValueMapper.h"
42b0aa36f9SDavid Green using namespace llvm;
43b0aa36f9SDavid Green 
44b0aa36f9SDavid Green #define DEBUG_TYPE "loop-rotate"
45b0aa36f9SDavid Green 
46b0aa36f9SDavid Green STATISTIC(NumRotated, "Number of loops rotated");
47b0aa36f9SDavid Green 
48b0aa36f9SDavid Green namespace {
49b0aa36f9SDavid Green /// A simple loop rotation transformation.
50b0aa36f9SDavid Green class LoopRotate {
51b0aa36f9SDavid Green   const unsigned MaxHeaderSize;
52b0aa36f9SDavid Green   LoopInfo *LI;
53b0aa36f9SDavid Green   const TargetTransformInfo *TTI;
54b0aa36f9SDavid Green   AssumptionCache *AC;
55b0aa36f9SDavid Green   DominatorTree *DT;
56b0aa36f9SDavid Green   ScalarEvolution *SE;
57b0aa36f9SDavid Green   const SimplifyQuery &SQ;
58585f2699SJin Lin   bool RotationOnly;
59585f2699SJin Lin   bool IsUtilMode;
60b0aa36f9SDavid Green 
61b0aa36f9SDavid Green public:
62b0aa36f9SDavid Green   LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI,
63b0aa36f9SDavid Green              const TargetTransformInfo *TTI, AssumptionCache *AC,
64585f2699SJin Lin              DominatorTree *DT, ScalarEvolution *SE, const SimplifyQuery &SQ,
65585f2699SJin Lin              bool RotationOnly, bool IsUtilMode)
66b0aa36f9SDavid Green       : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE),
67585f2699SJin Lin         SQ(SQ), RotationOnly(RotationOnly), IsUtilMode(IsUtilMode) {}
68b0aa36f9SDavid Green   bool processLoop(Loop *L);
69b0aa36f9SDavid Green 
70b0aa36f9SDavid Green private:
71b0aa36f9SDavid Green   bool rotateLoop(Loop *L, bool SimplifiedLatch);
72b0aa36f9SDavid Green   bool simplifyLoopLatch(Loop *L);
73b0aa36f9SDavid Green };
74b0aa36f9SDavid Green } // end anonymous namespace
75b0aa36f9SDavid Green 
76b0aa36f9SDavid Green /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
77b0aa36f9SDavid Green /// old header into the preheader.  If there were uses of the values produced by
78b0aa36f9SDavid Green /// these instruction that were outside of the loop, we have to insert PHI nodes
79b0aa36f9SDavid Green /// to merge the two values.  Do this now.
80b0aa36f9SDavid Green static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
81b0aa36f9SDavid Green                                             BasicBlock *OrigPreheader,
82b0aa36f9SDavid Green                                             ValueToValueMapTy &ValueMap,
83b0aa36f9SDavid Green                                 SmallVectorImpl<PHINode*> *InsertedPHIs) {
84b0aa36f9SDavid Green   // Remove PHI node entries that are no longer live.
85b0aa36f9SDavid Green   BasicBlock::iterator I, E = OrigHeader->end();
86b0aa36f9SDavid Green   for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
87b0aa36f9SDavid Green     PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
88b0aa36f9SDavid Green 
89b0aa36f9SDavid Green   // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
90b0aa36f9SDavid Green   // as necessary.
91b0aa36f9SDavid Green   SSAUpdater SSA(InsertedPHIs);
92b0aa36f9SDavid Green   for (I = OrigHeader->begin(); I != E; ++I) {
93b0aa36f9SDavid Green     Value *OrigHeaderVal = &*I;
94b0aa36f9SDavid Green 
95b0aa36f9SDavid Green     // If there are no uses of the value (e.g. because it returns void), there
96b0aa36f9SDavid Green     // is nothing to rewrite.
97b0aa36f9SDavid Green     if (OrigHeaderVal->use_empty())
98b0aa36f9SDavid Green       continue;
99b0aa36f9SDavid Green 
100b0aa36f9SDavid Green     Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal);
101b0aa36f9SDavid Green 
102b0aa36f9SDavid Green     // The value now exits in two versions: the initial value in the preheader
103b0aa36f9SDavid Green     // and the loop "next" value in the original header.
104b0aa36f9SDavid Green     SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
105b0aa36f9SDavid Green     SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
106b0aa36f9SDavid Green     SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
107b0aa36f9SDavid Green 
108b0aa36f9SDavid Green     // Visit each use of the OrigHeader instruction.
109b0aa36f9SDavid Green     for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
110b0aa36f9SDavid Green                              UE = OrigHeaderVal->use_end();
111b0aa36f9SDavid Green          UI != UE;) {
112b0aa36f9SDavid Green       // Grab the use before incrementing the iterator.
113b0aa36f9SDavid Green       Use &U = *UI;
114b0aa36f9SDavid Green 
115b0aa36f9SDavid Green       // Increment the iterator before removing the use from the list.
116b0aa36f9SDavid Green       ++UI;
117b0aa36f9SDavid Green 
118b0aa36f9SDavid Green       // SSAUpdater can't handle a non-PHI use in the same block as an
119b0aa36f9SDavid Green       // earlier def. We can easily handle those cases manually.
120b0aa36f9SDavid Green       Instruction *UserInst = cast<Instruction>(U.getUser());
121b0aa36f9SDavid Green       if (!isa<PHINode>(UserInst)) {
122b0aa36f9SDavid Green         BasicBlock *UserBB = UserInst->getParent();
123b0aa36f9SDavid Green 
124b0aa36f9SDavid Green         // The original users in the OrigHeader are already using the
125b0aa36f9SDavid Green         // original definitions.
126b0aa36f9SDavid Green         if (UserBB == OrigHeader)
127b0aa36f9SDavid Green           continue;
128b0aa36f9SDavid Green 
129b0aa36f9SDavid Green         // Users in the OrigPreHeader need to use the value to which the
130b0aa36f9SDavid Green         // original definitions are mapped.
131b0aa36f9SDavid Green         if (UserBB == OrigPreheader) {
132b0aa36f9SDavid Green           U = OrigPreHeaderVal;
133b0aa36f9SDavid Green           continue;
134b0aa36f9SDavid Green         }
135b0aa36f9SDavid Green       }
136b0aa36f9SDavid Green 
137b0aa36f9SDavid Green       // Anything else can be handled by SSAUpdater.
138b0aa36f9SDavid Green       SSA.RewriteUse(U);
139b0aa36f9SDavid Green     }
140b0aa36f9SDavid Green 
141b0aa36f9SDavid Green     // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug
142b0aa36f9SDavid Green     // intrinsics.
143b0aa36f9SDavid Green     SmallVector<DbgValueInst *, 1> DbgValues;
144b0aa36f9SDavid Green     llvm::findDbgValues(DbgValues, OrigHeaderVal);
145b0aa36f9SDavid Green     for (auto &DbgValue : DbgValues) {
146b0aa36f9SDavid Green       // The original users in the OrigHeader are already using the original
147b0aa36f9SDavid Green       // definitions.
148b0aa36f9SDavid Green       BasicBlock *UserBB = DbgValue->getParent();
149b0aa36f9SDavid Green       if (UserBB == OrigHeader)
150b0aa36f9SDavid Green         continue;
151b0aa36f9SDavid Green 
152b0aa36f9SDavid Green       // Users in the OrigPreHeader need to use the value to which the
153b0aa36f9SDavid Green       // original definitions are mapped and anything else can be handled by
154b0aa36f9SDavid Green       // the SSAUpdater. To avoid adding PHINodes, check if the value is
155b0aa36f9SDavid Green       // available in UserBB, if not substitute undef.
156b0aa36f9SDavid Green       Value *NewVal;
157b0aa36f9SDavid Green       if (UserBB == OrigPreheader)
158b0aa36f9SDavid Green         NewVal = OrigPreHeaderVal;
159b0aa36f9SDavid Green       else if (SSA.HasValueForBlock(UserBB))
160b0aa36f9SDavid Green         NewVal = SSA.GetValueInMiddleOfBlock(UserBB);
161b0aa36f9SDavid Green       else
162b0aa36f9SDavid Green         NewVal = UndefValue::get(OrigHeaderVal->getType());
163b0aa36f9SDavid Green       DbgValue->setOperand(0,
164b0aa36f9SDavid Green                            MetadataAsValue::get(OrigHeaderVal->getContext(),
165b0aa36f9SDavid Green                                                 ValueAsMetadata::get(NewVal)));
166b0aa36f9SDavid Green     }
167b0aa36f9SDavid Green   }
168b0aa36f9SDavid Green }
169b0aa36f9SDavid Green 
170f80ebc8dSDavid Green // Look for a phi which is only used outside the loop (via a LCSSA phi)
171f80ebc8dSDavid Green // in the exit from the header. This means that rotating the loop can
172f80ebc8dSDavid Green // remove the phi.
173f80ebc8dSDavid Green static bool shouldRotateLoopExitingLatch(Loop *L) {
174f80ebc8dSDavid Green   BasicBlock *Header = L->getHeader();
175f80ebc8dSDavid Green   BasicBlock *HeaderExit = Header->getTerminator()->getSuccessor(0);
176f80ebc8dSDavid Green   if (L->contains(HeaderExit))
177f80ebc8dSDavid Green     HeaderExit = Header->getTerminator()->getSuccessor(1);
178f80ebc8dSDavid Green 
179f80ebc8dSDavid Green   for (auto &Phi : Header->phis()) {
180f80ebc8dSDavid Green     // Look for uses of this phi in the loop/via exits other than the header.
181f80ebc8dSDavid Green     if (llvm::any_of(Phi.users(), [HeaderExit](const User *U) {
182f80ebc8dSDavid Green           return cast<Instruction>(U)->getParent() != HeaderExit;
183f80ebc8dSDavid Green         }))
184f80ebc8dSDavid Green       continue;
185f80ebc8dSDavid Green     return true;
186f80ebc8dSDavid Green   }
187f80ebc8dSDavid Green 
188f80ebc8dSDavid Green   return false;
189f80ebc8dSDavid Green }
190f80ebc8dSDavid Green 
191b0aa36f9SDavid Green /// Rotate loop LP. Return true if the loop is rotated.
192b0aa36f9SDavid Green ///
193b0aa36f9SDavid Green /// \param SimplifiedLatch is true if the latch was just folded into the final
194b0aa36f9SDavid Green /// loop exit. In this case we may want to rotate even though the new latch is
195b0aa36f9SDavid Green /// now an exiting branch. This rotation would have happened had the latch not
196b0aa36f9SDavid Green /// been simplified. However, if SimplifiedLatch is false, then we avoid
197b0aa36f9SDavid Green /// rotating loops in which the latch exits to avoid excessive or endless
198b0aa36f9SDavid Green /// rotation. LoopRotate should be repeatable and converge to a canonical
199b0aa36f9SDavid Green /// form. This property is satisfied because simplifying the loop latch can only
200b0aa36f9SDavid Green /// happen once across multiple invocations of the LoopRotate pass.
201b0aa36f9SDavid Green bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
202b0aa36f9SDavid Green   // If the loop has only one block then there is not much to rotate.
203b0aa36f9SDavid Green   if (L->getBlocks().size() == 1)
204b0aa36f9SDavid Green     return false;
205b0aa36f9SDavid Green 
206b0aa36f9SDavid Green   BasicBlock *OrigHeader = L->getHeader();
207b0aa36f9SDavid Green   BasicBlock *OrigLatch = L->getLoopLatch();
208b0aa36f9SDavid Green 
209b0aa36f9SDavid Green   BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
210b0aa36f9SDavid Green   if (!BI || BI->isUnconditional())
211b0aa36f9SDavid Green     return false;
212b0aa36f9SDavid Green 
213b0aa36f9SDavid Green   // If the loop header is not one of the loop exiting blocks then
214b0aa36f9SDavid Green   // either this loop is already rotated or it is not
215b0aa36f9SDavid Green   // suitable for loop rotation transformations.
216b0aa36f9SDavid Green   if (!L->isLoopExiting(OrigHeader))
217b0aa36f9SDavid Green     return false;
218b0aa36f9SDavid Green 
219b0aa36f9SDavid Green   // If the loop latch already contains a branch that leaves the loop then the
220b0aa36f9SDavid Green   // loop is already rotated.
221b0aa36f9SDavid Green   if (!OrigLatch)
222b0aa36f9SDavid Green     return false;
223b0aa36f9SDavid Green 
224b0aa36f9SDavid Green   // Rotate if either the loop latch does *not* exit the loop, or if the loop
225f80ebc8dSDavid Green   // latch was just simplified. Or if we think it will be profitable.
226585f2699SJin Lin   if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false &&
227f80ebc8dSDavid Green       !shouldRotateLoopExitingLatch(L))
228b0aa36f9SDavid Green     return false;
229b0aa36f9SDavid Green 
230b0aa36f9SDavid Green   // Check size of original header and reject loop if it is very big or we can't
231b0aa36f9SDavid Green   // duplicate blocks inside it.
232b0aa36f9SDavid Green   {
233b0aa36f9SDavid Green     SmallPtrSet<const Value *, 32> EphValues;
234b0aa36f9SDavid Green     CodeMetrics::collectEphemeralValues(L, AC, EphValues);
235b0aa36f9SDavid Green 
236b0aa36f9SDavid Green     CodeMetrics Metrics;
237b0aa36f9SDavid Green     Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues);
238b0aa36f9SDavid Green     if (Metrics.notDuplicatable) {
239d34e60caSNicola Zaghen       LLVM_DEBUG(
240d34e60caSNicola Zaghen           dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
241b0aa36f9SDavid Green                  << " instructions: ";
242b0aa36f9SDavid Green           L->dump());
243b0aa36f9SDavid Green       return false;
244b0aa36f9SDavid Green     }
245b0aa36f9SDavid Green     if (Metrics.convergent) {
246d34e60caSNicola Zaghen       LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "
247b0aa36f9SDavid Green                            "instructions: ";
248b0aa36f9SDavid Green                  L->dump());
249b0aa36f9SDavid Green       return false;
250b0aa36f9SDavid Green     }
251b0aa36f9SDavid Green     if (Metrics.NumInsts > MaxHeaderSize)
252b0aa36f9SDavid Green       return false;
253b0aa36f9SDavid Green   }
254b0aa36f9SDavid Green 
255b0aa36f9SDavid Green   // Now, this loop is suitable for rotation.
256b0aa36f9SDavid Green   BasicBlock *OrigPreheader = L->getLoopPreheader();
257b0aa36f9SDavid Green 
258b0aa36f9SDavid Green   // If the loop could not be converted to canonical form, it must have an
259b0aa36f9SDavid Green   // indirectbr in it, just give up.
260b0aa36f9SDavid Green   if (!OrigPreheader || !L->hasDedicatedExits())
261b0aa36f9SDavid Green     return false;
262b0aa36f9SDavid Green 
263b0aa36f9SDavid Green   // Anything ScalarEvolution may know about this loop or the PHI nodes
2645a0a40b8SMax Kazantsev   // in its header will soon be invalidated. We should also invalidate
2655a0a40b8SMax Kazantsev   // all outer loops because insertion and deletion of blocks that happens
2665a0a40b8SMax Kazantsev   // during the rotation may violate invariants related to backedge taken
2675a0a40b8SMax Kazantsev   // infos in them.
268b0aa36f9SDavid Green   if (SE)
26991f48166SMax Kazantsev     SE->forgetTopmostLoop(L);
270b0aa36f9SDavid Green 
271d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
272b0aa36f9SDavid Green 
273b0aa36f9SDavid Green   // Find new Loop header. NewHeader is a Header's one and only successor
274b0aa36f9SDavid Green   // that is inside loop.  Header's other successor is outside the
275b0aa36f9SDavid Green   // loop.  Otherwise loop is not suitable for rotation.
276b0aa36f9SDavid Green   BasicBlock *Exit = BI->getSuccessor(0);
277b0aa36f9SDavid Green   BasicBlock *NewHeader = BI->getSuccessor(1);
278b0aa36f9SDavid Green   if (L->contains(Exit))
279b0aa36f9SDavid Green     std::swap(Exit, NewHeader);
280b0aa36f9SDavid Green   assert(NewHeader && "Unable to determine new loop header");
281b0aa36f9SDavid Green   assert(L->contains(NewHeader) && !L->contains(Exit) &&
282b0aa36f9SDavid Green          "Unable to determine loop header and exit blocks");
283b0aa36f9SDavid Green 
284b0aa36f9SDavid Green   // This code assumes that the new header has exactly one predecessor.
285b0aa36f9SDavid Green   // Remove any single-entry PHI nodes in it.
286b0aa36f9SDavid Green   assert(NewHeader->getSinglePredecessor() &&
287b0aa36f9SDavid Green          "New header doesn't have one pred!");
288b0aa36f9SDavid Green   FoldSingleEntryPHINodes(NewHeader);
289b0aa36f9SDavid Green 
290b0aa36f9SDavid Green   // Begin by walking OrigHeader and populating ValueMap with an entry for
291b0aa36f9SDavid Green   // each Instruction.
292b0aa36f9SDavid Green   BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
293b0aa36f9SDavid Green   ValueToValueMapTy ValueMap;
294b0aa36f9SDavid Green 
295b0aa36f9SDavid Green   // For PHI nodes, the value available in OldPreHeader is just the
296b0aa36f9SDavid Green   // incoming value from OldPreHeader.
297b0aa36f9SDavid Green   for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
298b0aa36f9SDavid Green     ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader);
299b0aa36f9SDavid Green 
300b0aa36f9SDavid Green   // For the rest of the instructions, either hoist to the OrigPreheader if
301b0aa36f9SDavid Green   // possible or create a clone in the OldPreHeader if not.
302b0aa36f9SDavid Green   TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator();
303b0aa36f9SDavid Green 
304b0aa36f9SDavid Green   // Record all debug intrinsics preceding LoopEntryBranch to avoid duplication.
305b0aa36f9SDavid Green   using DbgIntrinsicHash =
306b0aa36f9SDavid Green       std::pair<std::pair<Value *, DILocalVariable *>, DIExpression *>;
307*ef72e481SHsiangkai Wang   auto makeHash = [](DbgVariableIntrinsic *D) -> DbgIntrinsicHash {
308b0aa36f9SDavid Green     return {{D->getVariableLocation(), D->getVariable()}, D->getExpression()};
309b0aa36f9SDavid Green   };
310b0aa36f9SDavid Green   SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics;
311b0aa36f9SDavid Green   for (auto I = std::next(OrigPreheader->rbegin()), E = OrigPreheader->rend();
312b0aa36f9SDavid Green        I != E; ++I) {
313*ef72e481SHsiangkai Wang     if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&*I))
314b0aa36f9SDavid Green       DbgIntrinsics.insert(makeHash(DII));
315b0aa36f9SDavid Green     else
316b0aa36f9SDavid Green       break;
317b0aa36f9SDavid Green   }
318b0aa36f9SDavid Green 
319b0aa36f9SDavid Green   while (I != E) {
320b0aa36f9SDavid Green     Instruction *Inst = &*I++;
321b0aa36f9SDavid Green 
322b0aa36f9SDavid Green     // If the instruction's operands are invariant and it doesn't read or write
323b0aa36f9SDavid Green     // memory, then it is safe to hoist.  Doing this doesn't change the order of
324b0aa36f9SDavid Green     // execution in the preheader, but does prevent the instruction from
325b0aa36f9SDavid Green     // executing in each iteration of the loop.  This means it is safe to hoist
326b0aa36f9SDavid Green     // something that might trap, but isn't safe to hoist something that reads
327b0aa36f9SDavid Green     // memory (without proving that the loop doesn't write).
328b0aa36f9SDavid Green     if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() &&
329b0aa36f9SDavid Green         !Inst->mayWriteToMemory() && !isa<TerminatorInst>(Inst) &&
330b0aa36f9SDavid Green         !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) {
331b0aa36f9SDavid Green       Inst->moveBefore(LoopEntryBranch);
332b0aa36f9SDavid Green       continue;
333b0aa36f9SDavid Green     }
334b0aa36f9SDavid Green 
335b0aa36f9SDavid Green     // Otherwise, create a duplicate of the instruction.
336b0aa36f9SDavid Green     Instruction *C = Inst->clone();
337b0aa36f9SDavid Green 
338b0aa36f9SDavid Green     // Eagerly remap the operands of the instruction.
339b0aa36f9SDavid Green     RemapInstruction(C, ValueMap,
340b0aa36f9SDavid Green                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
341b0aa36f9SDavid Green 
342b0aa36f9SDavid Green     // Avoid inserting the same intrinsic twice.
343*ef72e481SHsiangkai Wang     if (auto *DII = dyn_cast<DbgVariableIntrinsic>(C))
344b0aa36f9SDavid Green       if (DbgIntrinsics.count(makeHash(DII))) {
345b0aa36f9SDavid Green         C->deleteValue();
346b0aa36f9SDavid Green         continue;
347b0aa36f9SDavid Green       }
348b0aa36f9SDavid Green 
349b0aa36f9SDavid Green     // With the operands remapped, see if the instruction constant folds or is
350b0aa36f9SDavid Green     // otherwise simplifyable.  This commonly occurs because the entry from PHI
351b0aa36f9SDavid Green     // nodes allows icmps and other instructions to fold.
352b0aa36f9SDavid Green     Value *V = SimplifyInstruction(C, SQ);
353b0aa36f9SDavid Green     if (V && LI->replacementPreservesLCSSAForm(C, V)) {
354b0aa36f9SDavid Green       // If so, then delete the temporary instruction and stick the folded value
355b0aa36f9SDavid Green       // in the map.
356b0aa36f9SDavid Green       ValueMap[Inst] = V;
357b0aa36f9SDavid Green       if (!C->mayHaveSideEffects()) {
358b0aa36f9SDavid Green         C->deleteValue();
359b0aa36f9SDavid Green         C = nullptr;
360b0aa36f9SDavid Green       }
361b0aa36f9SDavid Green     } else {
362b0aa36f9SDavid Green       ValueMap[Inst] = C;
363b0aa36f9SDavid Green     }
364b0aa36f9SDavid Green     if (C) {
365b0aa36f9SDavid Green       // Otherwise, stick the new instruction into the new block!
366b0aa36f9SDavid Green       C->setName(Inst->getName());
367b0aa36f9SDavid Green       C->insertBefore(LoopEntryBranch);
368b0aa36f9SDavid Green 
369b0aa36f9SDavid Green       if (auto *II = dyn_cast<IntrinsicInst>(C))
370b0aa36f9SDavid Green         if (II->getIntrinsicID() == Intrinsic::assume)
371b0aa36f9SDavid Green           AC->registerAssumption(II);
372b0aa36f9SDavid Green     }
373b0aa36f9SDavid Green   }
374b0aa36f9SDavid Green 
375b0aa36f9SDavid Green   // Along with all the other instructions, we just cloned OrigHeader's
376b0aa36f9SDavid Green   // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
377b0aa36f9SDavid Green   // successors by duplicating their incoming values for OrigHeader.
378b0aa36f9SDavid Green   TerminatorInst *TI = OrigHeader->getTerminator();
379b0aa36f9SDavid Green   for (BasicBlock *SuccBB : TI->successors())
380b0aa36f9SDavid Green     for (BasicBlock::iterator BI = SuccBB->begin();
381b0aa36f9SDavid Green          PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
382b0aa36f9SDavid Green       PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
383b0aa36f9SDavid Green 
384b0aa36f9SDavid Green   // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
385b0aa36f9SDavid Green   // OrigPreHeader's old terminator (the original branch into the loop), and
386b0aa36f9SDavid Green   // remove the corresponding incoming values from the PHI nodes in OrigHeader.
387b0aa36f9SDavid Green   LoopEntryBranch->eraseFromParent();
388b0aa36f9SDavid Green 
389b0aa36f9SDavid Green 
390b0aa36f9SDavid Green   SmallVector<PHINode*, 2> InsertedPHIs;
391b0aa36f9SDavid Green   // If there were any uses of instructions in the duplicated block outside the
392b0aa36f9SDavid Green   // loop, update them, inserting PHI nodes as required
393b0aa36f9SDavid Green   RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap,
394b0aa36f9SDavid Green                                   &InsertedPHIs);
395b0aa36f9SDavid Green 
396b0aa36f9SDavid Green   // Attach dbg.value intrinsics to the new phis if that phi uses a value that
397b0aa36f9SDavid Green   // previously had debug metadata attached. This keeps the debug info
398b0aa36f9SDavid Green   // up-to-date in the loop body.
399b0aa36f9SDavid Green   if (!InsertedPHIs.empty())
400b0aa36f9SDavid Green     insertDebugValuesForPHIs(OrigHeader, InsertedPHIs);
401b0aa36f9SDavid Green 
402b0aa36f9SDavid Green   // NewHeader is now the header of the loop.
403b0aa36f9SDavid Green   L->moveToHeader(NewHeader);
404b0aa36f9SDavid Green   assert(L->getHeader() == NewHeader && "Latch block is our new header");
405b0aa36f9SDavid Green 
406b0aa36f9SDavid Green   // Inform DT about changes to the CFG.
407b0aa36f9SDavid Green   if (DT) {
408b0aa36f9SDavid Green     // The OrigPreheader branches to the NewHeader and Exit now. Then, inform
409b0aa36f9SDavid Green     // the DT about the removed edge to the OrigHeader (that got removed).
410b0aa36f9SDavid Green     SmallVector<DominatorTree::UpdateType, 3> Updates;
411b0aa36f9SDavid Green     Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit});
412b0aa36f9SDavid Green     Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader});
413b0aa36f9SDavid Green     Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader});
414b0aa36f9SDavid Green     DT->applyUpdates(Updates);
415b0aa36f9SDavid Green   }
416b0aa36f9SDavid Green 
417b0aa36f9SDavid Green   // At this point, we've finished our major CFG changes.  As part of cloning
418b0aa36f9SDavid Green   // the loop into the preheader we've simplified instructions and the
419b0aa36f9SDavid Green   // duplicated conditional branch may now be branching on a constant.  If it is
420b0aa36f9SDavid Green   // branching on a constant and if that constant means that we enter the loop,
421b0aa36f9SDavid Green   // then we fold away the cond branch to an uncond branch.  This simplifies the
422b0aa36f9SDavid Green   // loop in cases important for nested loops, and it also means we don't have
423b0aa36f9SDavid Green   // to split as many edges.
424b0aa36f9SDavid Green   BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
425b0aa36f9SDavid Green   assert(PHBI->isConditional() && "Should be clone of BI condbr!");
426b0aa36f9SDavid Green   if (!isa<ConstantInt>(PHBI->getCondition()) ||
427b0aa36f9SDavid Green       PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) !=
428b0aa36f9SDavid Green           NewHeader) {
429b0aa36f9SDavid Green     // The conditional branch can't be folded, handle the general case.
430b0aa36f9SDavid Green     // Split edges as necessary to preserve LoopSimplify form.
431b0aa36f9SDavid Green 
432b0aa36f9SDavid Green     // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
433b0aa36f9SDavid Green     // thus is not a preheader anymore.
434b0aa36f9SDavid Green     // Split the edge to form a real preheader.
435b0aa36f9SDavid Green     BasicBlock *NewPH = SplitCriticalEdge(
436b0aa36f9SDavid Green         OrigPreheader, NewHeader,
437b0aa36f9SDavid Green         CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA());
438b0aa36f9SDavid Green     NewPH->setName(NewHeader->getName() + ".lr.ph");
439b0aa36f9SDavid Green 
440b0aa36f9SDavid Green     // Preserve canonical loop form, which means that 'Exit' should have only
441b0aa36f9SDavid Green     // one predecessor. Note that Exit could be an exit block for multiple
442b0aa36f9SDavid Green     // nested loops, causing both of the edges to now be critical and need to
443b0aa36f9SDavid Green     // be split.
444b0aa36f9SDavid Green     SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit));
445b0aa36f9SDavid Green     bool SplitLatchEdge = false;
446b0aa36f9SDavid Green     for (BasicBlock *ExitPred : ExitPreds) {
447b0aa36f9SDavid Green       // We only need to split loop exit edges.
448b0aa36f9SDavid Green       Loop *PredLoop = LI->getLoopFor(ExitPred);
449b0aa36f9SDavid Green       if (!PredLoop || PredLoop->contains(Exit))
450b0aa36f9SDavid Green         continue;
451b0aa36f9SDavid Green       if (isa<IndirectBrInst>(ExitPred->getTerminator()))
452b0aa36f9SDavid Green         continue;
453b0aa36f9SDavid Green       SplitLatchEdge |= L->getLoopLatch() == ExitPred;
454b0aa36f9SDavid Green       BasicBlock *ExitSplit = SplitCriticalEdge(
455b0aa36f9SDavid Green           ExitPred, Exit,
456b0aa36f9SDavid Green           CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA());
457b0aa36f9SDavid Green       ExitSplit->moveBefore(Exit);
458b0aa36f9SDavid Green     }
459b0aa36f9SDavid Green     assert(SplitLatchEdge &&
460b0aa36f9SDavid Green            "Despite splitting all preds, failed to split latch exit?");
461b0aa36f9SDavid Green   } else {
462b0aa36f9SDavid Green     // We can fold the conditional branch in the preheader, this makes things
463b0aa36f9SDavid Green     // simpler. The first step is to remove the extra edge to the Exit block.
464b0aa36f9SDavid Green     Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
465b0aa36f9SDavid Green     BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
466b0aa36f9SDavid Green     NewBI->setDebugLoc(PHBI->getDebugLoc());
467b0aa36f9SDavid Green     PHBI->eraseFromParent();
468b0aa36f9SDavid Green 
469b0aa36f9SDavid Green     // With our CFG finalized, update DomTree if it is available.
470b0aa36f9SDavid Green     if (DT) DT->deleteEdge(OrigPreheader, Exit);
471b0aa36f9SDavid Green   }
472b0aa36f9SDavid Green 
473b0aa36f9SDavid Green   assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
474b0aa36f9SDavid Green   assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
475b0aa36f9SDavid Green 
476b0aa36f9SDavid Green   // Now that the CFG and DomTree are in a consistent state again, try to merge
477b0aa36f9SDavid Green   // the OrigHeader block into OrigLatch.  This will succeed if they are
478b0aa36f9SDavid Green   // connected by an unconditional branch.  This is just a cleanup so the
479b0aa36f9SDavid Green   // emitted code isn't too gross in this common case.
48021a8b605SChijun Sima   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
48121a8b605SChijun Sima   MergeBlockIntoPredecessor(OrigHeader, &DTU, LI);
482b0aa36f9SDavid Green 
483d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump());
484b0aa36f9SDavid Green 
485b0aa36f9SDavid Green   ++NumRotated;
486b0aa36f9SDavid Green   return true;
487b0aa36f9SDavid Green }
488b0aa36f9SDavid Green 
489b0aa36f9SDavid Green /// Determine whether the instructions in this range may be safely and cheaply
490b0aa36f9SDavid Green /// speculated. This is not an important enough situation to develop complex
491b0aa36f9SDavid Green /// heuristics. We handle a single arithmetic instruction along with any type
492b0aa36f9SDavid Green /// conversions.
493b0aa36f9SDavid Green static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
494b0aa36f9SDavid Green                                   BasicBlock::iterator End, Loop *L) {
495b0aa36f9SDavid Green   bool seenIncrement = false;
496b0aa36f9SDavid Green   bool MultiExitLoop = false;
497b0aa36f9SDavid Green 
498b0aa36f9SDavid Green   if (!L->getExitingBlock())
499b0aa36f9SDavid Green     MultiExitLoop = true;
500b0aa36f9SDavid Green 
501b0aa36f9SDavid Green   for (BasicBlock::iterator I = Begin; I != End; ++I) {
502b0aa36f9SDavid Green 
503b0aa36f9SDavid Green     if (!isSafeToSpeculativelyExecute(&*I))
504b0aa36f9SDavid Green       return false;
505b0aa36f9SDavid Green 
506b0aa36f9SDavid Green     if (isa<DbgInfoIntrinsic>(I))
507b0aa36f9SDavid Green       continue;
508b0aa36f9SDavid Green 
509b0aa36f9SDavid Green     switch (I->getOpcode()) {
510b0aa36f9SDavid Green     default:
511b0aa36f9SDavid Green       return false;
512b0aa36f9SDavid Green     case Instruction::GetElementPtr:
513b0aa36f9SDavid Green       // GEPs are cheap if all indices are constant.
514b0aa36f9SDavid Green       if (!cast<GEPOperator>(I)->hasAllConstantIndices())
515b0aa36f9SDavid Green         return false;
516b0aa36f9SDavid Green       // fall-thru to increment case
517b0aa36f9SDavid Green       LLVM_FALLTHROUGH;
518b0aa36f9SDavid Green     case Instruction::Add:
519b0aa36f9SDavid Green     case Instruction::Sub:
520b0aa36f9SDavid Green     case Instruction::And:
521b0aa36f9SDavid Green     case Instruction::Or:
522b0aa36f9SDavid Green     case Instruction::Xor:
523b0aa36f9SDavid Green     case Instruction::Shl:
524b0aa36f9SDavid Green     case Instruction::LShr:
525b0aa36f9SDavid Green     case Instruction::AShr: {
526b0aa36f9SDavid Green       Value *IVOpnd =
527b0aa36f9SDavid Green           !isa<Constant>(I->getOperand(0))
528b0aa36f9SDavid Green               ? I->getOperand(0)
529b0aa36f9SDavid Green               : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr;
530b0aa36f9SDavid Green       if (!IVOpnd)
531b0aa36f9SDavid Green         return false;
532b0aa36f9SDavid Green 
533b0aa36f9SDavid Green       // If increment operand is used outside of the loop, this speculation
534b0aa36f9SDavid Green       // could cause extra live range interference.
535b0aa36f9SDavid Green       if (MultiExitLoop) {
536b0aa36f9SDavid Green         for (User *UseI : IVOpnd->users()) {
537b0aa36f9SDavid Green           auto *UserInst = cast<Instruction>(UseI);
538b0aa36f9SDavid Green           if (!L->contains(UserInst))
539b0aa36f9SDavid Green             return false;
540b0aa36f9SDavid Green         }
541b0aa36f9SDavid Green       }
542b0aa36f9SDavid Green 
543b0aa36f9SDavid Green       if (seenIncrement)
544b0aa36f9SDavid Green         return false;
545b0aa36f9SDavid Green       seenIncrement = true;
546b0aa36f9SDavid Green       break;
547b0aa36f9SDavid Green     }
548b0aa36f9SDavid Green     case Instruction::Trunc:
549b0aa36f9SDavid Green     case Instruction::ZExt:
550b0aa36f9SDavid Green     case Instruction::SExt:
551b0aa36f9SDavid Green       // ignore type conversions
552b0aa36f9SDavid Green       break;
553b0aa36f9SDavid Green     }
554b0aa36f9SDavid Green   }
555b0aa36f9SDavid Green   return true;
556b0aa36f9SDavid Green }
557b0aa36f9SDavid Green 
558b0aa36f9SDavid Green /// Fold the loop tail into the loop exit by speculating the loop tail
559b0aa36f9SDavid Green /// instructions. Typically, this is a single post-increment. In the case of a
560b0aa36f9SDavid Green /// simple 2-block loop, hoisting the increment can be much better than
561b0aa36f9SDavid Green /// duplicating the entire loop header. In the case of loops with early exits,
562b0aa36f9SDavid Green /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
563b0aa36f9SDavid Green /// canonical form so downstream passes can handle it.
564b0aa36f9SDavid Green ///
565b0aa36f9SDavid Green /// I don't believe this invalidates SCEV.
566b0aa36f9SDavid Green bool LoopRotate::simplifyLoopLatch(Loop *L) {
567b0aa36f9SDavid Green   BasicBlock *Latch = L->getLoopLatch();
568b0aa36f9SDavid Green   if (!Latch || Latch->hasAddressTaken())
569b0aa36f9SDavid Green     return false;
570b0aa36f9SDavid Green 
571b0aa36f9SDavid Green   BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
572b0aa36f9SDavid Green   if (!Jmp || !Jmp->isUnconditional())
573b0aa36f9SDavid Green     return false;
574b0aa36f9SDavid Green 
575b0aa36f9SDavid Green   BasicBlock *LastExit = Latch->getSinglePredecessor();
576b0aa36f9SDavid Green   if (!LastExit || !L->isLoopExiting(LastExit))
577b0aa36f9SDavid Green     return false;
578b0aa36f9SDavid Green 
579b0aa36f9SDavid Green   BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
580b0aa36f9SDavid Green   if (!BI)
581b0aa36f9SDavid Green     return false;
582b0aa36f9SDavid Green 
583b0aa36f9SDavid Green   if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L))
584b0aa36f9SDavid Green     return false;
585b0aa36f9SDavid Green 
586d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
587b0aa36f9SDavid Green                     << LastExit->getName() << "\n");
588b0aa36f9SDavid Green 
589b0aa36f9SDavid Green   // Hoist the instructions from Latch into LastExit.
590b0aa36f9SDavid Green   LastExit->getInstList().splice(BI->getIterator(), Latch->getInstList(),
591b0aa36f9SDavid Green                                  Latch->begin(), Jmp->getIterator());
592b0aa36f9SDavid Green 
593b0aa36f9SDavid Green   unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1;
594b0aa36f9SDavid Green   BasicBlock *Header = Jmp->getSuccessor(0);
595b0aa36f9SDavid Green   assert(Header == L->getHeader() && "expected a backward branch");
596b0aa36f9SDavid Green 
597b0aa36f9SDavid Green   // Remove Latch from the CFG so that LastExit becomes the new Latch.
598b0aa36f9SDavid Green   BI->setSuccessor(FallThruPath, Header);
599b0aa36f9SDavid Green   Latch->replaceSuccessorsPhiUsesWith(LastExit);
600b0aa36f9SDavid Green   Jmp->eraseFromParent();
601b0aa36f9SDavid Green 
602b0aa36f9SDavid Green   // Nuke the Latch block.
603b0aa36f9SDavid Green   assert(Latch->empty() && "unable to evacuate Latch");
604b0aa36f9SDavid Green   LI->removeBlock(Latch);
605b0aa36f9SDavid Green   if (DT)
606b0aa36f9SDavid Green     DT->eraseNode(Latch);
607b0aa36f9SDavid Green   Latch->eraseFromParent();
608b0aa36f9SDavid Green   return true;
609b0aa36f9SDavid Green }
610b0aa36f9SDavid Green 
611b0aa36f9SDavid Green /// Rotate \c L, and return true if any modification was made.
612b0aa36f9SDavid Green bool LoopRotate::processLoop(Loop *L) {
613b0aa36f9SDavid Green   // Save the loop metadata.
614b0aa36f9SDavid Green   MDNode *LoopMD = L->getLoopID();
615b0aa36f9SDavid Green 
616585f2699SJin Lin   bool SimplifiedLatch = false;
617585f2699SJin Lin 
618b0aa36f9SDavid Green   // Simplify the loop latch before attempting to rotate the header
619b0aa36f9SDavid Green   // upward. Rotation may not be needed if the loop tail can be folded into the
620b0aa36f9SDavid Green   // loop exit.
621585f2699SJin Lin   if (!RotationOnly)
622585f2699SJin Lin     SimplifiedLatch = simplifyLoopLatch(L);
623b0aa36f9SDavid Green 
624b0aa36f9SDavid Green   bool MadeChange = rotateLoop(L, SimplifiedLatch);
625b0aa36f9SDavid Green   assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) &&
626b0aa36f9SDavid Green          "Loop latch should be exiting after loop-rotate.");
627b0aa36f9SDavid Green 
628b0aa36f9SDavid Green   // Restore the loop metadata.
629b0aa36f9SDavid Green   // NB! We presume LoopRotation DOESN'T ADD its own metadata.
630b0aa36f9SDavid Green   if ((MadeChange || SimplifiedLatch) && LoopMD)
631b0aa36f9SDavid Green     L->setLoopID(LoopMD);
632b0aa36f9SDavid Green 
633b0aa36f9SDavid Green   return MadeChange || SimplifiedLatch;
634b0aa36f9SDavid Green }
635b0aa36f9SDavid Green 
636b0aa36f9SDavid Green 
637b0aa36f9SDavid Green /// The utility to convert a loop into a loop with bottom test.
638585f2699SJin Lin bool llvm::LoopRotation(Loop *L, LoopInfo *LI, const TargetTransformInfo *TTI,
639585f2699SJin Lin                         AssumptionCache *AC, DominatorTree *DT,
640585f2699SJin Lin                         ScalarEvolution *SE, const SimplifyQuery &SQ,
641585f2699SJin Lin                         bool RotationOnly = true,
642585f2699SJin Lin                         unsigned Threshold = unsigned(-1),
643585f2699SJin Lin                         bool IsUtilMode = true) {
644585f2699SJin Lin   LoopRotate LR(Threshold, LI, TTI, AC, DT, SE, SQ, RotationOnly, IsUtilMode);
645b0aa36f9SDavid Green 
646b0aa36f9SDavid Green   return LR.processLoop(L);
647b0aa36f9SDavid Green }
648