1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements inlining of a function into a call site, resolving 10 // parameters and the return value as appropriate. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/BlockFrequencyInfo.h" 26 #include "llvm/Analysis/CallGraph.h" 27 #include "llvm/Analysis/CaptureTracking.h" 28 #include "llvm/Analysis/EHPersonalities.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/ObjCARCAnalysisUtils.h" 31 #include "llvm/Analysis/ObjCARCUtil.h" 32 #include "llvm/Analysis/ProfileSummaryInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/DebugInfoMetadata.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Dominators.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/MDBuilder.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 65 #include "llvm/Transforms/Utils/Cloning.h" 66 #include "llvm/Transforms/Utils/Local.h" 67 #include "llvm/Transforms/Utils/ValueMapper.h" 68 #include <algorithm> 69 #include <cassert> 70 #include <cstdint> 71 #include <iterator> 72 #include <limits> 73 #include <string> 74 #include <utility> 75 #include <vector> 76 77 using namespace llvm; 78 using ProfileCount = Function::ProfileCount; 79 80 static cl::opt<bool> 81 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), 82 cl::Hidden, 83 cl::desc("Convert noalias attributes to metadata during inlining.")); 84 85 static cl::opt<bool> 86 UseNoAliasIntrinsic("use-noalias-intrinsic-during-inlining", cl::Hidden, 87 cl::init(true), 88 cl::desc("Use the llvm.experimental.noalias.scope.decl " 89 "intrinsic during inlining.")); 90 91 // Disabled by default, because the added alignment assumptions may increase 92 // compile-time and block optimizations. This option is not suitable for use 93 // with frontends that emit comprehensive parameter alignment annotations. 94 static cl::opt<bool> 95 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", 96 cl::init(false), cl::Hidden, 97 cl::desc("Convert align attributes to assumptions during inlining.")); 98 99 static cl::opt<bool> UpdateReturnAttributes( 100 "update-return-attrs", cl::init(true), cl::Hidden, 101 cl::desc("Update return attributes on calls within inlined body")); 102 103 static cl::opt<unsigned> InlinerAttributeWindow( 104 "max-inst-checked-for-throw-during-inlining", cl::Hidden, 105 cl::desc("the maximum number of instructions analyzed for may throw during " 106 "attribute inference in inlined body"), 107 cl::init(4)); 108 109 namespace { 110 111 /// A class for recording information about inlining a landing pad. 112 class LandingPadInliningInfo { 113 /// Destination of the invoke's unwind. 114 BasicBlock *OuterResumeDest; 115 116 /// Destination for the callee's resume. 117 BasicBlock *InnerResumeDest = nullptr; 118 119 /// LandingPadInst associated with the invoke. 120 LandingPadInst *CallerLPad = nullptr; 121 122 /// PHI for EH values from landingpad insts. 123 PHINode *InnerEHValuesPHI = nullptr; 124 125 SmallVector<Value*, 8> UnwindDestPHIValues; 126 127 public: 128 LandingPadInliningInfo(InvokeInst *II) 129 : OuterResumeDest(II->getUnwindDest()) { 130 // If there are PHI nodes in the unwind destination block, we need to keep 131 // track of which values came into them from the invoke before removing 132 // the edge from this block. 133 BasicBlock *InvokeBB = II->getParent(); 134 BasicBlock::iterator I = OuterResumeDest->begin(); 135 for (; isa<PHINode>(I); ++I) { 136 // Save the value to use for this edge. 137 PHINode *PHI = cast<PHINode>(I); 138 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 139 } 140 141 CallerLPad = cast<LandingPadInst>(I); 142 } 143 144 /// The outer unwind destination is the target of 145 /// unwind edges introduced for calls within the inlined function. 146 BasicBlock *getOuterResumeDest() const { 147 return OuterResumeDest; 148 } 149 150 BasicBlock *getInnerResumeDest(); 151 152 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 153 154 /// Forward the 'resume' instruction to the caller's landing pad block. 155 /// When the landing pad block has only one predecessor, this is 156 /// a simple branch. When there is more than one predecessor, we need to 157 /// split the landing pad block after the landingpad instruction and jump 158 /// to there. 159 void forwardResume(ResumeInst *RI, 160 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); 161 162 /// Add incoming-PHI values to the unwind destination block for the given 163 /// basic block, using the values for the original invoke's source block. 164 void addIncomingPHIValuesFor(BasicBlock *BB) const { 165 addIncomingPHIValuesForInto(BB, OuterResumeDest); 166 } 167 168 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 169 BasicBlock::iterator I = dest->begin(); 170 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 171 PHINode *phi = cast<PHINode>(I); 172 phi->addIncoming(UnwindDestPHIValues[i], src); 173 } 174 } 175 }; 176 177 } // end anonymous namespace 178 179 /// Get or create a target for the branch from ResumeInsts. 180 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() { 181 if (InnerResumeDest) return InnerResumeDest; 182 183 // Split the landing pad. 184 BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator(); 185 InnerResumeDest = 186 OuterResumeDest->splitBasicBlock(SplitPoint, 187 OuterResumeDest->getName() + ".body"); 188 189 // The number of incoming edges we expect to the inner landing pad. 190 const unsigned PHICapacity = 2; 191 192 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 193 Instruction *InsertPoint = &InnerResumeDest->front(); 194 BasicBlock::iterator I = OuterResumeDest->begin(); 195 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 196 PHINode *OuterPHI = cast<PHINode>(I); 197 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 198 OuterPHI->getName() + ".lpad-body", 199 InsertPoint); 200 OuterPHI->replaceAllUsesWith(InnerPHI); 201 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 202 } 203 204 // Create a PHI for the exception values. 205 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 206 "eh.lpad-body", InsertPoint); 207 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 208 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 209 210 // All done. 211 return InnerResumeDest; 212 } 213 214 /// Forward the 'resume' instruction to the caller's landing pad block. 215 /// When the landing pad block has only one predecessor, this is a simple 216 /// branch. When there is more than one predecessor, we need to split the 217 /// landing pad block after the landingpad instruction and jump to there. 218 void LandingPadInliningInfo::forwardResume( 219 ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) { 220 BasicBlock *Dest = getInnerResumeDest(); 221 BasicBlock *Src = RI->getParent(); 222 223 BranchInst::Create(Dest, Src); 224 225 // Update the PHIs in the destination. They were inserted in an order which 226 // makes this work. 227 addIncomingPHIValuesForInto(Src, Dest); 228 229 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 230 RI->eraseFromParent(); 231 } 232 233 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper. 234 static Value *getParentPad(Value *EHPad) { 235 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 236 return FPI->getParentPad(); 237 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 238 } 239 240 using UnwindDestMemoTy = DenseMap<Instruction *, Value *>; 241 242 /// Helper for getUnwindDestToken that does the descendant-ward part of 243 /// the search. 244 static Value *getUnwindDestTokenHelper(Instruction *EHPad, 245 UnwindDestMemoTy &MemoMap) { 246 SmallVector<Instruction *, 8> Worklist(1, EHPad); 247 248 while (!Worklist.empty()) { 249 Instruction *CurrentPad = Worklist.pop_back_val(); 250 // We only put pads on the worklist that aren't in the MemoMap. When 251 // we find an unwind dest for a pad we may update its ancestors, but 252 // the queue only ever contains uncles/great-uncles/etc. of CurrentPad, 253 // so they should never get updated while queued on the worklist. 254 assert(!MemoMap.count(CurrentPad)); 255 Value *UnwindDestToken = nullptr; 256 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) { 257 if (CatchSwitch->hasUnwindDest()) { 258 UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI(); 259 } else { 260 // Catchswitch doesn't have a 'nounwind' variant, and one might be 261 // annotated as "unwinds to caller" when really it's nounwind (see 262 // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the 263 // parent's unwind dest from this. We can check its catchpads' 264 // descendants, since they might include a cleanuppad with an 265 // "unwinds to caller" cleanupret, which can be trusted. 266 for (auto HI = CatchSwitch->handler_begin(), 267 HE = CatchSwitch->handler_end(); 268 HI != HE && !UnwindDestToken; ++HI) { 269 BasicBlock *HandlerBlock = *HI; 270 auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI()); 271 for (User *Child : CatchPad->users()) { 272 // Intentionally ignore invokes here -- since the catchswitch is 273 // marked "unwind to caller", it would be a verifier error if it 274 // contained an invoke which unwinds out of it, so any invoke we'd 275 // encounter must unwind to some child of the catch. 276 if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child)) 277 continue; 278 279 Instruction *ChildPad = cast<Instruction>(Child); 280 auto Memo = MemoMap.find(ChildPad); 281 if (Memo == MemoMap.end()) { 282 // Haven't figured out this child pad yet; queue it. 283 Worklist.push_back(ChildPad); 284 continue; 285 } 286 // We've already checked this child, but might have found that 287 // it offers no proof either way. 288 Value *ChildUnwindDestToken = Memo->second; 289 if (!ChildUnwindDestToken) 290 continue; 291 // We already know the child's unwind dest, which can either 292 // be ConstantTokenNone to indicate unwind to caller, or can 293 // be another child of the catchpad. Only the former indicates 294 // the unwind dest of the catchswitch. 295 if (isa<ConstantTokenNone>(ChildUnwindDestToken)) { 296 UnwindDestToken = ChildUnwindDestToken; 297 break; 298 } 299 assert(getParentPad(ChildUnwindDestToken) == CatchPad); 300 } 301 } 302 } 303 } else { 304 auto *CleanupPad = cast<CleanupPadInst>(CurrentPad); 305 for (User *U : CleanupPad->users()) { 306 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) { 307 if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest()) 308 UnwindDestToken = RetUnwindDest->getFirstNonPHI(); 309 else 310 UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext()); 311 break; 312 } 313 Value *ChildUnwindDestToken; 314 if (auto *Invoke = dyn_cast<InvokeInst>(U)) { 315 ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI(); 316 } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) { 317 Instruction *ChildPad = cast<Instruction>(U); 318 auto Memo = MemoMap.find(ChildPad); 319 if (Memo == MemoMap.end()) { 320 // Haven't resolved this child yet; queue it and keep searching. 321 Worklist.push_back(ChildPad); 322 continue; 323 } 324 // We've checked this child, but still need to ignore it if it 325 // had no proof either way. 326 ChildUnwindDestToken = Memo->second; 327 if (!ChildUnwindDestToken) 328 continue; 329 } else { 330 // Not a relevant user of the cleanuppad 331 continue; 332 } 333 // In a well-formed program, the child/invoke must either unwind to 334 // an(other) child of the cleanup, or exit the cleanup. In the 335 // first case, continue searching. 336 if (isa<Instruction>(ChildUnwindDestToken) && 337 getParentPad(ChildUnwindDestToken) == CleanupPad) 338 continue; 339 UnwindDestToken = ChildUnwindDestToken; 340 break; 341 } 342 } 343 // If we haven't found an unwind dest for CurrentPad, we may have queued its 344 // children, so move on to the next in the worklist. 345 if (!UnwindDestToken) 346 continue; 347 348 // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits 349 // any ancestors of CurrentPad up to but not including UnwindDestToken's 350 // parent pad. Record this in the memo map, and check to see if the 351 // original EHPad being queried is one of the ones exited. 352 Value *UnwindParent; 353 if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken)) 354 UnwindParent = getParentPad(UnwindPad); 355 else 356 UnwindParent = nullptr; 357 bool ExitedOriginalPad = false; 358 for (Instruction *ExitedPad = CurrentPad; 359 ExitedPad && ExitedPad != UnwindParent; 360 ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) { 361 // Skip over catchpads since they just follow their catchswitches. 362 if (isa<CatchPadInst>(ExitedPad)) 363 continue; 364 MemoMap[ExitedPad] = UnwindDestToken; 365 ExitedOriginalPad |= (ExitedPad == EHPad); 366 } 367 368 if (ExitedOriginalPad) 369 return UnwindDestToken; 370 371 // Continue the search. 372 } 373 374 // No definitive information is contained within this funclet. 375 return nullptr; 376 } 377 378 /// Given an EH pad, find where it unwinds. If it unwinds to an EH pad, 379 /// return that pad instruction. If it unwinds to caller, return 380 /// ConstantTokenNone. If it does not have a definitive unwind destination, 381 /// return nullptr. 382 /// 383 /// This routine gets invoked for calls in funclets in inlinees when inlining 384 /// an invoke. Since many funclets don't have calls inside them, it's queried 385 /// on-demand rather than building a map of pads to unwind dests up front. 386 /// Determining a funclet's unwind dest may require recursively searching its 387 /// descendants, and also ancestors and cousins if the descendants don't provide 388 /// an answer. Since most funclets will have their unwind dest immediately 389 /// available as the unwind dest of a catchswitch or cleanupret, this routine 390 /// searches top-down from the given pad and then up. To avoid worst-case 391 /// quadratic run-time given that approach, it uses a memo map to avoid 392 /// re-processing funclet trees. The callers that rewrite the IR as they go 393 /// take advantage of this, for correctness, by checking/forcing rewritten 394 /// pads' entries to match the original callee view. 395 static Value *getUnwindDestToken(Instruction *EHPad, 396 UnwindDestMemoTy &MemoMap) { 397 // Catchpads unwind to the same place as their catchswitch; 398 // redirct any queries on catchpads so the code below can 399 // deal with just catchswitches and cleanuppads. 400 if (auto *CPI = dyn_cast<CatchPadInst>(EHPad)) 401 EHPad = CPI->getCatchSwitch(); 402 403 // Check if we've already determined the unwind dest for this pad. 404 auto Memo = MemoMap.find(EHPad); 405 if (Memo != MemoMap.end()) 406 return Memo->second; 407 408 // Search EHPad and, if necessary, its descendants. 409 Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap); 410 assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0)); 411 if (UnwindDestToken) 412 return UnwindDestToken; 413 414 // No information is available for this EHPad from itself or any of its 415 // descendants. An unwind all the way out to a pad in the caller would 416 // need also to agree with the unwind dest of the parent funclet, so 417 // search up the chain to try to find a funclet with information. Put 418 // null entries in the memo map to avoid re-processing as we go up. 419 MemoMap[EHPad] = nullptr; 420 #ifndef NDEBUG 421 SmallPtrSet<Instruction *, 4> TempMemos; 422 TempMemos.insert(EHPad); 423 #endif 424 Instruction *LastUselessPad = EHPad; 425 Value *AncestorToken; 426 for (AncestorToken = getParentPad(EHPad); 427 auto *AncestorPad = dyn_cast<Instruction>(AncestorToken); 428 AncestorToken = getParentPad(AncestorToken)) { 429 // Skip over catchpads since they just follow their catchswitches. 430 if (isa<CatchPadInst>(AncestorPad)) 431 continue; 432 // If the MemoMap had an entry mapping AncestorPad to nullptr, since we 433 // haven't yet called getUnwindDestTokenHelper for AncestorPad in this 434 // call to getUnwindDestToken, that would mean that AncestorPad had no 435 // information in itself, its descendants, or its ancestors. If that 436 // were the case, then we should also have recorded the lack of information 437 // for the descendant that we're coming from. So assert that we don't 438 // find a null entry in the MemoMap for AncestorPad. 439 assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]); 440 auto AncestorMemo = MemoMap.find(AncestorPad); 441 if (AncestorMemo == MemoMap.end()) { 442 UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap); 443 } else { 444 UnwindDestToken = AncestorMemo->second; 445 } 446 if (UnwindDestToken) 447 break; 448 LastUselessPad = AncestorPad; 449 MemoMap[LastUselessPad] = nullptr; 450 #ifndef NDEBUG 451 TempMemos.insert(LastUselessPad); 452 #endif 453 } 454 455 // We know that getUnwindDestTokenHelper was called on LastUselessPad and 456 // returned nullptr (and likewise for EHPad and any of its ancestors up to 457 // LastUselessPad), so LastUselessPad has no information from below. Since 458 // getUnwindDestTokenHelper must investigate all downward paths through 459 // no-information nodes to prove that a node has no information like this, 460 // and since any time it finds information it records it in the MemoMap for 461 // not just the immediately-containing funclet but also any ancestors also 462 // exited, it must be the case that, walking downward from LastUselessPad, 463 // visiting just those nodes which have not been mapped to an unwind dest 464 // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since 465 // they are just used to keep getUnwindDestTokenHelper from repeating work), 466 // any node visited must have been exhaustively searched with no information 467 // for it found. 468 SmallVector<Instruction *, 8> Worklist(1, LastUselessPad); 469 while (!Worklist.empty()) { 470 Instruction *UselessPad = Worklist.pop_back_val(); 471 auto Memo = MemoMap.find(UselessPad); 472 if (Memo != MemoMap.end() && Memo->second) { 473 // Here the name 'UselessPad' is a bit of a misnomer, because we've found 474 // that it is a funclet that does have information about unwinding to 475 // a particular destination; its parent was a useless pad. 476 // Since its parent has no information, the unwind edge must not escape 477 // the parent, and must target a sibling of this pad. This local unwind 478 // gives us no information about EHPad. Leave it and the subtree rooted 479 // at it alone. 480 assert(getParentPad(Memo->second) == getParentPad(UselessPad)); 481 continue; 482 } 483 // We know we don't have information for UselesPad. If it has an entry in 484 // the MemoMap (mapping it to nullptr), it must be one of the TempMemos 485 // added on this invocation of getUnwindDestToken; if a previous invocation 486 // recorded nullptr, it would have had to prove that the ancestors of 487 // UselessPad, which include LastUselessPad, had no information, and that 488 // in turn would have required proving that the descendants of 489 // LastUselesPad, which include EHPad, have no information about 490 // LastUselessPad, which would imply that EHPad was mapped to nullptr in 491 // the MemoMap on that invocation, which isn't the case if we got here. 492 assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad)); 493 // Assert as we enumerate users that 'UselessPad' doesn't have any unwind 494 // information that we'd be contradicting by making a map entry for it 495 // (which is something that getUnwindDestTokenHelper must have proved for 496 // us to get here). Just assert on is direct users here; the checks in 497 // this downward walk at its descendants will verify that they don't have 498 // any unwind edges that exit 'UselessPad' either (i.e. they either have no 499 // unwind edges or unwind to a sibling). 500 MemoMap[UselessPad] = UnwindDestToken; 501 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) { 502 assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad"); 503 for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) { 504 auto *CatchPad = HandlerBlock->getFirstNonPHI(); 505 for (User *U : CatchPad->users()) { 506 assert( 507 (!isa<InvokeInst>(U) || 508 (getParentPad( 509 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 510 CatchPad)) && 511 "Expected useless pad"); 512 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 513 Worklist.push_back(cast<Instruction>(U)); 514 } 515 } 516 } else { 517 assert(isa<CleanupPadInst>(UselessPad)); 518 for (User *U : UselessPad->users()) { 519 assert(!isa<CleanupReturnInst>(U) && "Expected useless pad"); 520 assert((!isa<InvokeInst>(U) || 521 (getParentPad( 522 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 523 UselessPad)) && 524 "Expected useless pad"); 525 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 526 Worklist.push_back(cast<Instruction>(U)); 527 } 528 } 529 } 530 531 return UnwindDestToken; 532 } 533 534 /// When we inline a basic block into an invoke, 535 /// we have to turn all of the calls that can throw into invokes. 536 /// This function analyze BB to see if there are any calls, and if so, 537 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 538 /// nodes in that block with the values specified in InvokeDestPHIValues. 539 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke( 540 BasicBlock *BB, BasicBlock *UnwindEdge, 541 UnwindDestMemoTy *FuncletUnwindMap = nullptr) { 542 for (Instruction &I : llvm::make_early_inc_range(*BB)) { 543 // We only need to check for function calls: inlined invoke 544 // instructions require no special handling. 545 CallInst *CI = dyn_cast<CallInst>(&I); 546 547 if (!CI || CI->doesNotThrow()) 548 continue; 549 550 if (CI->isInlineAsm()) { 551 InlineAsm *IA = cast<InlineAsm>(CI->getCalledOperand()); 552 if (!IA->canThrow()) { 553 continue; 554 } 555 } 556 557 // We do not need to (and in fact, cannot) convert possibly throwing calls 558 // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into 559 // invokes. The caller's "segment" of the deoptimization continuation 560 // attached to the newly inlined @llvm.experimental_deoptimize 561 // (resp. @llvm.experimental.guard) call should contain the exception 562 // handling logic, if any. 563 if (auto *F = CI->getCalledFunction()) 564 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize || 565 F->getIntrinsicID() == Intrinsic::experimental_guard) 566 continue; 567 568 if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) { 569 // This call is nested inside a funclet. If that funclet has an unwind 570 // destination within the inlinee, then unwinding out of this call would 571 // be UB. Rewriting this call to an invoke which targets the inlined 572 // invoke's unwind dest would give the call's parent funclet multiple 573 // unwind destinations, which is something that subsequent EH table 574 // generation can't handle and that the veirifer rejects. So when we 575 // see such a call, leave it as a call. 576 auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]); 577 Value *UnwindDestToken = 578 getUnwindDestToken(FuncletPad, *FuncletUnwindMap); 579 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 580 continue; 581 #ifndef NDEBUG 582 Instruction *MemoKey; 583 if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad)) 584 MemoKey = CatchPad->getCatchSwitch(); 585 else 586 MemoKey = FuncletPad; 587 assert(FuncletUnwindMap->count(MemoKey) && 588 (*FuncletUnwindMap)[MemoKey] == UnwindDestToken && 589 "must get memoized to avoid confusing later searches"); 590 #endif // NDEBUG 591 } 592 593 changeToInvokeAndSplitBasicBlock(CI, UnwindEdge); 594 return BB; 595 } 596 return nullptr; 597 } 598 599 /// If we inlined an invoke site, we need to convert calls 600 /// in the body of the inlined function into invokes. 601 /// 602 /// II is the invoke instruction being inlined. FirstNewBlock is the first 603 /// block of the inlined code (the last block is the end of the function), 604 /// and InlineCodeInfo is information about the code that got inlined. 605 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock, 606 ClonedCodeInfo &InlinedCodeInfo) { 607 BasicBlock *InvokeDest = II->getUnwindDest(); 608 609 Function *Caller = FirstNewBlock->getParent(); 610 611 // The inlined code is currently at the end of the function, scan from the 612 // start of the inlined code to its end, checking for stuff we need to 613 // rewrite. 614 LandingPadInliningInfo Invoke(II); 615 616 // Get all of the inlined landing pad instructions. 617 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 618 for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end(); 619 I != E; ++I) 620 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 621 InlinedLPads.insert(II->getLandingPadInst()); 622 623 // Append the clauses from the outer landing pad instruction into the inlined 624 // landing pad instructions. 625 LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 626 for (LandingPadInst *InlinedLPad : InlinedLPads) { 627 unsigned OuterNum = OuterLPad->getNumClauses(); 628 InlinedLPad->reserveClauses(OuterNum); 629 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 630 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 631 if (OuterLPad->isCleanup()) 632 InlinedLPad->setCleanup(true); 633 } 634 635 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 636 BB != E; ++BB) { 637 if (InlinedCodeInfo.ContainsCalls) 638 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 639 &*BB, Invoke.getOuterResumeDest())) 640 // Update any PHI nodes in the exceptional block to indicate that there 641 // is now a new entry in them. 642 Invoke.addIncomingPHIValuesFor(NewBB); 643 644 // Forward any resumes that are remaining here. 645 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 646 Invoke.forwardResume(RI, InlinedLPads); 647 } 648 649 // Now that everything is happy, we have one final detail. The PHI nodes in 650 // the exception destination block still have entries due to the original 651 // invoke instruction. Eliminate these entries (which might even delete the 652 // PHI node) now. 653 InvokeDest->removePredecessor(II->getParent()); 654 } 655 656 /// If we inlined an invoke site, we need to convert calls 657 /// in the body of the inlined function into invokes. 658 /// 659 /// II is the invoke instruction being inlined. FirstNewBlock is the first 660 /// block of the inlined code (the last block is the end of the function), 661 /// and InlineCodeInfo is information about the code that got inlined. 662 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock, 663 ClonedCodeInfo &InlinedCodeInfo) { 664 BasicBlock *UnwindDest = II->getUnwindDest(); 665 Function *Caller = FirstNewBlock->getParent(); 666 667 assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!"); 668 669 // If there are PHI nodes in the unwind destination block, we need to keep 670 // track of which values came into them from the invoke before removing the 671 // edge from this block. 672 SmallVector<Value *, 8> UnwindDestPHIValues; 673 BasicBlock *InvokeBB = II->getParent(); 674 for (PHINode &PHI : UnwindDest->phis()) { 675 // Save the value to use for this edge. 676 UnwindDestPHIValues.push_back(PHI.getIncomingValueForBlock(InvokeBB)); 677 } 678 679 // Add incoming-PHI values to the unwind destination block for the given basic 680 // block, using the values for the original invoke's source block. 681 auto UpdatePHINodes = [&](BasicBlock *Src) { 682 BasicBlock::iterator I = UnwindDest->begin(); 683 for (Value *V : UnwindDestPHIValues) { 684 PHINode *PHI = cast<PHINode>(I); 685 PHI->addIncoming(V, Src); 686 ++I; 687 } 688 }; 689 690 // This connects all the instructions which 'unwind to caller' to the invoke 691 // destination. 692 UnwindDestMemoTy FuncletUnwindMap; 693 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 694 BB != E; ++BB) { 695 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 696 if (CRI->unwindsToCaller()) { 697 auto *CleanupPad = CRI->getCleanupPad(); 698 CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI); 699 CRI->eraseFromParent(); 700 UpdatePHINodes(&*BB); 701 // Finding a cleanupret with an unwind destination would confuse 702 // subsequent calls to getUnwindDestToken, so map the cleanuppad 703 // to short-circuit any such calls and recognize this as an "unwind 704 // to caller" cleanup. 705 assert(!FuncletUnwindMap.count(CleanupPad) || 706 isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad])); 707 FuncletUnwindMap[CleanupPad] = 708 ConstantTokenNone::get(Caller->getContext()); 709 } 710 } 711 712 Instruction *I = BB->getFirstNonPHI(); 713 if (!I->isEHPad()) 714 continue; 715 716 Instruction *Replacement = nullptr; 717 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 718 if (CatchSwitch->unwindsToCaller()) { 719 Value *UnwindDestToken; 720 if (auto *ParentPad = 721 dyn_cast<Instruction>(CatchSwitch->getParentPad())) { 722 // This catchswitch is nested inside another funclet. If that 723 // funclet has an unwind destination within the inlinee, then 724 // unwinding out of this catchswitch would be UB. Rewriting this 725 // catchswitch to unwind to the inlined invoke's unwind dest would 726 // give the parent funclet multiple unwind destinations, which is 727 // something that subsequent EH table generation can't handle and 728 // that the veirifer rejects. So when we see such a call, leave it 729 // as "unwind to caller". 730 UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap); 731 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 732 continue; 733 } else { 734 // This catchswitch has no parent to inherit constraints from, and 735 // none of its descendants can have an unwind edge that exits it and 736 // targets another funclet in the inlinee. It may or may not have a 737 // descendant that definitively has an unwind to caller. In either 738 // case, we'll have to assume that any unwinds out of it may need to 739 // be routed to the caller, so treat it as though it has a definitive 740 // unwind to caller. 741 UnwindDestToken = ConstantTokenNone::get(Caller->getContext()); 742 } 743 auto *NewCatchSwitch = CatchSwitchInst::Create( 744 CatchSwitch->getParentPad(), UnwindDest, 745 CatchSwitch->getNumHandlers(), CatchSwitch->getName(), 746 CatchSwitch); 747 for (BasicBlock *PadBB : CatchSwitch->handlers()) 748 NewCatchSwitch->addHandler(PadBB); 749 // Propagate info for the old catchswitch over to the new one in 750 // the unwind map. This also serves to short-circuit any subsequent 751 // checks for the unwind dest of this catchswitch, which would get 752 // confused if they found the outer handler in the callee. 753 FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken; 754 Replacement = NewCatchSwitch; 755 } 756 } else if (!isa<FuncletPadInst>(I)) { 757 llvm_unreachable("unexpected EHPad!"); 758 } 759 760 if (Replacement) { 761 Replacement->takeName(I); 762 I->replaceAllUsesWith(Replacement); 763 I->eraseFromParent(); 764 UpdatePHINodes(&*BB); 765 } 766 } 767 768 if (InlinedCodeInfo.ContainsCalls) 769 for (Function::iterator BB = FirstNewBlock->getIterator(), 770 E = Caller->end(); 771 BB != E; ++BB) 772 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 773 &*BB, UnwindDest, &FuncletUnwindMap)) 774 // Update any PHI nodes in the exceptional block to indicate that there 775 // is now a new entry in them. 776 UpdatePHINodes(NewBB); 777 778 // Now that everything is happy, we have one final detail. The PHI nodes in 779 // the exception destination block still have entries due to the original 780 // invoke instruction. Eliminate these entries (which might even delete the 781 // PHI node) now. 782 UnwindDest->removePredecessor(InvokeBB); 783 } 784 785 /// When inlining a call site that has !llvm.mem.parallel_loop_access, 786 /// !llvm.access.group, !alias.scope or !noalias metadata, that metadata should 787 /// be propagated to all memory-accessing cloned instructions. 788 static void PropagateCallSiteMetadata(CallBase &CB, Function::iterator FStart, 789 Function::iterator FEnd) { 790 MDNode *MemParallelLoopAccess = 791 CB.getMetadata(LLVMContext::MD_mem_parallel_loop_access); 792 MDNode *AccessGroup = CB.getMetadata(LLVMContext::MD_access_group); 793 MDNode *AliasScope = CB.getMetadata(LLVMContext::MD_alias_scope); 794 MDNode *NoAlias = CB.getMetadata(LLVMContext::MD_noalias); 795 if (!MemParallelLoopAccess && !AccessGroup && !AliasScope && !NoAlias) 796 return; 797 798 for (BasicBlock &BB : make_range(FStart, FEnd)) { 799 for (Instruction &I : BB) { 800 // This metadata is only relevant for instructions that access memory. 801 if (!I.mayReadOrWriteMemory()) 802 continue; 803 804 if (MemParallelLoopAccess) { 805 // TODO: This probably should not overwrite MemParalleLoopAccess. 806 MemParallelLoopAccess = MDNode::concatenate( 807 I.getMetadata(LLVMContext::MD_mem_parallel_loop_access), 808 MemParallelLoopAccess); 809 I.setMetadata(LLVMContext::MD_mem_parallel_loop_access, 810 MemParallelLoopAccess); 811 } 812 813 if (AccessGroup) 814 I.setMetadata(LLVMContext::MD_access_group, uniteAccessGroups( 815 I.getMetadata(LLVMContext::MD_access_group), AccessGroup)); 816 817 if (AliasScope) 818 I.setMetadata(LLVMContext::MD_alias_scope, MDNode::concatenate( 819 I.getMetadata(LLVMContext::MD_alias_scope), AliasScope)); 820 821 if (NoAlias) 822 I.setMetadata(LLVMContext::MD_noalias, MDNode::concatenate( 823 I.getMetadata(LLVMContext::MD_noalias), NoAlias)); 824 } 825 } 826 } 827 828 namespace { 829 /// Utility for cloning !noalias and !alias.scope metadata. When a code region 830 /// using scoped alias metadata is inlined, the aliasing relationships may not 831 /// hold between the two version. It is necessary to create a deep clone of the 832 /// metadata, putting the two versions in separate scope domains. 833 class ScopedAliasMetadataDeepCloner { 834 using MetadataMap = DenseMap<const MDNode *, TrackingMDNodeRef>; 835 SetVector<const MDNode *> MD; 836 MetadataMap MDMap; 837 void addRecursiveMetadataUses(); 838 839 public: 840 ScopedAliasMetadataDeepCloner(const Function *F); 841 842 /// Create a new clone of the scoped alias metadata, which will be used by 843 /// subsequent remap() calls. 844 void clone(); 845 846 /// Remap instructions in the given range from the original to the cloned 847 /// metadata. 848 void remap(Function::iterator FStart, Function::iterator FEnd); 849 }; 850 } // namespace 851 852 ScopedAliasMetadataDeepCloner::ScopedAliasMetadataDeepCloner( 853 const Function *F) { 854 for (const BasicBlock &BB : *F) { 855 for (const Instruction &I : BB) { 856 if (const MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope)) 857 MD.insert(M); 858 if (const MDNode *M = I.getMetadata(LLVMContext::MD_noalias)) 859 MD.insert(M); 860 861 // We also need to clone the metadata in noalias intrinsics. 862 if (const auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) 863 MD.insert(Decl->getScopeList()); 864 } 865 } 866 addRecursiveMetadataUses(); 867 } 868 869 void ScopedAliasMetadataDeepCloner::addRecursiveMetadataUses() { 870 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end()); 871 while (!Queue.empty()) { 872 const MDNode *M = cast<MDNode>(Queue.pop_back_val()); 873 for (const Metadata *Op : M->operands()) 874 if (const MDNode *OpMD = dyn_cast<MDNode>(Op)) 875 if (MD.insert(OpMD)) 876 Queue.push_back(OpMD); 877 } 878 } 879 880 void ScopedAliasMetadataDeepCloner::clone() { 881 assert(MDMap.empty() && "clone() already called ?"); 882 883 SmallVector<TempMDTuple, 16> DummyNodes; 884 for (const MDNode *I : MD) { 885 DummyNodes.push_back(MDTuple::getTemporary(I->getContext(), None)); 886 MDMap[I].reset(DummyNodes.back().get()); 887 } 888 889 // Create new metadata nodes to replace the dummy nodes, replacing old 890 // metadata references with either a dummy node or an already-created new 891 // node. 892 SmallVector<Metadata *, 4> NewOps; 893 for (const MDNode *I : MD) { 894 for (const Metadata *Op : I->operands()) { 895 if (const MDNode *M = dyn_cast<MDNode>(Op)) 896 NewOps.push_back(MDMap[M]); 897 else 898 NewOps.push_back(const_cast<Metadata *>(Op)); 899 } 900 901 MDNode *NewM = MDNode::get(I->getContext(), NewOps); 902 MDTuple *TempM = cast<MDTuple>(MDMap[I]); 903 assert(TempM->isTemporary() && "Expected temporary node"); 904 905 TempM->replaceAllUsesWith(NewM); 906 NewOps.clear(); 907 } 908 } 909 910 void ScopedAliasMetadataDeepCloner::remap(Function::iterator FStart, 911 Function::iterator FEnd) { 912 if (MDMap.empty()) 913 return; // Nothing to do. 914 915 for (BasicBlock &BB : make_range(FStart, FEnd)) { 916 for (Instruction &I : BB) { 917 // TODO: The null checks for the MDMap.lookup() results should no longer 918 // be necessary. 919 if (MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope)) 920 if (MDNode *MNew = MDMap.lookup(M)) 921 I.setMetadata(LLVMContext::MD_alias_scope, MNew); 922 923 if (MDNode *M = I.getMetadata(LLVMContext::MD_noalias)) 924 if (MDNode *MNew = MDMap.lookup(M)) 925 I.setMetadata(LLVMContext::MD_noalias, MNew); 926 927 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) 928 if (MDNode *MNew = MDMap.lookup(Decl->getScopeList())) 929 Decl->setScopeList(MNew); 930 } 931 } 932 } 933 934 /// If the inlined function has noalias arguments, 935 /// then add new alias scopes for each noalias argument, tag the mapped noalias 936 /// parameters with noalias metadata specifying the new scope, and tag all 937 /// non-derived loads, stores and memory intrinsics with the new alias scopes. 938 static void AddAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap, 939 const DataLayout &DL, AAResults *CalleeAAR, 940 ClonedCodeInfo &InlinedFunctionInfo) { 941 if (!EnableNoAliasConversion) 942 return; 943 944 const Function *CalledFunc = CB.getCalledFunction(); 945 SmallVector<const Argument *, 4> NoAliasArgs; 946 947 for (const Argument &Arg : CalledFunc->args()) 948 if (CB.paramHasAttr(Arg.getArgNo(), Attribute::NoAlias) && !Arg.use_empty()) 949 NoAliasArgs.push_back(&Arg); 950 951 if (NoAliasArgs.empty()) 952 return; 953 954 // To do a good job, if a noalias variable is captured, we need to know if 955 // the capture point dominates the particular use we're considering. 956 DominatorTree DT; 957 DT.recalculate(const_cast<Function&>(*CalledFunc)); 958 959 // noalias indicates that pointer values based on the argument do not alias 960 // pointer values which are not based on it. So we add a new "scope" for each 961 // noalias function argument. Accesses using pointers based on that argument 962 // become part of that alias scope, accesses using pointers not based on that 963 // argument are tagged as noalias with that scope. 964 965 DenseMap<const Argument *, MDNode *> NewScopes; 966 MDBuilder MDB(CalledFunc->getContext()); 967 968 // Create a new scope domain for this function. 969 MDNode *NewDomain = 970 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); 971 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { 972 const Argument *A = NoAliasArgs[i]; 973 974 std::string Name = std::string(CalledFunc->getName()); 975 if (A->hasName()) { 976 Name += ": %"; 977 Name += A->getName(); 978 } else { 979 Name += ": argument "; 980 Name += utostr(i); 981 } 982 983 // Note: We always create a new anonymous root here. This is true regardless 984 // of the linkage of the callee because the aliasing "scope" is not just a 985 // property of the callee, but also all control dependencies in the caller. 986 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); 987 NewScopes.insert(std::make_pair(A, NewScope)); 988 989 if (UseNoAliasIntrinsic) { 990 // Introduce a llvm.experimental.noalias.scope.decl for the noalias 991 // argument. 992 MDNode *AScopeList = MDNode::get(CalledFunc->getContext(), NewScope); 993 auto *NoAliasDecl = 994 IRBuilder<>(&CB).CreateNoAliasScopeDeclaration(AScopeList); 995 // Ignore the result for now. The result will be used when the 996 // llvm.noalias intrinsic is introduced. 997 (void)NoAliasDecl; 998 } 999 } 1000 1001 // Iterate over all new instructions in the map; for all memory-access 1002 // instructions, add the alias scope metadata. 1003 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 1004 VMI != VMIE; ++VMI) { 1005 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { 1006 if (!VMI->second) 1007 continue; 1008 1009 Instruction *NI = dyn_cast<Instruction>(VMI->second); 1010 if (!NI || InlinedFunctionInfo.isSimplified(I, NI)) 1011 continue; 1012 1013 bool IsArgMemOnlyCall = false, IsFuncCall = false; 1014 SmallVector<const Value *, 2> PtrArgs; 1015 1016 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 1017 PtrArgs.push_back(LI->getPointerOperand()); 1018 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 1019 PtrArgs.push_back(SI->getPointerOperand()); 1020 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) 1021 PtrArgs.push_back(VAAI->getPointerOperand()); 1022 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 1023 PtrArgs.push_back(CXI->getPointerOperand()); 1024 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 1025 PtrArgs.push_back(RMWI->getPointerOperand()); 1026 else if (const auto *Call = dyn_cast<CallBase>(I)) { 1027 // If we know that the call does not access memory, then we'll still 1028 // know that about the inlined clone of this call site, and we don't 1029 // need to add metadata. 1030 if (Call->doesNotAccessMemory()) 1031 continue; 1032 1033 IsFuncCall = true; 1034 if (CalleeAAR) { 1035 FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call); 1036 1037 // We'll retain this knowledge without additional metadata. 1038 if (AAResults::onlyAccessesInaccessibleMem(MRB)) 1039 continue; 1040 1041 if (AAResults::onlyAccessesArgPointees(MRB)) 1042 IsArgMemOnlyCall = true; 1043 } 1044 1045 for (Value *Arg : Call->args()) { 1046 // We need to check the underlying objects of all arguments, not just 1047 // the pointer arguments, because we might be passing pointers as 1048 // integers, etc. 1049 // However, if we know that the call only accesses pointer arguments, 1050 // then we only need to check the pointer arguments. 1051 if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy()) 1052 continue; 1053 1054 PtrArgs.push_back(Arg); 1055 } 1056 } 1057 1058 // If we found no pointers, then this instruction is not suitable for 1059 // pairing with an instruction to receive aliasing metadata. 1060 // However, if this is a call, this we might just alias with none of the 1061 // noalias arguments. 1062 if (PtrArgs.empty() && !IsFuncCall) 1063 continue; 1064 1065 // It is possible that there is only one underlying object, but you 1066 // need to go through several PHIs to see it, and thus could be 1067 // repeated in the Objects list. 1068 SmallPtrSet<const Value *, 4> ObjSet; 1069 SmallVector<Metadata *, 4> Scopes, NoAliases; 1070 1071 SmallSetVector<const Argument *, 4> NAPtrArgs; 1072 for (const Value *V : PtrArgs) { 1073 SmallVector<const Value *, 4> Objects; 1074 getUnderlyingObjects(V, Objects, /* LI = */ nullptr); 1075 1076 for (const Value *O : Objects) 1077 ObjSet.insert(O); 1078 } 1079 1080 // Figure out if we're derived from anything that is not a noalias 1081 // argument. 1082 bool CanDeriveViaCapture = false, UsesAliasingPtr = false; 1083 for (const Value *V : ObjSet) { 1084 // Is this value a constant that cannot be derived from any pointer 1085 // value (we need to exclude constant expressions, for example, that 1086 // are formed from arithmetic on global symbols). 1087 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || 1088 isa<ConstantPointerNull>(V) || 1089 isa<ConstantDataVector>(V) || isa<UndefValue>(V); 1090 if (IsNonPtrConst) 1091 continue; 1092 1093 // If this is anything other than a noalias argument, then we cannot 1094 // completely describe the aliasing properties using alias.scope 1095 // metadata (and, thus, won't add any). 1096 if (const Argument *A = dyn_cast<Argument>(V)) { 1097 if (!CB.paramHasAttr(A->getArgNo(), Attribute::NoAlias)) 1098 UsesAliasingPtr = true; 1099 } else { 1100 UsesAliasingPtr = true; 1101 } 1102 1103 // If this is not some identified function-local object (which cannot 1104 // directly alias a noalias argument), or some other argument (which, 1105 // by definition, also cannot alias a noalias argument), then we could 1106 // alias a noalias argument that has been captured). 1107 if (!isa<Argument>(V) && 1108 !isIdentifiedFunctionLocal(const_cast<Value*>(V))) 1109 CanDeriveViaCapture = true; 1110 } 1111 1112 // A function call can always get captured noalias pointers (via other 1113 // parameters, globals, etc.). 1114 if (IsFuncCall && !IsArgMemOnlyCall) 1115 CanDeriveViaCapture = true; 1116 1117 // First, we want to figure out all of the sets with which we definitely 1118 // don't alias. Iterate over all noalias set, and add those for which: 1119 // 1. The noalias argument is not in the set of objects from which we 1120 // definitely derive. 1121 // 2. The noalias argument has not yet been captured. 1122 // An arbitrary function that might load pointers could see captured 1123 // noalias arguments via other noalias arguments or globals, and so we 1124 // must always check for prior capture. 1125 for (const Argument *A : NoAliasArgs) { 1126 if (!ObjSet.count(A) && (!CanDeriveViaCapture || 1127 // It might be tempting to skip the 1128 // PointerMayBeCapturedBefore check if 1129 // A->hasNoCaptureAttr() is true, but this is 1130 // incorrect because nocapture only guarantees 1131 // that no copies outlive the function, not 1132 // that the value cannot be locally captured. 1133 !PointerMayBeCapturedBefore(A, 1134 /* ReturnCaptures */ false, 1135 /* StoreCaptures */ false, I, &DT))) 1136 NoAliases.push_back(NewScopes[A]); 1137 } 1138 1139 if (!NoAliases.empty()) 1140 NI->setMetadata(LLVMContext::MD_noalias, 1141 MDNode::concatenate( 1142 NI->getMetadata(LLVMContext::MD_noalias), 1143 MDNode::get(CalledFunc->getContext(), NoAliases))); 1144 1145 // Next, we want to figure out all of the sets to which we might belong. 1146 // We might belong to a set if the noalias argument is in the set of 1147 // underlying objects. If there is some non-noalias argument in our list 1148 // of underlying objects, then we cannot add a scope because the fact 1149 // that some access does not alias with any set of our noalias arguments 1150 // cannot itself guarantee that it does not alias with this access 1151 // (because there is some pointer of unknown origin involved and the 1152 // other access might also depend on this pointer). We also cannot add 1153 // scopes to arbitrary functions unless we know they don't access any 1154 // non-parameter pointer-values. 1155 bool CanAddScopes = !UsesAliasingPtr; 1156 if (CanAddScopes && IsFuncCall) 1157 CanAddScopes = IsArgMemOnlyCall; 1158 1159 if (CanAddScopes) 1160 for (const Argument *A : NoAliasArgs) { 1161 if (ObjSet.count(A)) 1162 Scopes.push_back(NewScopes[A]); 1163 } 1164 1165 if (!Scopes.empty()) 1166 NI->setMetadata( 1167 LLVMContext::MD_alias_scope, 1168 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), 1169 MDNode::get(CalledFunc->getContext(), Scopes))); 1170 } 1171 } 1172 } 1173 1174 static bool MayContainThrowingOrExitingCall(Instruction *Begin, 1175 Instruction *End) { 1176 1177 assert(Begin->getParent() == End->getParent() && 1178 "Expected to be in same basic block!"); 1179 return !llvm::isGuaranteedToTransferExecutionToSuccessor( 1180 Begin->getIterator(), End->getIterator(), InlinerAttributeWindow + 1); 1181 } 1182 1183 static AttrBuilder IdentifyValidAttributes(CallBase &CB) { 1184 1185 AttrBuilder AB(CB.getContext(), CB.getAttributes().getRetAttrs()); 1186 if (!AB.hasAttributes()) 1187 return AB; 1188 AttrBuilder Valid(CB.getContext()); 1189 // Only allow these white listed attributes to be propagated back to the 1190 // callee. This is because other attributes may only be valid on the call 1191 // itself, i.e. attributes such as signext and zeroext. 1192 if (auto DerefBytes = AB.getDereferenceableBytes()) 1193 Valid.addDereferenceableAttr(DerefBytes); 1194 if (auto DerefOrNullBytes = AB.getDereferenceableOrNullBytes()) 1195 Valid.addDereferenceableOrNullAttr(DerefOrNullBytes); 1196 if (AB.contains(Attribute::NoAlias)) 1197 Valid.addAttribute(Attribute::NoAlias); 1198 if (AB.contains(Attribute::NonNull)) 1199 Valid.addAttribute(Attribute::NonNull); 1200 return Valid; 1201 } 1202 1203 static void AddReturnAttributes(CallBase &CB, ValueToValueMapTy &VMap) { 1204 if (!UpdateReturnAttributes) 1205 return; 1206 1207 AttrBuilder Valid = IdentifyValidAttributes(CB); 1208 if (!Valid.hasAttributes()) 1209 return; 1210 auto *CalledFunction = CB.getCalledFunction(); 1211 auto &Context = CalledFunction->getContext(); 1212 1213 for (auto &BB : *CalledFunction) { 1214 auto *RI = dyn_cast<ReturnInst>(BB.getTerminator()); 1215 if (!RI || !isa<CallBase>(RI->getOperand(0))) 1216 continue; 1217 auto *RetVal = cast<CallBase>(RI->getOperand(0)); 1218 // Check that the cloned RetVal exists and is a call, otherwise we cannot 1219 // add the attributes on the cloned RetVal. Simplification during inlining 1220 // could have transformed the cloned instruction. 1221 auto *NewRetVal = dyn_cast_or_null<CallBase>(VMap.lookup(RetVal)); 1222 if (!NewRetVal) 1223 continue; 1224 // Backward propagation of attributes to the returned value may be incorrect 1225 // if it is control flow dependent. 1226 // Consider: 1227 // @callee { 1228 // %rv = call @foo() 1229 // %rv2 = call @bar() 1230 // if (%rv2 != null) 1231 // return %rv2 1232 // if (%rv == null) 1233 // exit() 1234 // return %rv 1235 // } 1236 // caller() { 1237 // %val = call nonnull @callee() 1238 // } 1239 // Here we cannot add the nonnull attribute on either foo or bar. So, we 1240 // limit the check to both RetVal and RI are in the same basic block and 1241 // there are no throwing/exiting instructions between these instructions. 1242 if (RI->getParent() != RetVal->getParent() || 1243 MayContainThrowingOrExitingCall(RetVal, RI)) 1244 continue; 1245 // Add to the existing attributes of NewRetVal, i.e. the cloned call 1246 // instruction. 1247 // NB! When we have the same attribute already existing on NewRetVal, but 1248 // with a differing value, the AttributeList's merge API honours the already 1249 // existing attribute value (i.e. attributes such as dereferenceable, 1250 // dereferenceable_or_null etc). See AttrBuilder::merge for more details. 1251 AttributeList AL = NewRetVal->getAttributes(); 1252 AttributeList NewAL = AL.addRetAttributes(Context, Valid); 1253 NewRetVal->setAttributes(NewAL); 1254 } 1255 } 1256 1257 /// If the inlined function has non-byval align arguments, then 1258 /// add @llvm.assume-based alignment assumptions to preserve this information. 1259 static void AddAlignmentAssumptions(CallBase &CB, InlineFunctionInfo &IFI) { 1260 if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache) 1261 return; 1262 1263 AssumptionCache *AC = &IFI.GetAssumptionCache(*CB.getCaller()); 1264 auto &DL = CB.getCaller()->getParent()->getDataLayout(); 1265 1266 // To avoid inserting redundant assumptions, we should check for assumptions 1267 // already in the caller. To do this, we might need a DT of the caller. 1268 DominatorTree DT; 1269 bool DTCalculated = false; 1270 1271 Function *CalledFunc = CB.getCalledFunction(); 1272 for (Argument &Arg : CalledFunc->args()) { 1273 unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0; 1274 if (Align && !Arg.hasPassPointeeByValueCopyAttr() && !Arg.hasNUses(0)) { 1275 if (!DTCalculated) { 1276 DT.recalculate(*CB.getCaller()); 1277 DTCalculated = true; 1278 } 1279 1280 // If we can already prove the asserted alignment in the context of the 1281 // caller, then don't bother inserting the assumption. 1282 Value *ArgVal = CB.getArgOperand(Arg.getArgNo()); 1283 if (getKnownAlignment(ArgVal, DL, &CB, AC, &DT) >= Align) 1284 continue; 1285 1286 CallInst *NewAsmp = 1287 IRBuilder<>(&CB).CreateAlignmentAssumption(DL, ArgVal, Align); 1288 AC->registerAssumption(cast<AssumeInst>(NewAsmp)); 1289 } 1290 } 1291 } 1292 1293 /// Once we have cloned code over from a callee into the caller, 1294 /// update the specified callgraph to reflect the changes we made. 1295 /// Note that it's possible that not all code was copied over, so only 1296 /// some edges of the callgraph may remain. 1297 static void UpdateCallGraphAfterInlining(CallBase &CB, 1298 Function::iterator FirstNewBlock, 1299 ValueToValueMapTy &VMap, 1300 InlineFunctionInfo &IFI) { 1301 CallGraph &CG = *IFI.CG; 1302 const Function *Caller = CB.getCaller(); 1303 const Function *Callee = CB.getCalledFunction(); 1304 CallGraphNode *CalleeNode = CG[Callee]; 1305 CallGraphNode *CallerNode = CG[Caller]; 1306 1307 // Since we inlined some uninlined call sites in the callee into the caller, 1308 // add edges from the caller to all of the callees of the callee. 1309 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 1310 1311 // Consider the case where CalleeNode == CallerNode. 1312 CallGraphNode::CalledFunctionsVector CallCache; 1313 if (CalleeNode == CallerNode) { 1314 CallCache.assign(I, E); 1315 I = CallCache.begin(); 1316 E = CallCache.end(); 1317 } 1318 1319 for (; I != E; ++I) { 1320 // Skip 'refererence' call records. 1321 if (!I->first) 1322 continue; 1323 1324 const Value *OrigCall = *I->first; 1325 1326 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 1327 // Only copy the edge if the call was inlined! 1328 if (VMI == VMap.end() || VMI->second == nullptr) 1329 continue; 1330 1331 // If the call was inlined, but then constant folded, there is no edge to 1332 // add. Check for this case. 1333 auto *NewCall = dyn_cast<CallBase>(VMI->second); 1334 if (!NewCall) 1335 continue; 1336 1337 // We do not treat intrinsic calls like real function calls because we 1338 // expect them to become inline code; do not add an edge for an intrinsic. 1339 if (NewCall->getCalledFunction() && 1340 NewCall->getCalledFunction()->isIntrinsic()) 1341 continue; 1342 1343 // Remember that this call site got inlined for the client of 1344 // InlineFunction. 1345 IFI.InlinedCalls.push_back(NewCall); 1346 1347 // It's possible that inlining the callsite will cause it to go from an 1348 // indirect to a direct call by resolving a function pointer. If this 1349 // happens, set the callee of the new call site to a more precise 1350 // destination. This can also happen if the call graph node of the caller 1351 // was just unnecessarily imprecise. 1352 if (!I->second->getFunction()) 1353 if (Function *F = NewCall->getCalledFunction()) { 1354 // Indirect call site resolved to direct call. 1355 CallerNode->addCalledFunction(NewCall, CG[F]); 1356 1357 continue; 1358 } 1359 1360 CallerNode->addCalledFunction(NewCall, I->second); 1361 } 1362 1363 // Update the call graph by deleting the edge from Callee to Caller. We must 1364 // do this after the loop above in case Caller and Callee are the same. 1365 CallerNode->removeCallEdgeFor(*cast<CallBase>(&CB)); 1366 } 1367 1368 static void HandleByValArgumentInit(Type *ByValType, Value *Dst, Value *Src, 1369 Module *M, BasicBlock *InsertBlock, 1370 InlineFunctionInfo &IFI) { 1371 IRBuilder<> Builder(InsertBlock, InsertBlock->begin()); 1372 1373 Value *Size = 1374 Builder.getInt64(M->getDataLayout().getTypeStoreSize(ByValType)); 1375 1376 // Always generate a memcpy of alignment 1 here because we don't know 1377 // the alignment of the src pointer. Other optimizations can infer 1378 // better alignment. 1379 Builder.CreateMemCpy(Dst, /*DstAlign*/ Align(1), Src, 1380 /*SrcAlign*/ Align(1), Size); 1381 } 1382 1383 /// When inlining a call site that has a byval argument, 1384 /// we have to make the implicit memcpy explicit by adding it. 1385 static Value *HandleByValArgument(Type *ByValType, Value *Arg, 1386 Instruction *TheCall, 1387 const Function *CalledFunc, 1388 InlineFunctionInfo &IFI, 1389 unsigned ByValAlignment) { 1390 assert(cast<PointerType>(Arg->getType()) 1391 ->isOpaqueOrPointeeTypeMatches(ByValType)); 1392 Function *Caller = TheCall->getFunction(); 1393 const DataLayout &DL = Caller->getParent()->getDataLayout(); 1394 1395 // If the called function is readonly, then it could not mutate the caller's 1396 // copy of the byval'd memory. In this case, it is safe to elide the copy and 1397 // temporary. 1398 if (CalledFunc->onlyReadsMemory()) { 1399 // If the byval argument has a specified alignment that is greater than the 1400 // passed in pointer, then we either have to round up the input pointer or 1401 // give up on this transformation. 1402 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 1403 return Arg; 1404 1405 AssumptionCache *AC = 1406 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr; 1407 1408 // If the pointer is already known to be sufficiently aligned, or if we can 1409 // round it up to a larger alignment, then we don't need a temporary. 1410 if (getOrEnforceKnownAlignment(Arg, Align(ByValAlignment), DL, TheCall, 1411 AC) >= ByValAlignment) 1412 return Arg; 1413 1414 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 1415 // for code quality, but rarely happens and is required for correctness. 1416 } 1417 1418 // Create the alloca. If we have DataLayout, use nice alignment. 1419 Align Alignment(DL.getPrefTypeAlignment(ByValType)); 1420 1421 // If the byval had an alignment specified, we *must* use at least that 1422 // alignment, as it is required by the byval argument (and uses of the 1423 // pointer inside the callee). 1424 Alignment = max(Alignment, MaybeAlign(ByValAlignment)); 1425 1426 Value *NewAlloca = 1427 new AllocaInst(ByValType, DL.getAllocaAddrSpace(), nullptr, Alignment, 1428 Arg->getName(), &*Caller->begin()->begin()); 1429 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); 1430 1431 // Uses of the argument in the function should use our new alloca 1432 // instead. 1433 return NewAlloca; 1434 } 1435 1436 // Check whether this Value is used by a lifetime intrinsic. 1437 static bool isUsedByLifetimeMarker(Value *V) { 1438 for (User *U : V->users()) 1439 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) 1440 if (II->isLifetimeStartOrEnd()) 1441 return true; 1442 return false; 1443 } 1444 1445 // Check whether the given alloca already has 1446 // lifetime.start or lifetime.end intrinsics. 1447 static bool hasLifetimeMarkers(AllocaInst *AI) { 1448 Type *Ty = AI->getType(); 1449 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), 1450 Ty->getPointerAddressSpace()); 1451 if (Ty == Int8PtrTy) 1452 return isUsedByLifetimeMarker(AI); 1453 1454 // Do a scan to find all the casts to i8*. 1455 for (User *U : AI->users()) { 1456 if (U->getType() != Int8PtrTy) continue; 1457 if (U->stripPointerCasts() != AI) continue; 1458 if (isUsedByLifetimeMarker(U)) 1459 return true; 1460 } 1461 return false; 1462 } 1463 1464 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry 1465 /// block. Allocas used in inalloca calls and allocas of dynamic array size 1466 /// cannot be static. 1467 static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) { 1468 return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca(); 1469 } 1470 1471 /// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL 1472 /// inlined at \p InlinedAt. \p IANodes is an inlined-at cache. 1473 static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt, 1474 LLVMContext &Ctx, 1475 DenseMap<const MDNode *, MDNode *> &IANodes) { 1476 auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes); 1477 return DILocation::get(Ctx, OrigDL.getLine(), OrigDL.getCol(), 1478 OrigDL.getScope(), IA); 1479 } 1480 1481 /// Update inlined instructions' line numbers to 1482 /// to encode location where these instructions are inlined. 1483 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 1484 Instruction *TheCall, bool CalleeHasDebugInfo) { 1485 const DebugLoc &TheCallDL = TheCall->getDebugLoc(); 1486 if (!TheCallDL) 1487 return; 1488 1489 auto &Ctx = Fn->getContext(); 1490 DILocation *InlinedAtNode = TheCallDL; 1491 1492 // Create a unique call site, not to be confused with any other call from the 1493 // same location. 1494 InlinedAtNode = DILocation::getDistinct( 1495 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(), 1496 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt()); 1497 1498 // Cache the inlined-at nodes as they're built so they are reused, without 1499 // this every instruction's inlined-at chain would become distinct from each 1500 // other. 1501 DenseMap<const MDNode *, MDNode *> IANodes; 1502 1503 // Check if we are not generating inline line tables and want to use 1504 // the call site location instead. 1505 bool NoInlineLineTables = Fn->hasFnAttribute("no-inline-line-tables"); 1506 1507 for (; FI != Fn->end(); ++FI) { 1508 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 1509 BI != BE; ++BI) { 1510 // Loop metadata needs to be updated so that the start and end locs 1511 // reference inlined-at locations. 1512 auto updateLoopInfoLoc = [&Ctx, &InlinedAtNode, 1513 &IANodes](Metadata *MD) -> Metadata * { 1514 if (auto *Loc = dyn_cast_or_null<DILocation>(MD)) 1515 return inlineDebugLoc(Loc, InlinedAtNode, Ctx, IANodes).get(); 1516 return MD; 1517 }; 1518 updateLoopMetadataDebugLocations(*BI, updateLoopInfoLoc); 1519 1520 if (!NoInlineLineTables) 1521 if (DebugLoc DL = BI->getDebugLoc()) { 1522 DebugLoc IDL = 1523 inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes); 1524 BI->setDebugLoc(IDL); 1525 continue; 1526 } 1527 1528 if (CalleeHasDebugInfo && !NoInlineLineTables) 1529 continue; 1530 1531 // If the inlined instruction has no line number, or if inline info 1532 // is not being generated, make it look as if it originates from the call 1533 // location. This is important for ((__always_inline, __nodebug__)) 1534 // functions which must use caller location for all instructions in their 1535 // function body. 1536 1537 // Don't update static allocas, as they may get moved later. 1538 if (auto *AI = dyn_cast<AllocaInst>(BI)) 1539 if (allocaWouldBeStaticInEntry(AI)) 1540 continue; 1541 1542 BI->setDebugLoc(TheCallDL); 1543 } 1544 1545 // Remove debug info intrinsics if we're not keeping inline info. 1546 if (NoInlineLineTables) { 1547 BasicBlock::iterator BI = FI->begin(); 1548 while (BI != FI->end()) { 1549 if (isa<DbgInfoIntrinsic>(BI)) { 1550 BI = BI->eraseFromParent(); 1551 continue; 1552 } 1553 ++BI; 1554 } 1555 } 1556 1557 } 1558 } 1559 1560 /// Update the block frequencies of the caller after a callee has been inlined. 1561 /// 1562 /// Each block cloned into the caller has its block frequency scaled by the 1563 /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of 1564 /// callee's entry block gets the same frequency as the callsite block and the 1565 /// relative frequencies of all cloned blocks remain the same after cloning. 1566 static void updateCallerBFI(BasicBlock *CallSiteBlock, 1567 const ValueToValueMapTy &VMap, 1568 BlockFrequencyInfo *CallerBFI, 1569 BlockFrequencyInfo *CalleeBFI, 1570 const BasicBlock &CalleeEntryBlock) { 1571 SmallPtrSet<BasicBlock *, 16> ClonedBBs; 1572 for (auto Entry : VMap) { 1573 if (!isa<BasicBlock>(Entry.first) || !Entry.second) 1574 continue; 1575 auto *OrigBB = cast<BasicBlock>(Entry.first); 1576 auto *ClonedBB = cast<BasicBlock>(Entry.second); 1577 uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency(); 1578 if (!ClonedBBs.insert(ClonedBB).second) { 1579 // Multiple blocks in the callee might get mapped to one cloned block in 1580 // the caller since we prune the callee as we clone it. When that happens, 1581 // we want to use the maximum among the original blocks' frequencies. 1582 uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency(); 1583 if (NewFreq > Freq) 1584 Freq = NewFreq; 1585 } 1586 CallerBFI->setBlockFreq(ClonedBB, Freq); 1587 } 1588 BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock)); 1589 CallerBFI->setBlockFreqAndScale( 1590 EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(), 1591 ClonedBBs); 1592 } 1593 1594 /// Update the branch metadata for cloned call instructions. 1595 static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap, 1596 const ProfileCount &CalleeEntryCount, 1597 const CallBase &TheCall, ProfileSummaryInfo *PSI, 1598 BlockFrequencyInfo *CallerBFI) { 1599 if (CalleeEntryCount.isSynthetic() || CalleeEntryCount.getCount() < 1) 1600 return; 1601 auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None; 1602 int64_t CallCount = 1603 std::min(CallSiteCount.getValueOr(0), CalleeEntryCount.getCount()); 1604 updateProfileCallee(Callee, -CallCount, &VMap); 1605 } 1606 1607 void llvm::updateProfileCallee( 1608 Function *Callee, int64_t EntryDelta, 1609 const ValueMap<const Value *, WeakTrackingVH> *VMap) { 1610 auto CalleeCount = Callee->getEntryCount(); 1611 if (!CalleeCount.hasValue()) 1612 return; 1613 1614 const uint64_t PriorEntryCount = CalleeCount->getCount(); 1615 1616 // Since CallSiteCount is an estimate, it could exceed the original callee 1617 // count and has to be set to 0 so guard against underflow. 1618 const uint64_t NewEntryCount = 1619 (EntryDelta < 0 && static_cast<uint64_t>(-EntryDelta) > PriorEntryCount) 1620 ? 0 1621 : PriorEntryCount + EntryDelta; 1622 1623 // During inlining ? 1624 if (VMap) { 1625 uint64_t CloneEntryCount = PriorEntryCount - NewEntryCount; 1626 for (auto Entry : *VMap) 1627 if (isa<CallInst>(Entry.first)) 1628 if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second)) 1629 CI->updateProfWeight(CloneEntryCount, PriorEntryCount); 1630 } 1631 1632 if (EntryDelta) { 1633 Callee->setEntryCount(NewEntryCount); 1634 1635 for (BasicBlock &BB : *Callee) 1636 // No need to update the callsite if it is pruned during inlining. 1637 if (!VMap || VMap->count(&BB)) 1638 for (Instruction &I : BB) 1639 if (CallInst *CI = dyn_cast<CallInst>(&I)) 1640 CI->updateProfWeight(NewEntryCount, PriorEntryCount); 1641 } 1642 } 1643 1644 /// An operand bundle "clang.arc.attachedcall" on a call indicates the call 1645 /// result is implicitly consumed by a call to retainRV or claimRV immediately 1646 /// after the call. This function inlines the retainRV/claimRV calls. 1647 /// 1648 /// There are three cases to consider: 1649 /// 1650 /// 1. If there is a call to autoreleaseRV that takes a pointer to the returned 1651 /// object in the callee return block, the autoreleaseRV call and the 1652 /// retainRV/claimRV call in the caller cancel out. If the call in the caller 1653 /// is a claimRV call, a call to objc_release is emitted. 1654 /// 1655 /// 2. If there is a call in the callee return block that doesn't have operand 1656 /// bundle "clang.arc.attachedcall", the operand bundle on the original call 1657 /// is transferred to the call in the callee. 1658 /// 1659 /// 3. Otherwise, a call to objc_retain is inserted if the call in the caller is 1660 /// a retainRV call. 1661 static void 1662 inlineRetainOrClaimRVCalls(CallBase &CB, objcarc::ARCInstKind RVCallKind, 1663 const SmallVectorImpl<ReturnInst *> &Returns) { 1664 Module *Mod = CB.getModule(); 1665 assert(objcarc::isRetainOrClaimRV(RVCallKind) && "unexpected ARC function"); 1666 bool IsRetainRV = RVCallKind == objcarc::ARCInstKind::RetainRV, 1667 IsUnsafeClaimRV = !IsRetainRV; 1668 1669 for (auto *RI : Returns) { 1670 Value *RetOpnd = objcarc::GetRCIdentityRoot(RI->getOperand(0)); 1671 bool InsertRetainCall = IsRetainRV; 1672 IRBuilder<> Builder(RI->getContext()); 1673 1674 // Walk backwards through the basic block looking for either a matching 1675 // autoreleaseRV call or an unannotated call. 1676 auto InstRange = llvm::make_range(++(RI->getIterator().getReverse()), 1677 RI->getParent()->rend()); 1678 for (Instruction &I : llvm::make_early_inc_range(InstRange)) { 1679 // Ignore casts. 1680 if (isa<CastInst>(I)) 1681 continue; 1682 1683 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 1684 if (II->getIntrinsicID() != Intrinsic::objc_autoreleaseReturnValue || 1685 !II->hasNUses(0) || 1686 objcarc::GetRCIdentityRoot(II->getOperand(0)) != RetOpnd) 1687 break; 1688 1689 // If we've found a matching authoreleaseRV call: 1690 // - If claimRV is attached to the call, insert a call to objc_release 1691 // and erase the autoreleaseRV call. 1692 // - If retainRV is attached to the call, just erase the autoreleaseRV 1693 // call. 1694 if (IsUnsafeClaimRV) { 1695 Builder.SetInsertPoint(II); 1696 Function *IFn = 1697 Intrinsic::getDeclaration(Mod, Intrinsic::objc_release); 1698 Value *BC = Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType()); 1699 Builder.CreateCall(IFn, BC, ""); 1700 } 1701 II->eraseFromParent(); 1702 InsertRetainCall = false; 1703 break; 1704 } 1705 1706 auto *CI = dyn_cast<CallInst>(&I); 1707 1708 if (!CI) 1709 break; 1710 1711 if (objcarc::GetRCIdentityRoot(CI) != RetOpnd || 1712 objcarc::hasAttachedCallOpBundle(CI)) 1713 break; 1714 1715 // If we've found an unannotated call that defines RetOpnd, add a 1716 // "clang.arc.attachedcall" operand bundle. 1717 Value *BundleArgs[] = {*objcarc::getAttachedARCFunction(&CB)}; 1718 OperandBundleDef OB("clang.arc.attachedcall", BundleArgs); 1719 auto *NewCall = CallBase::addOperandBundle( 1720 CI, LLVMContext::OB_clang_arc_attachedcall, OB, CI); 1721 NewCall->copyMetadata(*CI); 1722 CI->replaceAllUsesWith(NewCall); 1723 CI->eraseFromParent(); 1724 InsertRetainCall = false; 1725 break; 1726 } 1727 1728 if (InsertRetainCall) { 1729 // The retainRV is attached to the call and we've failed to find a 1730 // matching autoreleaseRV or an annotated call in the callee. Emit a call 1731 // to objc_retain. 1732 Builder.SetInsertPoint(RI); 1733 Function *IFn = Intrinsic::getDeclaration(Mod, Intrinsic::objc_retain); 1734 Value *BC = Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType()); 1735 Builder.CreateCall(IFn, BC, ""); 1736 } 1737 } 1738 } 1739 1740 /// This function inlines the called function into the basic block of the 1741 /// caller. This returns false if it is not possible to inline this call. 1742 /// The program is still in a well defined state if this occurs though. 1743 /// 1744 /// Note that this only does one level of inlining. For example, if the 1745 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 1746 /// exists in the instruction stream. Similarly this will inline a recursive 1747 /// function by one level. 1748 llvm::InlineResult llvm::InlineFunction(CallBase &CB, InlineFunctionInfo &IFI, 1749 AAResults *CalleeAAR, 1750 bool InsertLifetime, 1751 Function *ForwardVarArgsTo) { 1752 assert(CB.getParent() && CB.getFunction() && "Instruction not in function!"); 1753 1754 // FIXME: we don't inline callbr yet. 1755 if (isa<CallBrInst>(CB)) 1756 return InlineResult::failure("We don't inline callbr yet."); 1757 1758 // If IFI has any state in it, zap it before we fill it in. 1759 IFI.reset(); 1760 1761 Function *CalledFunc = CB.getCalledFunction(); 1762 if (!CalledFunc || // Can't inline external function or indirect 1763 CalledFunc->isDeclaration()) // call! 1764 return InlineResult::failure("external or indirect"); 1765 1766 // The inliner does not know how to inline through calls with operand bundles 1767 // in general ... 1768 if (CB.hasOperandBundles()) { 1769 for (int i = 0, e = CB.getNumOperandBundles(); i != e; ++i) { 1770 uint32_t Tag = CB.getOperandBundleAt(i).getTagID(); 1771 // ... but it knows how to inline through "deopt" operand bundles ... 1772 if (Tag == LLVMContext::OB_deopt) 1773 continue; 1774 // ... and "funclet" operand bundles. 1775 if (Tag == LLVMContext::OB_funclet) 1776 continue; 1777 if (Tag == LLVMContext::OB_clang_arc_attachedcall) 1778 continue; 1779 1780 return InlineResult::failure("unsupported operand bundle"); 1781 } 1782 } 1783 1784 // If the call to the callee cannot throw, set the 'nounwind' flag on any 1785 // calls that we inline. 1786 bool MarkNoUnwind = CB.doesNotThrow(); 1787 1788 BasicBlock *OrigBB = CB.getParent(); 1789 Function *Caller = OrigBB->getParent(); 1790 1791 // Do not inline strictfp function into non-strictfp one. It would require 1792 // conversion of all FP operations in host function to constrained intrinsics. 1793 if (CalledFunc->getAttributes().hasFnAttr(Attribute::StrictFP) && 1794 !Caller->getAttributes().hasFnAttr(Attribute::StrictFP)) { 1795 return InlineResult::failure("incompatible strictfp attributes"); 1796 } 1797 1798 // GC poses two hazards to inlining, which only occur when the callee has GC: 1799 // 1. If the caller has no GC, then the callee's GC must be propagated to the 1800 // caller. 1801 // 2. If the caller has a differing GC, it is invalid to inline. 1802 if (CalledFunc->hasGC()) { 1803 if (!Caller->hasGC()) 1804 Caller->setGC(CalledFunc->getGC()); 1805 else if (CalledFunc->getGC() != Caller->getGC()) 1806 return InlineResult::failure("incompatible GC"); 1807 } 1808 1809 // Get the personality function from the callee if it contains a landing pad. 1810 Constant *CalledPersonality = 1811 CalledFunc->hasPersonalityFn() 1812 ? CalledFunc->getPersonalityFn()->stripPointerCasts() 1813 : nullptr; 1814 1815 // Find the personality function used by the landing pads of the caller. If it 1816 // exists, then check to see that it matches the personality function used in 1817 // the callee. 1818 Constant *CallerPersonality = 1819 Caller->hasPersonalityFn() 1820 ? Caller->getPersonalityFn()->stripPointerCasts() 1821 : nullptr; 1822 if (CalledPersonality) { 1823 if (!CallerPersonality) 1824 Caller->setPersonalityFn(CalledPersonality); 1825 // If the personality functions match, then we can perform the 1826 // inlining. Otherwise, we can't inline. 1827 // TODO: This isn't 100% true. Some personality functions are proper 1828 // supersets of others and can be used in place of the other. 1829 else if (CalledPersonality != CallerPersonality) 1830 return InlineResult::failure("incompatible personality"); 1831 } 1832 1833 // We need to figure out which funclet the callsite was in so that we may 1834 // properly nest the callee. 1835 Instruction *CallSiteEHPad = nullptr; 1836 if (CallerPersonality) { 1837 EHPersonality Personality = classifyEHPersonality(CallerPersonality); 1838 if (isScopedEHPersonality(Personality)) { 1839 Optional<OperandBundleUse> ParentFunclet = 1840 CB.getOperandBundle(LLVMContext::OB_funclet); 1841 if (ParentFunclet) 1842 CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front()); 1843 1844 // OK, the inlining site is legal. What about the target function? 1845 1846 if (CallSiteEHPad) { 1847 if (Personality == EHPersonality::MSVC_CXX) { 1848 // The MSVC personality cannot tolerate catches getting inlined into 1849 // cleanup funclets. 1850 if (isa<CleanupPadInst>(CallSiteEHPad)) { 1851 // Ok, the call site is within a cleanuppad. Let's check the callee 1852 // for catchpads. 1853 for (const BasicBlock &CalledBB : *CalledFunc) { 1854 if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI())) 1855 return InlineResult::failure("catch in cleanup funclet"); 1856 } 1857 } 1858 } else if (isAsynchronousEHPersonality(Personality)) { 1859 // SEH is even less tolerant, there may not be any sort of exceptional 1860 // funclet in the callee. 1861 for (const BasicBlock &CalledBB : *CalledFunc) { 1862 if (CalledBB.isEHPad()) 1863 return InlineResult::failure("SEH in cleanup funclet"); 1864 } 1865 } 1866 } 1867 } 1868 } 1869 1870 // Determine if we are dealing with a call in an EHPad which does not unwind 1871 // to caller. 1872 bool EHPadForCallUnwindsLocally = false; 1873 if (CallSiteEHPad && isa<CallInst>(CB)) { 1874 UnwindDestMemoTy FuncletUnwindMap; 1875 Value *CallSiteUnwindDestToken = 1876 getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap); 1877 1878 EHPadForCallUnwindsLocally = 1879 CallSiteUnwindDestToken && 1880 !isa<ConstantTokenNone>(CallSiteUnwindDestToken); 1881 } 1882 1883 // Get an iterator to the last basic block in the function, which will have 1884 // the new function inlined after it. 1885 Function::iterator LastBlock = --Caller->end(); 1886 1887 // Make sure to capture all of the return instructions from the cloned 1888 // function. 1889 SmallVector<ReturnInst*, 8> Returns; 1890 ClonedCodeInfo InlinedFunctionInfo; 1891 Function::iterator FirstNewBlock; 1892 1893 { // Scope to destroy VMap after cloning. 1894 ValueToValueMapTy VMap; 1895 struct ByValInit { 1896 Value *Dst; 1897 Value *Src; 1898 Type *Ty; 1899 }; 1900 // Keep a list of pair (dst, src) to emit byval initializations. 1901 SmallVector<ByValInit, 4> ByValInits; 1902 1903 // When inlining a function that contains noalias scope metadata, 1904 // this metadata needs to be cloned so that the inlined blocks 1905 // have different "unique scopes" at every call site. 1906 // Track the metadata that must be cloned. Do this before other changes to 1907 // the function, so that we do not get in trouble when inlining caller == 1908 // callee. 1909 ScopedAliasMetadataDeepCloner SAMetadataCloner(CB.getCalledFunction()); 1910 1911 auto &DL = Caller->getParent()->getDataLayout(); 1912 1913 // Calculate the vector of arguments to pass into the function cloner, which 1914 // matches up the formal to the actual argument values. 1915 auto AI = CB.arg_begin(); 1916 unsigned ArgNo = 0; 1917 for (Function::arg_iterator I = CalledFunc->arg_begin(), 1918 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 1919 Value *ActualArg = *AI; 1920 1921 // When byval arguments actually inlined, we need to make the copy implied 1922 // by them explicit. However, we don't do this if the callee is readonly 1923 // or readnone, because the copy would be unneeded: the callee doesn't 1924 // modify the struct. 1925 if (CB.isByValArgument(ArgNo)) { 1926 ActualArg = HandleByValArgument(CB.getParamByValType(ArgNo), ActualArg, 1927 &CB, CalledFunc, IFI, 1928 CalledFunc->getParamAlignment(ArgNo)); 1929 if (ActualArg != *AI) 1930 ByValInits.push_back( 1931 {ActualArg, (Value *)*AI, CB.getParamByValType(ArgNo)}); 1932 } 1933 1934 VMap[&*I] = ActualArg; 1935 } 1936 1937 // TODO: Remove this when users have been updated to the assume bundles. 1938 // Add alignment assumptions if necessary. We do this before the inlined 1939 // instructions are actually cloned into the caller so that we can easily 1940 // check what will be known at the start of the inlined code. 1941 AddAlignmentAssumptions(CB, IFI); 1942 1943 AssumptionCache *AC = 1944 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr; 1945 1946 /// Preserve all attributes on of the call and its parameters. 1947 salvageKnowledge(&CB, AC); 1948 1949 // We want the inliner to prune the code as it copies. We would LOVE to 1950 // have no dead or constant instructions leftover after inlining occurs 1951 // (which can happen, e.g., because an argument was constant), but we'll be 1952 // happy with whatever the cloner can do. 1953 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 1954 /*ModuleLevelChanges=*/false, Returns, ".i", 1955 &InlinedFunctionInfo); 1956 // Remember the first block that is newly cloned over. 1957 FirstNewBlock = LastBlock; ++FirstNewBlock; 1958 1959 // Insert retainRV/clainRV runtime calls. 1960 objcarc::ARCInstKind RVCallKind = objcarc::getAttachedARCFunctionKind(&CB); 1961 if (RVCallKind != objcarc::ARCInstKind::None) 1962 inlineRetainOrClaimRVCalls(CB, RVCallKind, Returns); 1963 1964 // Updated caller/callee profiles only when requested. For sample loader 1965 // inlining, the context-sensitive inlinee profile doesn't need to be 1966 // subtracted from callee profile, and the inlined clone also doesn't need 1967 // to be scaled based on call site count. 1968 if (IFI.UpdateProfile) { 1969 if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr) 1970 // Update the BFI of blocks cloned into the caller. 1971 updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI, 1972 CalledFunc->front()); 1973 1974 if (auto Profile = CalledFunc->getEntryCount()) 1975 updateCallProfile(CalledFunc, VMap, *Profile, CB, IFI.PSI, 1976 IFI.CallerBFI); 1977 } 1978 1979 // Inject byval arguments initialization. 1980 for (ByValInit &Init : ByValInits) 1981 HandleByValArgumentInit(Init.Ty, Init.Dst, Init.Src, Caller->getParent(), 1982 &*FirstNewBlock, IFI); 1983 1984 Optional<OperandBundleUse> ParentDeopt = 1985 CB.getOperandBundle(LLVMContext::OB_deopt); 1986 if (ParentDeopt) { 1987 SmallVector<OperandBundleDef, 2> OpDefs; 1988 1989 for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) { 1990 CallBase *ICS = dyn_cast_or_null<CallBase>(VH); 1991 if (!ICS) 1992 continue; // instruction was DCE'd or RAUW'ed to undef 1993 1994 OpDefs.clear(); 1995 1996 OpDefs.reserve(ICS->getNumOperandBundles()); 1997 1998 for (unsigned COBi = 0, COBe = ICS->getNumOperandBundles(); COBi < COBe; 1999 ++COBi) { 2000 auto ChildOB = ICS->getOperandBundleAt(COBi); 2001 if (ChildOB.getTagID() != LLVMContext::OB_deopt) { 2002 // If the inlined call has other operand bundles, let them be 2003 OpDefs.emplace_back(ChildOB); 2004 continue; 2005 } 2006 2007 // It may be useful to separate this logic (of handling operand 2008 // bundles) out to a separate "policy" component if this gets crowded. 2009 // Prepend the parent's deoptimization continuation to the newly 2010 // inlined call's deoptimization continuation. 2011 std::vector<Value *> MergedDeoptArgs; 2012 MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() + 2013 ChildOB.Inputs.size()); 2014 2015 llvm::append_range(MergedDeoptArgs, ParentDeopt->Inputs); 2016 llvm::append_range(MergedDeoptArgs, ChildOB.Inputs); 2017 2018 OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs)); 2019 } 2020 2021 Instruction *NewI = CallBase::Create(ICS, OpDefs, ICS); 2022 2023 // Note: the RAUW does the appropriate fixup in VMap, so we need to do 2024 // this even if the call returns void. 2025 ICS->replaceAllUsesWith(NewI); 2026 2027 VH = nullptr; 2028 ICS->eraseFromParent(); 2029 } 2030 } 2031 2032 // Update the callgraph if requested. 2033 if (IFI.CG) 2034 UpdateCallGraphAfterInlining(CB, FirstNewBlock, VMap, IFI); 2035 2036 // For 'nodebug' functions, the associated DISubprogram is always null. 2037 // Conservatively avoid propagating the callsite debug location to 2038 // instructions inlined from a function whose DISubprogram is not null. 2039 fixupLineNumbers(Caller, FirstNewBlock, &CB, 2040 CalledFunc->getSubprogram() != nullptr); 2041 2042 // Now clone the inlined noalias scope metadata. 2043 SAMetadataCloner.clone(); 2044 SAMetadataCloner.remap(FirstNewBlock, Caller->end()); 2045 2046 // Add noalias metadata if necessary. 2047 AddAliasScopeMetadata(CB, VMap, DL, CalleeAAR, InlinedFunctionInfo); 2048 2049 // Clone return attributes on the callsite into the calls within the inlined 2050 // function which feed into its return value. 2051 AddReturnAttributes(CB, VMap); 2052 2053 // Propagate metadata on the callsite if necessary. 2054 PropagateCallSiteMetadata(CB, FirstNewBlock, Caller->end()); 2055 2056 // Register any cloned assumptions. 2057 if (IFI.GetAssumptionCache) 2058 for (BasicBlock &NewBlock : 2059 make_range(FirstNewBlock->getIterator(), Caller->end())) 2060 for (Instruction &I : NewBlock) 2061 if (auto *II = dyn_cast<AssumeInst>(&I)) 2062 IFI.GetAssumptionCache(*Caller).registerAssumption(II); 2063 } 2064 2065 // If there are any alloca instructions in the block that used to be the entry 2066 // block for the callee, move them to the entry block of the caller. First 2067 // calculate which instruction they should be inserted before. We insert the 2068 // instructions at the end of the current alloca list. 2069 { 2070 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 2071 for (BasicBlock::iterator I = FirstNewBlock->begin(), 2072 E = FirstNewBlock->end(); I != E; ) { 2073 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 2074 if (!AI) continue; 2075 2076 // If the alloca is now dead, remove it. This often occurs due to code 2077 // specialization. 2078 if (AI->use_empty()) { 2079 AI->eraseFromParent(); 2080 continue; 2081 } 2082 2083 if (!allocaWouldBeStaticInEntry(AI)) 2084 continue; 2085 2086 // Keep track of the static allocas that we inline into the caller. 2087 IFI.StaticAllocas.push_back(AI); 2088 2089 // Scan for the block of allocas that we can move over, and move them 2090 // all at once. 2091 while (isa<AllocaInst>(I) && 2092 !cast<AllocaInst>(I)->use_empty() && 2093 allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) { 2094 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 2095 ++I; 2096 } 2097 2098 // Transfer all of the allocas over in a block. Using splice means 2099 // that the instructions aren't removed from the symbol table, then 2100 // reinserted. 2101 Caller->getEntryBlock().getInstList().splice( 2102 InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I); 2103 } 2104 } 2105 2106 SmallVector<Value*,4> VarArgsToForward; 2107 SmallVector<AttributeSet, 4> VarArgsAttrs; 2108 for (unsigned i = CalledFunc->getFunctionType()->getNumParams(); 2109 i < CB.arg_size(); i++) { 2110 VarArgsToForward.push_back(CB.getArgOperand(i)); 2111 VarArgsAttrs.push_back(CB.getAttributes().getParamAttrs(i)); 2112 } 2113 2114 bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false; 2115 if (InlinedFunctionInfo.ContainsCalls) { 2116 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; 2117 if (CallInst *CI = dyn_cast<CallInst>(&CB)) 2118 CallSiteTailKind = CI->getTailCallKind(); 2119 2120 // For inlining purposes, the "notail" marker is the same as no marker. 2121 if (CallSiteTailKind == CallInst::TCK_NoTail) 2122 CallSiteTailKind = CallInst::TCK_None; 2123 2124 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 2125 ++BB) { 2126 for (Instruction &I : llvm::make_early_inc_range(*BB)) { 2127 CallInst *CI = dyn_cast<CallInst>(&I); 2128 if (!CI) 2129 continue; 2130 2131 // Forward varargs from inlined call site to calls to the 2132 // ForwardVarArgsTo function, if requested, and to musttail calls. 2133 if (!VarArgsToForward.empty() && 2134 ((ForwardVarArgsTo && 2135 CI->getCalledFunction() == ForwardVarArgsTo) || 2136 CI->isMustTailCall())) { 2137 // Collect attributes for non-vararg parameters. 2138 AttributeList Attrs = CI->getAttributes(); 2139 SmallVector<AttributeSet, 8> ArgAttrs; 2140 if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) { 2141 for (unsigned ArgNo = 0; 2142 ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo) 2143 ArgAttrs.push_back(Attrs.getParamAttrs(ArgNo)); 2144 } 2145 2146 // Add VarArg attributes. 2147 ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end()); 2148 Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttrs(), 2149 Attrs.getRetAttrs(), ArgAttrs); 2150 // Add VarArgs to existing parameters. 2151 SmallVector<Value *, 6> Params(CI->args()); 2152 Params.append(VarArgsToForward.begin(), VarArgsToForward.end()); 2153 CallInst *NewCI = CallInst::Create( 2154 CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI); 2155 NewCI->setDebugLoc(CI->getDebugLoc()); 2156 NewCI->setAttributes(Attrs); 2157 NewCI->setCallingConv(CI->getCallingConv()); 2158 CI->replaceAllUsesWith(NewCI); 2159 CI->eraseFromParent(); 2160 CI = NewCI; 2161 } 2162 2163 if (Function *F = CI->getCalledFunction()) 2164 InlinedDeoptimizeCalls |= 2165 F->getIntrinsicID() == Intrinsic::experimental_deoptimize; 2166 2167 // We need to reduce the strength of any inlined tail calls. For 2168 // musttail, we have to avoid introducing potential unbounded stack 2169 // growth. For example, if functions 'f' and 'g' are mutually recursive 2170 // with musttail, we can inline 'g' into 'f' so long as we preserve 2171 // musttail on the cloned call to 'f'. If either the inlined call site 2172 // or the cloned call site is *not* musttail, the program already has 2173 // one frame of stack growth, so it's safe to remove musttail. Here is 2174 // a table of example transformations: 2175 // 2176 // f -> musttail g -> musttail f ==> f -> musttail f 2177 // f -> musttail g -> tail f ==> f -> tail f 2178 // f -> g -> musttail f ==> f -> f 2179 // f -> g -> tail f ==> f -> f 2180 // 2181 // Inlined notail calls should remain notail calls. 2182 CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); 2183 if (ChildTCK != CallInst::TCK_NoTail) 2184 ChildTCK = std::min(CallSiteTailKind, ChildTCK); 2185 CI->setTailCallKind(ChildTCK); 2186 InlinedMustTailCalls |= CI->isMustTailCall(); 2187 2188 // Calls inlined through a 'nounwind' call site should be marked 2189 // 'nounwind'. 2190 if (MarkNoUnwind) 2191 CI->setDoesNotThrow(); 2192 } 2193 } 2194 } 2195 2196 // Leave lifetime markers for the static alloca's, scoping them to the 2197 // function we just inlined. 2198 // We need to insert lifetime intrinsics even at O0 to avoid invalid 2199 // access caused by multithreaded coroutines. The check 2200 // `Caller->isPresplitCoroutine()` would affect AlwaysInliner at O0 only. 2201 if ((InsertLifetime || Caller->isPresplitCoroutine()) && 2202 !IFI.StaticAllocas.empty()) { 2203 IRBuilder<> builder(&FirstNewBlock->front()); 2204 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 2205 AllocaInst *AI = IFI.StaticAllocas[ai]; 2206 // Don't mark swifterror allocas. They can't have bitcast uses. 2207 if (AI->isSwiftError()) 2208 continue; 2209 2210 // If the alloca is already scoped to something smaller than the whole 2211 // function then there's no need to add redundant, less accurate markers. 2212 if (hasLifetimeMarkers(AI)) 2213 continue; 2214 2215 // Try to determine the size of the allocation. 2216 ConstantInt *AllocaSize = nullptr; 2217 if (ConstantInt *AIArraySize = 2218 dyn_cast<ConstantInt>(AI->getArraySize())) { 2219 auto &DL = Caller->getParent()->getDataLayout(); 2220 Type *AllocaType = AI->getAllocatedType(); 2221 TypeSize AllocaTypeSize = DL.getTypeAllocSize(AllocaType); 2222 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 2223 2224 // Don't add markers for zero-sized allocas. 2225 if (AllocaArraySize == 0) 2226 continue; 2227 2228 // Check that array size doesn't saturate uint64_t and doesn't 2229 // overflow when it's multiplied by type size. 2230 if (!AllocaTypeSize.isScalable() && 2231 AllocaArraySize != std::numeric_limits<uint64_t>::max() && 2232 std::numeric_limits<uint64_t>::max() / AllocaArraySize >= 2233 AllocaTypeSize.getFixedSize()) { 2234 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 2235 AllocaArraySize * AllocaTypeSize); 2236 } 2237 } 2238 2239 builder.CreateLifetimeStart(AI, AllocaSize); 2240 for (ReturnInst *RI : Returns) { 2241 // Don't insert llvm.lifetime.end calls between a musttail or deoptimize 2242 // call and a return. The return kills all local allocas. 2243 if (InlinedMustTailCalls && 2244 RI->getParent()->getTerminatingMustTailCall()) 2245 continue; 2246 if (InlinedDeoptimizeCalls && 2247 RI->getParent()->getTerminatingDeoptimizeCall()) 2248 continue; 2249 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); 2250 } 2251 } 2252 } 2253 2254 // If the inlined code contained dynamic alloca instructions, wrap the inlined 2255 // code with llvm.stacksave/llvm.stackrestore intrinsics. 2256 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 2257 Module *M = Caller->getParent(); 2258 // Get the two intrinsics we care about. 2259 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 2260 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 2261 2262 // Insert the llvm.stacksave. 2263 CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin()) 2264 .CreateCall(StackSave, {}, "savedstack"); 2265 2266 // Insert a call to llvm.stackrestore before any return instructions in the 2267 // inlined function. 2268 for (ReturnInst *RI : Returns) { 2269 // Don't insert llvm.stackrestore calls between a musttail or deoptimize 2270 // call and a return. The return will restore the stack pointer. 2271 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) 2272 continue; 2273 if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall()) 2274 continue; 2275 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); 2276 } 2277 } 2278 2279 // If we are inlining for an invoke instruction, we must make sure to rewrite 2280 // any call instructions into invoke instructions. This is sensitive to which 2281 // funclet pads were top-level in the inlinee, so must be done before 2282 // rewriting the "parent pad" links. 2283 if (auto *II = dyn_cast<InvokeInst>(&CB)) { 2284 BasicBlock *UnwindDest = II->getUnwindDest(); 2285 Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI(); 2286 if (isa<LandingPadInst>(FirstNonPHI)) { 2287 HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo); 2288 } else { 2289 HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo); 2290 } 2291 } 2292 2293 // Update the lexical scopes of the new funclets and callsites. 2294 // Anything that had 'none' as its parent is now nested inside the callsite's 2295 // EHPad. 2296 2297 if (CallSiteEHPad) { 2298 for (Function::iterator BB = FirstNewBlock->getIterator(), 2299 E = Caller->end(); 2300 BB != E; ++BB) { 2301 // Add bundle operands to any top-level call sites. 2302 SmallVector<OperandBundleDef, 1> OpBundles; 2303 for (Instruction &II : llvm::make_early_inc_range(*BB)) { 2304 CallBase *I = dyn_cast<CallBase>(&II); 2305 if (!I) 2306 continue; 2307 2308 // Skip call sites which are nounwind intrinsics. 2309 auto *CalledFn = 2310 dyn_cast<Function>(I->getCalledOperand()->stripPointerCasts()); 2311 if (CalledFn && CalledFn->isIntrinsic() && I->doesNotThrow()) 2312 continue; 2313 2314 // Skip call sites which already have a "funclet" bundle. 2315 if (I->getOperandBundle(LLVMContext::OB_funclet)) 2316 continue; 2317 2318 I->getOperandBundlesAsDefs(OpBundles); 2319 OpBundles.emplace_back("funclet", CallSiteEHPad); 2320 2321 Instruction *NewInst = CallBase::Create(I, OpBundles, I); 2322 NewInst->takeName(I); 2323 I->replaceAllUsesWith(NewInst); 2324 I->eraseFromParent(); 2325 2326 OpBundles.clear(); 2327 } 2328 2329 // It is problematic if the inlinee has a cleanupret which unwinds to 2330 // caller and we inline it into a call site which doesn't unwind but into 2331 // an EH pad that does. Such an edge must be dynamically unreachable. 2332 // As such, we replace the cleanupret with unreachable. 2333 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator())) 2334 if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally) 2335 changeToUnreachable(CleanupRet); 2336 2337 Instruction *I = BB->getFirstNonPHI(); 2338 if (!I->isEHPad()) 2339 continue; 2340 2341 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 2342 if (isa<ConstantTokenNone>(CatchSwitch->getParentPad())) 2343 CatchSwitch->setParentPad(CallSiteEHPad); 2344 } else { 2345 auto *FPI = cast<FuncletPadInst>(I); 2346 if (isa<ConstantTokenNone>(FPI->getParentPad())) 2347 FPI->setParentPad(CallSiteEHPad); 2348 } 2349 } 2350 } 2351 2352 if (InlinedDeoptimizeCalls) { 2353 // We need to at least remove the deoptimizing returns from the Return set, 2354 // so that the control flow from those returns does not get merged into the 2355 // caller (but terminate it instead). If the caller's return type does not 2356 // match the callee's return type, we also need to change the return type of 2357 // the intrinsic. 2358 if (Caller->getReturnType() == CB.getType()) { 2359 llvm::erase_if(Returns, [](ReturnInst *RI) { 2360 return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr; 2361 }); 2362 } else { 2363 SmallVector<ReturnInst *, 8> NormalReturns; 2364 Function *NewDeoptIntrinsic = Intrinsic::getDeclaration( 2365 Caller->getParent(), Intrinsic::experimental_deoptimize, 2366 {Caller->getReturnType()}); 2367 2368 for (ReturnInst *RI : Returns) { 2369 CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall(); 2370 if (!DeoptCall) { 2371 NormalReturns.push_back(RI); 2372 continue; 2373 } 2374 2375 // The calling convention on the deoptimize call itself may be bogus, 2376 // since the code we're inlining may have undefined behavior (and may 2377 // never actually execute at runtime); but all 2378 // @llvm.experimental.deoptimize declarations have to have the same 2379 // calling convention in a well-formed module. 2380 auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv(); 2381 NewDeoptIntrinsic->setCallingConv(CallingConv); 2382 auto *CurBB = RI->getParent(); 2383 RI->eraseFromParent(); 2384 2385 SmallVector<Value *, 4> CallArgs(DeoptCall->args()); 2386 2387 SmallVector<OperandBundleDef, 1> OpBundles; 2388 DeoptCall->getOperandBundlesAsDefs(OpBundles); 2389 auto DeoptAttributes = DeoptCall->getAttributes(); 2390 DeoptCall->eraseFromParent(); 2391 assert(!OpBundles.empty() && 2392 "Expected at least the deopt operand bundle"); 2393 2394 IRBuilder<> Builder(CurBB); 2395 CallInst *NewDeoptCall = 2396 Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles); 2397 NewDeoptCall->setCallingConv(CallingConv); 2398 NewDeoptCall->setAttributes(DeoptAttributes); 2399 if (NewDeoptCall->getType()->isVoidTy()) 2400 Builder.CreateRetVoid(); 2401 else 2402 Builder.CreateRet(NewDeoptCall); 2403 } 2404 2405 // Leave behind the normal returns so we can merge control flow. 2406 std::swap(Returns, NormalReturns); 2407 } 2408 } 2409 2410 // Handle any inlined musttail call sites. In order for a new call site to be 2411 // musttail, the source of the clone and the inlined call site must have been 2412 // musttail. Therefore it's safe to return without merging control into the 2413 // phi below. 2414 if (InlinedMustTailCalls) { 2415 // Check if we need to bitcast the result of any musttail calls. 2416 Type *NewRetTy = Caller->getReturnType(); 2417 bool NeedBitCast = !CB.use_empty() && CB.getType() != NewRetTy; 2418 2419 // Handle the returns preceded by musttail calls separately. 2420 SmallVector<ReturnInst *, 8> NormalReturns; 2421 for (ReturnInst *RI : Returns) { 2422 CallInst *ReturnedMustTail = 2423 RI->getParent()->getTerminatingMustTailCall(); 2424 if (!ReturnedMustTail) { 2425 NormalReturns.push_back(RI); 2426 continue; 2427 } 2428 if (!NeedBitCast) 2429 continue; 2430 2431 // Delete the old return and any preceding bitcast. 2432 BasicBlock *CurBB = RI->getParent(); 2433 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); 2434 RI->eraseFromParent(); 2435 if (OldCast) 2436 OldCast->eraseFromParent(); 2437 2438 // Insert a new bitcast and return with the right type. 2439 IRBuilder<> Builder(CurBB); 2440 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); 2441 } 2442 2443 // Leave behind the normal returns so we can merge control flow. 2444 std::swap(Returns, NormalReturns); 2445 } 2446 2447 // Now that all of the transforms on the inlined code have taken place but 2448 // before we splice the inlined code into the CFG and lose track of which 2449 // blocks were actually inlined, collect the call sites. We only do this if 2450 // call graph updates weren't requested, as those provide value handle based 2451 // tracking of inlined call sites instead. Calls to intrinsics are not 2452 // collected because they are not inlineable. 2453 if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) { 2454 // Otherwise just collect the raw call sites that were inlined. 2455 for (BasicBlock &NewBB : 2456 make_range(FirstNewBlock->getIterator(), Caller->end())) 2457 for (Instruction &I : NewBB) 2458 if (auto *CB = dyn_cast<CallBase>(&I)) 2459 if (!(CB->getCalledFunction() && 2460 CB->getCalledFunction()->isIntrinsic())) 2461 IFI.InlinedCallSites.push_back(CB); 2462 } 2463 2464 // If we cloned in _exactly one_ basic block, and if that block ends in a 2465 // return instruction, we splice the body of the inlined callee directly into 2466 // the calling basic block. 2467 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 2468 // Move all of the instructions right before the call. 2469 OrigBB->getInstList().splice(CB.getIterator(), FirstNewBlock->getInstList(), 2470 FirstNewBlock->begin(), FirstNewBlock->end()); 2471 // Remove the cloned basic block. 2472 Caller->getBasicBlockList().pop_back(); 2473 2474 // If the call site was an invoke instruction, add a branch to the normal 2475 // destination. 2476 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 2477 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), &CB); 2478 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 2479 } 2480 2481 // If the return instruction returned a value, replace uses of the call with 2482 // uses of the returned value. 2483 if (!CB.use_empty()) { 2484 ReturnInst *R = Returns[0]; 2485 if (&CB == R->getReturnValue()) 2486 CB.replaceAllUsesWith(UndefValue::get(CB.getType())); 2487 else 2488 CB.replaceAllUsesWith(R->getReturnValue()); 2489 } 2490 // Since we are now done with the Call/Invoke, we can delete it. 2491 CB.eraseFromParent(); 2492 2493 // Since we are now done with the return instruction, delete it also. 2494 Returns[0]->eraseFromParent(); 2495 2496 // We are now done with the inlining. 2497 return InlineResult::success(); 2498 } 2499 2500 // Otherwise, we have the normal case, of more than one block to inline or 2501 // multiple return sites. 2502 2503 // We want to clone the entire callee function into the hole between the 2504 // "starter" and "ender" blocks. How we accomplish this depends on whether 2505 // this is an invoke instruction or a call instruction. 2506 BasicBlock *AfterCallBB; 2507 BranchInst *CreatedBranchToNormalDest = nullptr; 2508 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 2509 2510 // Add an unconditional branch to make this look like the CallInst case... 2511 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), &CB); 2512 2513 // Split the basic block. This guarantees that no PHI nodes will have to be 2514 // updated due to new incoming edges, and make the invoke case more 2515 // symmetric to the call case. 2516 AfterCallBB = 2517 OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(), 2518 CalledFunc->getName() + ".exit"); 2519 2520 } else { // It's a call 2521 // If this is a call instruction, we need to split the basic block that 2522 // the call lives in. 2523 // 2524 AfterCallBB = OrigBB->splitBasicBlock(CB.getIterator(), 2525 CalledFunc->getName() + ".exit"); 2526 } 2527 2528 if (IFI.CallerBFI) { 2529 // Copy original BB's block frequency to AfterCallBB 2530 IFI.CallerBFI->setBlockFreq( 2531 AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency()); 2532 } 2533 2534 // Change the branch that used to go to AfterCallBB to branch to the first 2535 // basic block of the inlined function. 2536 // 2537 Instruction *Br = OrigBB->getTerminator(); 2538 assert(Br && Br->getOpcode() == Instruction::Br && 2539 "splitBasicBlock broken!"); 2540 Br->setOperand(0, &*FirstNewBlock); 2541 2542 // Now that the function is correct, make it a little bit nicer. In 2543 // particular, move the basic blocks inserted from the end of the function 2544 // into the space made by splitting the source basic block. 2545 Caller->getBasicBlockList().splice(AfterCallBB->getIterator(), 2546 Caller->getBasicBlockList(), FirstNewBlock, 2547 Caller->end()); 2548 2549 // Handle all of the return instructions that we just cloned in, and eliminate 2550 // any users of the original call/invoke instruction. 2551 Type *RTy = CalledFunc->getReturnType(); 2552 2553 PHINode *PHI = nullptr; 2554 if (Returns.size() > 1) { 2555 // The PHI node should go at the front of the new basic block to merge all 2556 // possible incoming values. 2557 if (!CB.use_empty()) { 2558 PHI = PHINode::Create(RTy, Returns.size(), CB.getName(), 2559 &AfterCallBB->front()); 2560 // Anything that used the result of the function call should now use the 2561 // PHI node as their operand. 2562 CB.replaceAllUsesWith(PHI); 2563 } 2564 2565 // Loop over all of the return instructions adding entries to the PHI node 2566 // as appropriate. 2567 if (PHI) { 2568 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2569 ReturnInst *RI = Returns[i]; 2570 assert(RI->getReturnValue()->getType() == PHI->getType() && 2571 "Ret value not consistent in function!"); 2572 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 2573 } 2574 } 2575 2576 // Add a branch to the merge points and remove return instructions. 2577 DebugLoc Loc; 2578 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2579 ReturnInst *RI = Returns[i]; 2580 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 2581 Loc = RI->getDebugLoc(); 2582 BI->setDebugLoc(Loc); 2583 RI->eraseFromParent(); 2584 } 2585 // We need to set the debug location to *somewhere* inside the 2586 // inlined function. The line number may be nonsensical, but the 2587 // instruction will at least be associated with the right 2588 // function. 2589 if (CreatedBranchToNormalDest) 2590 CreatedBranchToNormalDest->setDebugLoc(Loc); 2591 } else if (!Returns.empty()) { 2592 // Otherwise, if there is exactly one return value, just replace anything 2593 // using the return value of the call with the computed value. 2594 if (!CB.use_empty()) { 2595 if (&CB == Returns[0]->getReturnValue()) 2596 CB.replaceAllUsesWith(UndefValue::get(CB.getType())); 2597 else 2598 CB.replaceAllUsesWith(Returns[0]->getReturnValue()); 2599 } 2600 2601 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 2602 BasicBlock *ReturnBB = Returns[0]->getParent(); 2603 ReturnBB->replaceAllUsesWith(AfterCallBB); 2604 2605 // Splice the code from the return block into the block that it will return 2606 // to, which contains the code that was after the call. 2607 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 2608 ReturnBB->getInstList()); 2609 2610 if (CreatedBranchToNormalDest) 2611 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 2612 2613 // Delete the return instruction now and empty ReturnBB now. 2614 Returns[0]->eraseFromParent(); 2615 ReturnBB->eraseFromParent(); 2616 } else if (!CB.use_empty()) { 2617 // No returns, but something is using the return value of the call. Just 2618 // nuke the result. 2619 CB.replaceAllUsesWith(UndefValue::get(CB.getType())); 2620 } 2621 2622 // Since we are now done with the Call/Invoke, we can delete it. 2623 CB.eraseFromParent(); 2624 2625 // If we inlined any musttail calls and the original return is now 2626 // unreachable, delete it. It can only contain a bitcast and ret. 2627 if (InlinedMustTailCalls && pred_empty(AfterCallBB)) 2628 AfterCallBB->eraseFromParent(); 2629 2630 // We should always be able to fold the entry block of the function into the 2631 // single predecessor of the block... 2632 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 2633 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 2634 2635 // Splice the code entry block into calling block, right before the 2636 // unconditional branch. 2637 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 2638 OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList()); 2639 2640 // Remove the unconditional branch. 2641 OrigBB->getInstList().erase(Br); 2642 2643 // Now we can remove the CalleeEntry block, which is now empty. 2644 Caller->getBasicBlockList().erase(CalleeEntry); 2645 2646 // If we inserted a phi node, check to see if it has a single value (e.g. all 2647 // the entries are the same or undef). If so, remove the PHI so it doesn't 2648 // block other optimizations. 2649 if (PHI) { 2650 AssumptionCache *AC = 2651 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr; 2652 auto &DL = Caller->getParent()->getDataLayout(); 2653 if (Value *V = simplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) { 2654 PHI->replaceAllUsesWith(V); 2655 PHI->eraseFromParent(); 2656 } 2657 } 2658 2659 return InlineResult::success(); 2660 } 2661