1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements inlining of a function into a call site, resolving 11 // parameters and the return value as appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Cloning.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/CallGraph.h" 22 #include "llvm/Analysis/CaptureTracking.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/CallSite.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DebugInfo.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/Transforms/Utils/Local.h" 40 #include "llvm/Support/CommandLine.h" 41 #include <algorithm> 42 using namespace llvm; 43 44 static cl::opt<bool> 45 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(false), 46 cl::Hidden, 47 cl::desc("Convert noalias attributes to metadata during inlining.")); 48 49 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI, 50 bool InsertLifetime) { 51 return InlineFunction(CallSite(CI), IFI, InsertLifetime); 52 } 53 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI, 54 bool InsertLifetime) { 55 return InlineFunction(CallSite(II), IFI, InsertLifetime); 56 } 57 58 namespace { 59 /// A class for recording information about inlining through an invoke. 60 class InvokeInliningInfo { 61 BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind. 62 BasicBlock *InnerResumeDest; ///< Destination for the callee's resume. 63 LandingPadInst *CallerLPad; ///< LandingPadInst associated with the invoke. 64 PHINode *InnerEHValuesPHI; ///< PHI for EH values from landingpad insts. 65 SmallVector<Value*, 8> UnwindDestPHIValues; 66 67 public: 68 InvokeInliningInfo(InvokeInst *II) 69 : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr), 70 CallerLPad(nullptr), InnerEHValuesPHI(nullptr) { 71 // If there are PHI nodes in the unwind destination block, we need to keep 72 // track of which values came into them from the invoke before removing 73 // the edge from this block. 74 llvm::BasicBlock *InvokeBB = II->getParent(); 75 BasicBlock::iterator I = OuterResumeDest->begin(); 76 for (; isa<PHINode>(I); ++I) { 77 // Save the value to use for this edge. 78 PHINode *PHI = cast<PHINode>(I); 79 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 80 } 81 82 CallerLPad = cast<LandingPadInst>(I); 83 } 84 85 /// getOuterResumeDest - The outer unwind destination is the target of 86 /// unwind edges introduced for calls within the inlined function. 87 BasicBlock *getOuterResumeDest() const { 88 return OuterResumeDest; 89 } 90 91 BasicBlock *getInnerResumeDest(); 92 93 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 94 95 /// forwardResume - Forward the 'resume' instruction to the caller's landing 96 /// pad block. When the landing pad block has only one predecessor, this is 97 /// a simple branch. When there is more than one predecessor, we need to 98 /// split the landing pad block after the landingpad instruction and jump 99 /// to there. 100 void forwardResume(ResumeInst *RI, 101 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); 102 103 /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind 104 /// destination block for the given basic block, using the values for the 105 /// original invoke's source block. 106 void addIncomingPHIValuesFor(BasicBlock *BB) const { 107 addIncomingPHIValuesForInto(BB, OuterResumeDest); 108 } 109 110 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 111 BasicBlock::iterator I = dest->begin(); 112 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 113 PHINode *phi = cast<PHINode>(I); 114 phi->addIncoming(UnwindDestPHIValues[i], src); 115 } 116 } 117 }; 118 } 119 120 /// getInnerResumeDest - Get or create a target for the branch from ResumeInsts. 121 BasicBlock *InvokeInliningInfo::getInnerResumeDest() { 122 if (InnerResumeDest) return InnerResumeDest; 123 124 // Split the landing pad. 125 BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint; 126 InnerResumeDest = 127 OuterResumeDest->splitBasicBlock(SplitPoint, 128 OuterResumeDest->getName() + ".body"); 129 130 // The number of incoming edges we expect to the inner landing pad. 131 const unsigned PHICapacity = 2; 132 133 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 134 BasicBlock::iterator InsertPoint = InnerResumeDest->begin(); 135 BasicBlock::iterator I = OuterResumeDest->begin(); 136 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 137 PHINode *OuterPHI = cast<PHINode>(I); 138 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 139 OuterPHI->getName() + ".lpad-body", 140 InsertPoint); 141 OuterPHI->replaceAllUsesWith(InnerPHI); 142 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 143 } 144 145 // Create a PHI for the exception values. 146 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 147 "eh.lpad-body", InsertPoint); 148 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 149 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 150 151 // All done. 152 return InnerResumeDest; 153 } 154 155 /// forwardResume - Forward the 'resume' instruction to the caller's landing pad 156 /// block. When the landing pad block has only one predecessor, this is a simple 157 /// branch. When there is more than one predecessor, we need to split the 158 /// landing pad block after the landingpad instruction and jump to there. 159 void InvokeInliningInfo::forwardResume(ResumeInst *RI, 160 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads) { 161 BasicBlock *Dest = getInnerResumeDest(); 162 BasicBlock *Src = RI->getParent(); 163 164 BranchInst::Create(Dest, Src); 165 166 // Update the PHIs in the destination. They were inserted in an order which 167 // makes this work. 168 addIncomingPHIValuesForInto(Src, Dest); 169 170 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 171 RI->eraseFromParent(); 172 } 173 174 /// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into 175 /// an invoke, we have to turn all of the calls that can throw into 176 /// invokes. This function analyze BB to see if there are any calls, and if so, 177 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 178 /// nodes in that block with the values specified in InvokeDestPHIValues. 179 static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, 180 InvokeInliningInfo &Invoke) { 181 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 182 Instruction *I = BBI++; 183 184 // We only need to check for function calls: inlined invoke 185 // instructions require no special handling. 186 CallInst *CI = dyn_cast<CallInst>(I); 187 188 // If this call cannot unwind, don't convert it to an invoke. 189 // Inline asm calls cannot throw. 190 if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue())) 191 continue; 192 193 // Convert this function call into an invoke instruction. First, split the 194 // basic block. 195 BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); 196 197 // Delete the unconditional branch inserted by splitBasicBlock 198 BB->getInstList().pop_back(); 199 200 // Create the new invoke instruction. 201 ImmutableCallSite CS(CI); 202 SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end()); 203 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, 204 Invoke.getOuterResumeDest(), 205 InvokeArgs, CI->getName(), BB); 206 II->setDebugLoc(CI->getDebugLoc()); 207 II->setCallingConv(CI->getCallingConv()); 208 II->setAttributes(CI->getAttributes()); 209 210 // Make sure that anything using the call now uses the invoke! This also 211 // updates the CallGraph if present, because it uses a WeakVH. 212 CI->replaceAllUsesWith(II); 213 214 // Delete the original call 215 Split->getInstList().pop_front(); 216 217 // Update any PHI nodes in the exceptional block to indicate that there is 218 // now a new entry in them. 219 Invoke.addIncomingPHIValuesFor(BB); 220 return; 221 } 222 } 223 224 /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls 225 /// in the body of the inlined function into invokes. 226 /// 227 /// II is the invoke instruction being inlined. FirstNewBlock is the first 228 /// block of the inlined code (the last block is the end of the function), 229 /// and InlineCodeInfo is information about the code that got inlined. 230 static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock, 231 ClonedCodeInfo &InlinedCodeInfo) { 232 BasicBlock *InvokeDest = II->getUnwindDest(); 233 234 Function *Caller = FirstNewBlock->getParent(); 235 236 // The inlined code is currently at the end of the function, scan from the 237 // start of the inlined code to its end, checking for stuff we need to 238 // rewrite. 239 InvokeInliningInfo Invoke(II); 240 241 // Get all of the inlined landing pad instructions. 242 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 243 for (Function::iterator I = FirstNewBlock, E = Caller->end(); I != E; ++I) 244 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 245 InlinedLPads.insert(II->getLandingPadInst()); 246 247 // Append the clauses from the outer landing pad instruction into the inlined 248 // landing pad instructions. 249 LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 250 for (LandingPadInst *InlinedLPad : InlinedLPads) { 251 unsigned OuterNum = OuterLPad->getNumClauses(); 252 InlinedLPad->reserveClauses(OuterNum); 253 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 254 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 255 if (OuterLPad->isCleanup()) 256 InlinedLPad->setCleanup(true); 257 } 258 259 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){ 260 if (InlinedCodeInfo.ContainsCalls) 261 HandleCallsInBlockInlinedThroughInvoke(BB, Invoke); 262 263 // Forward any resumes that are remaining here. 264 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 265 Invoke.forwardResume(RI, InlinedLPads); 266 } 267 268 // Now that everything is happy, we have one final detail. The PHI nodes in 269 // the exception destination block still have entries due to the original 270 // invoke instruction. Eliminate these entries (which might even delete the 271 // PHI node) now. 272 InvokeDest->removePredecessor(II->getParent()); 273 } 274 275 /// CloneAliasScopeMetadata - When inlining a function that contains noalias 276 /// scope metadata, this metadata needs to be cloned so that the inlined blocks 277 /// have different "unqiue scopes" at every call site. Were this not done, then 278 /// aliasing scopes from a function inlined into a caller multiple times could 279 /// not be differentiated (and this would lead to miscompiles because the 280 /// non-aliasing property communicated by the metadata could have 281 /// call-site-specific control dependencies). 282 static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) { 283 const Function *CalledFunc = CS.getCalledFunction(); 284 SetVector<const MDNode *> MD; 285 286 // Note: We could only clone the metadata if it is already used in the 287 // caller. I'm omitting that check here because it might confuse 288 // inter-procedural alias analysis passes. We can revisit this if it becomes 289 // an efficiency or overhead problem. 290 291 for (Function::const_iterator I = CalledFunc->begin(), IE = CalledFunc->end(); 292 I != IE; ++I) 293 for (BasicBlock::const_iterator J = I->begin(), JE = I->end(); J != JE; ++J) { 294 if (const MDNode *M = J->getMetadata(LLVMContext::MD_alias_scope)) 295 MD.insert(M); 296 if (const MDNode *M = J->getMetadata(LLVMContext::MD_noalias)) 297 MD.insert(M); 298 } 299 300 if (MD.empty()) 301 return; 302 303 // Walk the existing metadata, adding the complete (perhaps cyclic) chain to 304 // the set. 305 SmallVector<const Value *, 16> Queue(MD.begin(), MD.end()); 306 while (!Queue.empty()) { 307 const MDNode *M = cast<MDNode>(Queue.pop_back_val()); 308 for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i) 309 if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i))) 310 if (MD.insert(M1)) 311 Queue.push_back(M1); 312 } 313 314 // Now we have a complete set of all metadata in the chains used to specify 315 // the noalias scopes and the lists of those scopes. 316 SmallVector<MDNode *, 16> DummyNodes; 317 DenseMap<const MDNode *, TrackingVH<MDNode> > MDMap; 318 for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); 319 I != IE; ++I) { 320 MDNode *Dummy = MDNode::getTemporary(CalledFunc->getContext(), None); 321 DummyNodes.push_back(Dummy); 322 MDMap[*I] = Dummy; 323 } 324 325 // Create new metadata nodes to replace the dummy nodes, replacing old 326 // metadata references with either a dummy node or an already-created new 327 // node. 328 for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); 329 I != IE; ++I) { 330 SmallVector<Value *, 4> NewOps; 331 for (unsigned i = 0, ie = (*I)->getNumOperands(); i != ie; ++i) { 332 const Value *V = (*I)->getOperand(i); 333 if (const MDNode *M = dyn_cast<MDNode>(V)) 334 NewOps.push_back(MDMap[M]); 335 else 336 NewOps.push_back(const_cast<Value *>(V)); 337 } 338 339 MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps), 340 *TempM = MDMap[*I]; 341 342 TempM->replaceAllUsesWith(NewM); 343 } 344 345 // Now replace the metadata in the new inlined instructions with the 346 // repacements from the map. 347 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 348 VMI != VMIE; ++VMI) { 349 if (!VMI->second) 350 continue; 351 352 Instruction *NI = dyn_cast<Instruction>(VMI->second); 353 if (!NI) 354 continue; 355 356 if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) { 357 MDNode *NewMD = MDMap[M]; 358 // If the call site also had alias scope metadata (a list of scopes to 359 // which instructions inside it might belong), propagate those scopes to 360 // the inlined instructions. 361 if (MDNode *CSM = 362 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 363 NewMD = MDNode::concatenate(NewMD, CSM); 364 NI->setMetadata(LLVMContext::MD_alias_scope, NewMD); 365 } else if (NI->mayReadOrWriteMemory()) { 366 if (MDNode *M = 367 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 368 NI->setMetadata(LLVMContext::MD_alias_scope, M); 369 } 370 371 if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) { 372 MDNode *NewMD = MDMap[M]; 373 // If the call site also had noalias metadata (a list of scopes with 374 // which instructions inside it don't alias), propagate those scopes to 375 // the inlined instructions. 376 if (MDNode *CSM = 377 CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 378 NewMD = MDNode::concatenate(NewMD, CSM); 379 NI->setMetadata(LLVMContext::MD_noalias, NewMD); 380 } else if (NI->mayReadOrWriteMemory()) { 381 if (MDNode *M = 382 CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 383 NI->setMetadata(LLVMContext::MD_noalias, M); 384 } 385 } 386 387 // Now that everything has been replaced, delete the dummy nodes. 388 for (unsigned i = 0, ie = DummyNodes.size(); i != ie; ++i) 389 MDNode::deleteTemporary(DummyNodes[i]); 390 } 391 392 /// AddAliasScopeMetadata - If the inlined function has noalias arguments, then 393 /// add new alias scopes for each noalias argument, tag the mapped noalias 394 /// parameters with noalias metadata specifying the new scope, and tag all 395 /// non-derived loads, stores and memory intrinsics with the new alias scopes. 396 static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap, 397 const DataLayout *DL, AliasAnalysis *AA) { 398 if (!EnableNoAliasConversion) 399 return; 400 401 const Function *CalledFunc = CS.getCalledFunction(); 402 SmallVector<const Argument *, 4> NoAliasArgs; 403 404 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 405 E = CalledFunc->arg_end(); I != E; ++I) { 406 if (I->hasNoAliasAttr() && !I->hasNUses(0)) 407 NoAliasArgs.push_back(I); 408 } 409 410 if (NoAliasArgs.empty()) 411 return; 412 413 // To do a good job, if a noalias variable is captured, we need to know if 414 // the capture point dominates the particular use we're considering. 415 DominatorTree DT; 416 DT.recalculate(const_cast<Function&>(*CalledFunc)); 417 418 // noalias indicates that pointer values based on the argument do not alias 419 // pointer values which are not based on it. So we add a new "scope" for each 420 // noalias function argument. Accesses using pointers based on that argument 421 // become part of that alias scope, accesses using pointers not based on that 422 // argument are tagged as noalias with that scope. 423 424 DenseMap<const Argument *, MDNode *> NewScopes; 425 MDBuilder MDB(CalledFunc->getContext()); 426 427 // Create a new scope domain for this function. 428 MDNode *NewDomain = 429 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); 430 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { 431 const Argument *A = NoAliasArgs[i]; 432 433 std::string Name = CalledFunc->getName(); 434 if (A->hasName()) { 435 Name += ": %"; 436 Name += A->getName(); 437 } else { 438 Name += ": argument "; 439 Name += utostr(i); 440 } 441 442 // Note: We always create a new anonymous root here. This is true regardless 443 // of the linkage of the callee because the aliasing "scope" is not just a 444 // property of the callee, but also all control dependencies in the caller. 445 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); 446 NewScopes.insert(std::make_pair(A, NewScope)); 447 } 448 449 // Iterate over all new instructions in the map; for all memory-access 450 // instructions, add the alias scope metadata. 451 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 452 VMI != VMIE; ++VMI) { 453 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { 454 if (!VMI->second) 455 continue; 456 457 Instruction *NI = dyn_cast<Instruction>(VMI->second); 458 if (!NI) 459 continue; 460 461 bool IsArgMemOnlyCall = false, IsFuncCall = false; 462 SmallVector<const Value *, 2> PtrArgs; 463 464 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 465 PtrArgs.push_back(LI->getPointerOperand()); 466 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 467 PtrArgs.push_back(SI->getPointerOperand()); 468 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) 469 PtrArgs.push_back(VAAI->getPointerOperand()); 470 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 471 PtrArgs.push_back(CXI->getPointerOperand()); 472 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 473 PtrArgs.push_back(RMWI->getPointerOperand()); 474 else if (ImmutableCallSite ICS = ImmutableCallSite(I)) { 475 // If we know that the call does not access memory, then we'll still 476 // know that about the inlined clone of this call site, and we don't 477 // need to add metadata. 478 if (ICS.doesNotAccessMemory()) 479 continue; 480 481 IsFuncCall = true; 482 if (AA) { 483 AliasAnalysis::ModRefBehavior MRB = AA->getModRefBehavior(ICS); 484 if (MRB == AliasAnalysis::OnlyAccessesArgumentPointees || 485 MRB == AliasAnalysis::OnlyReadsArgumentPointees) 486 IsArgMemOnlyCall = true; 487 } 488 489 for (ImmutableCallSite::arg_iterator AI = ICS.arg_begin(), 490 AE = ICS.arg_end(); AI != AE; ++AI) { 491 // We need to check the underlying objects of all arguments, not just 492 // the pointer arguments, because we might be passing pointers as 493 // integers, etc. 494 // However, if we know that the call only accesses pointer arguments, 495 // then we only need to check the pointer arguments. 496 if (IsArgMemOnlyCall && !(*AI)->getType()->isPointerTy()) 497 continue; 498 499 PtrArgs.push_back(*AI); 500 } 501 } 502 503 // If we found no pointers, then this instruction is not suitable for 504 // pairing with an instruction to receive aliasing metadata. 505 // However, if this is a call, this we might just alias with none of the 506 // noalias arguments. 507 if (PtrArgs.empty() && !IsFuncCall) 508 continue; 509 510 // It is possible that there is only one underlying object, but you 511 // need to go through several PHIs to see it, and thus could be 512 // repeated in the Objects list. 513 SmallPtrSet<const Value *, 4> ObjSet; 514 SmallVector<Value *, 4> Scopes, NoAliases; 515 516 SmallSetVector<const Argument *, 4> NAPtrArgs; 517 for (unsigned i = 0, ie = PtrArgs.size(); i != ie; ++i) { 518 SmallVector<Value *, 4> Objects; 519 GetUnderlyingObjects(const_cast<Value*>(PtrArgs[i]), 520 Objects, DL, /* MaxLookup = */ 0); 521 522 for (Value *O : Objects) 523 ObjSet.insert(O); 524 } 525 526 // Figure out if we're derived from anything that is not a noalias 527 // argument. 528 bool CanDeriveViaCapture = false, UsesAliasingPtr = false; 529 for (const Value *V : ObjSet) { 530 // Is this value a constant that cannot be derived from any pointer 531 // value (we need to exclude constant expressions, for example, that 532 // are formed from arithmetic on global symbols). 533 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || 534 isa<ConstantPointerNull>(V) || 535 isa<ConstantDataVector>(V) || isa<UndefValue>(V); 536 if (IsNonPtrConst) 537 continue; 538 539 // If this is anything other than a noalias argument, then we cannot 540 // completely describe the aliasing properties using alias.scope 541 // metadata (and, thus, won't add any). 542 if (const Argument *A = dyn_cast<Argument>(V)) { 543 if (!A->hasNoAliasAttr()) 544 UsesAliasingPtr = true; 545 } else { 546 UsesAliasingPtr = true; 547 } 548 549 // If this is not some identified function-local object (which cannot 550 // directly alias a noalias argument), or some other argument (which, 551 // by definition, also cannot alias a noalias argument), then we could 552 // alias a noalias argument that has been captured). 553 if (!isa<Argument>(V) && 554 !isIdentifiedFunctionLocal(const_cast<Value*>(V))) 555 CanDeriveViaCapture = true; 556 } 557 558 // A function call can always get captured noalias pointers (via other 559 // parameters, globals, etc.). 560 if (IsFuncCall && !IsArgMemOnlyCall) 561 CanDeriveViaCapture = true; 562 563 // First, we want to figure out all of the sets with which we definitely 564 // don't alias. Iterate over all noalias set, and add those for which: 565 // 1. The noalias argument is not in the set of objects from which we 566 // definitely derive. 567 // 2. The noalias argument has not yet been captured. 568 // An arbitrary function that might load pointers could see captured 569 // noalias arguments via other noalias arguments or globals, and so we 570 // must always check for prior capture. 571 for (const Argument *A : NoAliasArgs) { 572 if (!ObjSet.count(A) && (!CanDeriveViaCapture || 573 // It might be tempting to skip the 574 // PointerMayBeCapturedBefore check if 575 // A->hasNoCaptureAttr() is true, but this is 576 // incorrect because nocapture only guarantees 577 // that no copies outlive the function, not 578 // that the value cannot be locally captured. 579 !PointerMayBeCapturedBefore(A, 580 /* ReturnCaptures */ false, 581 /* StoreCaptures */ false, I, &DT))) 582 NoAliases.push_back(NewScopes[A]); 583 } 584 585 if (!NoAliases.empty()) 586 NI->setMetadata(LLVMContext::MD_noalias, MDNode::concatenate( 587 NI->getMetadata(LLVMContext::MD_noalias), 588 MDNode::get(CalledFunc->getContext(), NoAliases))); 589 590 // Next, we want to figure out all of the sets to which we might belong. 591 // We might belong to a set if the noalias argument is in the set of 592 // underlying objects. If there is some non-noalias argument in our list 593 // of underlying objects, then we cannot add a scope because the fact 594 // that some access does not alias with any set of our noalias arguments 595 // cannot itself guarantee that it does not alias with this access 596 // (because there is some pointer of unknown origin involved and the 597 // other access might also depend on this pointer). We also cannot add 598 // scopes to arbitrary functions unless we know they don't access any 599 // non-parameter pointer-values. 600 bool CanAddScopes = !UsesAliasingPtr; 601 if (CanAddScopes && IsFuncCall) 602 CanAddScopes = IsArgMemOnlyCall; 603 604 if (CanAddScopes) 605 for (const Argument *A : NoAliasArgs) { 606 if (ObjSet.count(A)) 607 Scopes.push_back(NewScopes[A]); 608 } 609 610 if (!Scopes.empty()) 611 NI->setMetadata(LLVMContext::MD_alias_scope, MDNode::concatenate( 612 NI->getMetadata(LLVMContext::MD_alias_scope), 613 MDNode::get(CalledFunc->getContext(), Scopes))); 614 } 615 } 616 } 617 618 /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee 619 /// into the caller, update the specified callgraph to reflect the changes we 620 /// made. Note that it's possible that not all code was copied over, so only 621 /// some edges of the callgraph may remain. 622 static void UpdateCallGraphAfterInlining(CallSite CS, 623 Function::iterator FirstNewBlock, 624 ValueToValueMapTy &VMap, 625 InlineFunctionInfo &IFI) { 626 CallGraph &CG = *IFI.CG; 627 const Function *Caller = CS.getInstruction()->getParent()->getParent(); 628 const Function *Callee = CS.getCalledFunction(); 629 CallGraphNode *CalleeNode = CG[Callee]; 630 CallGraphNode *CallerNode = CG[Caller]; 631 632 // Since we inlined some uninlined call sites in the callee into the caller, 633 // add edges from the caller to all of the callees of the callee. 634 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 635 636 // Consider the case where CalleeNode == CallerNode. 637 CallGraphNode::CalledFunctionsVector CallCache; 638 if (CalleeNode == CallerNode) { 639 CallCache.assign(I, E); 640 I = CallCache.begin(); 641 E = CallCache.end(); 642 } 643 644 for (; I != E; ++I) { 645 const Value *OrigCall = I->first; 646 647 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 648 // Only copy the edge if the call was inlined! 649 if (VMI == VMap.end() || VMI->second == nullptr) 650 continue; 651 652 // If the call was inlined, but then constant folded, there is no edge to 653 // add. Check for this case. 654 Instruction *NewCall = dyn_cast<Instruction>(VMI->second); 655 if (!NewCall) continue; 656 657 // Remember that this call site got inlined for the client of 658 // InlineFunction. 659 IFI.InlinedCalls.push_back(NewCall); 660 661 // It's possible that inlining the callsite will cause it to go from an 662 // indirect to a direct call by resolving a function pointer. If this 663 // happens, set the callee of the new call site to a more precise 664 // destination. This can also happen if the call graph node of the caller 665 // was just unnecessarily imprecise. 666 if (!I->second->getFunction()) 667 if (Function *F = CallSite(NewCall).getCalledFunction()) { 668 // Indirect call site resolved to direct call. 669 CallerNode->addCalledFunction(CallSite(NewCall), CG[F]); 670 671 continue; 672 } 673 674 CallerNode->addCalledFunction(CallSite(NewCall), I->second); 675 } 676 677 // Update the call graph by deleting the edge from Callee to Caller. We must 678 // do this after the loop above in case Caller and Callee are the same. 679 CallerNode->removeCallEdgeFor(CS); 680 } 681 682 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M, 683 BasicBlock *InsertBlock, 684 InlineFunctionInfo &IFI) { 685 LLVMContext &Context = Src->getContext(); 686 Type *VoidPtrTy = Type::getInt8PtrTy(Context); 687 Type *AggTy = cast<PointerType>(Src->getType())->getElementType(); 688 Type *Tys[3] = { VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context) }; 689 Function *MemCpyFn = Intrinsic::getDeclaration(M, Intrinsic::memcpy, Tys); 690 IRBuilder<> builder(InsertBlock->begin()); 691 Value *DstCast = builder.CreateBitCast(Dst, VoidPtrTy, "tmp"); 692 Value *SrcCast = builder.CreateBitCast(Src, VoidPtrTy, "tmp"); 693 694 Value *Size; 695 if (IFI.DL == nullptr) 696 Size = ConstantExpr::getSizeOf(AggTy); 697 else 698 Size = ConstantInt::get(Type::getInt64Ty(Context), 699 IFI.DL->getTypeStoreSize(AggTy)); 700 701 // Always generate a memcpy of alignment 1 here because we don't know 702 // the alignment of the src pointer. Other optimizations can infer 703 // better alignment. 704 Value *CallArgs[] = { 705 DstCast, SrcCast, Size, 706 ConstantInt::get(Type::getInt32Ty(Context), 1), 707 ConstantInt::getFalse(Context) // isVolatile 708 }; 709 builder.CreateCall(MemCpyFn, CallArgs); 710 } 711 712 /// HandleByValArgument - When inlining a call site that has a byval argument, 713 /// we have to make the implicit memcpy explicit by adding it. 714 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 715 const Function *CalledFunc, 716 InlineFunctionInfo &IFI, 717 unsigned ByValAlignment) { 718 PointerType *ArgTy = cast<PointerType>(Arg->getType()); 719 Type *AggTy = ArgTy->getElementType(); 720 721 // If the called function is readonly, then it could not mutate the caller's 722 // copy of the byval'd memory. In this case, it is safe to elide the copy and 723 // temporary. 724 if (CalledFunc->onlyReadsMemory()) { 725 // If the byval argument has a specified alignment that is greater than the 726 // passed in pointer, then we either have to round up the input pointer or 727 // give up on this transformation. 728 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 729 return Arg; 730 731 // If the pointer is already known to be sufficiently aligned, or if we can 732 // round it up to a larger alignment, then we don't need a temporary. 733 if (getOrEnforceKnownAlignment(Arg, ByValAlignment, 734 IFI.DL) >= ByValAlignment) 735 return Arg; 736 737 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 738 // for code quality, but rarely happens and is required for correctness. 739 } 740 741 // Create the alloca. If we have DataLayout, use nice alignment. 742 unsigned Align = 1; 743 if (IFI.DL) 744 Align = IFI.DL->getPrefTypeAlignment(AggTy); 745 746 // If the byval had an alignment specified, we *must* use at least that 747 // alignment, as it is required by the byval argument (and uses of the 748 // pointer inside the callee). 749 Align = std::max(Align, ByValAlignment); 750 751 Function *Caller = TheCall->getParent()->getParent(); 752 753 Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(), 754 &*Caller->begin()->begin()); 755 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); 756 757 // Uses of the argument in the function should use our new alloca 758 // instead. 759 return NewAlloca; 760 } 761 762 // isUsedByLifetimeMarker - Check whether this Value is used by a lifetime 763 // intrinsic. 764 static bool isUsedByLifetimeMarker(Value *V) { 765 for (User *U : V->users()) { 766 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 767 switch (II->getIntrinsicID()) { 768 default: break; 769 case Intrinsic::lifetime_start: 770 case Intrinsic::lifetime_end: 771 return true; 772 } 773 } 774 } 775 return false; 776 } 777 778 // hasLifetimeMarkers - Check whether the given alloca already has 779 // lifetime.start or lifetime.end intrinsics. 780 static bool hasLifetimeMarkers(AllocaInst *AI) { 781 Type *Ty = AI->getType(); 782 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), 783 Ty->getPointerAddressSpace()); 784 if (Ty == Int8PtrTy) 785 return isUsedByLifetimeMarker(AI); 786 787 // Do a scan to find all the casts to i8*. 788 for (User *U : AI->users()) { 789 if (U->getType() != Int8PtrTy) continue; 790 if (U->stripPointerCasts() != AI) continue; 791 if (isUsedByLifetimeMarker(U)) 792 return true; 793 } 794 return false; 795 } 796 797 /// updateInlinedAtInfo - Helper function used by fixupLineNumbers to 798 /// recursively update InlinedAtEntry of a DebugLoc. 799 static DebugLoc updateInlinedAtInfo(const DebugLoc &DL, 800 const DebugLoc &InlinedAtDL, 801 LLVMContext &Ctx) { 802 if (MDNode *IA = DL.getInlinedAt(Ctx)) { 803 DebugLoc NewInlinedAtDL 804 = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx); 805 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), 806 NewInlinedAtDL.getAsMDNode(Ctx)); 807 } 808 809 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), 810 InlinedAtDL.getAsMDNode(Ctx)); 811 } 812 813 /// fixupLineNumbers - Update inlined instructions' line numbers to 814 /// to encode location where these instructions are inlined. 815 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 816 Instruction *TheCall) { 817 DebugLoc TheCallDL = TheCall->getDebugLoc(); 818 if (TheCallDL.isUnknown()) 819 return; 820 821 for (; FI != Fn->end(); ++FI) { 822 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 823 BI != BE; ++BI) { 824 DebugLoc DL = BI->getDebugLoc(); 825 if (DL.isUnknown()) { 826 // If the inlined instruction has no line number, make it look as if it 827 // originates from the call location. This is important for 828 // ((__always_inline__, __nodebug__)) functions which must use caller 829 // location for all instructions in their function body. 830 BI->setDebugLoc(TheCallDL); 831 } else { 832 BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext())); 833 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) { 834 LLVMContext &Ctx = BI->getContext(); 835 MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx); 836 DVI->setOperand(2, createInlinedVariable(DVI->getVariable(), 837 InlinedAt, Ctx)); 838 } 839 } 840 } 841 } 842 } 843 844 /// InlineFunction - This function inlines the called function into the basic 845 /// block of the caller. This returns false if it is not possible to inline 846 /// this call. The program is still in a well defined state if this occurs 847 /// though. 848 /// 849 /// Note that this only does one level of inlining. For example, if the 850 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 851 /// exists in the instruction stream. Similarly this will inline a recursive 852 /// function by one level. 853 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI, 854 bool InsertLifetime) { 855 Instruction *TheCall = CS.getInstruction(); 856 assert(TheCall->getParent() && TheCall->getParent()->getParent() && 857 "Instruction not in function!"); 858 859 // If IFI has any state in it, zap it before we fill it in. 860 IFI.reset(); 861 862 const Function *CalledFunc = CS.getCalledFunction(); 863 if (!CalledFunc || // Can't inline external function or indirect 864 CalledFunc->isDeclaration() || // call, or call to a vararg function! 865 CalledFunc->getFunctionType()->isVarArg()) return false; 866 867 // If the call to the callee cannot throw, set the 'nounwind' flag on any 868 // calls that we inline. 869 bool MarkNoUnwind = CS.doesNotThrow(); 870 871 BasicBlock *OrigBB = TheCall->getParent(); 872 Function *Caller = OrigBB->getParent(); 873 874 // GC poses two hazards to inlining, which only occur when the callee has GC: 875 // 1. If the caller has no GC, then the callee's GC must be propagated to the 876 // caller. 877 // 2. If the caller has a differing GC, it is invalid to inline. 878 if (CalledFunc->hasGC()) { 879 if (!Caller->hasGC()) 880 Caller->setGC(CalledFunc->getGC()); 881 else if (CalledFunc->getGC() != Caller->getGC()) 882 return false; 883 } 884 885 // Get the personality function from the callee if it contains a landing pad. 886 Value *CalleePersonality = nullptr; 887 for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end(); 888 I != E; ++I) 889 if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) { 890 const BasicBlock *BB = II->getUnwindDest(); 891 const LandingPadInst *LP = BB->getLandingPadInst(); 892 CalleePersonality = LP->getPersonalityFn(); 893 break; 894 } 895 896 // Find the personality function used by the landing pads of the caller. If it 897 // exists, then check to see that it matches the personality function used in 898 // the callee. 899 if (CalleePersonality) { 900 for (Function::const_iterator I = Caller->begin(), E = Caller->end(); 901 I != E; ++I) 902 if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) { 903 const BasicBlock *BB = II->getUnwindDest(); 904 const LandingPadInst *LP = BB->getLandingPadInst(); 905 906 // If the personality functions match, then we can perform the 907 // inlining. Otherwise, we can't inline. 908 // TODO: This isn't 100% true. Some personality functions are proper 909 // supersets of others and can be used in place of the other. 910 if (LP->getPersonalityFn() != CalleePersonality) 911 return false; 912 913 break; 914 } 915 } 916 917 // Get an iterator to the last basic block in the function, which will have 918 // the new function inlined after it. 919 Function::iterator LastBlock = &Caller->back(); 920 921 // Make sure to capture all of the return instructions from the cloned 922 // function. 923 SmallVector<ReturnInst*, 8> Returns; 924 ClonedCodeInfo InlinedFunctionInfo; 925 Function::iterator FirstNewBlock; 926 927 { // Scope to destroy VMap after cloning. 928 ValueToValueMapTy VMap; 929 // Keep a list of pair (dst, src) to emit byval initializations. 930 SmallVector<std::pair<Value*, Value*>, 4> ByValInit; 931 932 assert(CalledFunc->arg_size() == CS.arg_size() && 933 "No varargs calls can be inlined!"); 934 935 // Calculate the vector of arguments to pass into the function cloner, which 936 // matches up the formal to the actual argument values. 937 CallSite::arg_iterator AI = CS.arg_begin(); 938 unsigned ArgNo = 0; 939 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 940 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 941 Value *ActualArg = *AI; 942 943 // When byval arguments actually inlined, we need to make the copy implied 944 // by them explicit. However, we don't do this if the callee is readonly 945 // or readnone, because the copy would be unneeded: the callee doesn't 946 // modify the struct. 947 if (CS.isByValArgument(ArgNo)) { 948 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, 949 CalledFunc->getParamAlignment(ArgNo+1)); 950 if (ActualArg != *AI) 951 ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI)); 952 } 953 954 VMap[I] = ActualArg; 955 } 956 957 // We want the inliner to prune the code as it copies. We would LOVE to 958 // have no dead or constant instructions leftover after inlining occurs 959 // (which can happen, e.g., because an argument was constant), but we'll be 960 // happy with whatever the cloner can do. 961 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 962 /*ModuleLevelChanges=*/false, Returns, ".i", 963 &InlinedFunctionInfo, IFI.DL, TheCall); 964 965 // Remember the first block that is newly cloned over. 966 FirstNewBlock = LastBlock; ++FirstNewBlock; 967 968 // Inject byval arguments initialization. 969 for (std::pair<Value*, Value*> &Init : ByValInit) 970 HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(), 971 FirstNewBlock, IFI); 972 973 // Update the callgraph if requested. 974 if (IFI.CG) 975 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); 976 977 // Update inlined instructions' line number information. 978 fixupLineNumbers(Caller, FirstNewBlock, TheCall); 979 980 // Clone existing noalias metadata if necessary. 981 CloneAliasScopeMetadata(CS, VMap); 982 983 // Add noalias metadata if necessary. 984 AddAliasScopeMetadata(CS, VMap, IFI.DL, IFI.AA); 985 } 986 987 // If there are any alloca instructions in the block that used to be the entry 988 // block for the callee, move them to the entry block of the caller. First 989 // calculate which instruction they should be inserted before. We insert the 990 // instructions at the end of the current alloca list. 991 { 992 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 993 for (BasicBlock::iterator I = FirstNewBlock->begin(), 994 E = FirstNewBlock->end(); I != E; ) { 995 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 996 if (!AI) continue; 997 998 // If the alloca is now dead, remove it. This often occurs due to code 999 // specialization. 1000 if (AI->use_empty()) { 1001 AI->eraseFromParent(); 1002 continue; 1003 } 1004 1005 if (!isa<Constant>(AI->getArraySize())) 1006 continue; 1007 1008 // Keep track of the static allocas that we inline into the caller. 1009 IFI.StaticAllocas.push_back(AI); 1010 1011 // Scan for the block of allocas that we can move over, and move them 1012 // all at once. 1013 while (isa<AllocaInst>(I) && 1014 isa<Constant>(cast<AllocaInst>(I)->getArraySize())) { 1015 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 1016 ++I; 1017 } 1018 1019 // Transfer all of the allocas over in a block. Using splice means 1020 // that the instructions aren't removed from the symbol table, then 1021 // reinserted. 1022 Caller->getEntryBlock().getInstList().splice(InsertPoint, 1023 FirstNewBlock->getInstList(), 1024 AI, I); 1025 } 1026 } 1027 1028 bool InlinedMustTailCalls = false; 1029 if (InlinedFunctionInfo.ContainsCalls) { 1030 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; 1031 if (CallInst *CI = dyn_cast<CallInst>(TheCall)) 1032 CallSiteTailKind = CI->getTailCallKind(); 1033 1034 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 1035 ++BB) { 1036 for (Instruction &I : *BB) { 1037 CallInst *CI = dyn_cast<CallInst>(&I); 1038 if (!CI) 1039 continue; 1040 1041 // We need to reduce the strength of any inlined tail calls. For 1042 // musttail, we have to avoid introducing potential unbounded stack 1043 // growth. For example, if functions 'f' and 'g' are mutually recursive 1044 // with musttail, we can inline 'g' into 'f' so long as we preserve 1045 // musttail on the cloned call to 'f'. If either the inlined call site 1046 // or the cloned call site is *not* musttail, the program already has 1047 // one frame of stack growth, so it's safe to remove musttail. Here is 1048 // a table of example transformations: 1049 // 1050 // f -> musttail g -> musttail f ==> f -> musttail f 1051 // f -> musttail g -> tail f ==> f -> tail f 1052 // f -> g -> musttail f ==> f -> f 1053 // f -> g -> tail f ==> f -> f 1054 CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); 1055 ChildTCK = std::min(CallSiteTailKind, ChildTCK); 1056 CI->setTailCallKind(ChildTCK); 1057 InlinedMustTailCalls |= CI->isMustTailCall(); 1058 1059 // Calls inlined through a 'nounwind' call site should be marked 1060 // 'nounwind'. 1061 if (MarkNoUnwind) 1062 CI->setDoesNotThrow(); 1063 } 1064 } 1065 } 1066 1067 // Leave lifetime markers for the static alloca's, scoping them to the 1068 // function we just inlined. 1069 if (InsertLifetime && !IFI.StaticAllocas.empty()) { 1070 IRBuilder<> builder(FirstNewBlock->begin()); 1071 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 1072 AllocaInst *AI = IFI.StaticAllocas[ai]; 1073 1074 // If the alloca is already scoped to something smaller than the whole 1075 // function then there's no need to add redundant, less accurate markers. 1076 if (hasLifetimeMarkers(AI)) 1077 continue; 1078 1079 // Try to determine the size of the allocation. 1080 ConstantInt *AllocaSize = nullptr; 1081 if (ConstantInt *AIArraySize = 1082 dyn_cast<ConstantInt>(AI->getArraySize())) { 1083 if (IFI.DL) { 1084 Type *AllocaType = AI->getAllocatedType(); 1085 uint64_t AllocaTypeSize = IFI.DL->getTypeAllocSize(AllocaType); 1086 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 1087 assert(AllocaArraySize > 0 && "array size of AllocaInst is zero"); 1088 // Check that array size doesn't saturate uint64_t and doesn't 1089 // overflow when it's multiplied by type size. 1090 if (AllocaArraySize != ~0ULL && 1091 UINT64_MAX / AllocaArraySize >= AllocaTypeSize) { 1092 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 1093 AllocaArraySize * AllocaTypeSize); 1094 } 1095 } 1096 } 1097 1098 builder.CreateLifetimeStart(AI, AllocaSize); 1099 for (ReturnInst *RI : Returns) { 1100 // Don't insert llvm.lifetime.end calls between a musttail call and a 1101 // return. The return kills all local allocas. 1102 if (InlinedMustTailCalls && 1103 RI->getParent()->getTerminatingMustTailCall()) 1104 continue; 1105 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); 1106 } 1107 } 1108 } 1109 1110 // If the inlined code contained dynamic alloca instructions, wrap the inlined 1111 // code with llvm.stacksave/llvm.stackrestore intrinsics. 1112 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 1113 Module *M = Caller->getParent(); 1114 // Get the two intrinsics we care about. 1115 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 1116 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 1117 1118 // Insert the llvm.stacksave. 1119 CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin()) 1120 .CreateCall(StackSave, "savedstack"); 1121 1122 // Insert a call to llvm.stackrestore before any return instructions in the 1123 // inlined function. 1124 for (ReturnInst *RI : Returns) { 1125 // Don't insert llvm.stackrestore calls between a musttail call and a 1126 // return. The return will restore the stack pointer. 1127 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) 1128 continue; 1129 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); 1130 } 1131 } 1132 1133 // If we are inlining for an invoke instruction, we must make sure to rewrite 1134 // any call instructions into invoke instructions. 1135 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) 1136 HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo); 1137 1138 // Handle any inlined musttail call sites. In order for a new call site to be 1139 // musttail, the source of the clone and the inlined call site must have been 1140 // musttail. Therefore it's safe to return without merging control into the 1141 // phi below. 1142 if (InlinedMustTailCalls) { 1143 // Check if we need to bitcast the result of any musttail calls. 1144 Type *NewRetTy = Caller->getReturnType(); 1145 bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy; 1146 1147 // Handle the returns preceded by musttail calls separately. 1148 SmallVector<ReturnInst *, 8> NormalReturns; 1149 for (ReturnInst *RI : Returns) { 1150 CallInst *ReturnedMustTail = 1151 RI->getParent()->getTerminatingMustTailCall(); 1152 if (!ReturnedMustTail) { 1153 NormalReturns.push_back(RI); 1154 continue; 1155 } 1156 if (!NeedBitCast) 1157 continue; 1158 1159 // Delete the old return and any preceding bitcast. 1160 BasicBlock *CurBB = RI->getParent(); 1161 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); 1162 RI->eraseFromParent(); 1163 if (OldCast) 1164 OldCast->eraseFromParent(); 1165 1166 // Insert a new bitcast and return with the right type. 1167 IRBuilder<> Builder(CurBB); 1168 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); 1169 } 1170 1171 // Leave behind the normal returns so we can merge control flow. 1172 std::swap(Returns, NormalReturns); 1173 } 1174 1175 // If we cloned in _exactly one_ basic block, and if that block ends in a 1176 // return instruction, we splice the body of the inlined callee directly into 1177 // the calling basic block. 1178 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 1179 // Move all of the instructions right before the call. 1180 OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(), 1181 FirstNewBlock->begin(), FirstNewBlock->end()); 1182 // Remove the cloned basic block. 1183 Caller->getBasicBlockList().pop_back(); 1184 1185 // If the call site was an invoke instruction, add a branch to the normal 1186 // destination. 1187 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 1188 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); 1189 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 1190 } 1191 1192 // If the return instruction returned a value, replace uses of the call with 1193 // uses of the returned value. 1194 if (!TheCall->use_empty()) { 1195 ReturnInst *R = Returns[0]; 1196 if (TheCall == R->getReturnValue()) 1197 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1198 else 1199 TheCall->replaceAllUsesWith(R->getReturnValue()); 1200 } 1201 // Since we are now done with the Call/Invoke, we can delete it. 1202 TheCall->eraseFromParent(); 1203 1204 // Since we are now done with the return instruction, delete it also. 1205 Returns[0]->eraseFromParent(); 1206 1207 // We are now done with the inlining. 1208 return true; 1209 } 1210 1211 // Otherwise, we have the normal case, of more than one block to inline or 1212 // multiple return sites. 1213 1214 // We want to clone the entire callee function into the hole between the 1215 // "starter" and "ender" blocks. How we accomplish this depends on whether 1216 // this is an invoke instruction or a call instruction. 1217 BasicBlock *AfterCallBB; 1218 BranchInst *CreatedBranchToNormalDest = nullptr; 1219 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 1220 1221 // Add an unconditional branch to make this look like the CallInst case... 1222 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall); 1223 1224 // Split the basic block. This guarantees that no PHI nodes will have to be 1225 // updated due to new incoming edges, and make the invoke case more 1226 // symmetric to the call case. 1227 AfterCallBB = OrigBB->splitBasicBlock(CreatedBranchToNormalDest, 1228 CalledFunc->getName()+".exit"); 1229 1230 } else { // It's a call 1231 // If this is a call instruction, we need to split the basic block that 1232 // the call lives in. 1233 // 1234 AfterCallBB = OrigBB->splitBasicBlock(TheCall, 1235 CalledFunc->getName()+".exit"); 1236 } 1237 1238 // Change the branch that used to go to AfterCallBB to branch to the first 1239 // basic block of the inlined function. 1240 // 1241 TerminatorInst *Br = OrigBB->getTerminator(); 1242 assert(Br && Br->getOpcode() == Instruction::Br && 1243 "splitBasicBlock broken!"); 1244 Br->setOperand(0, FirstNewBlock); 1245 1246 1247 // Now that the function is correct, make it a little bit nicer. In 1248 // particular, move the basic blocks inserted from the end of the function 1249 // into the space made by splitting the source basic block. 1250 Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(), 1251 FirstNewBlock, Caller->end()); 1252 1253 // Handle all of the return instructions that we just cloned in, and eliminate 1254 // any users of the original call/invoke instruction. 1255 Type *RTy = CalledFunc->getReturnType(); 1256 1257 PHINode *PHI = nullptr; 1258 if (Returns.size() > 1) { 1259 // The PHI node should go at the front of the new basic block to merge all 1260 // possible incoming values. 1261 if (!TheCall->use_empty()) { 1262 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), 1263 AfterCallBB->begin()); 1264 // Anything that used the result of the function call should now use the 1265 // PHI node as their operand. 1266 TheCall->replaceAllUsesWith(PHI); 1267 } 1268 1269 // Loop over all of the return instructions adding entries to the PHI node 1270 // as appropriate. 1271 if (PHI) { 1272 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1273 ReturnInst *RI = Returns[i]; 1274 assert(RI->getReturnValue()->getType() == PHI->getType() && 1275 "Ret value not consistent in function!"); 1276 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 1277 } 1278 } 1279 1280 1281 // Add a branch to the merge points and remove return instructions. 1282 DebugLoc Loc; 1283 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1284 ReturnInst *RI = Returns[i]; 1285 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 1286 Loc = RI->getDebugLoc(); 1287 BI->setDebugLoc(Loc); 1288 RI->eraseFromParent(); 1289 } 1290 // We need to set the debug location to *somewhere* inside the 1291 // inlined function. The line number may be nonsensical, but the 1292 // instruction will at least be associated with the right 1293 // function. 1294 if (CreatedBranchToNormalDest) 1295 CreatedBranchToNormalDest->setDebugLoc(Loc); 1296 } else if (!Returns.empty()) { 1297 // Otherwise, if there is exactly one return value, just replace anything 1298 // using the return value of the call with the computed value. 1299 if (!TheCall->use_empty()) { 1300 if (TheCall == Returns[0]->getReturnValue()) 1301 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1302 else 1303 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); 1304 } 1305 1306 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 1307 BasicBlock *ReturnBB = Returns[0]->getParent(); 1308 ReturnBB->replaceAllUsesWith(AfterCallBB); 1309 1310 // Splice the code from the return block into the block that it will return 1311 // to, which contains the code that was after the call. 1312 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 1313 ReturnBB->getInstList()); 1314 1315 if (CreatedBranchToNormalDest) 1316 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 1317 1318 // Delete the return instruction now and empty ReturnBB now. 1319 Returns[0]->eraseFromParent(); 1320 ReturnBB->eraseFromParent(); 1321 } else if (!TheCall->use_empty()) { 1322 // No returns, but something is using the return value of the call. Just 1323 // nuke the result. 1324 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1325 } 1326 1327 // Since we are now done with the Call/Invoke, we can delete it. 1328 TheCall->eraseFromParent(); 1329 1330 // If we inlined any musttail calls and the original return is now 1331 // unreachable, delete it. It can only contain a bitcast and ret. 1332 if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB)) 1333 AfterCallBB->eraseFromParent(); 1334 1335 // We should always be able to fold the entry block of the function into the 1336 // single predecessor of the block... 1337 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 1338 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 1339 1340 // Splice the code entry block into calling block, right before the 1341 // unconditional branch. 1342 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 1343 OrigBB->getInstList().splice(Br, CalleeEntry->getInstList()); 1344 1345 // Remove the unconditional branch. 1346 OrigBB->getInstList().erase(Br); 1347 1348 // Now we can remove the CalleeEntry block, which is now empty. 1349 Caller->getBasicBlockList().erase(CalleeEntry); 1350 1351 // If we inserted a phi node, check to see if it has a single value (e.g. all 1352 // the entries are the same or undef). If so, remove the PHI so it doesn't 1353 // block other optimizations. 1354 if (PHI) { 1355 if (Value *V = SimplifyInstruction(PHI, IFI.DL)) { 1356 PHI->replaceAllUsesWith(V); 1357 PHI->eraseFromParent(); 1358 } 1359 } 1360 1361 return true; 1362 } 1363