1 //===- InlineFunction.cpp - Code to perform function inlining -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements inlining of a function into a call site, resolving
10 // parameters and the return value as appropriate.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/BlockFrequencyInfo.h"
26 #include "llvm/Analysis/CallGraph.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/EHPersonalities.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/ObjCARCAnalysisUtils.h"
31 #include "llvm/Analysis/ObjCARCUtil.h"
32 #include "llvm/Analysis/ProfileSummaryInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DIBuilder.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Dominators.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/IntrinsicInst.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/User.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
64 #include "llvm/Transforms/Utils/Cloning.h"
65 #include "llvm/Transforms/Utils/Local.h"
66 #include "llvm/Transforms/Utils/ValueMapper.h"
67 #include <algorithm>
68 #include <cassert>
69 #include <cstdint>
70 #include <iterator>
71 #include <limits>
72 #include <string>
73 #include <utility>
74 #include <vector>
75 
76 using namespace llvm;
77 using ProfileCount = Function::ProfileCount;
78 
79 static cl::opt<bool>
80 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
81   cl::Hidden,
82   cl::desc("Convert noalias attributes to metadata during inlining."));
83 
84 static cl::opt<bool>
85     UseNoAliasIntrinsic("use-noalias-intrinsic-during-inlining", cl::Hidden,
86                         cl::ZeroOrMore, cl::init(true),
87                         cl::desc("Use the llvm.experimental.noalias.scope.decl "
88                                  "intrinsic during inlining."));
89 
90 // Disabled by default, because the added alignment assumptions may increase
91 // compile-time and block optimizations. This option is not suitable for use
92 // with frontends that emit comprehensive parameter alignment annotations.
93 static cl::opt<bool>
94 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
95   cl::init(false), cl::Hidden,
96   cl::desc("Convert align attributes to assumptions during inlining."));
97 
98 static cl::opt<bool> UpdateReturnAttributes(
99         "update-return-attrs", cl::init(true), cl::Hidden,
100             cl::desc("Update return attributes on calls within inlined body"));
101 
102 static cl::opt<unsigned> InlinerAttributeWindow(
103     "max-inst-checked-for-throw-during-inlining", cl::Hidden,
104     cl::desc("the maximum number of instructions analyzed for may throw during "
105              "attribute inference in inlined body"),
106     cl::init(4));
107 
108 namespace {
109 
110   /// A class for recording information about inlining a landing pad.
111   class LandingPadInliningInfo {
112     /// Destination of the invoke's unwind.
113     BasicBlock *OuterResumeDest;
114 
115     /// Destination for the callee's resume.
116     BasicBlock *InnerResumeDest = nullptr;
117 
118     /// LandingPadInst associated with the invoke.
119     LandingPadInst *CallerLPad = nullptr;
120 
121     /// PHI for EH values from landingpad insts.
122     PHINode *InnerEHValuesPHI = nullptr;
123 
124     SmallVector<Value*, 8> UnwindDestPHIValues;
125 
126   public:
127     LandingPadInliningInfo(InvokeInst *II)
128         : OuterResumeDest(II->getUnwindDest()) {
129       // If there are PHI nodes in the unwind destination block, we need to keep
130       // track of which values came into them from the invoke before removing
131       // the edge from this block.
132       BasicBlock *InvokeBB = II->getParent();
133       BasicBlock::iterator I = OuterResumeDest->begin();
134       for (; isa<PHINode>(I); ++I) {
135         // Save the value to use for this edge.
136         PHINode *PHI = cast<PHINode>(I);
137         UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
138       }
139 
140       CallerLPad = cast<LandingPadInst>(I);
141     }
142 
143     /// The outer unwind destination is the target of
144     /// unwind edges introduced for calls within the inlined function.
145     BasicBlock *getOuterResumeDest() const {
146       return OuterResumeDest;
147     }
148 
149     BasicBlock *getInnerResumeDest();
150 
151     LandingPadInst *getLandingPadInst() const { return CallerLPad; }
152 
153     /// Forward the 'resume' instruction to the caller's landing pad block.
154     /// When the landing pad block has only one predecessor, this is
155     /// a simple branch. When there is more than one predecessor, we need to
156     /// split the landing pad block after the landingpad instruction and jump
157     /// to there.
158     void forwardResume(ResumeInst *RI,
159                        SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
160 
161     /// Add incoming-PHI values to the unwind destination block for the given
162     /// basic block, using the values for the original invoke's source block.
163     void addIncomingPHIValuesFor(BasicBlock *BB) const {
164       addIncomingPHIValuesForInto(BB, OuterResumeDest);
165     }
166 
167     void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
168       BasicBlock::iterator I = dest->begin();
169       for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
170         PHINode *phi = cast<PHINode>(I);
171         phi->addIncoming(UnwindDestPHIValues[i], src);
172       }
173     }
174   };
175 
176 } // end anonymous namespace
177 
178 /// Get or create a target for the branch from ResumeInsts.
179 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
180   if (InnerResumeDest) return InnerResumeDest;
181 
182   // Split the landing pad.
183   BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
184   InnerResumeDest =
185     OuterResumeDest->splitBasicBlock(SplitPoint,
186                                      OuterResumeDest->getName() + ".body");
187 
188   // The number of incoming edges we expect to the inner landing pad.
189   const unsigned PHICapacity = 2;
190 
191   // Create corresponding new PHIs for all the PHIs in the outer landing pad.
192   Instruction *InsertPoint = &InnerResumeDest->front();
193   BasicBlock::iterator I = OuterResumeDest->begin();
194   for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
195     PHINode *OuterPHI = cast<PHINode>(I);
196     PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
197                                         OuterPHI->getName() + ".lpad-body",
198                                         InsertPoint);
199     OuterPHI->replaceAllUsesWith(InnerPHI);
200     InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
201   }
202 
203   // Create a PHI for the exception values.
204   InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
205                                      "eh.lpad-body", InsertPoint);
206   CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
207   InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
208 
209   // All done.
210   return InnerResumeDest;
211 }
212 
213 /// Forward the 'resume' instruction to the caller's landing pad block.
214 /// When the landing pad block has only one predecessor, this is a simple
215 /// branch. When there is more than one predecessor, we need to split the
216 /// landing pad block after the landingpad instruction and jump to there.
217 void LandingPadInliningInfo::forwardResume(
218     ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
219   BasicBlock *Dest = getInnerResumeDest();
220   BasicBlock *Src = RI->getParent();
221 
222   BranchInst::Create(Dest, Src);
223 
224   // Update the PHIs in the destination. They were inserted in an order which
225   // makes this work.
226   addIncomingPHIValuesForInto(Src, Dest);
227 
228   InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
229   RI->eraseFromParent();
230 }
231 
232 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
233 static Value *getParentPad(Value *EHPad) {
234   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
235     return FPI->getParentPad();
236   return cast<CatchSwitchInst>(EHPad)->getParentPad();
237 }
238 
239 using UnwindDestMemoTy = DenseMap<Instruction *, Value *>;
240 
241 /// Helper for getUnwindDestToken that does the descendant-ward part of
242 /// the search.
243 static Value *getUnwindDestTokenHelper(Instruction *EHPad,
244                                        UnwindDestMemoTy &MemoMap) {
245   SmallVector<Instruction *, 8> Worklist(1, EHPad);
246 
247   while (!Worklist.empty()) {
248     Instruction *CurrentPad = Worklist.pop_back_val();
249     // We only put pads on the worklist that aren't in the MemoMap.  When
250     // we find an unwind dest for a pad we may update its ancestors, but
251     // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
252     // so they should never get updated while queued on the worklist.
253     assert(!MemoMap.count(CurrentPad));
254     Value *UnwindDestToken = nullptr;
255     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
256       if (CatchSwitch->hasUnwindDest()) {
257         UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
258       } else {
259         // Catchswitch doesn't have a 'nounwind' variant, and one might be
260         // annotated as "unwinds to caller" when really it's nounwind (see
261         // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
262         // parent's unwind dest from this.  We can check its catchpads'
263         // descendants, since they might include a cleanuppad with an
264         // "unwinds to caller" cleanupret, which can be trusted.
265         for (auto HI = CatchSwitch->handler_begin(),
266                   HE = CatchSwitch->handler_end();
267              HI != HE && !UnwindDestToken; ++HI) {
268           BasicBlock *HandlerBlock = *HI;
269           auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
270           for (User *Child : CatchPad->users()) {
271             // Intentionally ignore invokes here -- since the catchswitch is
272             // marked "unwind to caller", it would be a verifier error if it
273             // contained an invoke which unwinds out of it, so any invoke we'd
274             // encounter must unwind to some child of the catch.
275             if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
276               continue;
277 
278             Instruction *ChildPad = cast<Instruction>(Child);
279             auto Memo = MemoMap.find(ChildPad);
280             if (Memo == MemoMap.end()) {
281               // Haven't figured out this child pad yet; queue it.
282               Worklist.push_back(ChildPad);
283               continue;
284             }
285             // We've already checked this child, but might have found that
286             // it offers no proof either way.
287             Value *ChildUnwindDestToken = Memo->second;
288             if (!ChildUnwindDestToken)
289               continue;
290             // We already know the child's unwind dest, which can either
291             // be ConstantTokenNone to indicate unwind to caller, or can
292             // be another child of the catchpad.  Only the former indicates
293             // the unwind dest of the catchswitch.
294             if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
295               UnwindDestToken = ChildUnwindDestToken;
296               break;
297             }
298             assert(getParentPad(ChildUnwindDestToken) == CatchPad);
299           }
300         }
301       }
302     } else {
303       auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
304       for (User *U : CleanupPad->users()) {
305         if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
306           if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
307             UnwindDestToken = RetUnwindDest->getFirstNonPHI();
308           else
309             UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
310           break;
311         }
312         Value *ChildUnwindDestToken;
313         if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
314           ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
315         } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
316           Instruction *ChildPad = cast<Instruction>(U);
317           auto Memo = MemoMap.find(ChildPad);
318           if (Memo == MemoMap.end()) {
319             // Haven't resolved this child yet; queue it and keep searching.
320             Worklist.push_back(ChildPad);
321             continue;
322           }
323           // We've checked this child, but still need to ignore it if it
324           // had no proof either way.
325           ChildUnwindDestToken = Memo->second;
326           if (!ChildUnwindDestToken)
327             continue;
328         } else {
329           // Not a relevant user of the cleanuppad
330           continue;
331         }
332         // In a well-formed program, the child/invoke must either unwind to
333         // an(other) child of the cleanup, or exit the cleanup.  In the
334         // first case, continue searching.
335         if (isa<Instruction>(ChildUnwindDestToken) &&
336             getParentPad(ChildUnwindDestToken) == CleanupPad)
337           continue;
338         UnwindDestToken = ChildUnwindDestToken;
339         break;
340       }
341     }
342     // If we haven't found an unwind dest for CurrentPad, we may have queued its
343     // children, so move on to the next in the worklist.
344     if (!UnwindDestToken)
345       continue;
346 
347     // Now we know that CurrentPad unwinds to UnwindDestToken.  It also exits
348     // any ancestors of CurrentPad up to but not including UnwindDestToken's
349     // parent pad.  Record this in the memo map, and check to see if the
350     // original EHPad being queried is one of the ones exited.
351     Value *UnwindParent;
352     if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
353       UnwindParent = getParentPad(UnwindPad);
354     else
355       UnwindParent = nullptr;
356     bool ExitedOriginalPad = false;
357     for (Instruction *ExitedPad = CurrentPad;
358          ExitedPad && ExitedPad != UnwindParent;
359          ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
360       // Skip over catchpads since they just follow their catchswitches.
361       if (isa<CatchPadInst>(ExitedPad))
362         continue;
363       MemoMap[ExitedPad] = UnwindDestToken;
364       ExitedOriginalPad |= (ExitedPad == EHPad);
365     }
366 
367     if (ExitedOriginalPad)
368       return UnwindDestToken;
369 
370     // Continue the search.
371   }
372 
373   // No definitive information is contained within this funclet.
374   return nullptr;
375 }
376 
377 /// Given an EH pad, find where it unwinds.  If it unwinds to an EH pad,
378 /// return that pad instruction.  If it unwinds to caller, return
379 /// ConstantTokenNone.  If it does not have a definitive unwind destination,
380 /// return nullptr.
381 ///
382 /// This routine gets invoked for calls in funclets in inlinees when inlining
383 /// an invoke.  Since many funclets don't have calls inside them, it's queried
384 /// on-demand rather than building a map of pads to unwind dests up front.
385 /// Determining a funclet's unwind dest may require recursively searching its
386 /// descendants, and also ancestors and cousins if the descendants don't provide
387 /// an answer.  Since most funclets will have their unwind dest immediately
388 /// available as the unwind dest of a catchswitch or cleanupret, this routine
389 /// searches top-down from the given pad and then up. To avoid worst-case
390 /// quadratic run-time given that approach, it uses a memo map to avoid
391 /// re-processing funclet trees.  The callers that rewrite the IR as they go
392 /// take advantage of this, for correctness, by checking/forcing rewritten
393 /// pads' entries to match the original callee view.
394 static Value *getUnwindDestToken(Instruction *EHPad,
395                                  UnwindDestMemoTy &MemoMap) {
396   // Catchpads unwind to the same place as their catchswitch;
397   // redirct any queries on catchpads so the code below can
398   // deal with just catchswitches and cleanuppads.
399   if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
400     EHPad = CPI->getCatchSwitch();
401 
402   // Check if we've already determined the unwind dest for this pad.
403   auto Memo = MemoMap.find(EHPad);
404   if (Memo != MemoMap.end())
405     return Memo->second;
406 
407   // Search EHPad and, if necessary, its descendants.
408   Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
409   assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
410   if (UnwindDestToken)
411     return UnwindDestToken;
412 
413   // No information is available for this EHPad from itself or any of its
414   // descendants.  An unwind all the way out to a pad in the caller would
415   // need also to agree with the unwind dest of the parent funclet, so
416   // search up the chain to try to find a funclet with information.  Put
417   // null entries in the memo map to avoid re-processing as we go up.
418   MemoMap[EHPad] = nullptr;
419 #ifndef NDEBUG
420   SmallPtrSet<Instruction *, 4> TempMemos;
421   TempMemos.insert(EHPad);
422 #endif
423   Instruction *LastUselessPad = EHPad;
424   Value *AncestorToken;
425   for (AncestorToken = getParentPad(EHPad);
426        auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
427        AncestorToken = getParentPad(AncestorToken)) {
428     // Skip over catchpads since they just follow their catchswitches.
429     if (isa<CatchPadInst>(AncestorPad))
430       continue;
431     // If the MemoMap had an entry mapping AncestorPad to nullptr, since we
432     // haven't yet called getUnwindDestTokenHelper for AncestorPad in this
433     // call to getUnwindDestToken, that would mean that AncestorPad had no
434     // information in itself, its descendants, or its ancestors.  If that
435     // were the case, then we should also have recorded the lack of information
436     // for the descendant that we're coming from.  So assert that we don't
437     // find a null entry in the MemoMap for AncestorPad.
438     assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
439     auto AncestorMemo = MemoMap.find(AncestorPad);
440     if (AncestorMemo == MemoMap.end()) {
441       UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
442     } else {
443       UnwindDestToken = AncestorMemo->second;
444     }
445     if (UnwindDestToken)
446       break;
447     LastUselessPad = AncestorPad;
448     MemoMap[LastUselessPad] = nullptr;
449 #ifndef NDEBUG
450     TempMemos.insert(LastUselessPad);
451 #endif
452   }
453 
454   // We know that getUnwindDestTokenHelper was called on LastUselessPad and
455   // returned nullptr (and likewise for EHPad and any of its ancestors up to
456   // LastUselessPad), so LastUselessPad has no information from below.  Since
457   // getUnwindDestTokenHelper must investigate all downward paths through
458   // no-information nodes to prove that a node has no information like this,
459   // and since any time it finds information it records it in the MemoMap for
460   // not just the immediately-containing funclet but also any ancestors also
461   // exited, it must be the case that, walking downward from LastUselessPad,
462   // visiting just those nodes which have not been mapped to an unwind dest
463   // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since
464   // they are just used to keep getUnwindDestTokenHelper from repeating work),
465   // any node visited must have been exhaustively searched with no information
466   // for it found.
467   SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
468   while (!Worklist.empty()) {
469     Instruction *UselessPad = Worklist.pop_back_val();
470     auto Memo = MemoMap.find(UselessPad);
471     if (Memo != MemoMap.end() && Memo->second) {
472       // Here the name 'UselessPad' is a bit of a misnomer, because we've found
473       // that it is a funclet that does have information about unwinding to
474       // a particular destination; its parent was a useless pad.
475       // Since its parent has no information, the unwind edge must not escape
476       // the parent, and must target a sibling of this pad.  This local unwind
477       // gives us no information about EHPad.  Leave it and the subtree rooted
478       // at it alone.
479       assert(getParentPad(Memo->second) == getParentPad(UselessPad));
480       continue;
481     }
482     // We know we don't have information for UselesPad.  If it has an entry in
483     // the MemoMap (mapping it to nullptr), it must be one of the TempMemos
484     // added on this invocation of getUnwindDestToken; if a previous invocation
485     // recorded nullptr, it would have had to prove that the ancestors of
486     // UselessPad, which include LastUselessPad, had no information, and that
487     // in turn would have required proving that the descendants of
488     // LastUselesPad, which include EHPad, have no information about
489     // LastUselessPad, which would imply that EHPad was mapped to nullptr in
490     // the MemoMap on that invocation, which isn't the case if we got here.
491     assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad));
492     // Assert as we enumerate users that 'UselessPad' doesn't have any unwind
493     // information that we'd be contradicting by making a map entry for it
494     // (which is something that getUnwindDestTokenHelper must have proved for
495     // us to get here).  Just assert on is direct users here; the checks in
496     // this downward walk at its descendants will verify that they don't have
497     // any unwind edges that exit 'UselessPad' either (i.e. they either have no
498     // unwind edges or unwind to a sibling).
499     MemoMap[UselessPad] = UnwindDestToken;
500     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
501       assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad");
502       for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) {
503         auto *CatchPad = HandlerBlock->getFirstNonPHI();
504         for (User *U : CatchPad->users()) {
505           assert(
506               (!isa<InvokeInst>(U) ||
507                (getParentPad(
508                     cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
509                 CatchPad)) &&
510               "Expected useless pad");
511           if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
512             Worklist.push_back(cast<Instruction>(U));
513         }
514       }
515     } else {
516       assert(isa<CleanupPadInst>(UselessPad));
517       for (User *U : UselessPad->users()) {
518         assert(!isa<CleanupReturnInst>(U) && "Expected useless pad");
519         assert((!isa<InvokeInst>(U) ||
520                 (getParentPad(
521                      cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
522                  UselessPad)) &&
523                "Expected useless pad");
524         if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
525           Worklist.push_back(cast<Instruction>(U));
526       }
527     }
528   }
529 
530   return UnwindDestToken;
531 }
532 
533 /// When we inline a basic block into an invoke,
534 /// we have to turn all of the calls that can throw into invokes.
535 /// This function analyze BB to see if there are any calls, and if so,
536 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
537 /// nodes in that block with the values specified in InvokeDestPHIValues.
538 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
539     BasicBlock *BB, BasicBlock *UnwindEdge,
540     UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
541   for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
542     Instruction *I = &*BBI++;
543 
544     // We only need to check for function calls: inlined invoke
545     // instructions require no special handling.
546     CallInst *CI = dyn_cast<CallInst>(I);
547 
548     if (!CI || CI->doesNotThrow() || CI->isInlineAsm())
549       continue;
550 
551     // We do not need to (and in fact, cannot) convert possibly throwing calls
552     // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
553     // invokes.  The caller's "segment" of the deoptimization continuation
554     // attached to the newly inlined @llvm.experimental_deoptimize
555     // (resp. @llvm.experimental.guard) call should contain the exception
556     // handling logic, if any.
557     if (auto *F = CI->getCalledFunction())
558       if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize ||
559           F->getIntrinsicID() == Intrinsic::experimental_guard)
560         continue;
561 
562     if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
563       // This call is nested inside a funclet.  If that funclet has an unwind
564       // destination within the inlinee, then unwinding out of this call would
565       // be UB.  Rewriting this call to an invoke which targets the inlined
566       // invoke's unwind dest would give the call's parent funclet multiple
567       // unwind destinations, which is something that subsequent EH table
568       // generation can't handle and that the veirifer rejects.  So when we
569       // see such a call, leave it as a call.
570       auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
571       Value *UnwindDestToken =
572           getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
573       if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
574         continue;
575 #ifndef NDEBUG
576       Instruction *MemoKey;
577       if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
578         MemoKey = CatchPad->getCatchSwitch();
579       else
580         MemoKey = FuncletPad;
581       assert(FuncletUnwindMap->count(MemoKey) &&
582              (*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
583              "must get memoized to avoid confusing later searches");
584 #endif // NDEBUG
585     }
586 
587     changeToInvokeAndSplitBasicBlock(CI, UnwindEdge);
588     return BB;
589   }
590   return nullptr;
591 }
592 
593 /// If we inlined an invoke site, we need to convert calls
594 /// in the body of the inlined function into invokes.
595 ///
596 /// II is the invoke instruction being inlined.  FirstNewBlock is the first
597 /// block of the inlined code (the last block is the end of the function),
598 /// and InlineCodeInfo is information about the code that got inlined.
599 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
600                                     ClonedCodeInfo &InlinedCodeInfo) {
601   BasicBlock *InvokeDest = II->getUnwindDest();
602 
603   Function *Caller = FirstNewBlock->getParent();
604 
605   // The inlined code is currently at the end of the function, scan from the
606   // start of the inlined code to its end, checking for stuff we need to
607   // rewrite.
608   LandingPadInliningInfo Invoke(II);
609 
610   // Get all of the inlined landing pad instructions.
611   SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
612   for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
613        I != E; ++I)
614     if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
615       InlinedLPads.insert(II->getLandingPadInst());
616 
617   // Append the clauses from the outer landing pad instruction into the inlined
618   // landing pad instructions.
619   LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
620   for (LandingPadInst *InlinedLPad : InlinedLPads) {
621     unsigned OuterNum = OuterLPad->getNumClauses();
622     InlinedLPad->reserveClauses(OuterNum);
623     for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
624       InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
625     if (OuterLPad->isCleanup())
626       InlinedLPad->setCleanup(true);
627   }
628 
629   for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
630        BB != E; ++BB) {
631     if (InlinedCodeInfo.ContainsCalls)
632       if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
633               &*BB, Invoke.getOuterResumeDest()))
634         // Update any PHI nodes in the exceptional block to indicate that there
635         // is now a new entry in them.
636         Invoke.addIncomingPHIValuesFor(NewBB);
637 
638     // Forward any resumes that are remaining here.
639     if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
640       Invoke.forwardResume(RI, InlinedLPads);
641   }
642 
643   // Now that everything is happy, we have one final detail.  The PHI nodes in
644   // the exception destination block still have entries due to the original
645   // invoke instruction. Eliminate these entries (which might even delete the
646   // PHI node) now.
647   InvokeDest->removePredecessor(II->getParent());
648 }
649 
650 /// If we inlined an invoke site, we need to convert calls
651 /// in the body of the inlined function into invokes.
652 ///
653 /// II is the invoke instruction being inlined.  FirstNewBlock is the first
654 /// block of the inlined code (the last block is the end of the function),
655 /// and InlineCodeInfo is information about the code that got inlined.
656 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
657                                ClonedCodeInfo &InlinedCodeInfo) {
658   BasicBlock *UnwindDest = II->getUnwindDest();
659   Function *Caller = FirstNewBlock->getParent();
660 
661   assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");
662 
663   // If there are PHI nodes in the unwind destination block, we need to keep
664   // track of which values came into them from the invoke before removing the
665   // edge from this block.
666   SmallVector<Value *, 8> UnwindDestPHIValues;
667   BasicBlock *InvokeBB = II->getParent();
668   for (Instruction &I : *UnwindDest) {
669     // Save the value to use for this edge.
670     PHINode *PHI = dyn_cast<PHINode>(&I);
671     if (!PHI)
672       break;
673     UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
674   }
675 
676   // Add incoming-PHI values to the unwind destination block for the given basic
677   // block, using the values for the original invoke's source block.
678   auto UpdatePHINodes = [&](BasicBlock *Src) {
679     BasicBlock::iterator I = UnwindDest->begin();
680     for (Value *V : UnwindDestPHIValues) {
681       PHINode *PHI = cast<PHINode>(I);
682       PHI->addIncoming(V, Src);
683       ++I;
684     }
685   };
686 
687   // This connects all the instructions which 'unwind to caller' to the invoke
688   // destination.
689   UnwindDestMemoTy FuncletUnwindMap;
690   for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
691        BB != E; ++BB) {
692     if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
693       if (CRI->unwindsToCaller()) {
694         auto *CleanupPad = CRI->getCleanupPad();
695         CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
696         CRI->eraseFromParent();
697         UpdatePHINodes(&*BB);
698         // Finding a cleanupret with an unwind destination would confuse
699         // subsequent calls to getUnwindDestToken, so map the cleanuppad
700         // to short-circuit any such calls and recognize this as an "unwind
701         // to caller" cleanup.
702         assert(!FuncletUnwindMap.count(CleanupPad) ||
703                isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
704         FuncletUnwindMap[CleanupPad] =
705             ConstantTokenNone::get(Caller->getContext());
706       }
707     }
708 
709     Instruction *I = BB->getFirstNonPHI();
710     if (!I->isEHPad())
711       continue;
712 
713     Instruction *Replacement = nullptr;
714     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
715       if (CatchSwitch->unwindsToCaller()) {
716         Value *UnwindDestToken;
717         if (auto *ParentPad =
718                 dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
719           // This catchswitch is nested inside another funclet.  If that
720           // funclet has an unwind destination within the inlinee, then
721           // unwinding out of this catchswitch would be UB.  Rewriting this
722           // catchswitch to unwind to the inlined invoke's unwind dest would
723           // give the parent funclet multiple unwind destinations, which is
724           // something that subsequent EH table generation can't handle and
725           // that the veirifer rejects.  So when we see such a call, leave it
726           // as "unwind to caller".
727           UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
728           if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
729             continue;
730         } else {
731           // This catchswitch has no parent to inherit constraints from, and
732           // none of its descendants can have an unwind edge that exits it and
733           // targets another funclet in the inlinee.  It may or may not have a
734           // descendant that definitively has an unwind to caller.  In either
735           // case, we'll have to assume that any unwinds out of it may need to
736           // be routed to the caller, so treat it as though it has a definitive
737           // unwind to caller.
738           UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
739         }
740         auto *NewCatchSwitch = CatchSwitchInst::Create(
741             CatchSwitch->getParentPad(), UnwindDest,
742             CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
743             CatchSwitch);
744         for (BasicBlock *PadBB : CatchSwitch->handlers())
745           NewCatchSwitch->addHandler(PadBB);
746         // Propagate info for the old catchswitch over to the new one in
747         // the unwind map.  This also serves to short-circuit any subsequent
748         // checks for the unwind dest of this catchswitch, which would get
749         // confused if they found the outer handler in the callee.
750         FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
751         Replacement = NewCatchSwitch;
752       }
753     } else if (!isa<FuncletPadInst>(I)) {
754       llvm_unreachable("unexpected EHPad!");
755     }
756 
757     if (Replacement) {
758       Replacement->takeName(I);
759       I->replaceAllUsesWith(Replacement);
760       I->eraseFromParent();
761       UpdatePHINodes(&*BB);
762     }
763   }
764 
765   if (InlinedCodeInfo.ContainsCalls)
766     for (Function::iterator BB = FirstNewBlock->getIterator(),
767                             E = Caller->end();
768          BB != E; ++BB)
769       if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
770               &*BB, UnwindDest, &FuncletUnwindMap))
771         // Update any PHI nodes in the exceptional block to indicate that there
772         // is now a new entry in them.
773         UpdatePHINodes(NewBB);
774 
775   // Now that everything is happy, we have one final detail.  The PHI nodes in
776   // the exception destination block still have entries due to the original
777   // invoke instruction. Eliminate these entries (which might even delete the
778   // PHI node) now.
779   UnwindDest->removePredecessor(InvokeBB);
780 }
781 
782 /// When inlining a call site that has !llvm.mem.parallel_loop_access,
783 /// !llvm.access.group, !alias.scope or !noalias metadata, that metadata should
784 /// be propagated to all memory-accessing cloned instructions.
785 static void PropagateCallSiteMetadata(CallBase &CB, ValueToValueMapTy &VMap) {
786   MDNode *MemParallelLoopAccess =
787       CB.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
788   MDNode *AccessGroup = CB.getMetadata(LLVMContext::MD_access_group);
789   MDNode *AliasScope = CB.getMetadata(LLVMContext::MD_alias_scope);
790   MDNode *NoAlias = CB.getMetadata(LLVMContext::MD_noalias);
791   if (!MemParallelLoopAccess && !AccessGroup && !AliasScope && !NoAlias)
792     return;
793 
794   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
795        VMI != VMIE; ++VMI) {
796     // Check that key is an instruction, to skip the Argument mapping, which
797     // points to an instruction in the original function, not the inlined one.
798     if (!VMI->second || !isa<Instruction>(VMI->first))
799       continue;
800 
801     Instruction *NI = dyn_cast<Instruction>(VMI->second);
802     if (!NI)
803       continue;
804 
805     // This metadata is only relevant for instructions that access memory.
806     if (!NI->mayReadOrWriteMemory())
807       continue;
808 
809     if (MemParallelLoopAccess) {
810       // TODO: This probably should not overwrite MemParalleLoopAccess.
811       MemParallelLoopAccess = MDNode::concatenate(
812           NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access),
813           MemParallelLoopAccess);
814       NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access,
815                       MemParallelLoopAccess);
816     }
817 
818     if (AccessGroup)
819       NI->setMetadata(LLVMContext::MD_access_group, uniteAccessGroups(
820           NI->getMetadata(LLVMContext::MD_access_group), AccessGroup));
821 
822     if (AliasScope)
823       NI->setMetadata(LLVMContext::MD_alias_scope, MDNode::concatenate(
824           NI->getMetadata(LLVMContext::MD_alias_scope), AliasScope));
825 
826     if (NoAlias)
827       NI->setMetadata(LLVMContext::MD_noalias, MDNode::concatenate(
828           NI->getMetadata(LLVMContext::MD_noalias), NoAlias));
829   }
830 }
831 
832 /// Utility for cloning !noalias and !alias.scope metadata. When a code region
833 /// using scoped alias metadata is inlined, the aliasing relationships may not
834 /// hold between the two version. It is necessary to create a deep clone of the
835 /// metadata, putting the two versions in separate scope domains.
836 class ScopedAliasMetadataDeepCloner {
837   using MetadataMap = DenseMap<const MDNode *, TrackingMDNodeRef>;
838   SetVector<const MDNode *> MD;
839   MetadataMap MDMap;
840   void addRecursiveMetadataUses();
841 
842 public:
843   ScopedAliasMetadataDeepCloner(const Function *F);
844 
845   /// Create a new clone of the scoped alias metadata, which will be used by
846   /// subsequent remap() calls.
847   void clone();
848 
849   /// Remap instructions in the given VMap from the original to the cloned
850   /// metadata.
851   void remap(ValueToValueMapTy &VMap);
852 };
853 
854 ScopedAliasMetadataDeepCloner::ScopedAliasMetadataDeepCloner(
855     const Function *F) {
856   for (const BasicBlock &BB : *F) {
857     for (const Instruction &I : BB) {
858       if (const MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope))
859         MD.insert(M);
860       if (const MDNode *M = I.getMetadata(LLVMContext::MD_noalias))
861         MD.insert(M);
862 
863       // We also need to clone the metadata in noalias intrinsics.
864       if (const auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
865         MD.insert(Decl->getScopeList());
866     }
867   }
868   addRecursiveMetadataUses();
869 }
870 
871 void ScopedAliasMetadataDeepCloner::addRecursiveMetadataUses() {
872   SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
873   while (!Queue.empty()) {
874     const MDNode *M = cast<MDNode>(Queue.pop_back_val());
875     for (const Metadata *Op : M->operands())
876       if (const MDNode *OpMD = dyn_cast<MDNode>(Op))
877         if (MD.insert(OpMD))
878           Queue.push_back(OpMD);
879   }
880 }
881 
882 void ScopedAliasMetadataDeepCloner::clone() {
883   assert(MDMap.empty() && "clone() already called ?");
884 
885   SmallVector<TempMDTuple, 16> DummyNodes;
886   for (const MDNode *I : MD) {
887     DummyNodes.push_back(MDTuple::getTemporary(I->getContext(), None));
888     MDMap[I].reset(DummyNodes.back().get());
889   }
890 
891   // Create new metadata nodes to replace the dummy nodes, replacing old
892   // metadata references with either a dummy node or an already-created new
893   // node.
894   SmallVector<Metadata *, 4> NewOps;
895   for (const MDNode *I : MD) {
896     for (const Metadata *Op : I->operands()) {
897       if (const MDNode *M = dyn_cast<MDNode>(Op))
898         NewOps.push_back(MDMap[M]);
899       else
900         NewOps.push_back(const_cast<Metadata *>(Op));
901     }
902 
903     MDNode *NewM = MDNode::get(I->getContext(), NewOps);
904     MDTuple *TempM = cast<MDTuple>(MDMap[I]);
905     assert(TempM->isTemporary() && "Expected temporary node");
906 
907     TempM->replaceAllUsesWith(NewM);
908     NewOps.clear();
909   }
910 }
911 
912 void ScopedAliasMetadataDeepCloner::remap(ValueToValueMapTy &VMap) {
913   if (MDMap.empty())
914     return; // Nothing to do.
915 
916   for (auto Entry : VMap) {
917     // Check that key is an instruction, to skip the Argument mapping, which
918     // points to an instruction in the original function, not the inlined one.
919     if (!Entry->second || !isa<Instruction>(Entry->first))
920       continue;
921 
922     Instruction *I = dyn_cast<Instruction>(Entry->second);
923     if (!I)
924       continue;
925 
926     // Only update scopes when we find them in the map. If they are not, it is
927     // because we already handled that instruction before. This is faster than
928     // tracking which instructions we already updated.
929     if (MDNode *M = I->getMetadata(LLVMContext::MD_alias_scope))
930       if (MDNode *MNew = MDMap.lookup(M))
931         I->setMetadata(LLVMContext::MD_alias_scope, MNew);
932 
933     if (MDNode *M = I->getMetadata(LLVMContext::MD_noalias))
934       if (MDNode *MNew = MDMap.lookup(M))
935         I->setMetadata(LLVMContext::MD_noalias, MNew);
936 
937     if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(I))
938       if (MDNode *MNew = MDMap.lookup(Decl->getScopeList()))
939         Decl->setScopeList(MNew);
940   }
941 }
942 
943 /// If the inlined function has noalias arguments,
944 /// then add new alias scopes for each noalias argument, tag the mapped noalias
945 /// parameters with noalias metadata specifying the new scope, and tag all
946 /// non-derived loads, stores and memory intrinsics with the new alias scopes.
947 static void AddAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap,
948                                   const DataLayout &DL, AAResults *CalleeAAR) {
949   if (!EnableNoAliasConversion)
950     return;
951 
952   const Function *CalledFunc = CB.getCalledFunction();
953   SmallVector<const Argument *, 4> NoAliasArgs;
954 
955   for (const Argument &Arg : CalledFunc->args())
956     if (CB.paramHasAttr(Arg.getArgNo(), Attribute::NoAlias) && !Arg.use_empty())
957       NoAliasArgs.push_back(&Arg);
958 
959   if (NoAliasArgs.empty())
960     return;
961 
962   // To do a good job, if a noalias variable is captured, we need to know if
963   // the capture point dominates the particular use we're considering.
964   DominatorTree DT;
965   DT.recalculate(const_cast<Function&>(*CalledFunc));
966 
967   // noalias indicates that pointer values based on the argument do not alias
968   // pointer values which are not based on it. So we add a new "scope" for each
969   // noalias function argument. Accesses using pointers based on that argument
970   // become part of that alias scope, accesses using pointers not based on that
971   // argument are tagged as noalias with that scope.
972 
973   DenseMap<const Argument *, MDNode *> NewScopes;
974   MDBuilder MDB(CalledFunc->getContext());
975 
976   // Create a new scope domain for this function.
977   MDNode *NewDomain =
978     MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
979   for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
980     const Argument *A = NoAliasArgs[i];
981 
982     std::string Name = std::string(CalledFunc->getName());
983     if (A->hasName()) {
984       Name += ": %";
985       Name += A->getName();
986     } else {
987       Name += ": argument ";
988       Name += utostr(i);
989     }
990 
991     // Note: We always create a new anonymous root here. This is true regardless
992     // of the linkage of the callee because the aliasing "scope" is not just a
993     // property of the callee, but also all control dependencies in the caller.
994     MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
995     NewScopes.insert(std::make_pair(A, NewScope));
996 
997     if (UseNoAliasIntrinsic) {
998       // Introduce a llvm.experimental.noalias.scope.decl for the noalias
999       // argument.
1000       MDNode *AScopeList = MDNode::get(CalledFunc->getContext(), NewScope);
1001       auto *NoAliasDecl =
1002           IRBuilder<>(&CB).CreateNoAliasScopeDeclaration(AScopeList);
1003       // Ignore the result for now. The result will be used when the
1004       // llvm.noalias intrinsic is introduced.
1005       (void)NoAliasDecl;
1006     }
1007   }
1008 
1009   // Iterate over all new instructions in the map; for all memory-access
1010   // instructions, add the alias scope metadata.
1011   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
1012        VMI != VMIE; ++VMI) {
1013     if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
1014       if (!VMI->second)
1015         continue;
1016 
1017       Instruction *NI = dyn_cast<Instruction>(VMI->second);
1018       if (!NI)
1019         continue;
1020 
1021       bool IsArgMemOnlyCall = false, IsFuncCall = false;
1022       SmallVector<const Value *, 2> PtrArgs;
1023 
1024       if (const LoadInst *LI = dyn_cast<LoadInst>(I))
1025         PtrArgs.push_back(LI->getPointerOperand());
1026       else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
1027         PtrArgs.push_back(SI->getPointerOperand());
1028       else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
1029         PtrArgs.push_back(VAAI->getPointerOperand());
1030       else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
1031         PtrArgs.push_back(CXI->getPointerOperand());
1032       else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
1033         PtrArgs.push_back(RMWI->getPointerOperand());
1034       else if (const auto *Call = dyn_cast<CallBase>(I)) {
1035         // If we know that the call does not access memory, then we'll still
1036         // know that about the inlined clone of this call site, and we don't
1037         // need to add metadata.
1038         if (Call->doesNotAccessMemory())
1039           continue;
1040 
1041         IsFuncCall = true;
1042         if (CalleeAAR) {
1043           FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call);
1044 
1045           // We'll retain this knowledge without additional metadata.
1046           if (AAResults::onlyAccessesInaccessibleMem(MRB))
1047             continue;
1048 
1049           if (AAResults::onlyAccessesArgPointees(MRB))
1050             IsArgMemOnlyCall = true;
1051         }
1052 
1053         for (Value *Arg : Call->args()) {
1054           // We need to check the underlying objects of all arguments, not just
1055           // the pointer arguments, because we might be passing pointers as
1056           // integers, etc.
1057           // However, if we know that the call only accesses pointer arguments,
1058           // then we only need to check the pointer arguments.
1059           if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy())
1060             continue;
1061 
1062           PtrArgs.push_back(Arg);
1063         }
1064       }
1065 
1066       // If we found no pointers, then this instruction is not suitable for
1067       // pairing with an instruction to receive aliasing metadata.
1068       // However, if this is a call, this we might just alias with none of the
1069       // noalias arguments.
1070       if (PtrArgs.empty() && !IsFuncCall)
1071         continue;
1072 
1073       // It is possible that there is only one underlying object, but you
1074       // need to go through several PHIs to see it, and thus could be
1075       // repeated in the Objects list.
1076       SmallPtrSet<const Value *, 4> ObjSet;
1077       SmallVector<Metadata *, 4> Scopes, NoAliases;
1078 
1079       SmallSetVector<const Argument *, 4> NAPtrArgs;
1080       for (const Value *V : PtrArgs) {
1081         SmallVector<const Value *, 4> Objects;
1082         getUnderlyingObjects(V, Objects, /* LI = */ nullptr);
1083 
1084         for (const Value *O : Objects)
1085           ObjSet.insert(O);
1086       }
1087 
1088       // Figure out if we're derived from anything that is not a noalias
1089       // argument.
1090       bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
1091       for (const Value *V : ObjSet) {
1092         // Is this value a constant that cannot be derived from any pointer
1093         // value (we need to exclude constant expressions, for example, that
1094         // are formed from arithmetic on global symbols).
1095         bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
1096                              isa<ConstantPointerNull>(V) ||
1097                              isa<ConstantDataVector>(V) || isa<UndefValue>(V);
1098         if (IsNonPtrConst)
1099           continue;
1100 
1101         // If this is anything other than a noalias argument, then we cannot
1102         // completely describe the aliasing properties using alias.scope
1103         // metadata (and, thus, won't add any).
1104         if (const Argument *A = dyn_cast<Argument>(V)) {
1105           if (!CB.paramHasAttr(A->getArgNo(), Attribute::NoAlias))
1106             UsesAliasingPtr = true;
1107         } else {
1108           UsesAliasingPtr = true;
1109         }
1110 
1111         // If this is not some identified function-local object (which cannot
1112         // directly alias a noalias argument), or some other argument (which,
1113         // by definition, also cannot alias a noalias argument), then we could
1114         // alias a noalias argument that has been captured).
1115         if (!isa<Argument>(V) &&
1116             !isIdentifiedFunctionLocal(const_cast<Value*>(V)))
1117           CanDeriveViaCapture = true;
1118       }
1119 
1120       // A function call can always get captured noalias pointers (via other
1121       // parameters, globals, etc.).
1122       if (IsFuncCall && !IsArgMemOnlyCall)
1123         CanDeriveViaCapture = true;
1124 
1125       // First, we want to figure out all of the sets with which we definitely
1126       // don't alias. Iterate over all noalias set, and add those for which:
1127       //   1. The noalias argument is not in the set of objects from which we
1128       //      definitely derive.
1129       //   2. The noalias argument has not yet been captured.
1130       // An arbitrary function that might load pointers could see captured
1131       // noalias arguments via other noalias arguments or globals, and so we
1132       // must always check for prior capture.
1133       for (const Argument *A : NoAliasArgs) {
1134         if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
1135                                  // It might be tempting to skip the
1136                                  // PointerMayBeCapturedBefore check if
1137                                  // A->hasNoCaptureAttr() is true, but this is
1138                                  // incorrect because nocapture only guarantees
1139                                  // that no copies outlive the function, not
1140                                  // that the value cannot be locally captured.
1141                                  !PointerMayBeCapturedBefore(A,
1142                                    /* ReturnCaptures */ false,
1143                                    /* StoreCaptures */ false, I, &DT)))
1144           NoAliases.push_back(NewScopes[A]);
1145       }
1146 
1147       if (!NoAliases.empty())
1148         NI->setMetadata(LLVMContext::MD_noalias,
1149                         MDNode::concatenate(
1150                             NI->getMetadata(LLVMContext::MD_noalias),
1151                             MDNode::get(CalledFunc->getContext(), NoAliases)));
1152 
1153       // Next, we want to figure out all of the sets to which we might belong.
1154       // We might belong to a set if the noalias argument is in the set of
1155       // underlying objects. If there is some non-noalias argument in our list
1156       // of underlying objects, then we cannot add a scope because the fact
1157       // that some access does not alias with any set of our noalias arguments
1158       // cannot itself guarantee that it does not alias with this access
1159       // (because there is some pointer of unknown origin involved and the
1160       // other access might also depend on this pointer). We also cannot add
1161       // scopes to arbitrary functions unless we know they don't access any
1162       // non-parameter pointer-values.
1163       bool CanAddScopes = !UsesAliasingPtr;
1164       if (CanAddScopes && IsFuncCall)
1165         CanAddScopes = IsArgMemOnlyCall;
1166 
1167       if (CanAddScopes)
1168         for (const Argument *A : NoAliasArgs) {
1169           if (ObjSet.count(A))
1170             Scopes.push_back(NewScopes[A]);
1171         }
1172 
1173       if (!Scopes.empty())
1174         NI->setMetadata(
1175             LLVMContext::MD_alias_scope,
1176             MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
1177                                 MDNode::get(CalledFunc->getContext(), Scopes)));
1178     }
1179   }
1180 }
1181 
1182 static bool MayContainThrowingOrExitingCall(Instruction *Begin,
1183                                             Instruction *End) {
1184 
1185   assert(Begin->getParent() == End->getParent() &&
1186          "Expected to be in same basic block!");
1187   unsigned NumInstChecked = 0;
1188   // Check that all instructions in the range [Begin, End) are guaranteed to
1189   // transfer execution to successor.
1190   for (auto &I : make_range(Begin->getIterator(), End->getIterator()))
1191     if (NumInstChecked++ > InlinerAttributeWindow ||
1192         !isGuaranteedToTransferExecutionToSuccessor(&I))
1193       return true;
1194   return false;
1195 }
1196 
1197 static AttrBuilder IdentifyValidAttributes(CallBase &CB) {
1198 
1199   AttrBuilder AB(CB.getAttributes(), AttributeList::ReturnIndex);
1200   if (AB.empty())
1201     return AB;
1202   AttrBuilder Valid;
1203   // Only allow these white listed attributes to be propagated back to the
1204   // callee. This is because other attributes may only be valid on the call
1205   // itself, i.e. attributes such as signext and zeroext.
1206   if (auto DerefBytes = AB.getDereferenceableBytes())
1207     Valid.addDereferenceableAttr(DerefBytes);
1208   if (auto DerefOrNullBytes = AB.getDereferenceableOrNullBytes())
1209     Valid.addDereferenceableOrNullAttr(DerefOrNullBytes);
1210   if (AB.contains(Attribute::NoAlias))
1211     Valid.addAttribute(Attribute::NoAlias);
1212   if (AB.contains(Attribute::NonNull))
1213     Valid.addAttribute(Attribute::NonNull);
1214   return Valid;
1215 }
1216 
1217 static void AddReturnAttributes(CallBase &CB, ValueToValueMapTy &VMap) {
1218   if (!UpdateReturnAttributes)
1219     return;
1220 
1221   AttrBuilder Valid = IdentifyValidAttributes(CB);
1222   if (Valid.empty())
1223     return;
1224   auto *CalledFunction = CB.getCalledFunction();
1225   auto &Context = CalledFunction->getContext();
1226 
1227   for (auto &BB : *CalledFunction) {
1228     auto *RI = dyn_cast<ReturnInst>(BB.getTerminator());
1229     if (!RI || !isa<CallBase>(RI->getOperand(0)))
1230       continue;
1231     auto *RetVal = cast<CallBase>(RI->getOperand(0));
1232     // Sanity check that the cloned RetVal exists and is a call, otherwise we
1233     // cannot add the attributes on the cloned RetVal.
1234     // Simplification during inlining could have transformed the cloned
1235     // instruction.
1236     auto *NewRetVal = dyn_cast_or_null<CallBase>(VMap.lookup(RetVal));
1237     if (!NewRetVal)
1238       continue;
1239     // Backward propagation of attributes to the returned value may be incorrect
1240     // if it is control flow dependent.
1241     // Consider:
1242     // @callee {
1243     //  %rv = call @foo()
1244     //  %rv2 = call @bar()
1245     //  if (%rv2 != null)
1246     //    return %rv2
1247     //  if (%rv == null)
1248     //    exit()
1249     //  return %rv
1250     // }
1251     // caller() {
1252     //   %val = call nonnull @callee()
1253     // }
1254     // Here we cannot add the nonnull attribute on either foo or bar. So, we
1255     // limit the check to both RetVal and RI are in the same basic block and
1256     // there are no throwing/exiting instructions between these instructions.
1257     if (RI->getParent() != RetVal->getParent() ||
1258         MayContainThrowingOrExitingCall(RetVal, RI))
1259       continue;
1260     // Add to the existing attributes of NewRetVal, i.e. the cloned call
1261     // instruction.
1262     // NB! When we have the same attribute already existing on NewRetVal, but
1263     // with a differing value, the AttributeList's merge API honours the already
1264     // existing attribute value (i.e. attributes such as dereferenceable,
1265     // dereferenceable_or_null etc). See AttrBuilder::merge for more details.
1266     AttributeList AL = NewRetVal->getAttributes();
1267     AttributeList NewAL =
1268         AL.addAttributes(Context, AttributeList::ReturnIndex, Valid);
1269     NewRetVal->setAttributes(NewAL);
1270   }
1271 }
1272 
1273 /// If the inlined function has non-byval align arguments, then
1274 /// add @llvm.assume-based alignment assumptions to preserve this information.
1275 static void AddAlignmentAssumptions(CallBase &CB, InlineFunctionInfo &IFI) {
1276   if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache)
1277     return;
1278 
1279   AssumptionCache *AC = &IFI.GetAssumptionCache(*CB.getCaller());
1280   auto &DL = CB.getCaller()->getParent()->getDataLayout();
1281 
1282   // To avoid inserting redundant assumptions, we should check for assumptions
1283   // already in the caller. To do this, we might need a DT of the caller.
1284   DominatorTree DT;
1285   bool DTCalculated = false;
1286 
1287   Function *CalledFunc = CB.getCalledFunction();
1288   for (Argument &Arg : CalledFunc->args()) {
1289     unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0;
1290     if (Align && !Arg.hasPassPointeeByValueCopyAttr() && !Arg.hasNUses(0)) {
1291       if (!DTCalculated) {
1292         DT.recalculate(*CB.getCaller());
1293         DTCalculated = true;
1294       }
1295 
1296       // If we can already prove the asserted alignment in the context of the
1297       // caller, then don't bother inserting the assumption.
1298       Value *ArgVal = CB.getArgOperand(Arg.getArgNo());
1299       if (getKnownAlignment(ArgVal, DL, &CB, AC, &DT) >= Align)
1300         continue;
1301 
1302       CallInst *NewAsmp =
1303           IRBuilder<>(&CB).CreateAlignmentAssumption(DL, ArgVal, Align);
1304       AC->registerAssumption(cast<AssumeInst>(NewAsmp));
1305     }
1306   }
1307 }
1308 
1309 /// Once we have cloned code over from a callee into the caller,
1310 /// update the specified callgraph to reflect the changes we made.
1311 /// Note that it's possible that not all code was copied over, so only
1312 /// some edges of the callgraph may remain.
1313 static void UpdateCallGraphAfterInlining(CallBase &CB,
1314                                          Function::iterator FirstNewBlock,
1315                                          ValueToValueMapTy &VMap,
1316                                          InlineFunctionInfo &IFI) {
1317   CallGraph &CG = *IFI.CG;
1318   const Function *Caller = CB.getCaller();
1319   const Function *Callee = CB.getCalledFunction();
1320   CallGraphNode *CalleeNode = CG[Callee];
1321   CallGraphNode *CallerNode = CG[Caller];
1322 
1323   // Since we inlined some uninlined call sites in the callee into the caller,
1324   // add edges from the caller to all of the callees of the callee.
1325   CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
1326 
1327   // Consider the case where CalleeNode == CallerNode.
1328   CallGraphNode::CalledFunctionsVector CallCache;
1329   if (CalleeNode == CallerNode) {
1330     CallCache.assign(I, E);
1331     I = CallCache.begin();
1332     E = CallCache.end();
1333   }
1334 
1335   for (; I != E; ++I) {
1336     // Skip 'refererence' call records.
1337     if (!I->first)
1338       continue;
1339 
1340     const Value *OrigCall = *I->first;
1341 
1342     ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
1343     // Only copy the edge if the call was inlined!
1344     if (VMI == VMap.end() || VMI->second == nullptr)
1345       continue;
1346 
1347     // If the call was inlined, but then constant folded, there is no edge to
1348     // add.  Check for this case.
1349     auto *NewCall = dyn_cast<CallBase>(VMI->second);
1350     if (!NewCall)
1351       continue;
1352 
1353     // We do not treat intrinsic calls like real function calls because we
1354     // expect them to become inline code; do not add an edge for an intrinsic.
1355     if (NewCall->getCalledFunction() &&
1356         NewCall->getCalledFunction()->isIntrinsic())
1357       continue;
1358 
1359     // Remember that this call site got inlined for the client of
1360     // InlineFunction.
1361     IFI.InlinedCalls.push_back(NewCall);
1362 
1363     // It's possible that inlining the callsite will cause it to go from an
1364     // indirect to a direct call by resolving a function pointer.  If this
1365     // happens, set the callee of the new call site to a more precise
1366     // destination.  This can also happen if the call graph node of the caller
1367     // was just unnecessarily imprecise.
1368     if (!I->second->getFunction())
1369       if (Function *F = NewCall->getCalledFunction()) {
1370         // Indirect call site resolved to direct call.
1371         CallerNode->addCalledFunction(NewCall, CG[F]);
1372 
1373         continue;
1374       }
1375 
1376     CallerNode->addCalledFunction(NewCall, I->second);
1377   }
1378 
1379   // Update the call graph by deleting the edge from Callee to Caller.  We must
1380   // do this after the loop above in case Caller and Callee are the same.
1381   CallerNode->removeCallEdgeFor(*cast<CallBase>(&CB));
1382 }
1383 
1384 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
1385                                     BasicBlock *InsertBlock,
1386                                     InlineFunctionInfo &IFI) {
1387   Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
1388   IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
1389 
1390   Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy));
1391 
1392   // Always generate a memcpy of alignment 1 here because we don't know
1393   // the alignment of the src pointer.  Other optimizations can infer
1394   // better alignment.
1395   Builder.CreateMemCpy(Dst, /*DstAlign*/ Align(1), Src,
1396                        /*SrcAlign*/ Align(1), Size);
1397 }
1398 
1399 /// When inlining a call site that has a byval argument,
1400 /// we have to make the implicit memcpy explicit by adding it.
1401 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
1402                                   const Function *CalledFunc,
1403                                   InlineFunctionInfo &IFI,
1404                                   unsigned ByValAlignment) {
1405   PointerType *ArgTy = cast<PointerType>(Arg->getType());
1406   Type *AggTy = ArgTy->getElementType();
1407 
1408   Function *Caller = TheCall->getFunction();
1409   const DataLayout &DL = Caller->getParent()->getDataLayout();
1410 
1411   // If the called function is readonly, then it could not mutate the caller's
1412   // copy of the byval'd memory.  In this case, it is safe to elide the copy and
1413   // temporary.
1414   if (CalledFunc->onlyReadsMemory()) {
1415     // If the byval argument has a specified alignment that is greater than the
1416     // passed in pointer, then we either have to round up the input pointer or
1417     // give up on this transformation.
1418     if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
1419       return Arg;
1420 
1421     AssumptionCache *AC =
1422         IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
1423 
1424     // If the pointer is already known to be sufficiently aligned, or if we can
1425     // round it up to a larger alignment, then we don't need a temporary.
1426     if (getOrEnforceKnownAlignment(Arg, Align(ByValAlignment), DL, TheCall,
1427                                    AC) >= ByValAlignment)
1428       return Arg;
1429 
1430     // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
1431     // for code quality, but rarely happens and is required for correctness.
1432   }
1433 
1434   // Create the alloca.  If we have DataLayout, use nice alignment.
1435   Align Alignment(DL.getPrefTypeAlignment(AggTy));
1436 
1437   // If the byval had an alignment specified, we *must* use at least that
1438   // alignment, as it is required by the byval argument (and uses of the
1439   // pointer inside the callee).
1440   Alignment = max(Alignment, MaybeAlign(ByValAlignment));
1441 
1442   Value *NewAlloca =
1443       new AllocaInst(AggTy, DL.getAllocaAddrSpace(), nullptr, Alignment,
1444                      Arg->getName(), &*Caller->begin()->begin());
1445   IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
1446 
1447   // Uses of the argument in the function should use our new alloca
1448   // instead.
1449   return NewAlloca;
1450 }
1451 
1452 // Check whether this Value is used by a lifetime intrinsic.
1453 static bool isUsedByLifetimeMarker(Value *V) {
1454   for (User *U : V->users())
1455     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U))
1456       if (II->isLifetimeStartOrEnd())
1457         return true;
1458   return false;
1459 }
1460 
1461 // Check whether the given alloca already has
1462 // lifetime.start or lifetime.end intrinsics.
1463 static bool hasLifetimeMarkers(AllocaInst *AI) {
1464   Type *Ty = AI->getType();
1465   Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
1466                                        Ty->getPointerAddressSpace());
1467   if (Ty == Int8PtrTy)
1468     return isUsedByLifetimeMarker(AI);
1469 
1470   // Do a scan to find all the casts to i8*.
1471   for (User *U : AI->users()) {
1472     if (U->getType() != Int8PtrTy) continue;
1473     if (U->stripPointerCasts() != AI) continue;
1474     if (isUsedByLifetimeMarker(U))
1475       return true;
1476   }
1477   return false;
1478 }
1479 
1480 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry
1481 /// block. Allocas used in inalloca calls and allocas of dynamic array size
1482 /// cannot be static.
1483 static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) {
1484   return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca();
1485 }
1486 
1487 /// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL
1488 /// inlined at \p InlinedAt. \p IANodes is an inlined-at cache.
1489 static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt,
1490                                LLVMContext &Ctx,
1491                                DenseMap<const MDNode *, MDNode *> &IANodes) {
1492   auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes);
1493   return DILocation::get(Ctx, OrigDL.getLine(), OrigDL.getCol(),
1494                          OrigDL.getScope(), IA);
1495 }
1496 
1497 /// Update inlined instructions' line numbers to
1498 /// to encode location where these instructions are inlined.
1499 static void fixupLineNumbers(Function *Fn, Function::iterator FI,
1500                              Instruction *TheCall, bool CalleeHasDebugInfo) {
1501   const DebugLoc &TheCallDL = TheCall->getDebugLoc();
1502   if (!TheCallDL)
1503     return;
1504 
1505   auto &Ctx = Fn->getContext();
1506   DILocation *InlinedAtNode = TheCallDL;
1507 
1508   // Create a unique call site, not to be confused with any other call from the
1509   // same location.
1510   InlinedAtNode = DILocation::getDistinct(
1511       Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
1512       InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
1513 
1514   // Cache the inlined-at nodes as they're built so they are reused, without
1515   // this every instruction's inlined-at chain would become distinct from each
1516   // other.
1517   DenseMap<const MDNode *, MDNode *> IANodes;
1518 
1519   // Check if we are not generating inline line tables and want to use
1520   // the call site location instead.
1521   bool NoInlineLineTables = Fn->hasFnAttribute("no-inline-line-tables");
1522 
1523   for (; FI != Fn->end(); ++FI) {
1524     for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
1525          BI != BE; ++BI) {
1526       // Loop metadata needs to be updated so that the start and end locs
1527       // reference inlined-at locations.
1528       auto updateLoopInfoLoc = [&Ctx, &InlinedAtNode, &IANodes](
1529                                    const DILocation &Loc) -> DILocation * {
1530         return inlineDebugLoc(&Loc, InlinedAtNode, Ctx, IANodes).get();
1531       };
1532       updateLoopMetadataDebugLocations(*BI, updateLoopInfoLoc);
1533 
1534       if (!NoInlineLineTables)
1535         if (DebugLoc DL = BI->getDebugLoc()) {
1536           DebugLoc IDL =
1537               inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes);
1538           BI->setDebugLoc(IDL);
1539           continue;
1540         }
1541 
1542       if (CalleeHasDebugInfo && !NoInlineLineTables)
1543         continue;
1544 
1545       // If the inlined instruction has no line number, or if inline info
1546       // is not being generated, make it look as if it originates from the call
1547       // location. This is important for ((__always_inline, __nodebug__))
1548       // functions which must use caller location for all instructions in their
1549       // function body.
1550 
1551       // Don't update static allocas, as they may get moved later.
1552       if (auto *AI = dyn_cast<AllocaInst>(BI))
1553         if (allocaWouldBeStaticInEntry(AI))
1554           continue;
1555 
1556       BI->setDebugLoc(TheCallDL);
1557     }
1558 
1559     // Remove debug info intrinsics if we're not keeping inline info.
1560     if (NoInlineLineTables) {
1561       BasicBlock::iterator BI = FI->begin();
1562       while (BI != FI->end()) {
1563         if (isa<DbgInfoIntrinsic>(BI)) {
1564           BI = BI->eraseFromParent();
1565           continue;
1566         }
1567         ++BI;
1568       }
1569     }
1570 
1571   }
1572 }
1573 
1574 /// Update the block frequencies of the caller after a callee has been inlined.
1575 ///
1576 /// Each block cloned into the caller has its block frequency scaled by the
1577 /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of
1578 /// callee's entry block gets the same frequency as the callsite block and the
1579 /// relative frequencies of all cloned blocks remain the same after cloning.
1580 static void updateCallerBFI(BasicBlock *CallSiteBlock,
1581                             const ValueToValueMapTy &VMap,
1582                             BlockFrequencyInfo *CallerBFI,
1583                             BlockFrequencyInfo *CalleeBFI,
1584                             const BasicBlock &CalleeEntryBlock) {
1585   SmallPtrSet<BasicBlock *, 16> ClonedBBs;
1586   for (auto Entry : VMap) {
1587     if (!isa<BasicBlock>(Entry.first) || !Entry.second)
1588       continue;
1589     auto *OrigBB = cast<BasicBlock>(Entry.first);
1590     auto *ClonedBB = cast<BasicBlock>(Entry.second);
1591     uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency();
1592     if (!ClonedBBs.insert(ClonedBB).second) {
1593       // Multiple blocks in the callee might get mapped to one cloned block in
1594       // the caller since we prune the callee as we clone it. When that happens,
1595       // we want to use the maximum among the original blocks' frequencies.
1596       uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency();
1597       if (NewFreq > Freq)
1598         Freq = NewFreq;
1599     }
1600     CallerBFI->setBlockFreq(ClonedBB, Freq);
1601   }
1602   BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock));
1603   CallerBFI->setBlockFreqAndScale(
1604       EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(),
1605       ClonedBBs);
1606 }
1607 
1608 /// Update the branch metadata for cloned call instructions.
1609 static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap,
1610                               const ProfileCount &CalleeEntryCount,
1611                               const CallBase &TheCall, ProfileSummaryInfo *PSI,
1612                               BlockFrequencyInfo *CallerBFI) {
1613   if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() ||
1614       CalleeEntryCount.getCount() < 1)
1615     return;
1616   auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None;
1617   int64_t CallCount =
1618       std::min(CallSiteCount.getValueOr(0), CalleeEntryCount.getCount());
1619   updateProfileCallee(Callee, -CallCount, &VMap);
1620 }
1621 
1622 void llvm::updateProfileCallee(
1623     Function *Callee, int64_t entryDelta,
1624     const ValueMap<const Value *, WeakTrackingVH> *VMap) {
1625   auto CalleeCount = Callee->getEntryCount();
1626   if (!CalleeCount.hasValue())
1627     return;
1628 
1629   uint64_t priorEntryCount = CalleeCount.getCount();
1630   uint64_t newEntryCount;
1631 
1632   // Since CallSiteCount is an estimate, it could exceed the original callee
1633   // count and has to be set to 0 so guard against underflow.
1634   if (entryDelta < 0 && static_cast<uint64_t>(-entryDelta) > priorEntryCount)
1635     newEntryCount = 0;
1636   else
1637     newEntryCount = priorEntryCount + entryDelta;
1638 
1639   // During inlining ?
1640   if (VMap) {
1641     uint64_t cloneEntryCount = priorEntryCount - newEntryCount;
1642     for (auto Entry : *VMap)
1643       if (isa<CallInst>(Entry.first))
1644         if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second))
1645           CI->updateProfWeight(cloneEntryCount, priorEntryCount);
1646   }
1647 
1648   if (entryDelta) {
1649     Callee->setEntryCount(newEntryCount);
1650 
1651     for (BasicBlock &BB : *Callee)
1652       // No need to update the callsite if it is pruned during inlining.
1653       if (!VMap || VMap->count(&BB))
1654         for (Instruction &I : BB)
1655           if (CallInst *CI = dyn_cast<CallInst>(&I))
1656             CI->updateProfWeight(newEntryCount, priorEntryCount);
1657   }
1658 }
1659 
1660 /// An operand bundle "clang.arc.attachedcall" on a call indicates the call
1661 /// result is implicitly consumed by a call to retainRV or claimRV immediately
1662 /// after the call. This function inlines the retainRV/claimRV calls.
1663 ///
1664 /// There are three cases to consider:
1665 ///
1666 /// 1. If there is a call to autoreleaseRV that takes a pointer to the returned
1667 ///    object in the callee return block, the autoreleaseRV call and the
1668 ///    retainRV/claimRV call in the caller cancel out. If the call in the caller
1669 ///    is a claimRV call, a call to objc_release is emitted.
1670 ///
1671 /// 2. If there is a call in the callee return block that doesn't have operand
1672 ///    bundle "clang.arc.attachedcall", the operand bundle on the original call
1673 ///    is transferred to the call in the callee.
1674 ///
1675 /// 3. Otherwise, a call to objc_retain is inserted if the call in the caller is
1676 ///    a retainRV call.
1677 static void
1678 inlineRetainOrClaimRVCalls(CallBase &CB,
1679                            const SmallVectorImpl<ReturnInst *> &Returns) {
1680   Module *Mod = CB.getModule();
1681   bool IsRetainRV = objcarc::hasAttachedCallOpBundle(&CB, true),
1682        IsClaimRV = !IsRetainRV;
1683 
1684   for (auto *RI : Returns) {
1685     Value *RetOpnd = objcarc::GetRCIdentityRoot(RI->getOperand(0));
1686     BasicBlock::reverse_iterator I = ++(RI->getIterator().getReverse());
1687     BasicBlock::reverse_iterator EI = RI->getParent()->rend();
1688     bool InsertRetainCall = IsRetainRV;
1689     IRBuilder<> Builder(RI->getContext());
1690 
1691     // Walk backwards through the basic block looking for either a matching
1692     // autoreleaseRV call or an unannotated call.
1693     for (; I != EI;) {
1694       auto CurI = I++;
1695 
1696       // Ignore casts.
1697       if (isa<CastInst>(*CurI))
1698         continue;
1699 
1700       if (auto *II = dyn_cast<IntrinsicInst>(&*CurI)) {
1701         if (II->getIntrinsicID() == Intrinsic::objc_autoreleaseReturnValue &&
1702             II->hasNUses(0) &&
1703             objcarc::GetRCIdentityRoot(II->getOperand(0)) == RetOpnd) {
1704           // If we've found a matching authoreleaseRV call:
1705           // - If claimRV is attached to the call, insert a call to objc_release
1706           //   and erase the autoreleaseRV call.
1707           // - If retainRV is attached to the call, just erase the autoreleaseRV
1708           //   call.
1709           if (IsClaimRV) {
1710             Builder.SetInsertPoint(II);
1711             Function *IFn =
1712                 Intrinsic::getDeclaration(Mod, Intrinsic::objc_release);
1713             Value *BC =
1714                 Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType());
1715             Builder.CreateCall(IFn, BC, "");
1716           }
1717           II->eraseFromParent();
1718           InsertRetainCall = false;
1719         }
1720       } else if (auto *CI = dyn_cast<CallInst>(&*CurI)) {
1721         if (objcarc::GetRCIdentityRoot(CI) == RetOpnd &&
1722             !objcarc::hasAttachedCallOpBundle(CI)) {
1723           // If we've found an unannotated call that defines RetOpnd, add a
1724           // "clang.arc.attachedcall" operand bundle.
1725           Value *BundleArgs[] = {ConstantInt::get(
1726               Builder.getInt64Ty(),
1727               objcarc::getAttachedCallOperandBundleEnum(IsRetainRV))};
1728           OperandBundleDef OB("clang.arc.attachedcall", BundleArgs);
1729           auto *NewCall = CallBase::addOperandBundle(
1730               CI, LLVMContext::OB_clang_arc_attachedcall, OB, CI);
1731           NewCall->copyMetadata(*CI);
1732           CI->replaceAllUsesWith(NewCall);
1733           CI->eraseFromParent();
1734           InsertRetainCall = false;
1735         }
1736       }
1737 
1738       break;
1739     }
1740 
1741     if (InsertRetainCall) {
1742       // The retainRV is attached to the call and we've failed to find a
1743       // matching autoreleaseRV or an annotated call in the callee. Emit a call
1744       // to objc_retain.
1745       Builder.SetInsertPoint(RI);
1746       Function *IFn = Intrinsic::getDeclaration(Mod, Intrinsic::objc_retain);
1747       Value *BC = Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType());
1748       Builder.CreateCall(IFn, BC, "");
1749     }
1750   }
1751 }
1752 
1753 /// This function inlines the called function into the basic block of the
1754 /// caller. This returns false if it is not possible to inline this call.
1755 /// The program is still in a well defined state if this occurs though.
1756 ///
1757 /// Note that this only does one level of inlining.  For example, if the
1758 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
1759 /// exists in the instruction stream.  Similarly this will inline a recursive
1760 /// function by one level.
1761 llvm::InlineResult llvm::InlineFunction(CallBase &CB, InlineFunctionInfo &IFI,
1762                                         AAResults *CalleeAAR,
1763                                         bool InsertLifetime,
1764                                         Function *ForwardVarArgsTo) {
1765   assert(CB.getParent() && CB.getFunction() && "Instruction not in function!");
1766 
1767   // FIXME: we don't inline callbr yet.
1768   if (isa<CallBrInst>(CB))
1769     return InlineResult::failure("We don't inline callbr yet.");
1770 
1771   // If IFI has any state in it, zap it before we fill it in.
1772   IFI.reset();
1773 
1774   Function *CalledFunc = CB.getCalledFunction();
1775   if (!CalledFunc ||               // Can't inline external function or indirect
1776       CalledFunc->isDeclaration()) // call!
1777     return InlineResult::failure("external or indirect");
1778 
1779   // The inliner does not know how to inline through calls with operand bundles
1780   // in general ...
1781   if (CB.hasOperandBundles()) {
1782     for (int i = 0, e = CB.getNumOperandBundles(); i != e; ++i) {
1783       uint32_t Tag = CB.getOperandBundleAt(i).getTagID();
1784       // ... but it knows how to inline through "deopt" operand bundles ...
1785       if (Tag == LLVMContext::OB_deopt)
1786         continue;
1787       // ... and "funclet" operand bundles.
1788       if (Tag == LLVMContext::OB_funclet)
1789         continue;
1790       if (Tag == LLVMContext::OB_clang_arc_attachedcall)
1791         continue;
1792 
1793       return InlineResult::failure("unsupported operand bundle");
1794     }
1795   }
1796 
1797   // If the call to the callee cannot throw, set the 'nounwind' flag on any
1798   // calls that we inline.
1799   bool MarkNoUnwind = CB.doesNotThrow();
1800 
1801   BasicBlock *OrigBB = CB.getParent();
1802   Function *Caller = OrigBB->getParent();
1803 
1804   // GC poses two hazards to inlining, which only occur when the callee has GC:
1805   //  1. If the caller has no GC, then the callee's GC must be propagated to the
1806   //     caller.
1807   //  2. If the caller has a differing GC, it is invalid to inline.
1808   if (CalledFunc->hasGC()) {
1809     if (!Caller->hasGC())
1810       Caller->setGC(CalledFunc->getGC());
1811     else if (CalledFunc->getGC() != Caller->getGC())
1812       return InlineResult::failure("incompatible GC");
1813   }
1814 
1815   // Get the personality function from the callee if it contains a landing pad.
1816   Constant *CalledPersonality =
1817       CalledFunc->hasPersonalityFn()
1818           ? CalledFunc->getPersonalityFn()->stripPointerCasts()
1819           : nullptr;
1820 
1821   // Find the personality function used by the landing pads of the caller. If it
1822   // exists, then check to see that it matches the personality function used in
1823   // the callee.
1824   Constant *CallerPersonality =
1825       Caller->hasPersonalityFn()
1826           ? Caller->getPersonalityFn()->stripPointerCasts()
1827           : nullptr;
1828   if (CalledPersonality) {
1829     if (!CallerPersonality)
1830       Caller->setPersonalityFn(CalledPersonality);
1831     // If the personality functions match, then we can perform the
1832     // inlining. Otherwise, we can't inline.
1833     // TODO: This isn't 100% true. Some personality functions are proper
1834     //       supersets of others and can be used in place of the other.
1835     else if (CalledPersonality != CallerPersonality)
1836       return InlineResult::failure("incompatible personality");
1837   }
1838 
1839   // We need to figure out which funclet the callsite was in so that we may
1840   // properly nest the callee.
1841   Instruction *CallSiteEHPad = nullptr;
1842   if (CallerPersonality) {
1843     EHPersonality Personality = classifyEHPersonality(CallerPersonality);
1844     if (isScopedEHPersonality(Personality)) {
1845       Optional<OperandBundleUse> ParentFunclet =
1846           CB.getOperandBundle(LLVMContext::OB_funclet);
1847       if (ParentFunclet)
1848         CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
1849 
1850       // OK, the inlining site is legal.  What about the target function?
1851 
1852       if (CallSiteEHPad) {
1853         if (Personality == EHPersonality::MSVC_CXX) {
1854           // The MSVC personality cannot tolerate catches getting inlined into
1855           // cleanup funclets.
1856           if (isa<CleanupPadInst>(CallSiteEHPad)) {
1857             // Ok, the call site is within a cleanuppad.  Let's check the callee
1858             // for catchpads.
1859             for (const BasicBlock &CalledBB : *CalledFunc) {
1860               if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
1861                 return InlineResult::failure("catch in cleanup funclet");
1862             }
1863           }
1864         } else if (isAsynchronousEHPersonality(Personality)) {
1865           // SEH is even less tolerant, there may not be any sort of exceptional
1866           // funclet in the callee.
1867           for (const BasicBlock &CalledBB : *CalledFunc) {
1868             if (CalledBB.isEHPad())
1869               return InlineResult::failure("SEH in cleanup funclet");
1870           }
1871         }
1872       }
1873     }
1874   }
1875 
1876   // Determine if we are dealing with a call in an EHPad which does not unwind
1877   // to caller.
1878   bool EHPadForCallUnwindsLocally = false;
1879   if (CallSiteEHPad && isa<CallInst>(CB)) {
1880     UnwindDestMemoTy FuncletUnwindMap;
1881     Value *CallSiteUnwindDestToken =
1882         getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap);
1883 
1884     EHPadForCallUnwindsLocally =
1885         CallSiteUnwindDestToken &&
1886         !isa<ConstantTokenNone>(CallSiteUnwindDestToken);
1887   }
1888 
1889   // Get an iterator to the last basic block in the function, which will have
1890   // the new function inlined after it.
1891   Function::iterator LastBlock = --Caller->end();
1892 
1893   // Make sure to capture all of the return instructions from the cloned
1894   // function.
1895   SmallVector<ReturnInst*, 8> Returns;
1896   ClonedCodeInfo InlinedFunctionInfo;
1897   Function::iterator FirstNewBlock;
1898 
1899   { // Scope to destroy VMap after cloning.
1900     ValueToValueMapTy VMap;
1901     // Keep a list of pair (dst, src) to emit byval initializations.
1902     SmallVector<std::pair<Value*, Value*>, 4> ByValInit;
1903 
1904     // When inlining a function that contains noalias scope metadata,
1905     // this metadata needs to be cloned so that the inlined blocks
1906     // have different "unique scopes" at every call site.
1907     // Track the metadata that must be cloned. Do this before other changes to
1908     // the function, so that we do not get in trouble when inlining caller ==
1909     // callee.
1910     ScopedAliasMetadataDeepCloner SAMetadataCloner(CB.getCalledFunction());
1911 
1912     auto &DL = Caller->getParent()->getDataLayout();
1913 
1914     // Calculate the vector of arguments to pass into the function cloner, which
1915     // matches up the formal to the actual argument values.
1916     auto AI = CB.arg_begin();
1917     unsigned ArgNo = 0;
1918     for (Function::arg_iterator I = CalledFunc->arg_begin(),
1919          E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
1920       Value *ActualArg = *AI;
1921 
1922       // When byval arguments actually inlined, we need to make the copy implied
1923       // by them explicit.  However, we don't do this if the callee is readonly
1924       // or readnone, because the copy would be unneeded: the callee doesn't
1925       // modify the struct.
1926       if (CB.isByValArgument(ArgNo)) {
1927         ActualArg = HandleByValArgument(ActualArg, &CB, CalledFunc, IFI,
1928                                         CalledFunc->getParamAlignment(ArgNo));
1929         if (ActualArg != *AI)
1930           ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
1931       }
1932 
1933       VMap[&*I] = ActualArg;
1934     }
1935 
1936     // TODO: Remove this when users have been updated to the assume bundles.
1937     // Add alignment assumptions if necessary. We do this before the inlined
1938     // instructions are actually cloned into the caller so that we can easily
1939     // check what will be known at the start of the inlined code.
1940     AddAlignmentAssumptions(CB, IFI);
1941 
1942     AssumptionCache *AC =
1943         IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
1944 
1945     /// Preserve all attributes on of the call and its parameters.
1946     salvageKnowledge(&CB, AC);
1947 
1948     // We want the inliner to prune the code as it copies.  We would LOVE to
1949     // have no dead or constant instructions leftover after inlining occurs
1950     // (which can happen, e.g., because an argument was constant), but we'll be
1951     // happy with whatever the cloner can do.
1952     CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
1953                               /*ModuleLevelChanges=*/false, Returns, ".i",
1954                               &InlinedFunctionInfo, &CB);
1955     // Remember the first block that is newly cloned over.
1956     FirstNewBlock = LastBlock; ++FirstNewBlock;
1957 
1958     // Insert retainRV/clainRV runtime calls.
1959     if (objcarc::hasAttachedCallOpBundle(&CB))
1960       inlineRetainOrClaimRVCalls(CB, Returns);
1961 
1962     // Updated caller/callee profiles only when requested. For sample loader
1963     // inlining, the context-sensitive inlinee profile doesn't need to be
1964     // subtracted from callee profile, and the inlined clone also doesn't need
1965     // to be scaled based on call site count.
1966     if (IFI.UpdateProfile) {
1967       if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr)
1968         // Update the BFI of blocks cloned into the caller.
1969         updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI,
1970                         CalledFunc->front());
1971 
1972       updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), CB,
1973                         IFI.PSI, IFI.CallerBFI);
1974     }
1975 
1976     // Inject byval arguments initialization.
1977     for (std::pair<Value*, Value*> &Init : ByValInit)
1978       HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
1979                               &*FirstNewBlock, IFI);
1980 
1981     Optional<OperandBundleUse> ParentDeopt =
1982         CB.getOperandBundle(LLVMContext::OB_deopt);
1983     if (ParentDeopt) {
1984       SmallVector<OperandBundleDef, 2> OpDefs;
1985 
1986       for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
1987         CallBase *ICS = dyn_cast_or_null<CallBase>(VH);
1988         if (!ICS)
1989           continue; // instruction was DCE'd or RAUW'ed to undef
1990 
1991         OpDefs.clear();
1992 
1993         OpDefs.reserve(ICS->getNumOperandBundles());
1994 
1995         for (unsigned COBi = 0, COBe = ICS->getNumOperandBundles(); COBi < COBe;
1996              ++COBi) {
1997           auto ChildOB = ICS->getOperandBundleAt(COBi);
1998           if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
1999             // If the inlined call has other operand bundles, let them be
2000             OpDefs.emplace_back(ChildOB);
2001             continue;
2002           }
2003 
2004           // It may be useful to separate this logic (of handling operand
2005           // bundles) out to a separate "policy" component if this gets crowded.
2006           // Prepend the parent's deoptimization continuation to the newly
2007           // inlined call's deoptimization continuation.
2008           std::vector<Value *> MergedDeoptArgs;
2009           MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
2010                                   ChildOB.Inputs.size());
2011 
2012           llvm::append_range(MergedDeoptArgs, ParentDeopt->Inputs);
2013           llvm::append_range(MergedDeoptArgs, ChildOB.Inputs);
2014 
2015           OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
2016         }
2017 
2018         Instruction *NewI = CallBase::Create(ICS, OpDefs, ICS);
2019 
2020         // Note: the RAUW does the appropriate fixup in VMap, so we need to do
2021         // this even if the call returns void.
2022         ICS->replaceAllUsesWith(NewI);
2023 
2024         VH = nullptr;
2025         ICS->eraseFromParent();
2026       }
2027     }
2028 
2029     // Update the callgraph if requested.
2030     if (IFI.CG)
2031       UpdateCallGraphAfterInlining(CB, FirstNewBlock, VMap, IFI);
2032 
2033     // For 'nodebug' functions, the associated DISubprogram is always null.
2034     // Conservatively avoid propagating the callsite debug location to
2035     // instructions inlined from a function whose DISubprogram is not null.
2036     fixupLineNumbers(Caller, FirstNewBlock, &CB,
2037                      CalledFunc->getSubprogram() != nullptr);
2038 
2039     // Now clone the inlined noalias scope metadata.
2040     SAMetadataCloner.clone();
2041     SAMetadataCloner.remap(VMap);
2042 
2043     // Add noalias metadata if necessary.
2044     AddAliasScopeMetadata(CB, VMap, DL, CalleeAAR);
2045 
2046     // Clone return attributes on the callsite into the calls within the inlined
2047     // function which feed into its return value.
2048     AddReturnAttributes(CB, VMap);
2049 
2050     // Propagate metadata on the callsite if necessary.
2051     PropagateCallSiteMetadata(CB, VMap);
2052 
2053     // Register any cloned assumptions.
2054     if (IFI.GetAssumptionCache)
2055       for (BasicBlock &NewBlock :
2056            make_range(FirstNewBlock->getIterator(), Caller->end()))
2057         for (Instruction &I : NewBlock)
2058           if (auto *II = dyn_cast<AssumeInst>(&I))
2059             IFI.GetAssumptionCache(*Caller).registerAssumption(II);
2060   }
2061 
2062   // If there are any alloca instructions in the block that used to be the entry
2063   // block for the callee, move them to the entry block of the caller.  First
2064   // calculate which instruction they should be inserted before.  We insert the
2065   // instructions at the end of the current alloca list.
2066   {
2067     BasicBlock::iterator InsertPoint = Caller->begin()->begin();
2068     for (BasicBlock::iterator I = FirstNewBlock->begin(),
2069          E = FirstNewBlock->end(); I != E; ) {
2070       AllocaInst *AI = dyn_cast<AllocaInst>(I++);
2071       if (!AI) continue;
2072 
2073       // If the alloca is now dead, remove it.  This often occurs due to code
2074       // specialization.
2075       if (AI->use_empty()) {
2076         AI->eraseFromParent();
2077         continue;
2078       }
2079 
2080       if (!allocaWouldBeStaticInEntry(AI))
2081         continue;
2082 
2083       // Keep track of the static allocas that we inline into the caller.
2084       IFI.StaticAllocas.push_back(AI);
2085 
2086       // Scan for the block of allocas that we can move over, and move them
2087       // all at once.
2088       while (isa<AllocaInst>(I) &&
2089              !cast<AllocaInst>(I)->use_empty() &&
2090              allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) {
2091         IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
2092         ++I;
2093       }
2094 
2095       // Transfer all of the allocas over in a block.  Using splice means
2096       // that the instructions aren't removed from the symbol table, then
2097       // reinserted.
2098       Caller->getEntryBlock().getInstList().splice(
2099           InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I);
2100     }
2101   }
2102 
2103   SmallVector<Value*,4> VarArgsToForward;
2104   SmallVector<AttributeSet, 4> VarArgsAttrs;
2105   for (unsigned i = CalledFunc->getFunctionType()->getNumParams();
2106        i < CB.getNumArgOperands(); i++) {
2107     VarArgsToForward.push_back(CB.getArgOperand(i));
2108     VarArgsAttrs.push_back(CB.getAttributes().getParamAttributes(i));
2109   }
2110 
2111   bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false;
2112   if (InlinedFunctionInfo.ContainsCalls) {
2113     CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
2114     if (CallInst *CI = dyn_cast<CallInst>(&CB))
2115       CallSiteTailKind = CI->getTailCallKind();
2116 
2117     // For inlining purposes, the "notail" marker is the same as no marker.
2118     if (CallSiteTailKind == CallInst::TCK_NoTail)
2119       CallSiteTailKind = CallInst::TCK_None;
2120 
2121     for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
2122          ++BB) {
2123       for (auto II = BB->begin(); II != BB->end();) {
2124         Instruction &I = *II++;
2125         CallInst *CI = dyn_cast<CallInst>(&I);
2126         if (!CI)
2127           continue;
2128 
2129         // Forward varargs from inlined call site to calls to the
2130         // ForwardVarArgsTo function, if requested, and to musttail calls.
2131         if (!VarArgsToForward.empty() &&
2132             ((ForwardVarArgsTo &&
2133               CI->getCalledFunction() == ForwardVarArgsTo) ||
2134              CI->isMustTailCall())) {
2135           // Collect attributes for non-vararg parameters.
2136           AttributeList Attrs = CI->getAttributes();
2137           SmallVector<AttributeSet, 8> ArgAttrs;
2138           if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) {
2139             for (unsigned ArgNo = 0;
2140                  ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo)
2141               ArgAttrs.push_back(Attrs.getParamAttributes(ArgNo));
2142           }
2143 
2144           // Add VarArg attributes.
2145           ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end());
2146           Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttributes(),
2147                                      Attrs.getRetAttributes(), ArgAttrs);
2148           // Add VarArgs to existing parameters.
2149           SmallVector<Value *, 6> Params(CI->arg_operands());
2150           Params.append(VarArgsToForward.begin(), VarArgsToForward.end());
2151           CallInst *NewCI = CallInst::Create(
2152               CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI);
2153           NewCI->setDebugLoc(CI->getDebugLoc());
2154           NewCI->setAttributes(Attrs);
2155           NewCI->setCallingConv(CI->getCallingConv());
2156           CI->replaceAllUsesWith(NewCI);
2157           CI->eraseFromParent();
2158           CI = NewCI;
2159         }
2160 
2161         if (Function *F = CI->getCalledFunction())
2162           InlinedDeoptimizeCalls |=
2163               F->getIntrinsicID() == Intrinsic::experimental_deoptimize;
2164 
2165         // We need to reduce the strength of any inlined tail calls.  For
2166         // musttail, we have to avoid introducing potential unbounded stack
2167         // growth.  For example, if functions 'f' and 'g' are mutually recursive
2168         // with musttail, we can inline 'g' into 'f' so long as we preserve
2169         // musttail on the cloned call to 'f'.  If either the inlined call site
2170         // or the cloned call site is *not* musttail, the program already has
2171         // one frame of stack growth, so it's safe to remove musttail.  Here is
2172         // a table of example transformations:
2173         //
2174         //    f -> musttail g -> musttail f  ==>  f -> musttail f
2175         //    f -> musttail g ->     tail f  ==>  f ->     tail f
2176         //    f ->          g -> musttail f  ==>  f ->          f
2177         //    f ->          g ->     tail f  ==>  f ->          f
2178         //
2179         // Inlined notail calls should remain notail calls.
2180         CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
2181         if (ChildTCK != CallInst::TCK_NoTail)
2182           ChildTCK = std::min(CallSiteTailKind, ChildTCK);
2183         CI->setTailCallKind(ChildTCK);
2184         InlinedMustTailCalls |= CI->isMustTailCall();
2185 
2186         // Calls inlined through a 'nounwind' call site should be marked
2187         // 'nounwind'.
2188         if (MarkNoUnwind)
2189           CI->setDoesNotThrow();
2190       }
2191     }
2192   }
2193 
2194   // Leave lifetime markers for the static alloca's, scoping them to the
2195   // function we just inlined.
2196   if (InsertLifetime && !IFI.StaticAllocas.empty()) {
2197     IRBuilder<> builder(&FirstNewBlock->front());
2198     for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
2199       AllocaInst *AI = IFI.StaticAllocas[ai];
2200       // Don't mark swifterror allocas. They can't have bitcast uses.
2201       if (AI->isSwiftError())
2202         continue;
2203 
2204       // If the alloca is already scoped to something smaller than the whole
2205       // function then there's no need to add redundant, less accurate markers.
2206       if (hasLifetimeMarkers(AI))
2207         continue;
2208 
2209       // Try to determine the size of the allocation.
2210       ConstantInt *AllocaSize = nullptr;
2211       if (ConstantInt *AIArraySize =
2212           dyn_cast<ConstantInt>(AI->getArraySize())) {
2213         auto &DL = Caller->getParent()->getDataLayout();
2214         Type *AllocaType = AI->getAllocatedType();
2215         TypeSize AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
2216         uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
2217 
2218         // Don't add markers for zero-sized allocas.
2219         if (AllocaArraySize == 0)
2220           continue;
2221 
2222         // Check that array size doesn't saturate uint64_t and doesn't
2223         // overflow when it's multiplied by type size.
2224         if (!AllocaTypeSize.isScalable() &&
2225             AllocaArraySize != std::numeric_limits<uint64_t>::max() &&
2226             std::numeric_limits<uint64_t>::max() / AllocaArraySize >=
2227                 AllocaTypeSize.getFixedSize()) {
2228           AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
2229                                         AllocaArraySize * AllocaTypeSize);
2230         }
2231       }
2232 
2233       builder.CreateLifetimeStart(AI, AllocaSize);
2234       for (ReturnInst *RI : Returns) {
2235         // Don't insert llvm.lifetime.end calls between a musttail or deoptimize
2236         // call and a return.  The return kills all local allocas.
2237         if (InlinedMustTailCalls &&
2238             RI->getParent()->getTerminatingMustTailCall())
2239           continue;
2240         if (InlinedDeoptimizeCalls &&
2241             RI->getParent()->getTerminatingDeoptimizeCall())
2242           continue;
2243         IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
2244       }
2245     }
2246   }
2247 
2248   // If the inlined code contained dynamic alloca instructions, wrap the inlined
2249   // code with llvm.stacksave/llvm.stackrestore intrinsics.
2250   if (InlinedFunctionInfo.ContainsDynamicAllocas) {
2251     Module *M = Caller->getParent();
2252     // Get the two intrinsics we care about.
2253     Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
2254     Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
2255 
2256     // Insert the llvm.stacksave.
2257     CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
2258                              .CreateCall(StackSave, {}, "savedstack");
2259 
2260     // Insert a call to llvm.stackrestore before any return instructions in the
2261     // inlined function.
2262     for (ReturnInst *RI : Returns) {
2263       // Don't insert llvm.stackrestore calls between a musttail or deoptimize
2264       // call and a return.  The return will restore the stack pointer.
2265       if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
2266         continue;
2267       if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall())
2268         continue;
2269       IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
2270     }
2271   }
2272 
2273   // If we are inlining for an invoke instruction, we must make sure to rewrite
2274   // any call instructions into invoke instructions.  This is sensitive to which
2275   // funclet pads were top-level in the inlinee, so must be done before
2276   // rewriting the "parent pad" links.
2277   if (auto *II = dyn_cast<InvokeInst>(&CB)) {
2278     BasicBlock *UnwindDest = II->getUnwindDest();
2279     Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
2280     if (isa<LandingPadInst>(FirstNonPHI)) {
2281       HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
2282     } else {
2283       HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
2284     }
2285   }
2286 
2287   // Update the lexical scopes of the new funclets and callsites.
2288   // Anything that had 'none' as its parent is now nested inside the callsite's
2289   // EHPad.
2290 
2291   if (CallSiteEHPad) {
2292     for (Function::iterator BB = FirstNewBlock->getIterator(),
2293                             E = Caller->end();
2294          BB != E; ++BB) {
2295       // Add bundle operands to any top-level call sites.
2296       SmallVector<OperandBundleDef, 1> OpBundles;
2297       for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) {
2298         CallBase *I = dyn_cast<CallBase>(&*BBI++);
2299         if (!I)
2300           continue;
2301 
2302         // Skip call sites which are nounwind intrinsics.
2303         auto *CalledFn =
2304             dyn_cast<Function>(I->getCalledOperand()->stripPointerCasts());
2305         if (CalledFn && CalledFn->isIntrinsic() && I->doesNotThrow())
2306           continue;
2307 
2308         // Skip call sites which already have a "funclet" bundle.
2309         if (I->getOperandBundle(LLVMContext::OB_funclet))
2310           continue;
2311 
2312         I->getOperandBundlesAsDefs(OpBundles);
2313         OpBundles.emplace_back("funclet", CallSiteEHPad);
2314 
2315         Instruction *NewInst = CallBase::Create(I, OpBundles, I);
2316         NewInst->takeName(I);
2317         I->replaceAllUsesWith(NewInst);
2318         I->eraseFromParent();
2319 
2320         OpBundles.clear();
2321       }
2322 
2323       // It is problematic if the inlinee has a cleanupret which unwinds to
2324       // caller and we inline it into a call site which doesn't unwind but into
2325       // an EH pad that does.  Such an edge must be dynamically unreachable.
2326       // As such, we replace the cleanupret with unreachable.
2327       if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
2328         if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
2329           changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false);
2330 
2331       Instruction *I = BB->getFirstNonPHI();
2332       if (!I->isEHPad())
2333         continue;
2334 
2335       if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
2336         if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
2337           CatchSwitch->setParentPad(CallSiteEHPad);
2338       } else {
2339         auto *FPI = cast<FuncletPadInst>(I);
2340         if (isa<ConstantTokenNone>(FPI->getParentPad()))
2341           FPI->setParentPad(CallSiteEHPad);
2342       }
2343     }
2344   }
2345 
2346   if (InlinedDeoptimizeCalls) {
2347     // We need to at least remove the deoptimizing returns from the Return set,
2348     // so that the control flow from those returns does not get merged into the
2349     // caller (but terminate it instead).  If the caller's return type does not
2350     // match the callee's return type, we also need to change the return type of
2351     // the intrinsic.
2352     if (Caller->getReturnType() == CB.getType()) {
2353       llvm::erase_if(Returns, [](ReturnInst *RI) {
2354         return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr;
2355       });
2356     } else {
2357       SmallVector<ReturnInst *, 8> NormalReturns;
2358       Function *NewDeoptIntrinsic = Intrinsic::getDeclaration(
2359           Caller->getParent(), Intrinsic::experimental_deoptimize,
2360           {Caller->getReturnType()});
2361 
2362       for (ReturnInst *RI : Returns) {
2363         CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall();
2364         if (!DeoptCall) {
2365           NormalReturns.push_back(RI);
2366           continue;
2367         }
2368 
2369         // The calling convention on the deoptimize call itself may be bogus,
2370         // since the code we're inlining may have undefined behavior (and may
2371         // never actually execute at runtime); but all
2372         // @llvm.experimental.deoptimize declarations have to have the same
2373         // calling convention in a well-formed module.
2374         auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv();
2375         NewDeoptIntrinsic->setCallingConv(CallingConv);
2376         auto *CurBB = RI->getParent();
2377         RI->eraseFromParent();
2378 
2379         SmallVector<Value *, 4> CallArgs(DeoptCall->args());
2380 
2381         SmallVector<OperandBundleDef, 1> OpBundles;
2382         DeoptCall->getOperandBundlesAsDefs(OpBundles);
2383         DeoptCall->eraseFromParent();
2384         assert(!OpBundles.empty() &&
2385                "Expected at least the deopt operand bundle");
2386 
2387         IRBuilder<> Builder(CurBB);
2388         CallInst *NewDeoptCall =
2389             Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles);
2390         NewDeoptCall->setCallingConv(CallingConv);
2391         if (NewDeoptCall->getType()->isVoidTy())
2392           Builder.CreateRetVoid();
2393         else
2394           Builder.CreateRet(NewDeoptCall);
2395       }
2396 
2397       // Leave behind the normal returns so we can merge control flow.
2398       std::swap(Returns, NormalReturns);
2399     }
2400   }
2401 
2402   // Handle any inlined musttail call sites.  In order for a new call site to be
2403   // musttail, the source of the clone and the inlined call site must have been
2404   // musttail.  Therefore it's safe to return without merging control into the
2405   // phi below.
2406   if (InlinedMustTailCalls) {
2407     // Check if we need to bitcast the result of any musttail calls.
2408     Type *NewRetTy = Caller->getReturnType();
2409     bool NeedBitCast = !CB.use_empty() && CB.getType() != NewRetTy;
2410 
2411     // Handle the returns preceded by musttail calls separately.
2412     SmallVector<ReturnInst *, 8> NormalReturns;
2413     for (ReturnInst *RI : Returns) {
2414       CallInst *ReturnedMustTail =
2415           RI->getParent()->getTerminatingMustTailCall();
2416       if (!ReturnedMustTail) {
2417         NormalReturns.push_back(RI);
2418         continue;
2419       }
2420       if (!NeedBitCast)
2421         continue;
2422 
2423       // Delete the old return and any preceding bitcast.
2424       BasicBlock *CurBB = RI->getParent();
2425       auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
2426       RI->eraseFromParent();
2427       if (OldCast)
2428         OldCast->eraseFromParent();
2429 
2430       // Insert a new bitcast and return with the right type.
2431       IRBuilder<> Builder(CurBB);
2432       Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
2433     }
2434 
2435     // Leave behind the normal returns so we can merge control flow.
2436     std::swap(Returns, NormalReturns);
2437   }
2438 
2439   // Now that all of the transforms on the inlined code have taken place but
2440   // before we splice the inlined code into the CFG and lose track of which
2441   // blocks were actually inlined, collect the call sites. We only do this if
2442   // call graph updates weren't requested, as those provide value handle based
2443   // tracking of inlined call sites instead.
2444   if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) {
2445     // Otherwise just collect the raw call sites that were inlined.
2446     for (BasicBlock &NewBB :
2447          make_range(FirstNewBlock->getIterator(), Caller->end()))
2448       for (Instruction &I : NewBB)
2449         if (auto *CB = dyn_cast<CallBase>(&I))
2450           IFI.InlinedCallSites.push_back(CB);
2451   }
2452 
2453   // If we cloned in _exactly one_ basic block, and if that block ends in a
2454   // return instruction, we splice the body of the inlined callee directly into
2455   // the calling basic block.
2456   if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
2457     // Move all of the instructions right before the call.
2458     OrigBB->getInstList().splice(CB.getIterator(), FirstNewBlock->getInstList(),
2459                                  FirstNewBlock->begin(), FirstNewBlock->end());
2460     // Remove the cloned basic block.
2461     Caller->getBasicBlockList().pop_back();
2462 
2463     // If the call site was an invoke instruction, add a branch to the normal
2464     // destination.
2465     if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
2466       BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), &CB);
2467       NewBr->setDebugLoc(Returns[0]->getDebugLoc());
2468     }
2469 
2470     // If the return instruction returned a value, replace uses of the call with
2471     // uses of the returned value.
2472     if (!CB.use_empty()) {
2473       ReturnInst *R = Returns[0];
2474       if (&CB == R->getReturnValue())
2475         CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
2476       else
2477         CB.replaceAllUsesWith(R->getReturnValue());
2478     }
2479     // Since we are now done with the Call/Invoke, we can delete it.
2480     CB.eraseFromParent();
2481 
2482     // Since we are now done with the return instruction, delete it also.
2483     Returns[0]->eraseFromParent();
2484 
2485     // We are now done with the inlining.
2486     return InlineResult::success();
2487   }
2488 
2489   // Otherwise, we have the normal case, of more than one block to inline or
2490   // multiple return sites.
2491 
2492   // We want to clone the entire callee function into the hole between the
2493   // "starter" and "ender" blocks.  How we accomplish this depends on whether
2494   // this is an invoke instruction or a call instruction.
2495   BasicBlock *AfterCallBB;
2496   BranchInst *CreatedBranchToNormalDest = nullptr;
2497   if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
2498 
2499     // Add an unconditional branch to make this look like the CallInst case...
2500     CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), &CB);
2501 
2502     // Split the basic block.  This guarantees that no PHI nodes will have to be
2503     // updated due to new incoming edges, and make the invoke case more
2504     // symmetric to the call case.
2505     AfterCallBB =
2506         OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
2507                                 CalledFunc->getName() + ".exit");
2508 
2509   } else { // It's a call
2510     // If this is a call instruction, we need to split the basic block that
2511     // the call lives in.
2512     //
2513     AfterCallBB = OrigBB->splitBasicBlock(CB.getIterator(),
2514                                           CalledFunc->getName() + ".exit");
2515   }
2516 
2517   if (IFI.CallerBFI) {
2518     // Copy original BB's block frequency to AfterCallBB
2519     IFI.CallerBFI->setBlockFreq(
2520         AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency());
2521   }
2522 
2523   // Change the branch that used to go to AfterCallBB to branch to the first
2524   // basic block of the inlined function.
2525   //
2526   Instruction *Br = OrigBB->getTerminator();
2527   assert(Br && Br->getOpcode() == Instruction::Br &&
2528          "splitBasicBlock broken!");
2529   Br->setOperand(0, &*FirstNewBlock);
2530 
2531   // Now that the function is correct, make it a little bit nicer.  In
2532   // particular, move the basic blocks inserted from the end of the function
2533   // into the space made by splitting the source basic block.
2534   Caller->getBasicBlockList().splice(AfterCallBB->getIterator(),
2535                                      Caller->getBasicBlockList(), FirstNewBlock,
2536                                      Caller->end());
2537 
2538   // Handle all of the return instructions that we just cloned in, and eliminate
2539   // any users of the original call/invoke instruction.
2540   Type *RTy = CalledFunc->getReturnType();
2541 
2542   PHINode *PHI = nullptr;
2543   if (Returns.size() > 1) {
2544     // The PHI node should go at the front of the new basic block to merge all
2545     // possible incoming values.
2546     if (!CB.use_empty()) {
2547       PHI = PHINode::Create(RTy, Returns.size(), CB.getName(),
2548                             &AfterCallBB->front());
2549       // Anything that used the result of the function call should now use the
2550       // PHI node as their operand.
2551       CB.replaceAllUsesWith(PHI);
2552     }
2553 
2554     // Loop over all of the return instructions adding entries to the PHI node
2555     // as appropriate.
2556     if (PHI) {
2557       for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2558         ReturnInst *RI = Returns[i];
2559         assert(RI->getReturnValue()->getType() == PHI->getType() &&
2560                "Ret value not consistent in function!");
2561         PHI->addIncoming(RI->getReturnValue(), RI->getParent());
2562       }
2563     }
2564 
2565     // Add a branch to the merge points and remove return instructions.
2566     DebugLoc Loc;
2567     for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2568       ReturnInst *RI = Returns[i];
2569       BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
2570       Loc = RI->getDebugLoc();
2571       BI->setDebugLoc(Loc);
2572       RI->eraseFromParent();
2573     }
2574     // We need to set the debug location to *somewhere* inside the
2575     // inlined function. The line number may be nonsensical, but the
2576     // instruction will at least be associated with the right
2577     // function.
2578     if (CreatedBranchToNormalDest)
2579       CreatedBranchToNormalDest->setDebugLoc(Loc);
2580   } else if (!Returns.empty()) {
2581     // Otherwise, if there is exactly one return value, just replace anything
2582     // using the return value of the call with the computed value.
2583     if (!CB.use_empty()) {
2584       if (&CB == Returns[0]->getReturnValue())
2585         CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
2586       else
2587         CB.replaceAllUsesWith(Returns[0]->getReturnValue());
2588     }
2589 
2590     // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
2591     BasicBlock *ReturnBB = Returns[0]->getParent();
2592     ReturnBB->replaceAllUsesWith(AfterCallBB);
2593 
2594     // Splice the code from the return block into the block that it will return
2595     // to, which contains the code that was after the call.
2596     AfterCallBB->getInstList().splice(AfterCallBB->begin(),
2597                                       ReturnBB->getInstList());
2598 
2599     if (CreatedBranchToNormalDest)
2600       CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
2601 
2602     // Delete the return instruction now and empty ReturnBB now.
2603     Returns[0]->eraseFromParent();
2604     ReturnBB->eraseFromParent();
2605   } else if (!CB.use_empty()) {
2606     // No returns, but something is using the return value of the call.  Just
2607     // nuke the result.
2608     CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
2609   }
2610 
2611   // Since we are now done with the Call/Invoke, we can delete it.
2612   CB.eraseFromParent();
2613 
2614   // If we inlined any musttail calls and the original return is now
2615   // unreachable, delete it.  It can only contain a bitcast and ret.
2616   if (InlinedMustTailCalls && pred_empty(AfterCallBB))
2617     AfterCallBB->eraseFromParent();
2618 
2619   // We should always be able to fold the entry block of the function into the
2620   // single predecessor of the block...
2621   assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
2622   BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
2623 
2624   // Splice the code entry block into calling block, right before the
2625   // unconditional branch.
2626   CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
2627   OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList());
2628 
2629   // Remove the unconditional branch.
2630   OrigBB->getInstList().erase(Br);
2631 
2632   // Now we can remove the CalleeEntry block, which is now empty.
2633   Caller->getBasicBlockList().erase(CalleeEntry);
2634 
2635   // If we inserted a phi node, check to see if it has a single value (e.g. all
2636   // the entries are the same or undef).  If so, remove the PHI so it doesn't
2637   // block other optimizations.
2638   if (PHI) {
2639     AssumptionCache *AC =
2640         IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
2641     auto &DL = Caller->getParent()->getDataLayout();
2642     if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) {
2643       PHI->replaceAllUsesWith(V);
2644       PHI->eraseFromParent();
2645     }
2646   }
2647 
2648   return InlineResult::success();
2649 }
2650