1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements inlining of a function into a call site, resolving 10 // parameters and the return value as appropriate. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/BlockFrequencyInfo.h" 26 #include "llvm/Analysis/CallGraph.h" 27 #include "llvm/Analysis/CaptureTracking.h" 28 #include "llvm/Analysis/EHPersonalities.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/Analysis/VectorUtils.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/CFG.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DIBuilder.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfoMetadata.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/IRBuilder.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/IntrinsicInst.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/MDBuilder.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/User.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 63 #include "llvm/Transforms/Utils/Cloning.h" 64 #include "llvm/Transforms/Utils/ValueMapper.h" 65 #include <algorithm> 66 #include <cassert> 67 #include <cstdint> 68 #include <iterator> 69 #include <limits> 70 #include <string> 71 #include <utility> 72 #include <vector> 73 74 using namespace llvm; 75 using ProfileCount = Function::ProfileCount; 76 77 static cl::opt<bool> 78 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), 79 cl::Hidden, 80 cl::desc("Convert noalias attributes to metadata during inlining.")); 81 82 // Disabled by default, because the added alignment assumptions may increase 83 // compile-time and block optimizations. This option is not suitable for use 84 // with frontends that emit comprehensive parameter alignment annotations. 85 static cl::opt<bool> 86 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", 87 cl::init(false), cl::Hidden, 88 cl::desc("Convert align attributes to assumptions during inlining.")); 89 90 static cl::opt<bool> UpdateReturnAttributes( 91 "update-return-attrs", cl::init(true), cl::Hidden, 92 cl::desc("Update return attributes on calls within inlined body")); 93 94 static cl::opt<unsigned> InlinerAttributeWindow( 95 "max-inst-checked-for-throw-during-inlining", cl::Hidden, 96 cl::desc("the maximum number of instructions analyzed for may throw during " 97 "attribute inference in inlined body"), 98 cl::init(4)); 99 100 namespace { 101 102 /// A class for recording information about inlining a landing pad. 103 class LandingPadInliningInfo { 104 /// Destination of the invoke's unwind. 105 BasicBlock *OuterResumeDest; 106 107 /// Destination for the callee's resume. 108 BasicBlock *InnerResumeDest = nullptr; 109 110 /// LandingPadInst associated with the invoke. 111 LandingPadInst *CallerLPad = nullptr; 112 113 /// PHI for EH values from landingpad insts. 114 PHINode *InnerEHValuesPHI = nullptr; 115 116 SmallVector<Value*, 8> UnwindDestPHIValues; 117 118 public: 119 LandingPadInliningInfo(InvokeInst *II) 120 : OuterResumeDest(II->getUnwindDest()) { 121 // If there are PHI nodes in the unwind destination block, we need to keep 122 // track of which values came into them from the invoke before removing 123 // the edge from this block. 124 BasicBlock *InvokeBB = II->getParent(); 125 BasicBlock::iterator I = OuterResumeDest->begin(); 126 for (; isa<PHINode>(I); ++I) { 127 // Save the value to use for this edge. 128 PHINode *PHI = cast<PHINode>(I); 129 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 130 } 131 132 CallerLPad = cast<LandingPadInst>(I); 133 } 134 135 /// The outer unwind destination is the target of 136 /// unwind edges introduced for calls within the inlined function. 137 BasicBlock *getOuterResumeDest() const { 138 return OuterResumeDest; 139 } 140 141 BasicBlock *getInnerResumeDest(); 142 143 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 144 145 /// Forward the 'resume' instruction to the caller's landing pad block. 146 /// When the landing pad block has only one predecessor, this is 147 /// a simple branch. When there is more than one predecessor, we need to 148 /// split the landing pad block after the landingpad instruction and jump 149 /// to there. 150 void forwardResume(ResumeInst *RI, 151 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); 152 153 /// Add incoming-PHI values to the unwind destination block for the given 154 /// basic block, using the values for the original invoke's source block. 155 void addIncomingPHIValuesFor(BasicBlock *BB) const { 156 addIncomingPHIValuesForInto(BB, OuterResumeDest); 157 } 158 159 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 160 BasicBlock::iterator I = dest->begin(); 161 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 162 PHINode *phi = cast<PHINode>(I); 163 phi->addIncoming(UnwindDestPHIValues[i], src); 164 } 165 } 166 }; 167 168 } // end anonymous namespace 169 170 /// Get or create a target for the branch from ResumeInsts. 171 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() { 172 if (InnerResumeDest) return InnerResumeDest; 173 174 // Split the landing pad. 175 BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator(); 176 InnerResumeDest = 177 OuterResumeDest->splitBasicBlock(SplitPoint, 178 OuterResumeDest->getName() + ".body"); 179 180 // The number of incoming edges we expect to the inner landing pad. 181 const unsigned PHICapacity = 2; 182 183 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 184 Instruction *InsertPoint = &InnerResumeDest->front(); 185 BasicBlock::iterator I = OuterResumeDest->begin(); 186 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 187 PHINode *OuterPHI = cast<PHINode>(I); 188 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 189 OuterPHI->getName() + ".lpad-body", 190 InsertPoint); 191 OuterPHI->replaceAllUsesWith(InnerPHI); 192 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 193 } 194 195 // Create a PHI for the exception values. 196 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 197 "eh.lpad-body", InsertPoint); 198 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 199 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 200 201 // All done. 202 return InnerResumeDest; 203 } 204 205 /// Forward the 'resume' instruction to the caller's landing pad block. 206 /// When the landing pad block has only one predecessor, this is a simple 207 /// branch. When there is more than one predecessor, we need to split the 208 /// landing pad block after the landingpad instruction and jump to there. 209 void LandingPadInliningInfo::forwardResume( 210 ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) { 211 BasicBlock *Dest = getInnerResumeDest(); 212 BasicBlock *Src = RI->getParent(); 213 214 BranchInst::Create(Dest, Src); 215 216 // Update the PHIs in the destination. They were inserted in an order which 217 // makes this work. 218 addIncomingPHIValuesForInto(Src, Dest); 219 220 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 221 RI->eraseFromParent(); 222 } 223 224 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper. 225 static Value *getParentPad(Value *EHPad) { 226 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 227 return FPI->getParentPad(); 228 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 229 } 230 231 using UnwindDestMemoTy = DenseMap<Instruction *, Value *>; 232 233 /// Helper for getUnwindDestToken that does the descendant-ward part of 234 /// the search. 235 static Value *getUnwindDestTokenHelper(Instruction *EHPad, 236 UnwindDestMemoTy &MemoMap) { 237 SmallVector<Instruction *, 8> Worklist(1, EHPad); 238 239 while (!Worklist.empty()) { 240 Instruction *CurrentPad = Worklist.pop_back_val(); 241 // We only put pads on the worklist that aren't in the MemoMap. When 242 // we find an unwind dest for a pad we may update its ancestors, but 243 // the queue only ever contains uncles/great-uncles/etc. of CurrentPad, 244 // so they should never get updated while queued on the worklist. 245 assert(!MemoMap.count(CurrentPad)); 246 Value *UnwindDestToken = nullptr; 247 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) { 248 if (CatchSwitch->hasUnwindDest()) { 249 UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI(); 250 } else { 251 // Catchswitch doesn't have a 'nounwind' variant, and one might be 252 // annotated as "unwinds to caller" when really it's nounwind (see 253 // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the 254 // parent's unwind dest from this. We can check its catchpads' 255 // descendants, since they might include a cleanuppad with an 256 // "unwinds to caller" cleanupret, which can be trusted. 257 for (auto HI = CatchSwitch->handler_begin(), 258 HE = CatchSwitch->handler_end(); 259 HI != HE && !UnwindDestToken; ++HI) { 260 BasicBlock *HandlerBlock = *HI; 261 auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI()); 262 for (User *Child : CatchPad->users()) { 263 // Intentionally ignore invokes here -- since the catchswitch is 264 // marked "unwind to caller", it would be a verifier error if it 265 // contained an invoke which unwinds out of it, so any invoke we'd 266 // encounter must unwind to some child of the catch. 267 if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child)) 268 continue; 269 270 Instruction *ChildPad = cast<Instruction>(Child); 271 auto Memo = MemoMap.find(ChildPad); 272 if (Memo == MemoMap.end()) { 273 // Haven't figured out this child pad yet; queue it. 274 Worklist.push_back(ChildPad); 275 continue; 276 } 277 // We've already checked this child, but might have found that 278 // it offers no proof either way. 279 Value *ChildUnwindDestToken = Memo->second; 280 if (!ChildUnwindDestToken) 281 continue; 282 // We already know the child's unwind dest, which can either 283 // be ConstantTokenNone to indicate unwind to caller, or can 284 // be another child of the catchpad. Only the former indicates 285 // the unwind dest of the catchswitch. 286 if (isa<ConstantTokenNone>(ChildUnwindDestToken)) { 287 UnwindDestToken = ChildUnwindDestToken; 288 break; 289 } 290 assert(getParentPad(ChildUnwindDestToken) == CatchPad); 291 } 292 } 293 } 294 } else { 295 auto *CleanupPad = cast<CleanupPadInst>(CurrentPad); 296 for (User *U : CleanupPad->users()) { 297 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) { 298 if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest()) 299 UnwindDestToken = RetUnwindDest->getFirstNonPHI(); 300 else 301 UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext()); 302 break; 303 } 304 Value *ChildUnwindDestToken; 305 if (auto *Invoke = dyn_cast<InvokeInst>(U)) { 306 ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI(); 307 } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) { 308 Instruction *ChildPad = cast<Instruction>(U); 309 auto Memo = MemoMap.find(ChildPad); 310 if (Memo == MemoMap.end()) { 311 // Haven't resolved this child yet; queue it and keep searching. 312 Worklist.push_back(ChildPad); 313 continue; 314 } 315 // We've checked this child, but still need to ignore it if it 316 // had no proof either way. 317 ChildUnwindDestToken = Memo->second; 318 if (!ChildUnwindDestToken) 319 continue; 320 } else { 321 // Not a relevant user of the cleanuppad 322 continue; 323 } 324 // In a well-formed program, the child/invoke must either unwind to 325 // an(other) child of the cleanup, or exit the cleanup. In the 326 // first case, continue searching. 327 if (isa<Instruction>(ChildUnwindDestToken) && 328 getParentPad(ChildUnwindDestToken) == CleanupPad) 329 continue; 330 UnwindDestToken = ChildUnwindDestToken; 331 break; 332 } 333 } 334 // If we haven't found an unwind dest for CurrentPad, we may have queued its 335 // children, so move on to the next in the worklist. 336 if (!UnwindDestToken) 337 continue; 338 339 // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits 340 // any ancestors of CurrentPad up to but not including UnwindDestToken's 341 // parent pad. Record this in the memo map, and check to see if the 342 // original EHPad being queried is one of the ones exited. 343 Value *UnwindParent; 344 if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken)) 345 UnwindParent = getParentPad(UnwindPad); 346 else 347 UnwindParent = nullptr; 348 bool ExitedOriginalPad = false; 349 for (Instruction *ExitedPad = CurrentPad; 350 ExitedPad && ExitedPad != UnwindParent; 351 ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) { 352 // Skip over catchpads since they just follow their catchswitches. 353 if (isa<CatchPadInst>(ExitedPad)) 354 continue; 355 MemoMap[ExitedPad] = UnwindDestToken; 356 ExitedOriginalPad |= (ExitedPad == EHPad); 357 } 358 359 if (ExitedOriginalPad) 360 return UnwindDestToken; 361 362 // Continue the search. 363 } 364 365 // No definitive information is contained within this funclet. 366 return nullptr; 367 } 368 369 /// Given an EH pad, find where it unwinds. If it unwinds to an EH pad, 370 /// return that pad instruction. If it unwinds to caller, return 371 /// ConstantTokenNone. If it does not have a definitive unwind destination, 372 /// return nullptr. 373 /// 374 /// This routine gets invoked for calls in funclets in inlinees when inlining 375 /// an invoke. Since many funclets don't have calls inside them, it's queried 376 /// on-demand rather than building a map of pads to unwind dests up front. 377 /// Determining a funclet's unwind dest may require recursively searching its 378 /// descendants, and also ancestors and cousins if the descendants don't provide 379 /// an answer. Since most funclets will have their unwind dest immediately 380 /// available as the unwind dest of a catchswitch or cleanupret, this routine 381 /// searches top-down from the given pad and then up. To avoid worst-case 382 /// quadratic run-time given that approach, it uses a memo map to avoid 383 /// re-processing funclet trees. The callers that rewrite the IR as they go 384 /// take advantage of this, for correctness, by checking/forcing rewritten 385 /// pads' entries to match the original callee view. 386 static Value *getUnwindDestToken(Instruction *EHPad, 387 UnwindDestMemoTy &MemoMap) { 388 // Catchpads unwind to the same place as their catchswitch; 389 // redirct any queries on catchpads so the code below can 390 // deal with just catchswitches and cleanuppads. 391 if (auto *CPI = dyn_cast<CatchPadInst>(EHPad)) 392 EHPad = CPI->getCatchSwitch(); 393 394 // Check if we've already determined the unwind dest for this pad. 395 auto Memo = MemoMap.find(EHPad); 396 if (Memo != MemoMap.end()) 397 return Memo->second; 398 399 // Search EHPad and, if necessary, its descendants. 400 Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap); 401 assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0)); 402 if (UnwindDestToken) 403 return UnwindDestToken; 404 405 // No information is available for this EHPad from itself or any of its 406 // descendants. An unwind all the way out to a pad in the caller would 407 // need also to agree with the unwind dest of the parent funclet, so 408 // search up the chain to try to find a funclet with information. Put 409 // null entries in the memo map to avoid re-processing as we go up. 410 MemoMap[EHPad] = nullptr; 411 #ifndef NDEBUG 412 SmallPtrSet<Instruction *, 4> TempMemos; 413 TempMemos.insert(EHPad); 414 #endif 415 Instruction *LastUselessPad = EHPad; 416 Value *AncestorToken; 417 for (AncestorToken = getParentPad(EHPad); 418 auto *AncestorPad = dyn_cast<Instruction>(AncestorToken); 419 AncestorToken = getParentPad(AncestorToken)) { 420 // Skip over catchpads since they just follow their catchswitches. 421 if (isa<CatchPadInst>(AncestorPad)) 422 continue; 423 // If the MemoMap had an entry mapping AncestorPad to nullptr, since we 424 // haven't yet called getUnwindDestTokenHelper for AncestorPad in this 425 // call to getUnwindDestToken, that would mean that AncestorPad had no 426 // information in itself, its descendants, or its ancestors. If that 427 // were the case, then we should also have recorded the lack of information 428 // for the descendant that we're coming from. So assert that we don't 429 // find a null entry in the MemoMap for AncestorPad. 430 assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]); 431 auto AncestorMemo = MemoMap.find(AncestorPad); 432 if (AncestorMemo == MemoMap.end()) { 433 UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap); 434 } else { 435 UnwindDestToken = AncestorMemo->second; 436 } 437 if (UnwindDestToken) 438 break; 439 LastUselessPad = AncestorPad; 440 MemoMap[LastUselessPad] = nullptr; 441 #ifndef NDEBUG 442 TempMemos.insert(LastUselessPad); 443 #endif 444 } 445 446 // We know that getUnwindDestTokenHelper was called on LastUselessPad and 447 // returned nullptr (and likewise for EHPad and any of its ancestors up to 448 // LastUselessPad), so LastUselessPad has no information from below. Since 449 // getUnwindDestTokenHelper must investigate all downward paths through 450 // no-information nodes to prove that a node has no information like this, 451 // and since any time it finds information it records it in the MemoMap for 452 // not just the immediately-containing funclet but also any ancestors also 453 // exited, it must be the case that, walking downward from LastUselessPad, 454 // visiting just those nodes which have not been mapped to an unwind dest 455 // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since 456 // they are just used to keep getUnwindDestTokenHelper from repeating work), 457 // any node visited must have been exhaustively searched with no information 458 // for it found. 459 SmallVector<Instruction *, 8> Worklist(1, LastUselessPad); 460 while (!Worklist.empty()) { 461 Instruction *UselessPad = Worklist.pop_back_val(); 462 auto Memo = MemoMap.find(UselessPad); 463 if (Memo != MemoMap.end() && Memo->second) { 464 // Here the name 'UselessPad' is a bit of a misnomer, because we've found 465 // that it is a funclet that does have information about unwinding to 466 // a particular destination; its parent was a useless pad. 467 // Since its parent has no information, the unwind edge must not escape 468 // the parent, and must target a sibling of this pad. This local unwind 469 // gives us no information about EHPad. Leave it and the subtree rooted 470 // at it alone. 471 assert(getParentPad(Memo->second) == getParentPad(UselessPad)); 472 continue; 473 } 474 // We know we don't have information for UselesPad. If it has an entry in 475 // the MemoMap (mapping it to nullptr), it must be one of the TempMemos 476 // added on this invocation of getUnwindDestToken; if a previous invocation 477 // recorded nullptr, it would have had to prove that the ancestors of 478 // UselessPad, which include LastUselessPad, had no information, and that 479 // in turn would have required proving that the descendants of 480 // LastUselesPad, which include EHPad, have no information about 481 // LastUselessPad, which would imply that EHPad was mapped to nullptr in 482 // the MemoMap on that invocation, which isn't the case if we got here. 483 assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad)); 484 // Assert as we enumerate users that 'UselessPad' doesn't have any unwind 485 // information that we'd be contradicting by making a map entry for it 486 // (which is something that getUnwindDestTokenHelper must have proved for 487 // us to get here). Just assert on is direct users here; the checks in 488 // this downward walk at its descendants will verify that they don't have 489 // any unwind edges that exit 'UselessPad' either (i.e. they either have no 490 // unwind edges or unwind to a sibling). 491 MemoMap[UselessPad] = UnwindDestToken; 492 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) { 493 assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad"); 494 for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) { 495 auto *CatchPad = HandlerBlock->getFirstNonPHI(); 496 for (User *U : CatchPad->users()) { 497 assert( 498 (!isa<InvokeInst>(U) || 499 (getParentPad( 500 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 501 CatchPad)) && 502 "Expected useless pad"); 503 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 504 Worklist.push_back(cast<Instruction>(U)); 505 } 506 } 507 } else { 508 assert(isa<CleanupPadInst>(UselessPad)); 509 for (User *U : UselessPad->users()) { 510 assert(!isa<CleanupReturnInst>(U) && "Expected useless pad"); 511 assert((!isa<InvokeInst>(U) || 512 (getParentPad( 513 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 514 UselessPad)) && 515 "Expected useless pad"); 516 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 517 Worklist.push_back(cast<Instruction>(U)); 518 } 519 } 520 } 521 522 return UnwindDestToken; 523 } 524 525 /// When we inline a basic block into an invoke, 526 /// we have to turn all of the calls that can throw into invokes. 527 /// This function analyze BB to see if there are any calls, and if so, 528 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 529 /// nodes in that block with the values specified in InvokeDestPHIValues. 530 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke( 531 BasicBlock *BB, BasicBlock *UnwindEdge, 532 UnwindDestMemoTy *FuncletUnwindMap = nullptr) { 533 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 534 Instruction *I = &*BBI++; 535 536 // We only need to check for function calls: inlined invoke 537 // instructions require no special handling. 538 CallInst *CI = dyn_cast<CallInst>(I); 539 540 if (!CI || CI->doesNotThrow() || CI->isInlineAsm()) 541 continue; 542 543 // We do not need to (and in fact, cannot) convert possibly throwing calls 544 // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into 545 // invokes. The caller's "segment" of the deoptimization continuation 546 // attached to the newly inlined @llvm.experimental_deoptimize 547 // (resp. @llvm.experimental.guard) call should contain the exception 548 // handling logic, if any. 549 if (auto *F = CI->getCalledFunction()) 550 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize || 551 F->getIntrinsicID() == Intrinsic::experimental_guard) 552 continue; 553 554 if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) { 555 // This call is nested inside a funclet. If that funclet has an unwind 556 // destination within the inlinee, then unwinding out of this call would 557 // be UB. Rewriting this call to an invoke which targets the inlined 558 // invoke's unwind dest would give the call's parent funclet multiple 559 // unwind destinations, which is something that subsequent EH table 560 // generation can't handle and that the veirifer rejects. So when we 561 // see such a call, leave it as a call. 562 auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]); 563 Value *UnwindDestToken = 564 getUnwindDestToken(FuncletPad, *FuncletUnwindMap); 565 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 566 continue; 567 #ifndef NDEBUG 568 Instruction *MemoKey; 569 if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad)) 570 MemoKey = CatchPad->getCatchSwitch(); 571 else 572 MemoKey = FuncletPad; 573 assert(FuncletUnwindMap->count(MemoKey) && 574 (*FuncletUnwindMap)[MemoKey] == UnwindDestToken && 575 "must get memoized to avoid confusing later searches"); 576 #endif // NDEBUG 577 } 578 579 changeToInvokeAndSplitBasicBlock(CI, UnwindEdge); 580 return BB; 581 } 582 return nullptr; 583 } 584 585 /// If we inlined an invoke site, we need to convert calls 586 /// in the body of the inlined function into invokes. 587 /// 588 /// II is the invoke instruction being inlined. FirstNewBlock is the first 589 /// block of the inlined code (the last block is the end of the function), 590 /// and InlineCodeInfo is information about the code that got inlined. 591 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock, 592 ClonedCodeInfo &InlinedCodeInfo) { 593 BasicBlock *InvokeDest = II->getUnwindDest(); 594 595 Function *Caller = FirstNewBlock->getParent(); 596 597 // The inlined code is currently at the end of the function, scan from the 598 // start of the inlined code to its end, checking for stuff we need to 599 // rewrite. 600 LandingPadInliningInfo Invoke(II); 601 602 // Get all of the inlined landing pad instructions. 603 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 604 for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end(); 605 I != E; ++I) 606 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 607 InlinedLPads.insert(II->getLandingPadInst()); 608 609 // Append the clauses from the outer landing pad instruction into the inlined 610 // landing pad instructions. 611 LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 612 for (LandingPadInst *InlinedLPad : InlinedLPads) { 613 unsigned OuterNum = OuterLPad->getNumClauses(); 614 InlinedLPad->reserveClauses(OuterNum); 615 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 616 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 617 if (OuterLPad->isCleanup()) 618 InlinedLPad->setCleanup(true); 619 } 620 621 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 622 BB != E; ++BB) { 623 if (InlinedCodeInfo.ContainsCalls) 624 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 625 &*BB, Invoke.getOuterResumeDest())) 626 // Update any PHI nodes in the exceptional block to indicate that there 627 // is now a new entry in them. 628 Invoke.addIncomingPHIValuesFor(NewBB); 629 630 // Forward any resumes that are remaining here. 631 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 632 Invoke.forwardResume(RI, InlinedLPads); 633 } 634 635 // Now that everything is happy, we have one final detail. The PHI nodes in 636 // the exception destination block still have entries due to the original 637 // invoke instruction. Eliminate these entries (which might even delete the 638 // PHI node) now. 639 InvokeDest->removePredecessor(II->getParent()); 640 } 641 642 /// If we inlined an invoke site, we need to convert calls 643 /// in the body of the inlined function into invokes. 644 /// 645 /// II is the invoke instruction being inlined. FirstNewBlock is the first 646 /// block of the inlined code (the last block is the end of the function), 647 /// and InlineCodeInfo is information about the code that got inlined. 648 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock, 649 ClonedCodeInfo &InlinedCodeInfo) { 650 BasicBlock *UnwindDest = II->getUnwindDest(); 651 Function *Caller = FirstNewBlock->getParent(); 652 653 assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!"); 654 655 // If there are PHI nodes in the unwind destination block, we need to keep 656 // track of which values came into them from the invoke before removing the 657 // edge from this block. 658 SmallVector<Value *, 8> UnwindDestPHIValues; 659 BasicBlock *InvokeBB = II->getParent(); 660 for (Instruction &I : *UnwindDest) { 661 // Save the value to use for this edge. 662 PHINode *PHI = dyn_cast<PHINode>(&I); 663 if (!PHI) 664 break; 665 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 666 } 667 668 // Add incoming-PHI values to the unwind destination block for the given basic 669 // block, using the values for the original invoke's source block. 670 auto UpdatePHINodes = [&](BasicBlock *Src) { 671 BasicBlock::iterator I = UnwindDest->begin(); 672 for (Value *V : UnwindDestPHIValues) { 673 PHINode *PHI = cast<PHINode>(I); 674 PHI->addIncoming(V, Src); 675 ++I; 676 } 677 }; 678 679 // This connects all the instructions which 'unwind to caller' to the invoke 680 // destination. 681 UnwindDestMemoTy FuncletUnwindMap; 682 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 683 BB != E; ++BB) { 684 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 685 if (CRI->unwindsToCaller()) { 686 auto *CleanupPad = CRI->getCleanupPad(); 687 CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI); 688 CRI->eraseFromParent(); 689 UpdatePHINodes(&*BB); 690 // Finding a cleanupret with an unwind destination would confuse 691 // subsequent calls to getUnwindDestToken, so map the cleanuppad 692 // to short-circuit any such calls and recognize this as an "unwind 693 // to caller" cleanup. 694 assert(!FuncletUnwindMap.count(CleanupPad) || 695 isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad])); 696 FuncletUnwindMap[CleanupPad] = 697 ConstantTokenNone::get(Caller->getContext()); 698 } 699 } 700 701 Instruction *I = BB->getFirstNonPHI(); 702 if (!I->isEHPad()) 703 continue; 704 705 Instruction *Replacement = nullptr; 706 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 707 if (CatchSwitch->unwindsToCaller()) { 708 Value *UnwindDestToken; 709 if (auto *ParentPad = 710 dyn_cast<Instruction>(CatchSwitch->getParentPad())) { 711 // This catchswitch is nested inside another funclet. If that 712 // funclet has an unwind destination within the inlinee, then 713 // unwinding out of this catchswitch would be UB. Rewriting this 714 // catchswitch to unwind to the inlined invoke's unwind dest would 715 // give the parent funclet multiple unwind destinations, which is 716 // something that subsequent EH table generation can't handle and 717 // that the veirifer rejects. So when we see such a call, leave it 718 // as "unwind to caller". 719 UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap); 720 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 721 continue; 722 } else { 723 // This catchswitch has no parent to inherit constraints from, and 724 // none of its descendants can have an unwind edge that exits it and 725 // targets another funclet in the inlinee. It may or may not have a 726 // descendant that definitively has an unwind to caller. In either 727 // case, we'll have to assume that any unwinds out of it may need to 728 // be routed to the caller, so treat it as though it has a definitive 729 // unwind to caller. 730 UnwindDestToken = ConstantTokenNone::get(Caller->getContext()); 731 } 732 auto *NewCatchSwitch = CatchSwitchInst::Create( 733 CatchSwitch->getParentPad(), UnwindDest, 734 CatchSwitch->getNumHandlers(), CatchSwitch->getName(), 735 CatchSwitch); 736 for (BasicBlock *PadBB : CatchSwitch->handlers()) 737 NewCatchSwitch->addHandler(PadBB); 738 // Propagate info for the old catchswitch over to the new one in 739 // the unwind map. This also serves to short-circuit any subsequent 740 // checks for the unwind dest of this catchswitch, which would get 741 // confused if they found the outer handler in the callee. 742 FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken; 743 Replacement = NewCatchSwitch; 744 } 745 } else if (!isa<FuncletPadInst>(I)) { 746 llvm_unreachable("unexpected EHPad!"); 747 } 748 749 if (Replacement) { 750 Replacement->takeName(I); 751 I->replaceAllUsesWith(Replacement); 752 I->eraseFromParent(); 753 UpdatePHINodes(&*BB); 754 } 755 } 756 757 if (InlinedCodeInfo.ContainsCalls) 758 for (Function::iterator BB = FirstNewBlock->getIterator(), 759 E = Caller->end(); 760 BB != E; ++BB) 761 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 762 &*BB, UnwindDest, &FuncletUnwindMap)) 763 // Update any PHI nodes in the exceptional block to indicate that there 764 // is now a new entry in them. 765 UpdatePHINodes(NewBB); 766 767 // Now that everything is happy, we have one final detail. The PHI nodes in 768 // the exception destination block still have entries due to the original 769 // invoke instruction. Eliminate these entries (which might even delete the 770 // PHI node) now. 771 UnwindDest->removePredecessor(InvokeBB); 772 } 773 774 /// When inlining a call site that has !llvm.mem.parallel_loop_access, 775 /// !llvm.access.group, !alias.scope or !noalias metadata, that metadata should 776 /// be propagated to all memory-accessing cloned instructions. 777 static void PropagateCallSiteMetadata(CallBase &CB, ValueToValueMapTy &VMap) { 778 MDNode *MemParallelLoopAccess = 779 CB.getMetadata(LLVMContext::MD_mem_parallel_loop_access); 780 MDNode *AccessGroup = CB.getMetadata(LLVMContext::MD_access_group); 781 MDNode *AliasScope = CB.getMetadata(LLVMContext::MD_alias_scope); 782 MDNode *NoAlias = CB.getMetadata(LLVMContext::MD_noalias); 783 if (!MemParallelLoopAccess && !AccessGroup && !AliasScope && !NoAlias) 784 return; 785 786 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 787 VMI != VMIE; ++VMI) { 788 // Check that key is an instruction, to skip the Argument mapping, which 789 // points to an instruction in the original function, not the inlined one. 790 if (!VMI->second || !isa<Instruction>(VMI->first)) 791 continue; 792 793 Instruction *NI = dyn_cast<Instruction>(VMI->second); 794 if (!NI) 795 continue; 796 797 // This metadata is only relevant for instructions that access memory. 798 if (!NI->mayReadOrWriteMemory()) 799 continue; 800 801 if (MemParallelLoopAccess) { 802 // TODO: This probably should not overwrite MemParalleLoopAccess. 803 MemParallelLoopAccess = MDNode::concatenate( 804 NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access), 805 MemParallelLoopAccess); 806 NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, 807 MemParallelLoopAccess); 808 } 809 810 if (AccessGroup) 811 NI->setMetadata(LLVMContext::MD_access_group, uniteAccessGroups( 812 NI->getMetadata(LLVMContext::MD_access_group), AccessGroup)); 813 814 if (AliasScope) 815 NI->setMetadata(LLVMContext::MD_alias_scope, MDNode::concatenate( 816 NI->getMetadata(LLVMContext::MD_alias_scope), AliasScope)); 817 818 if (NoAlias) 819 NI->setMetadata(LLVMContext::MD_noalias, MDNode::concatenate( 820 NI->getMetadata(LLVMContext::MD_noalias), NoAlias)); 821 } 822 } 823 824 /// When inlining a function that contains noalias scope metadata, 825 /// this metadata needs to be cloned so that the inlined blocks 826 /// have different "unique scopes" at every call site. Were this not done, then 827 /// aliasing scopes from a function inlined into a caller multiple times could 828 /// not be differentiated (and this would lead to miscompiles because the 829 /// non-aliasing property communicated by the metadata could have 830 /// call-site-specific control dependencies). 831 static void CloneAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap) { 832 const Function *CalledFunc = CB.getCalledFunction(); 833 SetVector<const MDNode *> MD; 834 835 // Note: We could only clone the metadata if it is already used in the 836 // caller. I'm omitting that check here because it might confuse 837 // inter-procedural alias analysis passes. We can revisit this if it becomes 838 // an efficiency or overhead problem. 839 840 for (const BasicBlock &I : *CalledFunc) 841 for (const Instruction &J : I) { 842 if (const MDNode *M = J.getMetadata(LLVMContext::MD_alias_scope)) 843 MD.insert(M); 844 if (const MDNode *M = J.getMetadata(LLVMContext::MD_noalias)) 845 MD.insert(M); 846 } 847 848 if (MD.empty()) 849 return; 850 851 // Walk the existing metadata, adding the complete (perhaps cyclic) chain to 852 // the set. 853 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end()); 854 while (!Queue.empty()) { 855 const MDNode *M = cast<MDNode>(Queue.pop_back_val()); 856 for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i) 857 if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i))) 858 if (MD.insert(M1)) 859 Queue.push_back(M1); 860 } 861 862 // Now we have a complete set of all metadata in the chains used to specify 863 // the noalias scopes and the lists of those scopes. 864 SmallVector<TempMDTuple, 16> DummyNodes; 865 DenseMap<const MDNode *, TrackingMDNodeRef> MDMap; 866 for (const MDNode *I : MD) { 867 DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None)); 868 MDMap[I].reset(DummyNodes.back().get()); 869 } 870 871 // Create new metadata nodes to replace the dummy nodes, replacing old 872 // metadata references with either a dummy node or an already-created new 873 // node. 874 for (const MDNode *I : MD) { 875 SmallVector<Metadata *, 4> NewOps; 876 for (unsigned i = 0, ie = I->getNumOperands(); i != ie; ++i) { 877 const Metadata *V = I->getOperand(i); 878 if (const MDNode *M = dyn_cast<MDNode>(V)) 879 NewOps.push_back(MDMap[M]); 880 else 881 NewOps.push_back(const_cast<Metadata *>(V)); 882 } 883 884 MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps); 885 MDTuple *TempM = cast<MDTuple>(MDMap[I]); 886 assert(TempM->isTemporary() && "Expected temporary node"); 887 888 TempM->replaceAllUsesWith(NewM); 889 } 890 891 // Now replace the metadata in the new inlined instructions with the 892 // repacements from the map. 893 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 894 VMI != VMIE; ++VMI) { 895 // Check that key is an instruction, to skip the Argument mapping, which 896 // points to an instruction in the original function, not the inlined one. 897 if (!VMI->second || !isa<Instruction>(VMI->first)) 898 continue; 899 900 Instruction *NI = dyn_cast<Instruction>(VMI->second); 901 if (!NI) 902 continue; 903 904 if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) 905 NI->setMetadata(LLVMContext::MD_alias_scope, MDMap[M]); 906 907 if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) 908 NI->setMetadata(LLVMContext::MD_noalias, MDMap[M]); 909 } 910 } 911 912 /// If the inlined function has noalias arguments, 913 /// then add new alias scopes for each noalias argument, tag the mapped noalias 914 /// parameters with noalias metadata specifying the new scope, and tag all 915 /// non-derived loads, stores and memory intrinsics with the new alias scopes. 916 static void AddAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap, 917 const DataLayout &DL, AAResults *CalleeAAR) { 918 if (!EnableNoAliasConversion) 919 return; 920 921 const Function *CalledFunc = CB.getCalledFunction(); 922 SmallVector<const Argument *, 4> NoAliasArgs; 923 924 for (const Argument &Arg : CalledFunc->args()) 925 if (CB.paramHasAttr(Arg.getArgNo(), Attribute::NoAlias) && !Arg.use_empty()) 926 NoAliasArgs.push_back(&Arg); 927 928 if (NoAliasArgs.empty()) 929 return; 930 931 // To do a good job, if a noalias variable is captured, we need to know if 932 // the capture point dominates the particular use we're considering. 933 DominatorTree DT; 934 DT.recalculate(const_cast<Function&>(*CalledFunc)); 935 936 // noalias indicates that pointer values based on the argument do not alias 937 // pointer values which are not based on it. So we add a new "scope" for each 938 // noalias function argument. Accesses using pointers based on that argument 939 // become part of that alias scope, accesses using pointers not based on that 940 // argument are tagged as noalias with that scope. 941 942 DenseMap<const Argument *, MDNode *> NewScopes; 943 MDBuilder MDB(CalledFunc->getContext()); 944 945 // Create a new scope domain for this function. 946 MDNode *NewDomain = 947 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); 948 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { 949 const Argument *A = NoAliasArgs[i]; 950 951 std::string Name = std::string(CalledFunc->getName()); 952 if (A->hasName()) { 953 Name += ": %"; 954 Name += A->getName(); 955 } else { 956 Name += ": argument "; 957 Name += utostr(i); 958 } 959 960 // Note: We always create a new anonymous root here. This is true regardless 961 // of the linkage of the callee because the aliasing "scope" is not just a 962 // property of the callee, but also all control dependencies in the caller. 963 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); 964 NewScopes.insert(std::make_pair(A, NewScope)); 965 } 966 967 // Iterate over all new instructions in the map; for all memory-access 968 // instructions, add the alias scope metadata. 969 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 970 VMI != VMIE; ++VMI) { 971 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { 972 if (!VMI->second) 973 continue; 974 975 Instruction *NI = dyn_cast<Instruction>(VMI->second); 976 if (!NI) 977 continue; 978 979 bool IsArgMemOnlyCall = false, IsFuncCall = false; 980 SmallVector<const Value *, 2> PtrArgs; 981 982 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 983 PtrArgs.push_back(LI->getPointerOperand()); 984 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 985 PtrArgs.push_back(SI->getPointerOperand()); 986 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) 987 PtrArgs.push_back(VAAI->getPointerOperand()); 988 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 989 PtrArgs.push_back(CXI->getPointerOperand()); 990 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 991 PtrArgs.push_back(RMWI->getPointerOperand()); 992 else if (const auto *Call = dyn_cast<CallBase>(I)) { 993 // If we know that the call does not access memory, then we'll still 994 // know that about the inlined clone of this call site, and we don't 995 // need to add metadata. 996 if (Call->doesNotAccessMemory()) 997 continue; 998 999 IsFuncCall = true; 1000 if (CalleeAAR) { 1001 FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call); 1002 if (AAResults::onlyAccessesArgPointees(MRB)) 1003 IsArgMemOnlyCall = true; 1004 } 1005 1006 for (Value *Arg : Call->args()) { 1007 // We need to check the underlying objects of all arguments, not just 1008 // the pointer arguments, because we might be passing pointers as 1009 // integers, etc. 1010 // However, if we know that the call only accesses pointer arguments, 1011 // then we only need to check the pointer arguments. 1012 if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy()) 1013 continue; 1014 1015 PtrArgs.push_back(Arg); 1016 } 1017 } 1018 1019 // If we found no pointers, then this instruction is not suitable for 1020 // pairing with an instruction to receive aliasing metadata. 1021 // However, if this is a call, this we might just alias with none of the 1022 // noalias arguments. 1023 if (PtrArgs.empty() && !IsFuncCall) 1024 continue; 1025 1026 // It is possible that there is only one underlying object, but you 1027 // need to go through several PHIs to see it, and thus could be 1028 // repeated in the Objects list. 1029 SmallPtrSet<const Value *, 4> ObjSet; 1030 SmallVector<Metadata *, 4> Scopes, NoAliases; 1031 1032 SmallSetVector<const Argument *, 4> NAPtrArgs; 1033 for (const Value *V : PtrArgs) { 1034 SmallVector<const Value *, 4> Objects; 1035 getUnderlyingObjects(V, Objects, /* LI = */ nullptr); 1036 1037 for (const Value *O : Objects) 1038 ObjSet.insert(O); 1039 } 1040 1041 // Figure out if we're derived from anything that is not a noalias 1042 // argument. 1043 bool CanDeriveViaCapture = false, UsesAliasingPtr = false; 1044 for (const Value *V : ObjSet) { 1045 // Is this value a constant that cannot be derived from any pointer 1046 // value (we need to exclude constant expressions, for example, that 1047 // are formed from arithmetic on global symbols). 1048 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || 1049 isa<ConstantPointerNull>(V) || 1050 isa<ConstantDataVector>(V) || isa<UndefValue>(V); 1051 if (IsNonPtrConst) 1052 continue; 1053 1054 // If this is anything other than a noalias argument, then we cannot 1055 // completely describe the aliasing properties using alias.scope 1056 // metadata (and, thus, won't add any). 1057 if (const Argument *A = dyn_cast<Argument>(V)) { 1058 if (!CB.paramHasAttr(A->getArgNo(), Attribute::NoAlias)) 1059 UsesAliasingPtr = true; 1060 } else { 1061 UsesAliasingPtr = true; 1062 } 1063 1064 // If this is not some identified function-local object (which cannot 1065 // directly alias a noalias argument), or some other argument (which, 1066 // by definition, also cannot alias a noalias argument), then we could 1067 // alias a noalias argument that has been captured). 1068 if (!isa<Argument>(V) && 1069 !isIdentifiedFunctionLocal(const_cast<Value*>(V))) 1070 CanDeriveViaCapture = true; 1071 } 1072 1073 // A function call can always get captured noalias pointers (via other 1074 // parameters, globals, etc.). 1075 if (IsFuncCall && !IsArgMemOnlyCall) 1076 CanDeriveViaCapture = true; 1077 1078 // First, we want to figure out all of the sets with which we definitely 1079 // don't alias. Iterate over all noalias set, and add those for which: 1080 // 1. The noalias argument is not in the set of objects from which we 1081 // definitely derive. 1082 // 2. The noalias argument has not yet been captured. 1083 // An arbitrary function that might load pointers could see captured 1084 // noalias arguments via other noalias arguments or globals, and so we 1085 // must always check for prior capture. 1086 for (const Argument *A : NoAliasArgs) { 1087 if (!ObjSet.count(A) && (!CanDeriveViaCapture || 1088 // It might be tempting to skip the 1089 // PointerMayBeCapturedBefore check if 1090 // A->hasNoCaptureAttr() is true, but this is 1091 // incorrect because nocapture only guarantees 1092 // that no copies outlive the function, not 1093 // that the value cannot be locally captured. 1094 !PointerMayBeCapturedBefore(A, 1095 /* ReturnCaptures */ false, 1096 /* StoreCaptures */ false, I, &DT))) 1097 NoAliases.push_back(NewScopes[A]); 1098 } 1099 1100 if (!NoAliases.empty()) 1101 NI->setMetadata(LLVMContext::MD_noalias, 1102 MDNode::concatenate( 1103 NI->getMetadata(LLVMContext::MD_noalias), 1104 MDNode::get(CalledFunc->getContext(), NoAliases))); 1105 1106 // Next, we want to figure out all of the sets to which we might belong. 1107 // We might belong to a set if the noalias argument is in the set of 1108 // underlying objects. If there is some non-noalias argument in our list 1109 // of underlying objects, then we cannot add a scope because the fact 1110 // that some access does not alias with any set of our noalias arguments 1111 // cannot itself guarantee that it does not alias with this access 1112 // (because there is some pointer of unknown origin involved and the 1113 // other access might also depend on this pointer). We also cannot add 1114 // scopes to arbitrary functions unless we know they don't access any 1115 // non-parameter pointer-values. 1116 bool CanAddScopes = !UsesAliasingPtr; 1117 if (CanAddScopes && IsFuncCall) 1118 CanAddScopes = IsArgMemOnlyCall; 1119 1120 if (CanAddScopes) 1121 for (const Argument *A : NoAliasArgs) { 1122 if (ObjSet.count(A)) 1123 Scopes.push_back(NewScopes[A]); 1124 } 1125 1126 if (!Scopes.empty()) 1127 NI->setMetadata( 1128 LLVMContext::MD_alias_scope, 1129 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), 1130 MDNode::get(CalledFunc->getContext(), Scopes))); 1131 } 1132 } 1133 } 1134 1135 static bool MayContainThrowingOrExitingCall(Instruction *Begin, 1136 Instruction *End) { 1137 1138 assert(Begin->getParent() == End->getParent() && 1139 "Expected to be in same basic block!"); 1140 unsigned NumInstChecked = 0; 1141 // Check that all instructions in the range [Begin, End) are guaranteed to 1142 // transfer execution to successor. 1143 for (auto &I : make_range(Begin->getIterator(), End->getIterator())) 1144 if (NumInstChecked++ > InlinerAttributeWindow || 1145 !isGuaranteedToTransferExecutionToSuccessor(&I)) 1146 return true; 1147 return false; 1148 } 1149 1150 static AttrBuilder IdentifyValidAttributes(CallBase &CB) { 1151 1152 AttrBuilder AB(CB.getAttributes(), AttributeList::ReturnIndex); 1153 if (AB.empty()) 1154 return AB; 1155 AttrBuilder Valid; 1156 // Only allow these white listed attributes to be propagated back to the 1157 // callee. This is because other attributes may only be valid on the call 1158 // itself, i.e. attributes such as signext and zeroext. 1159 if (auto DerefBytes = AB.getDereferenceableBytes()) 1160 Valid.addDereferenceableAttr(DerefBytes); 1161 if (auto DerefOrNullBytes = AB.getDereferenceableOrNullBytes()) 1162 Valid.addDereferenceableOrNullAttr(DerefOrNullBytes); 1163 if (AB.contains(Attribute::NoAlias)) 1164 Valid.addAttribute(Attribute::NoAlias); 1165 if (AB.contains(Attribute::NonNull)) 1166 Valid.addAttribute(Attribute::NonNull); 1167 return Valid; 1168 } 1169 1170 static void AddReturnAttributes(CallBase &CB, ValueToValueMapTy &VMap) { 1171 if (!UpdateReturnAttributes) 1172 return; 1173 1174 AttrBuilder Valid = IdentifyValidAttributes(CB); 1175 if (Valid.empty()) 1176 return; 1177 auto *CalledFunction = CB.getCalledFunction(); 1178 auto &Context = CalledFunction->getContext(); 1179 1180 for (auto &BB : *CalledFunction) { 1181 auto *RI = dyn_cast<ReturnInst>(BB.getTerminator()); 1182 if (!RI || !isa<CallBase>(RI->getOperand(0))) 1183 continue; 1184 auto *RetVal = cast<CallBase>(RI->getOperand(0)); 1185 // Sanity check that the cloned RetVal exists and is a call, otherwise we 1186 // cannot add the attributes on the cloned RetVal. 1187 // Simplification during inlining could have transformed the cloned 1188 // instruction. 1189 auto *NewRetVal = dyn_cast_or_null<CallBase>(VMap.lookup(RetVal)); 1190 if (!NewRetVal) 1191 continue; 1192 // Backward propagation of attributes to the returned value may be incorrect 1193 // if it is control flow dependent. 1194 // Consider: 1195 // @callee { 1196 // %rv = call @foo() 1197 // %rv2 = call @bar() 1198 // if (%rv2 != null) 1199 // return %rv2 1200 // if (%rv == null) 1201 // exit() 1202 // return %rv 1203 // } 1204 // caller() { 1205 // %val = call nonnull @callee() 1206 // } 1207 // Here we cannot add the nonnull attribute on either foo or bar. So, we 1208 // limit the check to both RetVal and RI are in the same basic block and 1209 // there are no throwing/exiting instructions between these instructions. 1210 if (RI->getParent() != RetVal->getParent() || 1211 MayContainThrowingOrExitingCall(RetVal, RI)) 1212 continue; 1213 // Add to the existing attributes of NewRetVal, i.e. the cloned call 1214 // instruction. 1215 // NB! When we have the same attribute already existing on NewRetVal, but 1216 // with a differing value, the AttributeList's merge API honours the already 1217 // existing attribute value (i.e. attributes such as dereferenceable, 1218 // dereferenceable_or_null etc). See AttrBuilder::merge for more details. 1219 AttributeList AL = NewRetVal->getAttributes(); 1220 AttributeList NewAL = 1221 AL.addAttributes(Context, AttributeList::ReturnIndex, Valid); 1222 NewRetVal->setAttributes(NewAL); 1223 } 1224 } 1225 1226 /// If the inlined function has non-byval align arguments, then 1227 /// add @llvm.assume-based alignment assumptions to preserve this information. 1228 static void AddAlignmentAssumptions(CallBase &CB, InlineFunctionInfo &IFI) { 1229 if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache) 1230 return; 1231 1232 AssumptionCache *AC = &IFI.GetAssumptionCache(*CB.getCaller()); 1233 auto &DL = CB.getCaller()->getParent()->getDataLayout(); 1234 1235 // To avoid inserting redundant assumptions, we should check for assumptions 1236 // already in the caller. To do this, we might need a DT of the caller. 1237 DominatorTree DT; 1238 bool DTCalculated = false; 1239 1240 Function *CalledFunc = CB.getCalledFunction(); 1241 for (Argument &Arg : CalledFunc->args()) { 1242 unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0; 1243 if (Align && !Arg.hasPassPointeeByValueCopyAttr() && !Arg.hasNUses(0)) { 1244 if (!DTCalculated) { 1245 DT.recalculate(*CB.getCaller()); 1246 DTCalculated = true; 1247 } 1248 1249 // If we can already prove the asserted alignment in the context of the 1250 // caller, then don't bother inserting the assumption. 1251 Value *ArgVal = CB.getArgOperand(Arg.getArgNo()); 1252 if (getKnownAlignment(ArgVal, DL, &CB, AC, &DT) >= Align) 1253 continue; 1254 1255 CallInst *NewAsmp = 1256 IRBuilder<>(&CB).CreateAlignmentAssumption(DL, ArgVal, Align); 1257 AC->registerAssumption(NewAsmp); 1258 } 1259 } 1260 } 1261 1262 /// Once we have cloned code over from a callee into the caller, 1263 /// update the specified callgraph to reflect the changes we made. 1264 /// Note that it's possible that not all code was copied over, so only 1265 /// some edges of the callgraph may remain. 1266 static void UpdateCallGraphAfterInlining(CallBase &CB, 1267 Function::iterator FirstNewBlock, 1268 ValueToValueMapTy &VMap, 1269 InlineFunctionInfo &IFI) { 1270 CallGraph &CG = *IFI.CG; 1271 const Function *Caller = CB.getCaller(); 1272 const Function *Callee = CB.getCalledFunction(); 1273 CallGraphNode *CalleeNode = CG[Callee]; 1274 CallGraphNode *CallerNode = CG[Caller]; 1275 1276 // Since we inlined some uninlined call sites in the callee into the caller, 1277 // add edges from the caller to all of the callees of the callee. 1278 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 1279 1280 // Consider the case where CalleeNode == CallerNode. 1281 CallGraphNode::CalledFunctionsVector CallCache; 1282 if (CalleeNode == CallerNode) { 1283 CallCache.assign(I, E); 1284 I = CallCache.begin(); 1285 E = CallCache.end(); 1286 } 1287 1288 for (; I != E; ++I) { 1289 // Skip 'refererence' call records. 1290 if (!I->first) 1291 continue; 1292 1293 const Value *OrigCall = *I->first; 1294 1295 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 1296 // Only copy the edge if the call was inlined! 1297 if (VMI == VMap.end() || VMI->second == nullptr) 1298 continue; 1299 1300 // If the call was inlined, but then constant folded, there is no edge to 1301 // add. Check for this case. 1302 auto *NewCall = dyn_cast<CallBase>(VMI->second); 1303 if (!NewCall) 1304 continue; 1305 1306 // We do not treat intrinsic calls like real function calls because we 1307 // expect them to become inline code; do not add an edge for an intrinsic. 1308 if (NewCall->getCalledFunction() && 1309 NewCall->getCalledFunction()->isIntrinsic()) 1310 continue; 1311 1312 // Remember that this call site got inlined for the client of 1313 // InlineFunction. 1314 IFI.InlinedCalls.push_back(NewCall); 1315 1316 // It's possible that inlining the callsite will cause it to go from an 1317 // indirect to a direct call by resolving a function pointer. If this 1318 // happens, set the callee of the new call site to a more precise 1319 // destination. This can also happen if the call graph node of the caller 1320 // was just unnecessarily imprecise. 1321 if (!I->second->getFunction()) 1322 if (Function *F = NewCall->getCalledFunction()) { 1323 // Indirect call site resolved to direct call. 1324 CallerNode->addCalledFunction(NewCall, CG[F]); 1325 1326 continue; 1327 } 1328 1329 CallerNode->addCalledFunction(NewCall, I->second); 1330 } 1331 1332 // Update the call graph by deleting the edge from Callee to Caller. We must 1333 // do this after the loop above in case Caller and Callee are the same. 1334 CallerNode->removeCallEdgeFor(*cast<CallBase>(&CB)); 1335 } 1336 1337 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M, 1338 BasicBlock *InsertBlock, 1339 InlineFunctionInfo &IFI) { 1340 Type *AggTy = cast<PointerType>(Src->getType())->getElementType(); 1341 IRBuilder<> Builder(InsertBlock, InsertBlock->begin()); 1342 1343 Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy)); 1344 1345 // Always generate a memcpy of alignment 1 here because we don't know 1346 // the alignment of the src pointer. Other optimizations can infer 1347 // better alignment. 1348 Builder.CreateMemCpy(Dst, /*DstAlign*/ Align(1), Src, 1349 /*SrcAlign*/ Align(1), Size); 1350 } 1351 1352 /// When inlining a call site that has a byval argument, 1353 /// we have to make the implicit memcpy explicit by adding it. 1354 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 1355 const Function *CalledFunc, 1356 InlineFunctionInfo &IFI, 1357 unsigned ByValAlignment) { 1358 PointerType *ArgTy = cast<PointerType>(Arg->getType()); 1359 Type *AggTy = ArgTy->getElementType(); 1360 1361 Function *Caller = TheCall->getFunction(); 1362 const DataLayout &DL = Caller->getParent()->getDataLayout(); 1363 1364 // If the called function is readonly, then it could not mutate the caller's 1365 // copy of the byval'd memory. In this case, it is safe to elide the copy and 1366 // temporary. 1367 if (CalledFunc->onlyReadsMemory()) { 1368 // If the byval argument has a specified alignment that is greater than the 1369 // passed in pointer, then we either have to round up the input pointer or 1370 // give up on this transformation. 1371 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 1372 return Arg; 1373 1374 AssumptionCache *AC = 1375 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr; 1376 1377 // If the pointer is already known to be sufficiently aligned, or if we can 1378 // round it up to a larger alignment, then we don't need a temporary. 1379 if (getOrEnforceKnownAlignment(Arg, Align(ByValAlignment), DL, TheCall, 1380 AC) >= ByValAlignment) 1381 return Arg; 1382 1383 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 1384 // for code quality, but rarely happens and is required for correctness. 1385 } 1386 1387 // Create the alloca. If we have DataLayout, use nice alignment. 1388 Align Alignment(DL.getPrefTypeAlignment(AggTy)); 1389 1390 // If the byval had an alignment specified, we *must* use at least that 1391 // alignment, as it is required by the byval argument (and uses of the 1392 // pointer inside the callee). 1393 Alignment = max(Alignment, MaybeAlign(ByValAlignment)); 1394 1395 Value *NewAlloca = 1396 new AllocaInst(AggTy, DL.getAllocaAddrSpace(), nullptr, Alignment, 1397 Arg->getName(), &*Caller->begin()->begin()); 1398 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); 1399 1400 // Uses of the argument in the function should use our new alloca 1401 // instead. 1402 return NewAlloca; 1403 } 1404 1405 // Check whether this Value is used by a lifetime intrinsic. 1406 static bool isUsedByLifetimeMarker(Value *V) { 1407 for (User *U : V->users()) 1408 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) 1409 if (II->isLifetimeStartOrEnd()) 1410 return true; 1411 return false; 1412 } 1413 1414 // Check whether the given alloca already has 1415 // lifetime.start or lifetime.end intrinsics. 1416 static bool hasLifetimeMarkers(AllocaInst *AI) { 1417 Type *Ty = AI->getType(); 1418 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), 1419 Ty->getPointerAddressSpace()); 1420 if (Ty == Int8PtrTy) 1421 return isUsedByLifetimeMarker(AI); 1422 1423 // Do a scan to find all the casts to i8*. 1424 for (User *U : AI->users()) { 1425 if (U->getType() != Int8PtrTy) continue; 1426 if (U->stripPointerCasts() != AI) continue; 1427 if (isUsedByLifetimeMarker(U)) 1428 return true; 1429 } 1430 return false; 1431 } 1432 1433 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry 1434 /// block. Allocas used in inalloca calls and allocas of dynamic array size 1435 /// cannot be static. 1436 static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) { 1437 return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca(); 1438 } 1439 1440 /// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL 1441 /// inlined at \p InlinedAt. \p IANodes is an inlined-at cache. 1442 static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt, 1443 LLVMContext &Ctx, 1444 DenseMap<const MDNode *, MDNode *> &IANodes) { 1445 auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes); 1446 return DebugLoc::get(OrigDL.getLine(), OrigDL.getCol(), OrigDL.getScope(), 1447 IA); 1448 } 1449 1450 /// Update inlined instructions' line numbers to 1451 /// to encode location where these instructions are inlined. 1452 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 1453 Instruction *TheCall, bool CalleeHasDebugInfo) { 1454 const DebugLoc &TheCallDL = TheCall->getDebugLoc(); 1455 if (!TheCallDL) 1456 return; 1457 1458 auto &Ctx = Fn->getContext(); 1459 DILocation *InlinedAtNode = TheCallDL; 1460 1461 // Create a unique call site, not to be confused with any other call from the 1462 // same location. 1463 InlinedAtNode = DILocation::getDistinct( 1464 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(), 1465 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt()); 1466 1467 // Cache the inlined-at nodes as they're built so they are reused, without 1468 // this every instruction's inlined-at chain would become distinct from each 1469 // other. 1470 DenseMap<const MDNode *, MDNode *> IANodes; 1471 1472 // Check if we are not generating inline line tables and want to use 1473 // the call site location instead. 1474 bool NoInlineLineTables = Fn->hasFnAttribute("no-inline-line-tables"); 1475 1476 for (; FI != Fn->end(); ++FI) { 1477 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 1478 BI != BE; ++BI) { 1479 // Loop metadata needs to be updated so that the start and end locs 1480 // reference inlined-at locations. 1481 auto updateLoopInfoLoc = [&Ctx, &InlinedAtNode, &IANodes]( 1482 const DILocation &Loc) -> DILocation * { 1483 return inlineDebugLoc(&Loc, InlinedAtNode, Ctx, IANodes).get(); 1484 }; 1485 updateLoopMetadataDebugLocations(*BI, updateLoopInfoLoc); 1486 1487 if (!NoInlineLineTables) 1488 if (DebugLoc DL = BI->getDebugLoc()) { 1489 DebugLoc IDL = 1490 inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes); 1491 BI->setDebugLoc(IDL); 1492 continue; 1493 } 1494 1495 if (CalleeHasDebugInfo && !NoInlineLineTables) 1496 continue; 1497 1498 // If the inlined instruction has no line number, or if inline info 1499 // is not being generated, make it look as if it originates from the call 1500 // location. This is important for ((__always_inline, __nodebug__)) 1501 // functions which must use caller location for all instructions in their 1502 // function body. 1503 1504 // Don't update static allocas, as they may get moved later. 1505 if (auto *AI = dyn_cast<AllocaInst>(BI)) 1506 if (allocaWouldBeStaticInEntry(AI)) 1507 continue; 1508 1509 BI->setDebugLoc(TheCallDL); 1510 } 1511 1512 // Remove debug info intrinsics if we're not keeping inline info. 1513 if (NoInlineLineTables) { 1514 BasicBlock::iterator BI = FI->begin(); 1515 while (BI != FI->end()) { 1516 if (isa<DbgInfoIntrinsic>(BI)) { 1517 BI = BI->eraseFromParent(); 1518 continue; 1519 } 1520 ++BI; 1521 } 1522 } 1523 1524 } 1525 } 1526 1527 /// Update the block frequencies of the caller after a callee has been inlined. 1528 /// 1529 /// Each block cloned into the caller has its block frequency scaled by the 1530 /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of 1531 /// callee's entry block gets the same frequency as the callsite block and the 1532 /// relative frequencies of all cloned blocks remain the same after cloning. 1533 static void updateCallerBFI(BasicBlock *CallSiteBlock, 1534 const ValueToValueMapTy &VMap, 1535 BlockFrequencyInfo *CallerBFI, 1536 BlockFrequencyInfo *CalleeBFI, 1537 const BasicBlock &CalleeEntryBlock) { 1538 SmallPtrSet<BasicBlock *, 16> ClonedBBs; 1539 for (auto Entry : VMap) { 1540 if (!isa<BasicBlock>(Entry.first) || !Entry.second) 1541 continue; 1542 auto *OrigBB = cast<BasicBlock>(Entry.first); 1543 auto *ClonedBB = cast<BasicBlock>(Entry.second); 1544 uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency(); 1545 if (!ClonedBBs.insert(ClonedBB).second) { 1546 // Multiple blocks in the callee might get mapped to one cloned block in 1547 // the caller since we prune the callee as we clone it. When that happens, 1548 // we want to use the maximum among the original blocks' frequencies. 1549 uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency(); 1550 if (NewFreq > Freq) 1551 Freq = NewFreq; 1552 } 1553 CallerBFI->setBlockFreq(ClonedBB, Freq); 1554 } 1555 BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock)); 1556 CallerBFI->setBlockFreqAndScale( 1557 EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(), 1558 ClonedBBs); 1559 } 1560 1561 /// Update the branch metadata for cloned call instructions. 1562 static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap, 1563 const ProfileCount &CalleeEntryCount, 1564 const CallBase &TheCall, ProfileSummaryInfo *PSI, 1565 BlockFrequencyInfo *CallerBFI) { 1566 if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() || 1567 CalleeEntryCount.getCount() < 1) 1568 return; 1569 auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None; 1570 int64_t CallCount = 1571 std::min(CallSiteCount.hasValue() ? CallSiteCount.getValue() : 0, 1572 CalleeEntryCount.getCount()); 1573 updateProfileCallee(Callee, -CallCount, &VMap); 1574 } 1575 1576 void llvm::updateProfileCallee( 1577 Function *Callee, int64_t entryDelta, 1578 const ValueMap<const Value *, WeakTrackingVH> *VMap) { 1579 auto CalleeCount = Callee->getEntryCount(); 1580 if (!CalleeCount.hasValue()) 1581 return; 1582 1583 uint64_t priorEntryCount = CalleeCount.getCount(); 1584 uint64_t newEntryCount; 1585 1586 // Since CallSiteCount is an estimate, it could exceed the original callee 1587 // count and has to be set to 0 so guard against underflow. 1588 if (entryDelta < 0 && static_cast<uint64_t>(-entryDelta) > priorEntryCount) 1589 newEntryCount = 0; 1590 else 1591 newEntryCount = priorEntryCount + entryDelta; 1592 1593 // During inlining ? 1594 if (VMap) { 1595 uint64_t cloneEntryCount = priorEntryCount - newEntryCount; 1596 for (auto Entry : *VMap) 1597 if (isa<CallInst>(Entry.first)) 1598 if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second)) 1599 CI->updateProfWeight(cloneEntryCount, priorEntryCount); 1600 } 1601 1602 if (entryDelta) { 1603 Callee->setEntryCount(newEntryCount); 1604 1605 for (BasicBlock &BB : *Callee) 1606 // No need to update the callsite if it is pruned during inlining. 1607 if (!VMap || VMap->count(&BB)) 1608 for (Instruction &I : BB) 1609 if (CallInst *CI = dyn_cast<CallInst>(&I)) 1610 CI->updateProfWeight(newEntryCount, priorEntryCount); 1611 } 1612 } 1613 1614 /// This function inlines the called function into the basic block of the 1615 /// caller. This returns false if it is not possible to inline this call. 1616 /// The program is still in a well defined state if this occurs though. 1617 /// 1618 /// Note that this only does one level of inlining. For example, if the 1619 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 1620 /// exists in the instruction stream. Similarly this will inline a recursive 1621 /// function by one level. 1622 llvm::InlineResult llvm::InlineFunction(CallBase &CB, InlineFunctionInfo &IFI, 1623 AAResults *CalleeAAR, 1624 bool InsertLifetime, 1625 Function *ForwardVarArgsTo) { 1626 assert(CB.getParent() && CB.getFunction() && "Instruction not in function!"); 1627 1628 // FIXME: we don't inline callbr yet. 1629 if (isa<CallBrInst>(CB)) 1630 return InlineResult::failure("We don't inline callbr yet."); 1631 1632 // If IFI has any state in it, zap it before we fill it in. 1633 IFI.reset(); 1634 1635 Function *CalledFunc = CB.getCalledFunction(); 1636 if (!CalledFunc || // Can't inline external function or indirect 1637 CalledFunc->isDeclaration()) // call! 1638 return InlineResult::failure("external or indirect"); 1639 1640 // The inliner does not know how to inline through calls with operand bundles 1641 // in general ... 1642 if (CB.hasOperandBundles()) { 1643 for (int i = 0, e = CB.getNumOperandBundles(); i != e; ++i) { 1644 uint32_t Tag = CB.getOperandBundleAt(i).getTagID(); 1645 // ... but it knows how to inline through "deopt" operand bundles ... 1646 if (Tag == LLVMContext::OB_deopt) 1647 continue; 1648 // ... and "funclet" operand bundles. 1649 if (Tag == LLVMContext::OB_funclet) 1650 continue; 1651 1652 return InlineResult::failure("unsupported operand bundle"); 1653 } 1654 } 1655 1656 // If the call to the callee cannot throw, set the 'nounwind' flag on any 1657 // calls that we inline. 1658 bool MarkNoUnwind = CB.doesNotThrow(); 1659 1660 BasicBlock *OrigBB = CB.getParent(); 1661 Function *Caller = OrigBB->getParent(); 1662 1663 // GC poses two hazards to inlining, which only occur when the callee has GC: 1664 // 1. If the caller has no GC, then the callee's GC must be propagated to the 1665 // caller. 1666 // 2. If the caller has a differing GC, it is invalid to inline. 1667 if (CalledFunc->hasGC()) { 1668 if (!Caller->hasGC()) 1669 Caller->setGC(CalledFunc->getGC()); 1670 else if (CalledFunc->getGC() != Caller->getGC()) 1671 return InlineResult::failure("incompatible GC"); 1672 } 1673 1674 // Get the personality function from the callee if it contains a landing pad. 1675 Constant *CalledPersonality = 1676 CalledFunc->hasPersonalityFn() 1677 ? CalledFunc->getPersonalityFn()->stripPointerCasts() 1678 : nullptr; 1679 1680 // Find the personality function used by the landing pads of the caller. If it 1681 // exists, then check to see that it matches the personality function used in 1682 // the callee. 1683 Constant *CallerPersonality = 1684 Caller->hasPersonalityFn() 1685 ? Caller->getPersonalityFn()->stripPointerCasts() 1686 : nullptr; 1687 if (CalledPersonality) { 1688 if (!CallerPersonality) 1689 Caller->setPersonalityFn(CalledPersonality); 1690 // If the personality functions match, then we can perform the 1691 // inlining. Otherwise, we can't inline. 1692 // TODO: This isn't 100% true. Some personality functions are proper 1693 // supersets of others and can be used in place of the other. 1694 else if (CalledPersonality != CallerPersonality) 1695 return InlineResult::failure("incompatible personality"); 1696 } 1697 1698 // We need to figure out which funclet the callsite was in so that we may 1699 // properly nest the callee. 1700 Instruction *CallSiteEHPad = nullptr; 1701 if (CallerPersonality) { 1702 EHPersonality Personality = classifyEHPersonality(CallerPersonality); 1703 if (isScopedEHPersonality(Personality)) { 1704 Optional<OperandBundleUse> ParentFunclet = 1705 CB.getOperandBundle(LLVMContext::OB_funclet); 1706 if (ParentFunclet) 1707 CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front()); 1708 1709 // OK, the inlining site is legal. What about the target function? 1710 1711 if (CallSiteEHPad) { 1712 if (Personality == EHPersonality::MSVC_CXX) { 1713 // The MSVC personality cannot tolerate catches getting inlined into 1714 // cleanup funclets. 1715 if (isa<CleanupPadInst>(CallSiteEHPad)) { 1716 // Ok, the call site is within a cleanuppad. Let's check the callee 1717 // for catchpads. 1718 for (const BasicBlock &CalledBB : *CalledFunc) { 1719 if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI())) 1720 return InlineResult::failure("catch in cleanup funclet"); 1721 } 1722 } 1723 } else if (isAsynchronousEHPersonality(Personality)) { 1724 // SEH is even less tolerant, there may not be any sort of exceptional 1725 // funclet in the callee. 1726 for (const BasicBlock &CalledBB : *CalledFunc) { 1727 if (CalledBB.isEHPad()) 1728 return InlineResult::failure("SEH in cleanup funclet"); 1729 } 1730 } 1731 } 1732 } 1733 } 1734 1735 // Determine if we are dealing with a call in an EHPad which does not unwind 1736 // to caller. 1737 bool EHPadForCallUnwindsLocally = false; 1738 if (CallSiteEHPad && isa<CallInst>(CB)) { 1739 UnwindDestMemoTy FuncletUnwindMap; 1740 Value *CallSiteUnwindDestToken = 1741 getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap); 1742 1743 EHPadForCallUnwindsLocally = 1744 CallSiteUnwindDestToken && 1745 !isa<ConstantTokenNone>(CallSiteUnwindDestToken); 1746 } 1747 1748 // Get an iterator to the last basic block in the function, which will have 1749 // the new function inlined after it. 1750 Function::iterator LastBlock = --Caller->end(); 1751 1752 // Make sure to capture all of the return instructions from the cloned 1753 // function. 1754 SmallVector<ReturnInst*, 8> Returns; 1755 ClonedCodeInfo InlinedFunctionInfo; 1756 Function::iterator FirstNewBlock; 1757 1758 { // Scope to destroy VMap after cloning. 1759 ValueToValueMapTy VMap; 1760 // Keep a list of pair (dst, src) to emit byval initializations. 1761 SmallVector<std::pair<Value*, Value*>, 4> ByValInit; 1762 1763 auto &DL = Caller->getParent()->getDataLayout(); 1764 1765 // Calculate the vector of arguments to pass into the function cloner, which 1766 // matches up the formal to the actual argument values. 1767 auto AI = CB.arg_begin(); 1768 unsigned ArgNo = 0; 1769 for (Function::arg_iterator I = CalledFunc->arg_begin(), 1770 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 1771 Value *ActualArg = *AI; 1772 1773 // When byval arguments actually inlined, we need to make the copy implied 1774 // by them explicit. However, we don't do this if the callee is readonly 1775 // or readnone, because the copy would be unneeded: the callee doesn't 1776 // modify the struct. 1777 if (CB.isByValArgument(ArgNo)) { 1778 ActualArg = HandleByValArgument(ActualArg, &CB, CalledFunc, IFI, 1779 CalledFunc->getParamAlignment(ArgNo)); 1780 if (ActualArg != *AI) 1781 ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI)); 1782 } 1783 1784 VMap[&*I] = ActualArg; 1785 } 1786 1787 // TODO: Remove this when users have been updated to the assume bundles. 1788 // Add alignment assumptions if necessary. We do this before the inlined 1789 // instructions are actually cloned into the caller so that we can easily 1790 // check what will be known at the start of the inlined code. 1791 AddAlignmentAssumptions(CB, IFI); 1792 1793 AssumptionCache *AC = 1794 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr; 1795 1796 /// Preserve all attributes on of the call and its parameters. 1797 salvageKnowledge(&CB, AC); 1798 1799 // We want the inliner to prune the code as it copies. We would LOVE to 1800 // have no dead or constant instructions leftover after inlining occurs 1801 // (which can happen, e.g., because an argument was constant), but we'll be 1802 // happy with whatever the cloner can do. 1803 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 1804 /*ModuleLevelChanges=*/false, Returns, ".i", 1805 &InlinedFunctionInfo, &CB); 1806 // Remember the first block that is newly cloned over. 1807 FirstNewBlock = LastBlock; ++FirstNewBlock; 1808 1809 if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr) 1810 // Update the BFI of blocks cloned into the caller. 1811 updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI, 1812 CalledFunc->front()); 1813 1814 updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), CB, 1815 IFI.PSI, IFI.CallerBFI); 1816 1817 // Inject byval arguments initialization. 1818 for (std::pair<Value*, Value*> &Init : ByValInit) 1819 HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(), 1820 &*FirstNewBlock, IFI); 1821 1822 Optional<OperandBundleUse> ParentDeopt = 1823 CB.getOperandBundle(LLVMContext::OB_deopt); 1824 if (ParentDeopt) { 1825 SmallVector<OperandBundleDef, 2> OpDefs; 1826 1827 for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) { 1828 CallBase *ICS = dyn_cast_or_null<CallBase>(VH); 1829 if (!ICS) 1830 continue; // instruction was DCE'd or RAUW'ed to undef 1831 1832 OpDefs.clear(); 1833 1834 OpDefs.reserve(ICS->getNumOperandBundles()); 1835 1836 for (unsigned COBi = 0, COBe = ICS->getNumOperandBundles(); COBi < COBe; 1837 ++COBi) { 1838 auto ChildOB = ICS->getOperandBundleAt(COBi); 1839 if (ChildOB.getTagID() != LLVMContext::OB_deopt) { 1840 // If the inlined call has other operand bundles, let them be 1841 OpDefs.emplace_back(ChildOB); 1842 continue; 1843 } 1844 1845 // It may be useful to separate this logic (of handling operand 1846 // bundles) out to a separate "policy" component if this gets crowded. 1847 // Prepend the parent's deoptimization continuation to the newly 1848 // inlined call's deoptimization continuation. 1849 std::vector<Value *> MergedDeoptArgs; 1850 MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() + 1851 ChildOB.Inputs.size()); 1852 1853 MergedDeoptArgs.insert(MergedDeoptArgs.end(), 1854 ParentDeopt->Inputs.begin(), 1855 ParentDeopt->Inputs.end()); 1856 MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(), 1857 ChildOB.Inputs.end()); 1858 1859 OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs)); 1860 } 1861 1862 Instruction *NewI = CallBase::Create(ICS, OpDefs, ICS); 1863 1864 // Note: the RAUW does the appropriate fixup in VMap, so we need to do 1865 // this even if the call returns void. 1866 ICS->replaceAllUsesWith(NewI); 1867 1868 VH = nullptr; 1869 ICS->eraseFromParent(); 1870 } 1871 } 1872 1873 // Update the callgraph if requested. 1874 if (IFI.CG) 1875 UpdateCallGraphAfterInlining(CB, FirstNewBlock, VMap, IFI); 1876 1877 // For 'nodebug' functions, the associated DISubprogram is always null. 1878 // Conservatively avoid propagating the callsite debug location to 1879 // instructions inlined from a function whose DISubprogram is not null. 1880 fixupLineNumbers(Caller, FirstNewBlock, &CB, 1881 CalledFunc->getSubprogram() != nullptr); 1882 1883 // Clone existing noalias metadata if necessary. 1884 CloneAliasScopeMetadata(CB, VMap); 1885 1886 // Add noalias metadata if necessary. 1887 AddAliasScopeMetadata(CB, VMap, DL, CalleeAAR); 1888 1889 // Clone return attributes on the callsite into the calls within the inlined 1890 // function which feed into its return value. 1891 AddReturnAttributes(CB, VMap); 1892 1893 // Propagate metadata on the callsite if necessary. 1894 PropagateCallSiteMetadata(CB, VMap); 1895 1896 // Register any cloned assumptions. 1897 if (IFI.GetAssumptionCache) 1898 for (BasicBlock &NewBlock : 1899 make_range(FirstNewBlock->getIterator(), Caller->end())) 1900 for (Instruction &I : NewBlock) 1901 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 1902 if (II->getIntrinsicID() == Intrinsic::assume) 1903 IFI.GetAssumptionCache(*Caller).registerAssumption(II); 1904 } 1905 1906 // If there are any alloca instructions in the block that used to be the entry 1907 // block for the callee, move them to the entry block of the caller. First 1908 // calculate which instruction they should be inserted before. We insert the 1909 // instructions at the end of the current alloca list. 1910 { 1911 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 1912 for (BasicBlock::iterator I = FirstNewBlock->begin(), 1913 E = FirstNewBlock->end(); I != E; ) { 1914 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 1915 if (!AI) continue; 1916 1917 // If the alloca is now dead, remove it. This often occurs due to code 1918 // specialization. 1919 if (AI->use_empty()) { 1920 AI->eraseFromParent(); 1921 continue; 1922 } 1923 1924 if (!allocaWouldBeStaticInEntry(AI)) 1925 continue; 1926 1927 // Keep track of the static allocas that we inline into the caller. 1928 IFI.StaticAllocas.push_back(AI); 1929 1930 // Scan for the block of allocas that we can move over, and move them 1931 // all at once. 1932 while (isa<AllocaInst>(I) && 1933 !cast<AllocaInst>(I)->use_empty() && 1934 allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) { 1935 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 1936 ++I; 1937 } 1938 1939 // Transfer all of the allocas over in a block. Using splice means 1940 // that the instructions aren't removed from the symbol table, then 1941 // reinserted. 1942 Caller->getEntryBlock().getInstList().splice( 1943 InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I); 1944 } 1945 } 1946 1947 SmallVector<Value*,4> VarArgsToForward; 1948 SmallVector<AttributeSet, 4> VarArgsAttrs; 1949 for (unsigned i = CalledFunc->getFunctionType()->getNumParams(); 1950 i < CB.getNumArgOperands(); i++) { 1951 VarArgsToForward.push_back(CB.getArgOperand(i)); 1952 VarArgsAttrs.push_back(CB.getAttributes().getParamAttributes(i)); 1953 } 1954 1955 bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false; 1956 if (InlinedFunctionInfo.ContainsCalls) { 1957 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; 1958 if (CallInst *CI = dyn_cast<CallInst>(&CB)) 1959 CallSiteTailKind = CI->getTailCallKind(); 1960 1961 // For inlining purposes, the "notail" marker is the same as no marker. 1962 if (CallSiteTailKind == CallInst::TCK_NoTail) 1963 CallSiteTailKind = CallInst::TCK_None; 1964 1965 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 1966 ++BB) { 1967 for (auto II = BB->begin(); II != BB->end();) { 1968 Instruction &I = *II++; 1969 CallInst *CI = dyn_cast<CallInst>(&I); 1970 if (!CI) 1971 continue; 1972 1973 // Forward varargs from inlined call site to calls to the 1974 // ForwardVarArgsTo function, if requested, and to musttail calls. 1975 if (!VarArgsToForward.empty() && 1976 ((ForwardVarArgsTo && 1977 CI->getCalledFunction() == ForwardVarArgsTo) || 1978 CI->isMustTailCall())) { 1979 // Collect attributes for non-vararg parameters. 1980 AttributeList Attrs = CI->getAttributes(); 1981 SmallVector<AttributeSet, 8> ArgAttrs; 1982 if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) { 1983 for (unsigned ArgNo = 0; 1984 ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo) 1985 ArgAttrs.push_back(Attrs.getParamAttributes(ArgNo)); 1986 } 1987 1988 // Add VarArg attributes. 1989 ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end()); 1990 Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttributes(), 1991 Attrs.getRetAttributes(), ArgAttrs); 1992 // Add VarArgs to existing parameters. 1993 SmallVector<Value *, 6> Params(CI->arg_operands()); 1994 Params.append(VarArgsToForward.begin(), VarArgsToForward.end()); 1995 CallInst *NewCI = CallInst::Create( 1996 CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI); 1997 NewCI->setDebugLoc(CI->getDebugLoc()); 1998 NewCI->setAttributes(Attrs); 1999 NewCI->setCallingConv(CI->getCallingConv()); 2000 CI->replaceAllUsesWith(NewCI); 2001 CI->eraseFromParent(); 2002 CI = NewCI; 2003 } 2004 2005 if (Function *F = CI->getCalledFunction()) 2006 InlinedDeoptimizeCalls |= 2007 F->getIntrinsicID() == Intrinsic::experimental_deoptimize; 2008 2009 // We need to reduce the strength of any inlined tail calls. For 2010 // musttail, we have to avoid introducing potential unbounded stack 2011 // growth. For example, if functions 'f' and 'g' are mutually recursive 2012 // with musttail, we can inline 'g' into 'f' so long as we preserve 2013 // musttail on the cloned call to 'f'. If either the inlined call site 2014 // or the cloned call site is *not* musttail, the program already has 2015 // one frame of stack growth, so it's safe to remove musttail. Here is 2016 // a table of example transformations: 2017 // 2018 // f -> musttail g -> musttail f ==> f -> musttail f 2019 // f -> musttail g -> tail f ==> f -> tail f 2020 // f -> g -> musttail f ==> f -> f 2021 // f -> g -> tail f ==> f -> f 2022 // 2023 // Inlined notail calls should remain notail calls. 2024 CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); 2025 if (ChildTCK != CallInst::TCK_NoTail) 2026 ChildTCK = std::min(CallSiteTailKind, ChildTCK); 2027 CI->setTailCallKind(ChildTCK); 2028 InlinedMustTailCalls |= CI->isMustTailCall(); 2029 2030 // Calls inlined through a 'nounwind' call site should be marked 2031 // 'nounwind'. 2032 if (MarkNoUnwind) 2033 CI->setDoesNotThrow(); 2034 } 2035 } 2036 } 2037 2038 // Leave lifetime markers for the static alloca's, scoping them to the 2039 // function we just inlined. 2040 if (InsertLifetime && !IFI.StaticAllocas.empty()) { 2041 IRBuilder<> builder(&FirstNewBlock->front()); 2042 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 2043 AllocaInst *AI = IFI.StaticAllocas[ai]; 2044 // Don't mark swifterror allocas. They can't have bitcast uses. 2045 if (AI->isSwiftError()) 2046 continue; 2047 2048 // If the alloca is already scoped to something smaller than the whole 2049 // function then there's no need to add redundant, less accurate markers. 2050 if (hasLifetimeMarkers(AI)) 2051 continue; 2052 2053 // Try to determine the size of the allocation. 2054 ConstantInt *AllocaSize = nullptr; 2055 if (ConstantInt *AIArraySize = 2056 dyn_cast<ConstantInt>(AI->getArraySize())) { 2057 auto &DL = Caller->getParent()->getDataLayout(); 2058 Type *AllocaType = AI->getAllocatedType(); 2059 TypeSize AllocaTypeSize = DL.getTypeAllocSize(AllocaType); 2060 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 2061 2062 // Don't add markers for zero-sized allocas. 2063 if (AllocaArraySize == 0) 2064 continue; 2065 2066 // Check that array size doesn't saturate uint64_t and doesn't 2067 // overflow when it's multiplied by type size. 2068 if (!AllocaTypeSize.isScalable() && 2069 AllocaArraySize != std::numeric_limits<uint64_t>::max() && 2070 std::numeric_limits<uint64_t>::max() / AllocaArraySize >= 2071 AllocaTypeSize.getFixedSize()) { 2072 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 2073 AllocaArraySize * AllocaTypeSize); 2074 } 2075 } 2076 2077 builder.CreateLifetimeStart(AI, AllocaSize); 2078 for (ReturnInst *RI : Returns) { 2079 // Don't insert llvm.lifetime.end calls between a musttail or deoptimize 2080 // call and a return. The return kills all local allocas. 2081 if (InlinedMustTailCalls && 2082 RI->getParent()->getTerminatingMustTailCall()) 2083 continue; 2084 if (InlinedDeoptimizeCalls && 2085 RI->getParent()->getTerminatingDeoptimizeCall()) 2086 continue; 2087 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); 2088 } 2089 } 2090 } 2091 2092 // If the inlined code contained dynamic alloca instructions, wrap the inlined 2093 // code with llvm.stacksave/llvm.stackrestore intrinsics. 2094 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 2095 Module *M = Caller->getParent(); 2096 // Get the two intrinsics we care about. 2097 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 2098 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 2099 2100 // Insert the llvm.stacksave. 2101 CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin()) 2102 .CreateCall(StackSave, {}, "savedstack"); 2103 2104 // Insert a call to llvm.stackrestore before any return instructions in the 2105 // inlined function. 2106 for (ReturnInst *RI : Returns) { 2107 // Don't insert llvm.stackrestore calls between a musttail or deoptimize 2108 // call and a return. The return will restore the stack pointer. 2109 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) 2110 continue; 2111 if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall()) 2112 continue; 2113 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); 2114 } 2115 } 2116 2117 // If we are inlining for an invoke instruction, we must make sure to rewrite 2118 // any call instructions into invoke instructions. This is sensitive to which 2119 // funclet pads were top-level in the inlinee, so must be done before 2120 // rewriting the "parent pad" links. 2121 if (auto *II = dyn_cast<InvokeInst>(&CB)) { 2122 BasicBlock *UnwindDest = II->getUnwindDest(); 2123 Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI(); 2124 if (isa<LandingPadInst>(FirstNonPHI)) { 2125 HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo); 2126 } else { 2127 HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo); 2128 } 2129 } 2130 2131 // Update the lexical scopes of the new funclets and callsites. 2132 // Anything that had 'none' as its parent is now nested inside the callsite's 2133 // EHPad. 2134 2135 if (CallSiteEHPad) { 2136 for (Function::iterator BB = FirstNewBlock->getIterator(), 2137 E = Caller->end(); 2138 BB != E; ++BB) { 2139 // Add bundle operands to any top-level call sites. 2140 SmallVector<OperandBundleDef, 1> OpBundles; 2141 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) { 2142 CallBase *I = dyn_cast<CallBase>(&*BBI++); 2143 if (!I) 2144 continue; 2145 2146 // Skip call sites which are nounwind intrinsics. 2147 auto *CalledFn = 2148 dyn_cast<Function>(I->getCalledOperand()->stripPointerCasts()); 2149 if (CalledFn && CalledFn->isIntrinsic() && I->doesNotThrow()) 2150 continue; 2151 2152 // Skip call sites which already have a "funclet" bundle. 2153 if (I->getOperandBundle(LLVMContext::OB_funclet)) 2154 continue; 2155 2156 I->getOperandBundlesAsDefs(OpBundles); 2157 OpBundles.emplace_back("funclet", CallSiteEHPad); 2158 2159 Instruction *NewInst = CallBase::Create(I, OpBundles, I); 2160 NewInst->takeName(I); 2161 I->replaceAllUsesWith(NewInst); 2162 I->eraseFromParent(); 2163 2164 OpBundles.clear(); 2165 } 2166 2167 // It is problematic if the inlinee has a cleanupret which unwinds to 2168 // caller and we inline it into a call site which doesn't unwind but into 2169 // an EH pad that does. Such an edge must be dynamically unreachable. 2170 // As such, we replace the cleanupret with unreachable. 2171 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator())) 2172 if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally) 2173 changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false); 2174 2175 Instruction *I = BB->getFirstNonPHI(); 2176 if (!I->isEHPad()) 2177 continue; 2178 2179 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 2180 if (isa<ConstantTokenNone>(CatchSwitch->getParentPad())) 2181 CatchSwitch->setParentPad(CallSiteEHPad); 2182 } else { 2183 auto *FPI = cast<FuncletPadInst>(I); 2184 if (isa<ConstantTokenNone>(FPI->getParentPad())) 2185 FPI->setParentPad(CallSiteEHPad); 2186 } 2187 } 2188 } 2189 2190 if (InlinedDeoptimizeCalls) { 2191 // We need to at least remove the deoptimizing returns from the Return set, 2192 // so that the control flow from those returns does not get merged into the 2193 // caller (but terminate it instead). If the caller's return type does not 2194 // match the callee's return type, we also need to change the return type of 2195 // the intrinsic. 2196 if (Caller->getReturnType() == CB.getType()) { 2197 auto NewEnd = llvm::remove_if(Returns, [](ReturnInst *RI) { 2198 return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr; 2199 }); 2200 Returns.erase(NewEnd, Returns.end()); 2201 } else { 2202 SmallVector<ReturnInst *, 8> NormalReturns; 2203 Function *NewDeoptIntrinsic = Intrinsic::getDeclaration( 2204 Caller->getParent(), Intrinsic::experimental_deoptimize, 2205 {Caller->getReturnType()}); 2206 2207 for (ReturnInst *RI : Returns) { 2208 CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall(); 2209 if (!DeoptCall) { 2210 NormalReturns.push_back(RI); 2211 continue; 2212 } 2213 2214 // The calling convention on the deoptimize call itself may be bogus, 2215 // since the code we're inlining may have undefined behavior (and may 2216 // never actually execute at runtime); but all 2217 // @llvm.experimental.deoptimize declarations have to have the same 2218 // calling convention in a well-formed module. 2219 auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv(); 2220 NewDeoptIntrinsic->setCallingConv(CallingConv); 2221 auto *CurBB = RI->getParent(); 2222 RI->eraseFromParent(); 2223 2224 SmallVector<Value *, 4> CallArgs(DeoptCall->arg_begin(), 2225 DeoptCall->arg_end()); 2226 2227 SmallVector<OperandBundleDef, 1> OpBundles; 2228 DeoptCall->getOperandBundlesAsDefs(OpBundles); 2229 DeoptCall->eraseFromParent(); 2230 assert(!OpBundles.empty() && 2231 "Expected at least the deopt operand bundle"); 2232 2233 IRBuilder<> Builder(CurBB); 2234 CallInst *NewDeoptCall = 2235 Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles); 2236 NewDeoptCall->setCallingConv(CallingConv); 2237 if (NewDeoptCall->getType()->isVoidTy()) 2238 Builder.CreateRetVoid(); 2239 else 2240 Builder.CreateRet(NewDeoptCall); 2241 } 2242 2243 // Leave behind the normal returns so we can merge control flow. 2244 std::swap(Returns, NormalReturns); 2245 } 2246 } 2247 2248 // Handle any inlined musttail call sites. In order for a new call site to be 2249 // musttail, the source of the clone and the inlined call site must have been 2250 // musttail. Therefore it's safe to return without merging control into the 2251 // phi below. 2252 if (InlinedMustTailCalls) { 2253 // Check if we need to bitcast the result of any musttail calls. 2254 Type *NewRetTy = Caller->getReturnType(); 2255 bool NeedBitCast = !CB.use_empty() && CB.getType() != NewRetTy; 2256 2257 // Handle the returns preceded by musttail calls separately. 2258 SmallVector<ReturnInst *, 8> NormalReturns; 2259 for (ReturnInst *RI : Returns) { 2260 CallInst *ReturnedMustTail = 2261 RI->getParent()->getTerminatingMustTailCall(); 2262 if (!ReturnedMustTail) { 2263 NormalReturns.push_back(RI); 2264 continue; 2265 } 2266 if (!NeedBitCast) 2267 continue; 2268 2269 // Delete the old return and any preceding bitcast. 2270 BasicBlock *CurBB = RI->getParent(); 2271 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); 2272 RI->eraseFromParent(); 2273 if (OldCast) 2274 OldCast->eraseFromParent(); 2275 2276 // Insert a new bitcast and return with the right type. 2277 IRBuilder<> Builder(CurBB); 2278 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); 2279 } 2280 2281 // Leave behind the normal returns so we can merge control flow. 2282 std::swap(Returns, NormalReturns); 2283 } 2284 2285 // Now that all of the transforms on the inlined code have taken place but 2286 // before we splice the inlined code into the CFG and lose track of which 2287 // blocks were actually inlined, collect the call sites. We only do this if 2288 // call graph updates weren't requested, as those provide value handle based 2289 // tracking of inlined call sites instead. 2290 if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) { 2291 // Otherwise just collect the raw call sites that were inlined. 2292 for (BasicBlock &NewBB : 2293 make_range(FirstNewBlock->getIterator(), Caller->end())) 2294 for (Instruction &I : NewBB) 2295 if (auto *CB = dyn_cast<CallBase>(&I)) 2296 IFI.InlinedCallSites.push_back(CB); 2297 } 2298 2299 // If we cloned in _exactly one_ basic block, and if that block ends in a 2300 // return instruction, we splice the body of the inlined callee directly into 2301 // the calling basic block. 2302 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 2303 // Move all of the instructions right before the call. 2304 OrigBB->getInstList().splice(CB.getIterator(), FirstNewBlock->getInstList(), 2305 FirstNewBlock->begin(), FirstNewBlock->end()); 2306 // Remove the cloned basic block. 2307 Caller->getBasicBlockList().pop_back(); 2308 2309 // If the call site was an invoke instruction, add a branch to the normal 2310 // destination. 2311 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 2312 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), &CB); 2313 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 2314 } 2315 2316 // If the return instruction returned a value, replace uses of the call with 2317 // uses of the returned value. 2318 if (!CB.use_empty()) { 2319 ReturnInst *R = Returns[0]; 2320 if (&CB == R->getReturnValue()) 2321 CB.replaceAllUsesWith(UndefValue::get(CB.getType())); 2322 else 2323 CB.replaceAllUsesWith(R->getReturnValue()); 2324 } 2325 // Since we are now done with the Call/Invoke, we can delete it. 2326 CB.eraseFromParent(); 2327 2328 // Since we are now done with the return instruction, delete it also. 2329 Returns[0]->eraseFromParent(); 2330 2331 // We are now done with the inlining. 2332 return InlineResult::success(); 2333 } 2334 2335 // Otherwise, we have the normal case, of more than one block to inline or 2336 // multiple return sites. 2337 2338 // We want to clone the entire callee function into the hole between the 2339 // "starter" and "ender" blocks. How we accomplish this depends on whether 2340 // this is an invoke instruction or a call instruction. 2341 BasicBlock *AfterCallBB; 2342 BranchInst *CreatedBranchToNormalDest = nullptr; 2343 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 2344 2345 // Add an unconditional branch to make this look like the CallInst case... 2346 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), &CB); 2347 2348 // Split the basic block. This guarantees that no PHI nodes will have to be 2349 // updated due to new incoming edges, and make the invoke case more 2350 // symmetric to the call case. 2351 AfterCallBB = 2352 OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(), 2353 CalledFunc->getName() + ".exit"); 2354 2355 } else { // It's a call 2356 // If this is a call instruction, we need to split the basic block that 2357 // the call lives in. 2358 // 2359 AfterCallBB = OrigBB->splitBasicBlock(CB.getIterator(), 2360 CalledFunc->getName() + ".exit"); 2361 } 2362 2363 if (IFI.CallerBFI) { 2364 // Copy original BB's block frequency to AfterCallBB 2365 IFI.CallerBFI->setBlockFreq( 2366 AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency()); 2367 } 2368 2369 // Change the branch that used to go to AfterCallBB to branch to the first 2370 // basic block of the inlined function. 2371 // 2372 Instruction *Br = OrigBB->getTerminator(); 2373 assert(Br && Br->getOpcode() == Instruction::Br && 2374 "splitBasicBlock broken!"); 2375 Br->setOperand(0, &*FirstNewBlock); 2376 2377 // Now that the function is correct, make it a little bit nicer. In 2378 // particular, move the basic blocks inserted from the end of the function 2379 // into the space made by splitting the source basic block. 2380 Caller->getBasicBlockList().splice(AfterCallBB->getIterator(), 2381 Caller->getBasicBlockList(), FirstNewBlock, 2382 Caller->end()); 2383 2384 // Handle all of the return instructions that we just cloned in, and eliminate 2385 // any users of the original call/invoke instruction. 2386 Type *RTy = CalledFunc->getReturnType(); 2387 2388 PHINode *PHI = nullptr; 2389 if (Returns.size() > 1) { 2390 // The PHI node should go at the front of the new basic block to merge all 2391 // possible incoming values. 2392 if (!CB.use_empty()) { 2393 PHI = PHINode::Create(RTy, Returns.size(), CB.getName(), 2394 &AfterCallBB->front()); 2395 // Anything that used the result of the function call should now use the 2396 // PHI node as their operand. 2397 CB.replaceAllUsesWith(PHI); 2398 } 2399 2400 // Loop over all of the return instructions adding entries to the PHI node 2401 // as appropriate. 2402 if (PHI) { 2403 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2404 ReturnInst *RI = Returns[i]; 2405 assert(RI->getReturnValue()->getType() == PHI->getType() && 2406 "Ret value not consistent in function!"); 2407 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 2408 } 2409 } 2410 2411 // Add a branch to the merge points and remove return instructions. 2412 DebugLoc Loc; 2413 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2414 ReturnInst *RI = Returns[i]; 2415 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 2416 Loc = RI->getDebugLoc(); 2417 BI->setDebugLoc(Loc); 2418 RI->eraseFromParent(); 2419 } 2420 // We need to set the debug location to *somewhere* inside the 2421 // inlined function. The line number may be nonsensical, but the 2422 // instruction will at least be associated with the right 2423 // function. 2424 if (CreatedBranchToNormalDest) 2425 CreatedBranchToNormalDest->setDebugLoc(Loc); 2426 } else if (!Returns.empty()) { 2427 // Otherwise, if there is exactly one return value, just replace anything 2428 // using the return value of the call with the computed value. 2429 if (!CB.use_empty()) { 2430 if (&CB == Returns[0]->getReturnValue()) 2431 CB.replaceAllUsesWith(UndefValue::get(CB.getType())); 2432 else 2433 CB.replaceAllUsesWith(Returns[0]->getReturnValue()); 2434 } 2435 2436 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 2437 BasicBlock *ReturnBB = Returns[0]->getParent(); 2438 ReturnBB->replaceAllUsesWith(AfterCallBB); 2439 2440 // Splice the code from the return block into the block that it will return 2441 // to, which contains the code that was after the call. 2442 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 2443 ReturnBB->getInstList()); 2444 2445 if (CreatedBranchToNormalDest) 2446 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 2447 2448 // Delete the return instruction now and empty ReturnBB now. 2449 Returns[0]->eraseFromParent(); 2450 ReturnBB->eraseFromParent(); 2451 } else if (!CB.use_empty()) { 2452 // No returns, but something is using the return value of the call. Just 2453 // nuke the result. 2454 CB.replaceAllUsesWith(UndefValue::get(CB.getType())); 2455 } 2456 2457 // Since we are now done with the Call/Invoke, we can delete it. 2458 CB.eraseFromParent(); 2459 2460 // If we inlined any musttail calls and the original return is now 2461 // unreachable, delete it. It can only contain a bitcast and ret. 2462 if (InlinedMustTailCalls && pred_empty(AfterCallBB)) 2463 AfterCallBB->eraseFromParent(); 2464 2465 // We should always be able to fold the entry block of the function into the 2466 // single predecessor of the block... 2467 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 2468 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 2469 2470 // Splice the code entry block into calling block, right before the 2471 // unconditional branch. 2472 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 2473 OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList()); 2474 2475 // Remove the unconditional branch. 2476 OrigBB->getInstList().erase(Br); 2477 2478 // Now we can remove the CalleeEntry block, which is now empty. 2479 Caller->getBasicBlockList().erase(CalleeEntry); 2480 2481 // If we inserted a phi node, check to see if it has a single value (e.g. all 2482 // the entries are the same or undef). If so, remove the PHI so it doesn't 2483 // block other optimizations. 2484 if (PHI) { 2485 AssumptionCache *AC = 2486 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr; 2487 auto &DL = Caller->getParent()->getDataLayout(); 2488 if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) { 2489 PHI->replaceAllUsesWith(V); 2490 PHI->eraseFromParent(); 2491 } 2492 } 2493 2494 return InlineResult::success(); 2495 } 2496