1 //===- InlineFunction.cpp - Code to perform function inlining -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements inlining of a function into a call site, resolving
11 // parameters and the return value as appropriate.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/Cloning.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/CallGraph.h"
23 #include "llvm/Analysis/CaptureTracking.h"
24 #include "llvm/Analysis/EHPersonalities.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/CallSite.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DebugInfo.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/DIBuilder.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/MDBuilder.h"
41 #include "llvm/IR/Module.h"
42 #include "llvm/Transforms/Utils/Local.h"
43 #include "llvm/Support/CommandLine.h"
44 #include <algorithm>
45 
46 using namespace llvm;
47 
48 static cl::opt<bool>
49 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
50   cl::Hidden,
51   cl::desc("Convert noalias attributes to metadata during inlining."));
52 
53 static cl::opt<bool>
54 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
55   cl::init(true), cl::Hidden,
56   cl::desc("Convert align attributes to assumptions during inlining."));
57 
58 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI,
59                           AAResults *CalleeAAR, bool InsertLifetime) {
60   return InlineFunction(CallSite(CI), IFI, CalleeAAR, InsertLifetime);
61 }
62 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
63                           AAResults *CalleeAAR, bool InsertLifetime) {
64   return InlineFunction(CallSite(II), IFI, CalleeAAR, InsertLifetime);
65 }
66 
67 namespace {
68   /// A class for recording information about inlining a landing pad.
69   class LandingPadInliningInfo {
70     BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind.
71     BasicBlock *InnerResumeDest; ///< Destination for the callee's resume.
72     LandingPadInst *CallerLPad;  ///< LandingPadInst associated with the invoke.
73     PHINode *InnerEHValuesPHI;   ///< PHI for EH values from landingpad insts.
74     SmallVector<Value*, 8> UnwindDestPHIValues;
75 
76   public:
77     LandingPadInliningInfo(InvokeInst *II)
78       : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr),
79         CallerLPad(nullptr), InnerEHValuesPHI(nullptr) {
80       // If there are PHI nodes in the unwind destination block, we need to keep
81       // track of which values came into them from the invoke before removing
82       // the edge from this block.
83       llvm::BasicBlock *InvokeBB = II->getParent();
84       BasicBlock::iterator I = OuterResumeDest->begin();
85       for (; isa<PHINode>(I); ++I) {
86         // Save the value to use for this edge.
87         PHINode *PHI = cast<PHINode>(I);
88         UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
89       }
90 
91       CallerLPad = cast<LandingPadInst>(I);
92     }
93 
94     /// The outer unwind destination is the target of
95     /// unwind edges introduced for calls within the inlined function.
96     BasicBlock *getOuterResumeDest() const {
97       return OuterResumeDest;
98     }
99 
100     BasicBlock *getInnerResumeDest();
101 
102     LandingPadInst *getLandingPadInst() const { return CallerLPad; }
103 
104     /// Forward the 'resume' instruction to the caller's landing pad block.
105     /// When the landing pad block has only one predecessor, this is
106     /// a simple branch. When there is more than one predecessor, we need to
107     /// split the landing pad block after the landingpad instruction and jump
108     /// to there.
109     void forwardResume(ResumeInst *RI,
110                        SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
111 
112     /// Add incoming-PHI values to the unwind destination block for the given
113     /// basic block, using the values for the original invoke's source block.
114     void addIncomingPHIValuesFor(BasicBlock *BB) const {
115       addIncomingPHIValuesForInto(BB, OuterResumeDest);
116     }
117 
118     void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
119       BasicBlock::iterator I = dest->begin();
120       for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
121         PHINode *phi = cast<PHINode>(I);
122         phi->addIncoming(UnwindDestPHIValues[i], src);
123       }
124     }
125   };
126 } // anonymous namespace
127 
128 /// Get or create a target for the branch from ResumeInsts.
129 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
130   if (InnerResumeDest) return InnerResumeDest;
131 
132   // Split the landing pad.
133   BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
134   InnerResumeDest =
135     OuterResumeDest->splitBasicBlock(SplitPoint,
136                                      OuterResumeDest->getName() + ".body");
137 
138   // The number of incoming edges we expect to the inner landing pad.
139   const unsigned PHICapacity = 2;
140 
141   // Create corresponding new PHIs for all the PHIs in the outer landing pad.
142   Instruction *InsertPoint = &InnerResumeDest->front();
143   BasicBlock::iterator I = OuterResumeDest->begin();
144   for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
145     PHINode *OuterPHI = cast<PHINode>(I);
146     PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
147                                         OuterPHI->getName() + ".lpad-body",
148                                         InsertPoint);
149     OuterPHI->replaceAllUsesWith(InnerPHI);
150     InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
151   }
152 
153   // Create a PHI for the exception values.
154   InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
155                                      "eh.lpad-body", InsertPoint);
156   CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
157   InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
158 
159   // All done.
160   return InnerResumeDest;
161 }
162 
163 /// Forward the 'resume' instruction to the caller's landing pad block.
164 /// When the landing pad block has only one predecessor, this is a simple
165 /// branch. When there is more than one predecessor, we need to split the
166 /// landing pad block after the landingpad instruction and jump to there.
167 void LandingPadInliningInfo::forwardResume(
168     ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
169   BasicBlock *Dest = getInnerResumeDest();
170   BasicBlock *Src = RI->getParent();
171 
172   BranchInst::Create(Dest, Src);
173 
174   // Update the PHIs in the destination. They were inserted in an order which
175   // makes this work.
176   addIncomingPHIValuesForInto(Src, Dest);
177 
178   InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
179   RI->eraseFromParent();
180 }
181 
182 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
183 static Value *getParentPad(Value *EHPad) {
184   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
185     return FPI->getParentPad();
186   return cast<CatchSwitchInst>(EHPad)->getParentPad();
187 }
188 
189 typedef DenseMap<Instruction *, Value *> UnwindDestMemoTy;
190 
191 /// Helper for getUnwindDestToken that does the descendant-ward part of
192 /// the search.
193 static Value *getUnwindDestTokenHelper(Instruction *EHPad,
194                                        UnwindDestMemoTy &MemoMap) {
195   SmallVector<Instruction *, 8> Worklist(1, EHPad);
196 
197   while (!Worklist.empty()) {
198     Instruction *CurrentPad = Worklist.pop_back_val();
199     // We only put pads on the worklist that aren't in the MemoMap.  When
200     // we find an unwind dest for a pad we may update its ancestors, but
201     // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
202     // so they should never get updated while queued on the worklist.
203     assert(!MemoMap.count(CurrentPad));
204     Value *UnwindDestToken = nullptr;
205     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
206       if (CatchSwitch->hasUnwindDest()) {
207         UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
208       } else {
209         // Catchswitch doesn't have a 'nounwind' variant, and one might be
210         // annotated as "unwinds to caller" when really it's nounwind (see
211         // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
212         // parent's unwind dest from this.  We can check its catchpads'
213         // descendants, since they might include a cleanuppad with an
214         // "unwinds to caller" cleanupret, which can be trusted.
215         for (auto HI = CatchSwitch->handler_begin(),
216                   HE = CatchSwitch->handler_end();
217              HI != HE && !UnwindDestToken; ++HI) {
218           BasicBlock *HandlerBlock = *HI;
219           auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
220           for (User *Child : CatchPad->users()) {
221             // Intentionally ignore invokes here -- since the catchswitch is
222             // marked "unwind to caller", it would be a verifier error if it
223             // contained an invoke which unwinds out of it, so any invoke we'd
224             // encounter must unwind to some child of the catch.
225             if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
226               continue;
227 
228             Instruction *ChildPad = cast<Instruction>(Child);
229             auto Memo = MemoMap.find(ChildPad);
230             if (Memo == MemoMap.end()) {
231               // Haven't figure out this child pad yet; queue it.
232               Worklist.push_back(ChildPad);
233               continue;
234             }
235             // We've already checked this child, but might have found that
236             // it offers no proof either way.
237             Value *ChildUnwindDestToken = Memo->second;
238             if (!ChildUnwindDestToken)
239               continue;
240             // We already know the child's unwind dest, which can either
241             // be ConstantTokenNone to indicate unwind to caller, or can
242             // be another child of the catchpad.  Only the former indicates
243             // the unwind dest of the catchswitch.
244             if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
245               UnwindDestToken = ChildUnwindDestToken;
246               break;
247             }
248             assert(getParentPad(ChildUnwindDestToken) == CatchPad);
249           }
250         }
251       }
252     } else {
253       auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
254       for (User *U : CleanupPad->users()) {
255         if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
256           if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
257             UnwindDestToken = RetUnwindDest->getFirstNonPHI();
258           else
259             UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
260           break;
261         }
262         Value *ChildUnwindDestToken;
263         if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
264           ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
265         } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
266           Instruction *ChildPad = cast<Instruction>(U);
267           auto Memo = MemoMap.find(ChildPad);
268           if (Memo == MemoMap.end()) {
269             // Haven't resolved this child yet; queue it and keep searching.
270             Worklist.push_back(ChildPad);
271             continue;
272           }
273           // We've checked this child, but still need to ignore it if it
274           // had no proof either way.
275           ChildUnwindDestToken = Memo->second;
276           if (!ChildUnwindDestToken)
277             continue;
278         } else {
279           // Not a relevant user of the cleanuppad
280           continue;
281         }
282         // In a well-formed program, the child/invoke must either unwind to
283         // an(other) child of the cleanup, or exit the cleanup.  In the
284         // first case, continue searching.
285         if (isa<Instruction>(ChildUnwindDestToken) &&
286             getParentPad(ChildUnwindDestToken) == CleanupPad)
287           continue;
288         UnwindDestToken = ChildUnwindDestToken;
289         break;
290       }
291     }
292     // If we haven't found an unwind dest for CurrentPad, we may have queued its
293     // children, so move on to the next in the worklist.
294     if (!UnwindDestToken)
295       continue;
296 
297     // Now we know that CurrentPad unwinds to UnwindDestToken.  It also exits
298     // any ancestors of CurrentPad up to but not including UnwindDestToken's
299     // parent pad.  Record this in the memo map, and check to see if the
300     // original EHPad being queried is one of the ones exited.
301     Value *UnwindParent;
302     if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
303       UnwindParent = getParentPad(UnwindPad);
304     else
305       UnwindParent = nullptr;
306     bool ExitedOriginalPad = false;
307     for (Instruction *ExitedPad = CurrentPad;
308          ExitedPad && ExitedPad != UnwindParent;
309          ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
310       // Skip over catchpads since they just follow their catchswitches.
311       if (isa<CatchPadInst>(ExitedPad))
312         continue;
313       MemoMap[ExitedPad] = UnwindDestToken;
314       ExitedOriginalPad |= (ExitedPad == EHPad);
315     }
316 
317     if (ExitedOriginalPad)
318       return UnwindDestToken;
319 
320     // Continue the search.
321   }
322 
323   // No definitive information is contained within this funclet.
324   return nullptr;
325 }
326 
327 /// Given an EH pad, find where it unwinds.  If it unwinds to an EH pad,
328 /// return that pad instruction.  If it unwinds to caller, return
329 /// ConstantTokenNone.  If it does not have a definitive unwind destination,
330 /// return nullptr.
331 ///
332 /// This routine gets invoked for calls in funclets in inlinees when inlining
333 /// an invoke.  Since many funclets don't have calls inside them, it's queried
334 /// on-demand rather than building a map of pads to unwind dests up front.
335 /// Determining a funclet's unwind dest may require recursively searching its
336 /// descendants, and also ancestors and cousins if the descendants don't provide
337 /// an answer.  Since most funclets will have their unwind dest immediately
338 /// available as the unwind dest of a catchswitch or cleanupret, this routine
339 /// searches top-down from the given pad and then up. To avoid worst-case
340 /// quadratic run-time given that approach, it uses a memo map to avoid
341 /// re-processing funclet trees.  The callers that rewrite the IR as they go
342 /// take advantage of this, for correctness, by checking/forcing rewritten
343 /// pads' entries to match the original callee view.
344 static Value *getUnwindDestToken(Instruction *EHPad,
345                                  UnwindDestMemoTy &MemoMap) {
346   // Catchpads unwind to the same place as their catchswitch;
347   // redirct any queries on catchpads so the code below can
348   // deal with just catchswitches and cleanuppads.
349   if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
350     EHPad = CPI->getCatchSwitch();
351 
352   // Check if we've already determined the unwind dest for this pad.
353   auto Memo = MemoMap.find(EHPad);
354   if (Memo != MemoMap.end())
355     return Memo->second;
356 
357   // Search EHPad and, if necessary, its descendants.
358   Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
359   assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
360   if (UnwindDestToken)
361     return UnwindDestToken;
362 
363   // No information is available for this EHPad from itself or any of its
364   // descendants.  An unwind all the way out to a pad in the caller would
365   // need also to agree with the unwind dest of the parent funclet, so
366   // search up the chain to try to find a funclet with information.  Put
367   // null entries in the memo map to avoid re-processing as we go up.
368   MemoMap[EHPad] = nullptr;
369   Instruction *LastUselessPad = EHPad;
370   Value *AncestorToken;
371   for (AncestorToken = getParentPad(EHPad);
372        auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
373        AncestorToken = getParentPad(AncestorToken)) {
374     // Skip over catchpads since they just follow their catchswitches.
375     if (isa<CatchPadInst>(AncestorPad))
376       continue;
377     assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
378     auto AncestorMemo = MemoMap.find(AncestorPad);
379     if (AncestorMemo == MemoMap.end()) {
380       UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
381     } else {
382       UnwindDestToken = AncestorMemo->second;
383     }
384     if (UnwindDestToken)
385       break;
386     LastUselessPad = AncestorPad;
387   }
388 
389   // Since the whole tree under LastUselessPad has no information, it all must
390   // match UnwindDestToken; record that to avoid repeating the search.
391   SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
392   while (!Worklist.empty()) {
393     Instruction *UselessPad = Worklist.pop_back_val();
394     assert(!MemoMap.count(UselessPad) || MemoMap[UselessPad] == nullptr);
395     MemoMap[UselessPad] = UnwindDestToken;
396     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
397       for (BasicBlock *HandlerBlock : CatchSwitch->handlers())
398         for (User *U : HandlerBlock->getFirstNonPHI()->users())
399           if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
400             Worklist.push_back(cast<Instruction>(U));
401     } else {
402       assert(isa<CleanupPadInst>(UselessPad));
403       for (User *U : UselessPad->users())
404         if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
405           Worklist.push_back(cast<Instruction>(U));
406     }
407   }
408 
409   return UnwindDestToken;
410 }
411 
412 /// When we inline a basic block into an invoke,
413 /// we have to turn all of the calls that can throw into invokes.
414 /// This function analyze BB to see if there are any calls, and if so,
415 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
416 /// nodes in that block with the values specified in InvokeDestPHIValues.
417 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
418     BasicBlock *BB, BasicBlock *UnwindEdge,
419     UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
420   for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
421     Instruction *I = &*BBI++;
422 
423     // We only need to check for function calls: inlined invoke
424     // instructions require no special handling.
425     CallInst *CI = dyn_cast<CallInst>(I);
426 
427     if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue()))
428       continue;
429 
430     if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
431       // This call is nested inside a funclet.  If that funclet has an unwind
432       // destination within the inlinee, then unwinding out of this call would
433       // be UB.  Rewriting this call to an invoke which targets the inlined
434       // invoke's unwind dest would give the call's parent funclet multiple
435       // unwind destinations, which is something that subsequent EH table
436       // generation can't handle and that the veirifer rejects.  So when we
437       // see such a call, leave it as a call.
438       auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
439       Value *UnwindDestToken =
440           getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
441       if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
442         continue;
443 #ifndef NDEBUG
444       Instruction *MemoKey;
445       if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
446         MemoKey = CatchPad->getCatchSwitch();
447       else
448         MemoKey = FuncletPad;
449       assert(FuncletUnwindMap->count(MemoKey) &&
450              (*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
451              "must get memoized to avoid confusing later searches");
452 #endif // NDEBUG
453     }
454 
455     // Convert this function call into an invoke instruction.  First, split the
456     // basic block.
457     BasicBlock *Split =
458         BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
459 
460     // Delete the unconditional branch inserted by splitBasicBlock
461     BB->getInstList().pop_back();
462 
463     // Create the new invoke instruction.
464     SmallVector<Value*, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
465     SmallVector<OperandBundleDef, 1> OpBundles;
466 
467     CI->getOperandBundlesAsDefs(OpBundles);
468 
469     // Note: we're round tripping operand bundles through memory here, and that
470     // can potentially be avoided with a cleverer API design that we do not have
471     // as of this time.
472 
473     InvokeInst *II =
474         InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, InvokeArgs,
475                            OpBundles, CI->getName(), BB);
476     II->setDebugLoc(CI->getDebugLoc());
477     II->setCallingConv(CI->getCallingConv());
478     II->setAttributes(CI->getAttributes());
479 
480     // Make sure that anything using the call now uses the invoke!  This also
481     // updates the CallGraph if present, because it uses a WeakVH.
482     CI->replaceAllUsesWith(II);
483 
484     // Delete the original call
485     Split->getInstList().pop_front();
486     return BB;
487   }
488   return nullptr;
489 }
490 
491 /// If we inlined an invoke site, we need to convert calls
492 /// in the body of the inlined function into invokes.
493 ///
494 /// II is the invoke instruction being inlined.  FirstNewBlock is the first
495 /// block of the inlined code (the last block is the end of the function),
496 /// and InlineCodeInfo is information about the code that got inlined.
497 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
498                                     ClonedCodeInfo &InlinedCodeInfo) {
499   BasicBlock *InvokeDest = II->getUnwindDest();
500 
501   Function *Caller = FirstNewBlock->getParent();
502 
503   // The inlined code is currently at the end of the function, scan from the
504   // start of the inlined code to its end, checking for stuff we need to
505   // rewrite.
506   LandingPadInliningInfo Invoke(II);
507 
508   // Get all of the inlined landing pad instructions.
509   SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
510   for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
511        I != E; ++I)
512     if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
513       InlinedLPads.insert(II->getLandingPadInst());
514 
515   // Append the clauses from the outer landing pad instruction into the inlined
516   // landing pad instructions.
517   LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
518   for (LandingPadInst *InlinedLPad : InlinedLPads) {
519     unsigned OuterNum = OuterLPad->getNumClauses();
520     InlinedLPad->reserveClauses(OuterNum);
521     for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
522       InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
523     if (OuterLPad->isCleanup())
524       InlinedLPad->setCleanup(true);
525   }
526 
527   for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
528        BB != E; ++BB) {
529     if (InlinedCodeInfo.ContainsCalls)
530       if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
531               &*BB, Invoke.getOuterResumeDest()))
532         // Update any PHI nodes in the exceptional block to indicate that there
533         // is now a new entry in them.
534         Invoke.addIncomingPHIValuesFor(NewBB);
535 
536     // Forward any resumes that are remaining here.
537     if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
538       Invoke.forwardResume(RI, InlinedLPads);
539   }
540 
541   // Now that everything is happy, we have one final detail.  The PHI nodes in
542   // the exception destination block still have entries due to the original
543   // invoke instruction. Eliminate these entries (which might even delete the
544   // PHI node) now.
545   InvokeDest->removePredecessor(II->getParent());
546 }
547 
548 /// If we inlined an invoke site, we need to convert calls
549 /// in the body of the inlined function into invokes.
550 ///
551 /// II is the invoke instruction being inlined.  FirstNewBlock is the first
552 /// block of the inlined code (the last block is the end of the function),
553 /// and InlineCodeInfo is information about the code that got inlined.
554 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
555                                ClonedCodeInfo &InlinedCodeInfo) {
556   BasicBlock *UnwindDest = II->getUnwindDest();
557   Function *Caller = FirstNewBlock->getParent();
558 
559   assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");
560 
561   // If there are PHI nodes in the unwind destination block, we need to keep
562   // track of which values came into them from the invoke before removing the
563   // edge from this block.
564   SmallVector<Value *, 8> UnwindDestPHIValues;
565   llvm::BasicBlock *InvokeBB = II->getParent();
566   for (Instruction &I : *UnwindDest) {
567     // Save the value to use for this edge.
568     PHINode *PHI = dyn_cast<PHINode>(&I);
569     if (!PHI)
570       break;
571     UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
572   }
573 
574   // Add incoming-PHI values to the unwind destination block for the given basic
575   // block, using the values for the original invoke's source block.
576   auto UpdatePHINodes = [&](BasicBlock *Src) {
577     BasicBlock::iterator I = UnwindDest->begin();
578     for (Value *V : UnwindDestPHIValues) {
579       PHINode *PHI = cast<PHINode>(I);
580       PHI->addIncoming(V, Src);
581       ++I;
582     }
583   };
584 
585   // This connects all the instructions which 'unwind to caller' to the invoke
586   // destination.
587   UnwindDestMemoTy FuncletUnwindMap;
588   for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
589        BB != E; ++BB) {
590     if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
591       if (CRI->unwindsToCaller()) {
592         auto *CleanupPad = CRI->getCleanupPad();
593         CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
594         CRI->eraseFromParent();
595         UpdatePHINodes(&*BB);
596         // Finding a cleanupret with an unwind destination would confuse
597         // subsequent calls to getUnwindDestToken, so map the cleanuppad
598         // to short-circuit any such calls and recognize this as an "unwind
599         // to caller" cleanup.
600         assert(!FuncletUnwindMap.count(CleanupPad) ||
601                isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
602         FuncletUnwindMap[CleanupPad] =
603             ConstantTokenNone::get(Caller->getContext());
604       }
605     }
606 
607     Instruction *I = BB->getFirstNonPHI();
608     if (!I->isEHPad())
609       continue;
610 
611     Instruction *Replacement = nullptr;
612     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
613       if (CatchSwitch->unwindsToCaller()) {
614         Value *UnwindDestToken;
615         if (auto *ParentPad =
616                 dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
617           // This catchswitch is nested inside another funclet.  If that
618           // funclet has an unwind destination within the inlinee, then
619           // unwinding out of this catchswitch would be UB.  Rewriting this
620           // catchswitch to unwind to the inlined invoke's unwind dest would
621           // give the parent funclet multiple unwind destinations, which is
622           // something that subsequent EH table generation can't handle and
623           // that the veirifer rejects.  So when we see such a call, leave it
624           // as "unwind to caller".
625           UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
626           if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
627             continue;
628         } else {
629           // This catchswitch has no parent to inherit constraints from, and
630           // none of its descendants can have an unwind edge that exits it and
631           // targets another funclet in the inlinee.  It may or may not have a
632           // descendant that definitively has an unwind to caller.  In either
633           // case, we'll have to assume that any unwinds out of it may need to
634           // be routed to the caller, so treat it as though it has a definitive
635           // unwind to caller.
636           UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
637         }
638         auto *NewCatchSwitch = CatchSwitchInst::Create(
639             CatchSwitch->getParentPad(), UnwindDest,
640             CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
641             CatchSwitch);
642         for (BasicBlock *PadBB : CatchSwitch->handlers())
643           NewCatchSwitch->addHandler(PadBB);
644         // Propagate info for the old catchswitch over to the new one in
645         // the unwind map.  This also serves to short-circuit any subsequent
646         // checks for the unwind dest of this catchswitch, which would get
647         // confused if they found the outer handler in the callee.
648         FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
649         Replacement = NewCatchSwitch;
650       }
651     } else if (!isa<FuncletPadInst>(I)) {
652       llvm_unreachable("unexpected EHPad!");
653     }
654 
655     if (Replacement) {
656       Replacement->takeName(I);
657       I->replaceAllUsesWith(Replacement);
658       I->eraseFromParent();
659       UpdatePHINodes(&*BB);
660     }
661   }
662 
663   if (InlinedCodeInfo.ContainsCalls)
664     for (Function::iterator BB = FirstNewBlock->getIterator(),
665                             E = Caller->end();
666          BB != E; ++BB)
667       if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
668               &*BB, UnwindDest, &FuncletUnwindMap))
669         // Update any PHI nodes in the exceptional block to indicate that there
670         // is now a new entry in them.
671         UpdatePHINodes(NewBB);
672 
673   // Now that everything is happy, we have one final detail.  The PHI nodes in
674   // the exception destination block still have entries due to the original
675   // invoke instruction. Eliminate these entries (which might even delete the
676   // PHI node) now.
677   UnwindDest->removePredecessor(InvokeBB);
678 }
679 
680 /// When inlining a function that contains noalias scope metadata,
681 /// this metadata needs to be cloned so that the inlined blocks
682 /// have different "unqiue scopes" at every call site. Were this not done, then
683 /// aliasing scopes from a function inlined into a caller multiple times could
684 /// not be differentiated (and this would lead to miscompiles because the
685 /// non-aliasing property communicated by the metadata could have
686 /// call-site-specific control dependencies).
687 static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) {
688   const Function *CalledFunc = CS.getCalledFunction();
689   SetVector<const MDNode *> MD;
690 
691   // Note: We could only clone the metadata if it is already used in the
692   // caller. I'm omitting that check here because it might confuse
693   // inter-procedural alias analysis passes. We can revisit this if it becomes
694   // an efficiency or overhead problem.
695 
696   for (Function::const_iterator I = CalledFunc->begin(), IE = CalledFunc->end();
697        I != IE; ++I)
698     for (BasicBlock::const_iterator J = I->begin(), JE = I->end(); J != JE; ++J) {
699       if (const MDNode *M = J->getMetadata(LLVMContext::MD_alias_scope))
700         MD.insert(M);
701       if (const MDNode *M = J->getMetadata(LLVMContext::MD_noalias))
702         MD.insert(M);
703     }
704 
705   if (MD.empty())
706     return;
707 
708   // Walk the existing metadata, adding the complete (perhaps cyclic) chain to
709   // the set.
710   SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
711   while (!Queue.empty()) {
712     const MDNode *M = cast<MDNode>(Queue.pop_back_val());
713     for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i)
714       if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i)))
715         if (MD.insert(M1))
716           Queue.push_back(M1);
717   }
718 
719   // Now we have a complete set of all metadata in the chains used to specify
720   // the noalias scopes and the lists of those scopes.
721   SmallVector<TempMDTuple, 16> DummyNodes;
722   DenseMap<const MDNode *, TrackingMDNodeRef> MDMap;
723   for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end();
724        I != IE; ++I) {
725     DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None));
726     MDMap[*I].reset(DummyNodes.back().get());
727   }
728 
729   // Create new metadata nodes to replace the dummy nodes, replacing old
730   // metadata references with either a dummy node or an already-created new
731   // node.
732   for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end();
733        I != IE; ++I) {
734     SmallVector<Metadata *, 4> NewOps;
735     for (unsigned i = 0, ie = (*I)->getNumOperands(); i != ie; ++i) {
736       const Metadata *V = (*I)->getOperand(i);
737       if (const MDNode *M = dyn_cast<MDNode>(V))
738         NewOps.push_back(MDMap[M]);
739       else
740         NewOps.push_back(const_cast<Metadata *>(V));
741     }
742 
743     MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps);
744     MDTuple *TempM = cast<MDTuple>(MDMap[*I]);
745     assert(TempM->isTemporary() && "Expected temporary node");
746 
747     TempM->replaceAllUsesWith(NewM);
748   }
749 
750   // Now replace the metadata in the new inlined instructions with the
751   // repacements from the map.
752   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
753        VMI != VMIE; ++VMI) {
754     if (!VMI->second)
755       continue;
756 
757     Instruction *NI = dyn_cast<Instruction>(VMI->second);
758     if (!NI)
759       continue;
760 
761     if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) {
762       MDNode *NewMD = MDMap[M];
763       // If the call site also had alias scope metadata (a list of scopes to
764       // which instructions inside it might belong), propagate those scopes to
765       // the inlined instructions.
766       if (MDNode *CSM =
767               CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
768         NewMD = MDNode::concatenate(NewMD, CSM);
769       NI->setMetadata(LLVMContext::MD_alias_scope, NewMD);
770     } else if (NI->mayReadOrWriteMemory()) {
771       if (MDNode *M =
772               CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
773         NI->setMetadata(LLVMContext::MD_alias_scope, M);
774     }
775 
776     if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) {
777       MDNode *NewMD = MDMap[M];
778       // If the call site also had noalias metadata (a list of scopes with
779       // which instructions inside it don't alias), propagate those scopes to
780       // the inlined instructions.
781       if (MDNode *CSM =
782               CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
783         NewMD = MDNode::concatenate(NewMD, CSM);
784       NI->setMetadata(LLVMContext::MD_noalias, NewMD);
785     } else if (NI->mayReadOrWriteMemory()) {
786       if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
787         NI->setMetadata(LLVMContext::MD_noalias, M);
788     }
789   }
790 }
791 
792 /// If the inlined function has noalias arguments,
793 /// then add new alias scopes for each noalias argument, tag the mapped noalias
794 /// parameters with noalias metadata specifying the new scope, and tag all
795 /// non-derived loads, stores and memory intrinsics with the new alias scopes.
796 static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap,
797                                   const DataLayout &DL, AAResults *CalleeAAR) {
798   if (!EnableNoAliasConversion)
799     return;
800 
801   const Function *CalledFunc = CS.getCalledFunction();
802   SmallVector<const Argument *, 4> NoAliasArgs;
803 
804   for (const Argument &Arg : CalledFunc->args())
805     if (Arg.hasNoAliasAttr() && !Arg.use_empty())
806       NoAliasArgs.push_back(&Arg);
807 
808   if (NoAliasArgs.empty())
809     return;
810 
811   // To do a good job, if a noalias variable is captured, we need to know if
812   // the capture point dominates the particular use we're considering.
813   DominatorTree DT;
814   DT.recalculate(const_cast<Function&>(*CalledFunc));
815 
816   // noalias indicates that pointer values based on the argument do not alias
817   // pointer values which are not based on it. So we add a new "scope" for each
818   // noalias function argument. Accesses using pointers based on that argument
819   // become part of that alias scope, accesses using pointers not based on that
820   // argument are tagged as noalias with that scope.
821 
822   DenseMap<const Argument *, MDNode *> NewScopes;
823   MDBuilder MDB(CalledFunc->getContext());
824 
825   // Create a new scope domain for this function.
826   MDNode *NewDomain =
827     MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
828   for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
829     const Argument *A = NoAliasArgs[i];
830 
831     std::string Name = CalledFunc->getName();
832     if (A->hasName()) {
833       Name += ": %";
834       Name += A->getName();
835     } else {
836       Name += ": argument ";
837       Name += utostr(i);
838     }
839 
840     // Note: We always create a new anonymous root here. This is true regardless
841     // of the linkage of the callee because the aliasing "scope" is not just a
842     // property of the callee, but also all control dependencies in the caller.
843     MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
844     NewScopes.insert(std::make_pair(A, NewScope));
845   }
846 
847   // Iterate over all new instructions in the map; for all memory-access
848   // instructions, add the alias scope metadata.
849   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
850        VMI != VMIE; ++VMI) {
851     if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
852       if (!VMI->second)
853         continue;
854 
855       Instruction *NI = dyn_cast<Instruction>(VMI->second);
856       if (!NI)
857         continue;
858 
859       bool IsArgMemOnlyCall = false, IsFuncCall = false;
860       SmallVector<const Value *, 2> PtrArgs;
861 
862       if (const LoadInst *LI = dyn_cast<LoadInst>(I))
863         PtrArgs.push_back(LI->getPointerOperand());
864       else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
865         PtrArgs.push_back(SI->getPointerOperand());
866       else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
867         PtrArgs.push_back(VAAI->getPointerOperand());
868       else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
869         PtrArgs.push_back(CXI->getPointerOperand());
870       else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
871         PtrArgs.push_back(RMWI->getPointerOperand());
872       else if (ImmutableCallSite ICS = ImmutableCallSite(I)) {
873         // If we know that the call does not access memory, then we'll still
874         // know that about the inlined clone of this call site, and we don't
875         // need to add metadata.
876         if (ICS.doesNotAccessMemory())
877           continue;
878 
879         IsFuncCall = true;
880         if (CalleeAAR) {
881           FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(ICS);
882           if (MRB == FMRB_OnlyAccessesArgumentPointees ||
883               MRB == FMRB_OnlyReadsArgumentPointees)
884             IsArgMemOnlyCall = true;
885         }
886 
887         for (Value *Arg : ICS.args()) {
888           // We need to check the underlying objects of all arguments, not just
889           // the pointer arguments, because we might be passing pointers as
890           // integers, etc.
891           // However, if we know that the call only accesses pointer arguments,
892           // then we only need to check the pointer arguments.
893           if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy())
894             continue;
895 
896           PtrArgs.push_back(Arg);
897         }
898       }
899 
900       // If we found no pointers, then this instruction is not suitable for
901       // pairing with an instruction to receive aliasing metadata.
902       // However, if this is a call, this we might just alias with none of the
903       // noalias arguments.
904       if (PtrArgs.empty() && !IsFuncCall)
905         continue;
906 
907       // It is possible that there is only one underlying object, but you
908       // need to go through several PHIs to see it, and thus could be
909       // repeated in the Objects list.
910       SmallPtrSet<const Value *, 4> ObjSet;
911       SmallVector<Metadata *, 4> Scopes, NoAliases;
912 
913       SmallSetVector<const Argument *, 4> NAPtrArgs;
914       for (const Value *V : PtrArgs) {
915         SmallVector<Value *, 4> Objects;
916         GetUnderlyingObjects(const_cast<Value*>(V),
917                              Objects, DL, /* LI = */ nullptr);
918 
919         for (Value *O : Objects)
920           ObjSet.insert(O);
921       }
922 
923       // Figure out if we're derived from anything that is not a noalias
924       // argument.
925       bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
926       for (const Value *V : ObjSet) {
927         // Is this value a constant that cannot be derived from any pointer
928         // value (we need to exclude constant expressions, for example, that
929         // are formed from arithmetic on global symbols).
930         bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
931                              isa<ConstantPointerNull>(V) ||
932                              isa<ConstantDataVector>(V) || isa<UndefValue>(V);
933         if (IsNonPtrConst)
934           continue;
935 
936         // If this is anything other than a noalias argument, then we cannot
937         // completely describe the aliasing properties using alias.scope
938         // metadata (and, thus, won't add any).
939         if (const Argument *A = dyn_cast<Argument>(V)) {
940           if (!A->hasNoAliasAttr())
941             UsesAliasingPtr = true;
942         } else {
943           UsesAliasingPtr = true;
944         }
945 
946         // If this is not some identified function-local object (which cannot
947         // directly alias a noalias argument), or some other argument (which,
948         // by definition, also cannot alias a noalias argument), then we could
949         // alias a noalias argument that has been captured).
950         if (!isa<Argument>(V) &&
951             !isIdentifiedFunctionLocal(const_cast<Value*>(V)))
952           CanDeriveViaCapture = true;
953       }
954 
955       // A function call can always get captured noalias pointers (via other
956       // parameters, globals, etc.).
957       if (IsFuncCall && !IsArgMemOnlyCall)
958         CanDeriveViaCapture = true;
959 
960       // First, we want to figure out all of the sets with which we definitely
961       // don't alias. Iterate over all noalias set, and add those for which:
962       //   1. The noalias argument is not in the set of objects from which we
963       //      definitely derive.
964       //   2. The noalias argument has not yet been captured.
965       // An arbitrary function that might load pointers could see captured
966       // noalias arguments via other noalias arguments or globals, and so we
967       // must always check for prior capture.
968       for (const Argument *A : NoAliasArgs) {
969         if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
970                                  // It might be tempting to skip the
971                                  // PointerMayBeCapturedBefore check if
972                                  // A->hasNoCaptureAttr() is true, but this is
973                                  // incorrect because nocapture only guarantees
974                                  // that no copies outlive the function, not
975                                  // that the value cannot be locally captured.
976                                  !PointerMayBeCapturedBefore(A,
977                                    /* ReturnCaptures */ false,
978                                    /* StoreCaptures */ false, I, &DT)))
979           NoAliases.push_back(NewScopes[A]);
980       }
981 
982       if (!NoAliases.empty())
983         NI->setMetadata(LLVMContext::MD_noalias,
984                         MDNode::concatenate(
985                             NI->getMetadata(LLVMContext::MD_noalias),
986                             MDNode::get(CalledFunc->getContext(), NoAliases)));
987 
988       // Next, we want to figure out all of the sets to which we might belong.
989       // We might belong to a set if the noalias argument is in the set of
990       // underlying objects. If there is some non-noalias argument in our list
991       // of underlying objects, then we cannot add a scope because the fact
992       // that some access does not alias with any set of our noalias arguments
993       // cannot itself guarantee that it does not alias with this access
994       // (because there is some pointer of unknown origin involved and the
995       // other access might also depend on this pointer). We also cannot add
996       // scopes to arbitrary functions unless we know they don't access any
997       // non-parameter pointer-values.
998       bool CanAddScopes = !UsesAliasingPtr;
999       if (CanAddScopes && IsFuncCall)
1000         CanAddScopes = IsArgMemOnlyCall;
1001 
1002       if (CanAddScopes)
1003         for (const Argument *A : NoAliasArgs) {
1004           if (ObjSet.count(A))
1005             Scopes.push_back(NewScopes[A]);
1006         }
1007 
1008       if (!Scopes.empty())
1009         NI->setMetadata(
1010             LLVMContext::MD_alias_scope,
1011             MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
1012                                 MDNode::get(CalledFunc->getContext(), Scopes)));
1013     }
1014   }
1015 }
1016 
1017 /// If the inlined function has non-byval align arguments, then
1018 /// add @llvm.assume-based alignment assumptions to preserve this information.
1019 static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) {
1020   if (!PreserveAlignmentAssumptions)
1021     return;
1022   auto &DL = CS.getCaller()->getParent()->getDataLayout();
1023 
1024   // To avoid inserting redundant assumptions, we should check for assumptions
1025   // already in the caller. To do this, we might need a DT of the caller.
1026   DominatorTree DT;
1027   bool DTCalculated = false;
1028 
1029   Function *CalledFunc = CS.getCalledFunction();
1030   for (Function::arg_iterator I = CalledFunc->arg_begin(),
1031                               E = CalledFunc->arg_end();
1032        I != E; ++I) {
1033     unsigned Align = I->getType()->isPointerTy() ? I->getParamAlignment() : 0;
1034     if (Align && !I->hasByValOrInAllocaAttr() && !I->hasNUses(0)) {
1035       if (!DTCalculated) {
1036         DT.recalculate(const_cast<Function&>(*CS.getInstruction()->getParent()
1037                                                ->getParent()));
1038         DTCalculated = true;
1039       }
1040 
1041       // If we can already prove the asserted alignment in the context of the
1042       // caller, then don't bother inserting the assumption.
1043       Value *Arg = CS.getArgument(I->getArgNo());
1044       if (getKnownAlignment(Arg, DL, CS.getInstruction(),
1045                             &IFI.ACT->getAssumptionCache(*CS.getCaller()),
1046                             &DT) >= Align)
1047         continue;
1048 
1049       IRBuilder<>(CS.getInstruction())
1050           .CreateAlignmentAssumption(DL, Arg, Align);
1051     }
1052   }
1053 }
1054 
1055 /// Once we have cloned code over from a callee into the caller,
1056 /// update the specified callgraph to reflect the changes we made.
1057 /// Note that it's possible that not all code was copied over, so only
1058 /// some edges of the callgraph may remain.
1059 static void UpdateCallGraphAfterInlining(CallSite CS,
1060                                          Function::iterator FirstNewBlock,
1061                                          ValueToValueMapTy &VMap,
1062                                          InlineFunctionInfo &IFI) {
1063   CallGraph &CG = *IFI.CG;
1064   const Function *Caller = CS.getInstruction()->getParent()->getParent();
1065   const Function *Callee = CS.getCalledFunction();
1066   CallGraphNode *CalleeNode = CG[Callee];
1067   CallGraphNode *CallerNode = CG[Caller];
1068 
1069   // Since we inlined some uninlined call sites in the callee into the caller,
1070   // add edges from the caller to all of the callees of the callee.
1071   CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
1072 
1073   // Consider the case where CalleeNode == CallerNode.
1074   CallGraphNode::CalledFunctionsVector CallCache;
1075   if (CalleeNode == CallerNode) {
1076     CallCache.assign(I, E);
1077     I = CallCache.begin();
1078     E = CallCache.end();
1079   }
1080 
1081   for (; I != E; ++I) {
1082     const Value *OrigCall = I->first;
1083 
1084     ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
1085     // Only copy the edge if the call was inlined!
1086     if (VMI == VMap.end() || VMI->second == nullptr)
1087       continue;
1088 
1089     // If the call was inlined, but then constant folded, there is no edge to
1090     // add.  Check for this case.
1091     Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
1092     if (!NewCall)
1093       continue;
1094 
1095     // We do not treat intrinsic calls like real function calls because we
1096     // expect them to become inline code; do not add an edge for an intrinsic.
1097     CallSite CS = CallSite(NewCall);
1098     if (CS && CS.getCalledFunction() && CS.getCalledFunction()->isIntrinsic())
1099       continue;
1100 
1101     // Remember that this call site got inlined for the client of
1102     // InlineFunction.
1103     IFI.InlinedCalls.push_back(NewCall);
1104 
1105     // It's possible that inlining the callsite will cause it to go from an
1106     // indirect to a direct call by resolving a function pointer.  If this
1107     // happens, set the callee of the new call site to a more precise
1108     // destination.  This can also happen if the call graph node of the caller
1109     // was just unnecessarily imprecise.
1110     if (!I->second->getFunction())
1111       if (Function *F = CallSite(NewCall).getCalledFunction()) {
1112         // Indirect call site resolved to direct call.
1113         CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
1114 
1115         continue;
1116       }
1117 
1118     CallerNode->addCalledFunction(CallSite(NewCall), I->second);
1119   }
1120 
1121   // Update the call graph by deleting the edge from Callee to Caller.  We must
1122   // do this after the loop above in case Caller and Callee are the same.
1123   CallerNode->removeCallEdgeFor(CS);
1124 }
1125 
1126 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
1127                                     BasicBlock *InsertBlock,
1128                                     InlineFunctionInfo &IFI) {
1129   Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
1130   IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
1131 
1132   Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy));
1133 
1134   // Always generate a memcpy of alignment 1 here because we don't know
1135   // the alignment of the src pointer.  Other optimizations can infer
1136   // better alignment.
1137   Builder.CreateMemCpy(Dst, Src, Size, /*Align=*/1);
1138 }
1139 
1140 /// When inlining a call site that has a byval argument,
1141 /// we have to make the implicit memcpy explicit by adding it.
1142 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
1143                                   const Function *CalledFunc,
1144                                   InlineFunctionInfo &IFI,
1145                                   unsigned ByValAlignment) {
1146   PointerType *ArgTy = cast<PointerType>(Arg->getType());
1147   Type *AggTy = ArgTy->getElementType();
1148 
1149   Function *Caller = TheCall->getParent()->getParent();
1150 
1151   // If the called function is readonly, then it could not mutate the caller's
1152   // copy of the byval'd memory.  In this case, it is safe to elide the copy and
1153   // temporary.
1154   if (CalledFunc->onlyReadsMemory()) {
1155     // If the byval argument has a specified alignment that is greater than the
1156     // passed in pointer, then we either have to round up the input pointer or
1157     // give up on this transformation.
1158     if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
1159       return Arg;
1160 
1161     const DataLayout &DL = Caller->getParent()->getDataLayout();
1162 
1163     // If the pointer is already known to be sufficiently aligned, or if we can
1164     // round it up to a larger alignment, then we don't need a temporary.
1165     if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall,
1166                                    &IFI.ACT->getAssumptionCache(*Caller)) >=
1167         ByValAlignment)
1168       return Arg;
1169 
1170     // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
1171     // for code quality, but rarely happens and is required for correctness.
1172   }
1173 
1174   // Create the alloca.  If we have DataLayout, use nice alignment.
1175   unsigned Align =
1176       Caller->getParent()->getDataLayout().getPrefTypeAlignment(AggTy);
1177 
1178   // If the byval had an alignment specified, we *must* use at least that
1179   // alignment, as it is required by the byval argument (and uses of the
1180   // pointer inside the callee).
1181   Align = std::max(Align, ByValAlignment);
1182 
1183   Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(),
1184                                     &*Caller->begin()->begin());
1185   IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
1186 
1187   // Uses of the argument in the function should use our new alloca
1188   // instead.
1189   return NewAlloca;
1190 }
1191 
1192 // Check whether this Value is used by a lifetime intrinsic.
1193 static bool isUsedByLifetimeMarker(Value *V) {
1194   for (User *U : V->users()) {
1195     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
1196       switch (II->getIntrinsicID()) {
1197       default: break;
1198       case Intrinsic::lifetime_start:
1199       case Intrinsic::lifetime_end:
1200         return true;
1201       }
1202     }
1203   }
1204   return false;
1205 }
1206 
1207 // Check whether the given alloca already has
1208 // lifetime.start or lifetime.end intrinsics.
1209 static bool hasLifetimeMarkers(AllocaInst *AI) {
1210   Type *Ty = AI->getType();
1211   Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
1212                                        Ty->getPointerAddressSpace());
1213   if (Ty == Int8PtrTy)
1214     return isUsedByLifetimeMarker(AI);
1215 
1216   // Do a scan to find all the casts to i8*.
1217   for (User *U : AI->users()) {
1218     if (U->getType() != Int8PtrTy) continue;
1219     if (U->stripPointerCasts() != AI) continue;
1220     if (isUsedByLifetimeMarker(U))
1221       return true;
1222   }
1223   return false;
1224 }
1225 
1226 /// Rebuild the entire inlined-at chain for this instruction so that the top of
1227 /// the chain now is inlined-at the new call site.
1228 static DebugLoc
1229 updateInlinedAtInfo(DebugLoc DL, DILocation *InlinedAtNode, LLVMContext &Ctx,
1230                     DenseMap<const DILocation *, DILocation *> &IANodes) {
1231   SmallVector<DILocation *, 3> InlinedAtLocations;
1232   DILocation *Last = InlinedAtNode;
1233   DILocation *CurInlinedAt = DL;
1234 
1235   // Gather all the inlined-at nodes
1236   while (DILocation *IA = CurInlinedAt->getInlinedAt()) {
1237     // Skip any we've already built nodes for
1238     if (DILocation *Found = IANodes[IA]) {
1239       Last = Found;
1240       break;
1241     }
1242 
1243     InlinedAtLocations.push_back(IA);
1244     CurInlinedAt = IA;
1245   }
1246 
1247   // Starting from the top, rebuild the nodes to point to the new inlined-at
1248   // location (then rebuilding the rest of the chain behind it) and update the
1249   // map of already-constructed inlined-at nodes.
1250   for (const DILocation *MD : make_range(InlinedAtLocations.rbegin(),
1251                                          InlinedAtLocations.rend())) {
1252     Last = IANodes[MD] = DILocation::getDistinct(
1253         Ctx, MD->getLine(), MD->getColumn(), MD->getScope(), Last);
1254   }
1255 
1256   // And finally create the normal location for this instruction, referring to
1257   // the new inlined-at chain.
1258   return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(), Last);
1259 }
1260 
1261 /// Update inlined instructions' line numbers to
1262 /// to encode location where these instructions are inlined.
1263 static void fixupLineNumbers(Function *Fn, Function::iterator FI,
1264                              Instruction *TheCall) {
1265   DebugLoc TheCallDL = TheCall->getDebugLoc();
1266   if (!TheCallDL)
1267     return;
1268 
1269   auto &Ctx = Fn->getContext();
1270   DILocation *InlinedAtNode = TheCallDL;
1271 
1272   // Create a unique call site, not to be confused with any other call from the
1273   // same location.
1274   InlinedAtNode = DILocation::getDistinct(
1275       Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
1276       InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
1277 
1278   // Cache the inlined-at nodes as they're built so they are reused, without
1279   // this every instruction's inlined-at chain would become distinct from each
1280   // other.
1281   DenseMap<const DILocation *, DILocation *> IANodes;
1282 
1283   for (; FI != Fn->end(); ++FI) {
1284     for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
1285          BI != BE; ++BI) {
1286       DebugLoc DL = BI->getDebugLoc();
1287       if (!DL) {
1288         // If the inlined instruction has no line number, make it look as if it
1289         // originates from the call location. This is important for
1290         // ((__always_inline__, __nodebug__)) functions which must use caller
1291         // location for all instructions in their function body.
1292 
1293         // Don't update static allocas, as they may get moved later.
1294         if (auto *AI = dyn_cast<AllocaInst>(BI))
1295           if (isa<Constant>(AI->getArraySize()))
1296             continue;
1297 
1298         BI->setDebugLoc(TheCallDL);
1299       } else {
1300         BI->setDebugLoc(updateInlinedAtInfo(DL, InlinedAtNode, BI->getContext(), IANodes));
1301       }
1302     }
1303   }
1304 }
1305 
1306 /// This function inlines the called function into the basic block of the
1307 /// caller. This returns false if it is not possible to inline this call.
1308 /// The program is still in a well defined state if this occurs though.
1309 ///
1310 /// Note that this only does one level of inlining.  For example, if the
1311 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
1312 /// exists in the instruction stream.  Similarly this will inline a recursive
1313 /// function by one level.
1314 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
1315                           AAResults *CalleeAAR, bool InsertLifetime) {
1316   Instruction *TheCall = CS.getInstruction();
1317   assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
1318          "Instruction not in function!");
1319 
1320   // If IFI has any state in it, zap it before we fill it in.
1321   IFI.reset();
1322 
1323   const Function *CalledFunc = CS.getCalledFunction();
1324   if (!CalledFunc ||              // Can't inline external function or indirect
1325       CalledFunc->isDeclaration() || // call, or call to a vararg function!
1326       CalledFunc->getFunctionType()->isVarArg()) return false;
1327 
1328   // The inliner does not know how to inline through calls with operand bundles
1329   // in general ...
1330   if (CS.hasOperandBundles()) {
1331     for (int i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
1332       uint32_t Tag = CS.getOperandBundleAt(i).getTagID();
1333       // ... but it knows how to inline through "deopt" operand bundles ...
1334       if (Tag == LLVMContext::OB_deopt)
1335         continue;
1336       // ... and "funclet" operand bundles.
1337       if (Tag == LLVMContext::OB_funclet)
1338         continue;
1339 
1340       return false;
1341     }
1342   }
1343 
1344   // If the call to the callee cannot throw, set the 'nounwind' flag on any
1345   // calls that we inline.
1346   bool MarkNoUnwind = CS.doesNotThrow();
1347 
1348   BasicBlock *OrigBB = TheCall->getParent();
1349   Function *Caller = OrigBB->getParent();
1350 
1351   // GC poses two hazards to inlining, which only occur when the callee has GC:
1352   //  1. If the caller has no GC, then the callee's GC must be propagated to the
1353   //     caller.
1354   //  2. If the caller has a differing GC, it is invalid to inline.
1355   if (CalledFunc->hasGC()) {
1356     if (!Caller->hasGC())
1357       Caller->setGC(CalledFunc->getGC());
1358     else if (CalledFunc->getGC() != Caller->getGC())
1359       return false;
1360   }
1361 
1362   // Get the personality function from the callee if it contains a landing pad.
1363   Constant *CalledPersonality =
1364       CalledFunc->hasPersonalityFn()
1365           ? CalledFunc->getPersonalityFn()->stripPointerCasts()
1366           : nullptr;
1367 
1368   // Find the personality function used by the landing pads of the caller. If it
1369   // exists, then check to see that it matches the personality function used in
1370   // the callee.
1371   Constant *CallerPersonality =
1372       Caller->hasPersonalityFn()
1373           ? Caller->getPersonalityFn()->stripPointerCasts()
1374           : nullptr;
1375   if (CalledPersonality) {
1376     if (!CallerPersonality)
1377       Caller->setPersonalityFn(CalledPersonality);
1378     // If the personality functions match, then we can perform the
1379     // inlining. Otherwise, we can't inline.
1380     // TODO: This isn't 100% true. Some personality functions are proper
1381     //       supersets of others and can be used in place of the other.
1382     else if (CalledPersonality != CallerPersonality)
1383       return false;
1384   }
1385 
1386   // We need to figure out which funclet the callsite was in so that we may
1387   // properly nest the callee.
1388   Instruction *CallSiteEHPad = nullptr;
1389   if (CallerPersonality) {
1390     EHPersonality Personality = classifyEHPersonality(CallerPersonality);
1391     if (isFuncletEHPersonality(Personality)) {
1392       Optional<OperandBundleUse> ParentFunclet =
1393           CS.getOperandBundle(LLVMContext::OB_funclet);
1394       if (ParentFunclet)
1395         CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
1396 
1397       // OK, the inlining site is legal.  What about the target function?
1398 
1399       if (CallSiteEHPad) {
1400         if (Personality == EHPersonality::MSVC_CXX) {
1401           // The MSVC personality cannot tolerate catches getting inlined into
1402           // cleanup funclets.
1403           if (isa<CleanupPadInst>(CallSiteEHPad)) {
1404             // Ok, the call site is within a cleanuppad.  Let's check the callee
1405             // for catchpads.
1406             for (const BasicBlock &CalledBB : *CalledFunc) {
1407               if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
1408                 return false;
1409             }
1410           }
1411         } else if (isAsynchronousEHPersonality(Personality)) {
1412           // SEH is even less tolerant, there may not be any sort of exceptional
1413           // funclet in the callee.
1414           for (const BasicBlock &CalledBB : *CalledFunc) {
1415             if (CalledBB.isEHPad())
1416               return false;
1417           }
1418         }
1419       }
1420     }
1421   }
1422 
1423   // Determine if we are dealing with a call in an EHPad which does not unwind
1424   // to caller.
1425   bool EHPadForCallUnwindsLocally = false;
1426   if (CallSiteEHPad && CS.isCall()) {
1427     UnwindDestMemoTy FuncletUnwindMap;
1428     Value *CallSiteUnwindDestToken =
1429         getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap);
1430 
1431     EHPadForCallUnwindsLocally =
1432         CallSiteUnwindDestToken &&
1433         !isa<ConstantTokenNone>(CallSiteUnwindDestToken);
1434   }
1435 
1436   // Get an iterator to the last basic block in the function, which will have
1437   // the new function inlined after it.
1438   Function::iterator LastBlock = --Caller->end();
1439 
1440   // Make sure to capture all of the return instructions from the cloned
1441   // function.
1442   SmallVector<ReturnInst*, 8> Returns;
1443   ClonedCodeInfo InlinedFunctionInfo;
1444   Function::iterator FirstNewBlock;
1445 
1446   { // Scope to destroy VMap after cloning.
1447     ValueToValueMapTy VMap;
1448     // Keep a list of pair (dst, src) to emit byval initializations.
1449     SmallVector<std::pair<Value*, Value*>, 4> ByValInit;
1450 
1451     auto &DL = Caller->getParent()->getDataLayout();
1452 
1453     assert(CalledFunc->arg_size() == CS.arg_size() &&
1454            "No varargs calls can be inlined!");
1455 
1456     // Calculate the vector of arguments to pass into the function cloner, which
1457     // matches up the formal to the actual argument values.
1458     CallSite::arg_iterator AI = CS.arg_begin();
1459     unsigned ArgNo = 0;
1460     for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
1461          E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
1462       Value *ActualArg = *AI;
1463 
1464       // When byval arguments actually inlined, we need to make the copy implied
1465       // by them explicit.  However, we don't do this if the callee is readonly
1466       // or readnone, because the copy would be unneeded: the callee doesn't
1467       // modify the struct.
1468       if (CS.isByValArgument(ArgNo)) {
1469         ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
1470                                         CalledFunc->getParamAlignment(ArgNo+1));
1471         if (ActualArg != *AI)
1472           ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
1473       }
1474 
1475       VMap[&*I] = ActualArg;
1476     }
1477 
1478     // Add alignment assumptions if necessary. We do this before the inlined
1479     // instructions are actually cloned into the caller so that we can easily
1480     // check what will be known at the start of the inlined code.
1481     AddAlignmentAssumptions(CS, IFI);
1482 
1483     // We want the inliner to prune the code as it copies.  We would LOVE to
1484     // have no dead or constant instructions leftover after inlining occurs
1485     // (which can happen, e.g., because an argument was constant), but we'll be
1486     // happy with whatever the cloner can do.
1487     CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
1488                               /*ModuleLevelChanges=*/false, Returns, ".i",
1489                               &InlinedFunctionInfo, TheCall);
1490 
1491     // Remember the first block that is newly cloned over.
1492     FirstNewBlock = LastBlock; ++FirstNewBlock;
1493 
1494     // Inject byval arguments initialization.
1495     for (std::pair<Value*, Value*> &Init : ByValInit)
1496       HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
1497                               &*FirstNewBlock, IFI);
1498 
1499     Optional<OperandBundleUse> ParentDeopt =
1500         CS.getOperandBundle(LLVMContext::OB_deopt);
1501     if (ParentDeopt) {
1502       SmallVector<OperandBundleDef, 2> OpDefs;
1503 
1504       for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
1505         Instruction *I = dyn_cast_or_null<Instruction>(VH);
1506         if (!I) continue;  // instruction was DCE'd or RAUW'ed to undef
1507 
1508         OpDefs.clear();
1509 
1510         CallSite ICS(I);
1511         OpDefs.reserve(ICS.getNumOperandBundles());
1512 
1513         for (unsigned i = 0, e = ICS.getNumOperandBundles(); i < e; ++i) {
1514           auto ChildOB = ICS.getOperandBundleAt(i);
1515           if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
1516             // If the inlined call has other operand bundles, let them be
1517             OpDefs.emplace_back(ChildOB);
1518             continue;
1519           }
1520 
1521           // It may be useful to separate this logic (of handling operand
1522           // bundles) out to a separate "policy" component if this gets crowded.
1523           // Prepend the parent's deoptimization continuation to the newly
1524           // inlined call's deoptimization continuation.
1525           std::vector<Value *> MergedDeoptArgs;
1526           MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
1527                                   ChildOB.Inputs.size());
1528 
1529           MergedDeoptArgs.insert(MergedDeoptArgs.end(),
1530                                  ParentDeopt->Inputs.begin(),
1531                                  ParentDeopt->Inputs.end());
1532           MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(),
1533                                  ChildOB.Inputs.end());
1534 
1535           OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
1536         }
1537 
1538         Instruction *NewI = nullptr;
1539         if (isa<CallInst>(I))
1540           NewI = CallInst::Create(cast<CallInst>(I), OpDefs, I);
1541         else
1542           NewI = InvokeInst::Create(cast<InvokeInst>(I), OpDefs, I);
1543 
1544         // Note: the RAUW does the appropriate fixup in VMap, so we need to do
1545         // this even if the call returns void.
1546         I->replaceAllUsesWith(NewI);
1547 
1548         VH = nullptr;
1549         I->eraseFromParent();
1550       }
1551     }
1552 
1553     // Update the callgraph if requested.
1554     if (IFI.CG)
1555       UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
1556 
1557     // Update inlined instructions' line number information.
1558     fixupLineNumbers(Caller, FirstNewBlock, TheCall);
1559 
1560     // Clone existing noalias metadata if necessary.
1561     CloneAliasScopeMetadata(CS, VMap);
1562 
1563     // Add noalias metadata if necessary.
1564     AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR);
1565 
1566     // FIXME: We could register any cloned assumptions instead of clearing the
1567     // whole function's cache.
1568     if (IFI.ACT)
1569       IFI.ACT->getAssumptionCache(*Caller).clear();
1570   }
1571 
1572   // If there are any alloca instructions in the block that used to be the entry
1573   // block for the callee, move them to the entry block of the caller.  First
1574   // calculate which instruction they should be inserted before.  We insert the
1575   // instructions at the end of the current alloca list.
1576   {
1577     BasicBlock::iterator InsertPoint = Caller->begin()->begin();
1578     for (BasicBlock::iterator I = FirstNewBlock->begin(),
1579          E = FirstNewBlock->end(); I != E; ) {
1580       AllocaInst *AI = dyn_cast<AllocaInst>(I++);
1581       if (!AI) continue;
1582 
1583       // If the alloca is now dead, remove it.  This often occurs due to code
1584       // specialization.
1585       if (AI->use_empty()) {
1586         AI->eraseFromParent();
1587         continue;
1588       }
1589 
1590       if (!isa<Constant>(AI->getArraySize()))
1591         continue;
1592 
1593       // Keep track of the static allocas that we inline into the caller.
1594       IFI.StaticAllocas.push_back(AI);
1595 
1596       // Scan for the block of allocas that we can move over, and move them
1597       // all at once.
1598       while (isa<AllocaInst>(I) &&
1599              isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
1600         IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
1601         ++I;
1602       }
1603 
1604       // Transfer all of the allocas over in a block.  Using splice means
1605       // that the instructions aren't removed from the symbol table, then
1606       // reinserted.
1607       Caller->getEntryBlock().getInstList().splice(
1608           InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I);
1609     }
1610     // Move any dbg.declares describing the allocas into the entry basic block.
1611     DIBuilder DIB(*Caller->getParent());
1612     for (auto &AI : IFI.StaticAllocas)
1613       replaceDbgDeclareForAlloca(AI, AI, DIB, /*Deref=*/false);
1614   }
1615 
1616   bool InlinedMustTailCalls = false;
1617   if (InlinedFunctionInfo.ContainsCalls) {
1618     CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
1619     if (CallInst *CI = dyn_cast<CallInst>(TheCall))
1620       CallSiteTailKind = CI->getTailCallKind();
1621 
1622     for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
1623          ++BB) {
1624       for (Instruction &I : *BB) {
1625         CallInst *CI = dyn_cast<CallInst>(&I);
1626         if (!CI)
1627           continue;
1628 
1629         // We need to reduce the strength of any inlined tail calls.  For
1630         // musttail, we have to avoid introducing potential unbounded stack
1631         // growth.  For example, if functions 'f' and 'g' are mutually recursive
1632         // with musttail, we can inline 'g' into 'f' so long as we preserve
1633         // musttail on the cloned call to 'f'.  If either the inlined call site
1634         // or the cloned call site is *not* musttail, the program already has
1635         // one frame of stack growth, so it's safe to remove musttail.  Here is
1636         // a table of example transformations:
1637         //
1638         //    f -> musttail g -> musttail f  ==>  f -> musttail f
1639         //    f -> musttail g ->     tail f  ==>  f ->     tail f
1640         //    f ->          g -> musttail f  ==>  f ->          f
1641         //    f ->          g ->     tail f  ==>  f ->          f
1642         CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
1643         ChildTCK = std::min(CallSiteTailKind, ChildTCK);
1644         CI->setTailCallKind(ChildTCK);
1645         InlinedMustTailCalls |= CI->isMustTailCall();
1646 
1647         // Calls inlined through a 'nounwind' call site should be marked
1648         // 'nounwind'.
1649         if (MarkNoUnwind)
1650           CI->setDoesNotThrow();
1651       }
1652     }
1653   }
1654 
1655   // Leave lifetime markers for the static alloca's, scoping them to the
1656   // function we just inlined.
1657   if (InsertLifetime && !IFI.StaticAllocas.empty()) {
1658     IRBuilder<> builder(&FirstNewBlock->front());
1659     for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
1660       AllocaInst *AI = IFI.StaticAllocas[ai];
1661 
1662       // If the alloca is already scoped to something smaller than the whole
1663       // function then there's no need to add redundant, less accurate markers.
1664       if (hasLifetimeMarkers(AI))
1665         continue;
1666 
1667       // Try to determine the size of the allocation.
1668       ConstantInt *AllocaSize = nullptr;
1669       if (ConstantInt *AIArraySize =
1670           dyn_cast<ConstantInt>(AI->getArraySize())) {
1671         auto &DL = Caller->getParent()->getDataLayout();
1672         Type *AllocaType = AI->getAllocatedType();
1673         uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
1674         uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
1675 
1676         // Don't add markers for zero-sized allocas.
1677         if (AllocaArraySize == 0)
1678           continue;
1679 
1680         // Check that array size doesn't saturate uint64_t and doesn't
1681         // overflow when it's multiplied by type size.
1682         if (AllocaArraySize != ~0ULL &&
1683             UINT64_MAX / AllocaArraySize >= AllocaTypeSize) {
1684           AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
1685                                         AllocaArraySize * AllocaTypeSize);
1686         }
1687       }
1688 
1689       builder.CreateLifetimeStart(AI, AllocaSize);
1690       for (ReturnInst *RI : Returns) {
1691         // Don't insert llvm.lifetime.end calls between a musttail call and a
1692         // return.  The return kills all local allocas.
1693         if (InlinedMustTailCalls &&
1694             RI->getParent()->getTerminatingMustTailCall())
1695           continue;
1696         IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
1697       }
1698     }
1699   }
1700 
1701   // If the inlined code contained dynamic alloca instructions, wrap the inlined
1702   // code with llvm.stacksave/llvm.stackrestore intrinsics.
1703   if (InlinedFunctionInfo.ContainsDynamicAllocas) {
1704     Module *M = Caller->getParent();
1705     // Get the two intrinsics we care about.
1706     Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
1707     Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
1708 
1709     // Insert the llvm.stacksave.
1710     CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
1711                              .CreateCall(StackSave, {}, "savedstack");
1712 
1713     // Insert a call to llvm.stackrestore before any return instructions in the
1714     // inlined function.
1715     for (ReturnInst *RI : Returns) {
1716       // Don't insert llvm.stackrestore calls between a musttail call and a
1717       // return.  The return will restore the stack pointer.
1718       if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
1719         continue;
1720       IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
1721     }
1722   }
1723 
1724   // If we are inlining for an invoke instruction, we must make sure to rewrite
1725   // any call instructions into invoke instructions.  This is sensitive to which
1726   // funclet pads were top-level in the inlinee, so must be done before
1727   // rewriting the "parent pad" links.
1728   if (auto *II = dyn_cast<InvokeInst>(TheCall)) {
1729     BasicBlock *UnwindDest = II->getUnwindDest();
1730     Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
1731     if (isa<LandingPadInst>(FirstNonPHI)) {
1732       HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
1733     } else {
1734       HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
1735     }
1736   }
1737 
1738   // Update the lexical scopes of the new funclets and callsites.
1739   // Anything that had 'none' as its parent is now nested inside the callsite's
1740   // EHPad.
1741 
1742   if (CallSiteEHPad) {
1743     for (Function::iterator BB = FirstNewBlock->getIterator(),
1744                             E = Caller->end();
1745          BB != E; ++BB) {
1746       // Add bundle operands to any top-level call sites.
1747       SmallVector<OperandBundleDef, 1> OpBundles;
1748       for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) {
1749         Instruction *I = &*BBI++;
1750         CallSite CS(I);
1751         if (!CS)
1752           continue;
1753 
1754         // Skip call sites which are nounwind intrinsics.
1755         auto *CalledFn =
1756             dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
1757         if (CalledFn && CalledFn->isIntrinsic() && CS.doesNotThrow())
1758           continue;
1759 
1760         // Skip call sites which already have a "funclet" bundle.
1761         if (CS.getOperandBundle(LLVMContext::OB_funclet))
1762           continue;
1763 
1764         CS.getOperandBundlesAsDefs(OpBundles);
1765         OpBundles.emplace_back("funclet", CallSiteEHPad);
1766 
1767         Instruction *NewInst;
1768         if (CS.isCall())
1769           NewInst = CallInst::Create(cast<CallInst>(I), OpBundles, I);
1770         else
1771           NewInst = InvokeInst::Create(cast<InvokeInst>(I), OpBundles, I);
1772         NewInst->takeName(I);
1773         I->replaceAllUsesWith(NewInst);
1774         I->eraseFromParent();
1775 
1776         OpBundles.clear();
1777       }
1778 
1779       // It is problematic if the inlinee has a cleanupret which unwinds to
1780       // caller and we inline it into a call site which doesn't unwind but into
1781       // an EH pad that does.  Such an edge must be dynamically unreachable.
1782       // As such, we replace the cleanupret with unreachable.
1783       if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
1784         if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
1785           changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false);
1786 
1787       Instruction *I = BB->getFirstNonPHI();
1788       if (!I->isEHPad())
1789         continue;
1790 
1791       if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
1792         if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
1793           CatchSwitch->setParentPad(CallSiteEHPad);
1794       } else {
1795         auto *FPI = cast<FuncletPadInst>(I);
1796         if (isa<ConstantTokenNone>(FPI->getParentPad()))
1797           FPI->setParentPad(CallSiteEHPad);
1798       }
1799     }
1800   }
1801 
1802   // Handle any inlined musttail call sites.  In order for a new call site to be
1803   // musttail, the source of the clone and the inlined call site must have been
1804   // musttail.  Therefore it's safe to return without merging control into the
1805   // phi below.
1806   if (InlinedMustTailCalls) {
1807     // Check if we need to bitcast the result of any musttail calls.
1808     Type *NewRetTy = Caller->getReturnType();
1809     bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy;
1810 
1811     // Handle the returns preceded by musttail calls separately.
1812     SmallVector<ReturnInst *, 8> NormalReturns;
1813     for (ReturnInst *RI : Returns) {
1814       CallInst *ReturnedMustTail =
1815           RI->getParent()->getTerminatingMustTailCall();
1816       if (!ReturnedMustTail) {
1817         NormalReturns.push_back(RI);
1818         continue;
1819       }
1820       if (!NeedBitCast)
1821         continue;
1822 
1823       // Delete the old return and any preceding bitcast.
1824       BasicBlock *CurBB = RI->getParent();
1825       auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
1826       RI->eraseFromParent();
1827       if (OldCast)
1828         OldCast->eraseFromParent();
1829 
1830       // Insert a new bitcast and return with the right type.
1831       IRBuilder<> Builder(CurBB);
1832       Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
1833     }
1834 
1835     // Leave behind the normal returns so we can merge control flow.
1836     std::swap(Returns, NormalReturns);
1837   }
1838 
1839   // If we cloned in _exactly one_ basic block, and if that block ends in a
1840   // return instruction, we splice the body of the inlined callee directly into
1841   // the calling basic block.
1842   if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
1843     // Move all of the instructions right before the call.
1844     OrigBB->getInstList().splice(TheCall->getIterator(),
1845                                  FirstNewBlock->getInstList(),
1846                                  FirstNewBlock->begin(), FirstNewBlock->end());
1847     // Remove the cloned basic block.
1848     Caller->getBasicBlockList().pop_back();
1849 
1850     // If the call site was an invoke instruction, add a branch to the normal
1851     // destination.
1852     if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
1853       BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
1854       NewBr->setDebugLoc(Returns[0]->getDebugLoc());
1855     }
1856 
1857     // If the return instruction returned a value, replace uses of the call with
1858     // uses of the returned value.
1859     if (!TheCall->use_empty()) {
1860       ReturnInst *R = Returns[0];
1861       if (TheCall == R->getReturnValue())
1862         TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
1863       else
1864         TheCall->replaceAllUsesWith(R->getReturnValue());
1865     }
1866     // Since we are now done with the Call/Invoke, we can delete it.
1867     TheCall->eraseFromParent();
1868 
1869     // Since we are now done with the return instruction, delete it also.
1870     Returns[0]->eraseFromParent();
1871 
1872     // We are now done with the inlining.
1873     return true;
1874   }
1875 
1876   // Otherwise, we have the normal case, of more than one block to inline or
1877   // multiple return sites.
1878 
1879   // We want to clone the entire callee function into the hole between the
1880   // "starter" and "ender" blocks.  How we accomplish this depends on whether
1881   // this is an invoke instruction or a call instruction.
1882   BasicBlock *AfterCallBB;
1883   BranchInst *CreatedBranchToNormalDest = nullptr;
1884   if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
1885 
1886     // Add an unconditional branch to make this look like the CallInst case...
1887     CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall);
1888 
1889     // Split the basic block.  This guarantees that no PHI nodes will have to be
1890     // updated due to new incoming edges, and make the invoke case more
1891     // symmetric to the call case.
1892     AfterCallBB =
1893         OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
1894                                 CalledFunc->getName() + ".exit");
1895 
1896   } else {  // It's a call
1897     // If this is a call instruction, we need to split the basic block that
1898     // the call lives in.
1899     //
1900     AfterCallBB = OrigBB->splitBasicBlock(TheCall->getIterator(),
1901                                           CalledFunc->getName() + ".exit");
1902   }
1903 
1904   // Change the branch that used to go to AfterCallBB to branch to the first
1905   // basic block of the inlined function.
1906   //
1907   TerminatorInst *Br = OrigBB->getTerminator();
1908   assert(Br && Br->getOpcode() == Instruction::Br &&
1909          "splitBasicBlock broken!");
1910   Br->setOperand(0, &*FirstNewBlock);
1911 
1912   // Now that the function is correct, make it a little bit nicer.  In
1913   // particular, move the basic blocks inserted from the end of the function
1914   // into the space made by splitting the source basic block.
1915   Caller->getBasicBlockList().splice(AfterCallBB->getIterator(),
1916                                      Caller->getBasicBlockList(), FirstNewBlock,
1917                                      Caller->end());
1918 
1919   // Handle all of the return instructions that we just cloned in, and eliminate
1920   // any users of the original call/invoke instruction.
1921   Type *RTy = CalledFunc->getReturnType();
1922 
1923   PHINode *PHI = nullptr;
1924   if (Returns.size() > 1) {
1925     // The PHI node should go at the front of the new basic block to merge all
1926     // possible incoming values.
1927     if (!TheCall->use_empty()) {
1928       PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
1929                             &AfterCallBB->front());
1930       // Anything that used the result of the function call should now use the
1931       // PHI node as their operand.
1932       TheCall->replaceAllUsesWith(PHI);
1933     }
1934 
1935     // Loop over all of the return instructions adding entries to the PHI node
1936     // as appropriate.
1937     if (PHI) {
1938       for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
1939         ReturnInst *RI = Returns[i];
1940         assert(RI->getReturnValue()->getType() == PHI->getType() &&
1941                "Ret value not consistent in function!");
1942         PHI->addIncoming(RI->getReturnValue(), RI->getParent());
1943       }
1944     }
1945 
1946     // Add a branch to the merge points and remove return instructions.
1947     DebugLoc Loc;
1948     for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
1949       ReturnInst *RI = Returns[i];
1950       BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
1951       Loc = RI->getDebugLoc();
1952       BI->setDebugLoc(Loc);
1953       RI->eraseFromParent();
1954     }
1955     // We need to set the debug location to *somewhere* inside the
1956     // inlined function. The line number may be nonsensical, but the
1957     // instruction will at least be associated with the right
1958     // function.
1959     if (CreatedBranchToNormalDest)
1960       CreatedBranchToNormalDest->setDebugLoc(Loc);
1961   } else if (!Returns.empty()) {
1962     // Otherwise, if there is exactly one return value, just replace anything
1963     // using the return value of the call with the computed value.
1964     if (!TheCall->use_empty()) {
1965       if (TheCall == Returns[0]->getReturnValue())
1966         TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
1967       else
1968         TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
1969     }
1970 
1971     // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
1972     BasicBlock *ReturnBB = Returns[0]->getParent();
1973     ReturnBB->replaceAllUsesWith(AfterCallBB);
1974 
1975     // Splice the code from the return block into the block that it will return
1976     // to, which contains the code that was after the call.
1977     AfterCallBB->getInstList().splice(AfterCallBB->begin(),
1978                                       ReturnBB->getInstList());
1979 
1980     if (CreatedBranchToNormalDest)
1981       CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
1982 
1983     // Delete the return instruction now and empty ReturnBB now.
1984     Returns[0]->eraseFromParent();
1985     ReturnBB->eraseFromParent();
1986   } else if (!TheCall->use_empty()) {
1987     // No returns, but something is using the return value of the call.  Just
1988     // nuke the result.
1989     TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
1990   }
1991 
1992   // Since we are now done with the Call/Invoke, we can delete it.
1993   TheCall->eraseFromParent();
1994 
1995   // If we inlined any musttail calls and the original return is now
1996   // unreachable, delete it.  It can only contain a bitcast and ret.
1997   if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB))
1998     AfterCallBB->eraseFromParent();
1999 
2000   // We should always be able to fold the entry block of the function into the
2001   // single predecessor of the block...
2002   assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
2003   BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
2004 
2005   // Splice the code entry block into calling block, right before the
2006   // unconditional branch.
2007   CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
2008   OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList());
2009 
2010   // Remove the unconditional branch.
2011   OrigBB->getInstList().erase(Br);
2012 
2013   // Now we can remove the CalleeEntry block, which is now empty.
2014   Caller->getBasicBlockList().erase(CalleeEntry);
2015 
2016   // If we inserted a phi node, check to see if it has a single value (e.g. all
2017   // the entries are the same or undef).  If so, remove the PHI so it doesn't
2018   // block other optimizations.
2019   if (PHI) {
2020     auto &DL = Caller->getParent()->getDataLayout();
2021     if (Value *V = SimplifyInstruction(PHI, DL, nullptr, nullptr,
2022                                        &IFI.ACT->getAssumptionCache(*Caller))) {
2023       PHI->replaceAllUsesWith(V);
2024       PHI->eraseFromParent();
2025     }
2026   }
2027 
2028   return true;
2029 }
2030