1 //===- InlineFunction.cpp - Code to perform function inlining -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements inlining of a function into a call site, resolving
11 // parameters and the return value as appropriate.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/Cloning.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/CallGraph.h"
25 #include "llvm/Analysis/CaptureTracking.h"
26 #include "llvm/Analysis/EHPersonalities.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/ProfileSummaryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/CallSite.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugInfo.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/DIBuilder.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/IRBuilder.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/MDBuilder.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include <algorithm>
48 
49 using namespace llvm;
50 
51 static cl::opt<bool>
52 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
53   cl::Hidden,
54   cl::desc("Convert noalias attributes to metadata during inlining."));
55 
56 static cl::opt<bool>
57 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
58   cl::init(true), cl::Hidden,
59   cl::desc("Convert align attributes to assumptions during inlining."));
60 
61 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI,
62                           AAResults *CalleeAAR, bool InsertLifetime) {
63   return InlineFunction(CallSite(CI), IFI, CalleeAAR, InsertLifetime);
64 }
65 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
66                           AAResults *CalleeAAR, bool InsertLifetime) {
67   return InlineFunction(CallSite(II), IFI, CalleeAAR, InsertLifetime);
68 }
69 
70 namespace {
71   /// A class for recording information about inlining a landing pad.
72   class LandingPadInliningInfo {
73     BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind.
74     BasicBlock *InnerResumeDest; ///< Destination for the callee's resume.
75     LandingPadInst *CallerLPad;  ///< LandingPadInst associated with the invoke.
76     PHINode *InnerEHValuesPHI;   ///< PHI for EH values from landingpad insts.
77     SmallVector<Value*, 8> UnwindDestPHIValues;
78 
79   public:
80     LandingPadInliningInfo(InvokeInst *II)
81       : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr),
82         CallerLPad(nullptr), InnerEHValuesPHI(nullptr) {
83       // If there are PHI nodes in the unwind destination block, we need to keep
84       // track of which values came into them from the invoke before removing
85       // the edge from this block.
86       llvm::BasicBlock *InvokeBB = II->getParent();
87       BasicBlock::iterator I = OuterResumeDest->begin();
88       for (; isa<PHINode>(I); ++I) {
89         // Save the value to use for this edge.
90         PHINode *PHI = cast<PHINode>(I);
91         UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
92       }
93 
94       CallerLPad = cast<LandingPadInst>(I);
95     }
96 
97     /// The outer unwind destination is the target of
98     /// unwind edges introduced for calls within the inlined function.
99     BasicBlock *getOuterResumeDest() const {
100       return OuterResumeDest;
101     }
102 
103     BasicBlock *getInnerResumeDest();
104 
105     LandingPadInst *getLandingPadInst() const { return CallerLPad; }
106 
107     /// Forward the 'resume' instruction to the caller's landing pad block.
108     /// When the landing pad block has only one predecessor, this is
109     /// a simple branch. When there is more than one predecessor, we need to
110     /// split the landing pad block after the landingpad instruction and jump
111     /// to there.
112     void forwardResume(ResumeInst *RI,
113                        SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
114 
115     /// Add incoming-PHI values to the unwind destination block for the given
116     /// basic block, using the values for the original invoke's source block.
117     void addIncomingPHIValuesFor(BasicBlock *BB) const {
118       addIncomingPHIValuesForInto(BB, OuterResumeDest);
119     }
120 
121     void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
122       BasicBlock::iterator I = dest->begin();
123       for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
124         PHINode *phi = cast<PHINode>(I);
125         phi->addIncoming(UnwindDestPHIValues[i], src);
126       }
127     }
128   };
129 } // anonymous namespace
130 
131 /// Get or create a target for the branch from ResumeInsts.
132 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
133   if (InnerResumeDest) return InnerResumeDest;
134 
135   // Split the landing pad.
136   BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
137   InnerResumeDest =
138     OuterResumeDest->splitBasicBlock(SplitPoint,
139                                      OuterResumeDest->getName() + ".body");
140 
141   // The number of incoming edges we expect to the inner landing pad.
142   const unsigned PHICapacity = 2;
143 
144   // Create corresponding new PHIs for all the PHIs in the outer landing pad.
145   Instruction *InsertPoint = &InnerResumeDest->front();
146   BasicBlock::iterator I = OuterResumeDest->begin();
147   for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
148     PHINode *OuterPHI = cast<PHINode>(I);
149     PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
150                                         OuterPHI->getName() + ".lpad-body",
151                                         InsertPoint);
152     OuterPHI->replaceAllUsesWith(InnerPHI);
153     InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
154   }
155 
156   // Create a PHI for the exception values.
157   InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
158                                      "eh.lpad-body", InsertPoint);
159   CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
160   InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
161 
162   // All done.
163   return InnerResumeDest;
164 }
165 
166 /// Forward the 'resume' instruction to the caller's landing pad block.
167 /// When the landing pad block has only one predecessor, this is a simple
168 /// branch. When there is more than one predecessor, we need to split the
169 /// landing pad block after the landingpad instruction and jump to there.
170 void LandingPadInliningInfo::forwardResume(
171     ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
172   BasicBlock *Dest = getInnerResumeDest();
173   BasicBlock *Src = RI->getParent();
174 
175   BranchInst::Create(Dest, Src);
176 
177   // Update the PHIs in the destination. They were inserted in an order which
178   // makes this work.
179   addIncomingPHIValuesForInto(Src, Dest);
180 
181   InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
182   RI->eraseFromParent();
183 }
184 
185 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
186 static Value *getParentPad(Value *EHPad) {
187   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
188     return FPI->getParentPad();
189   return cast<CatchSwitchInst>(EHPad)->getParentPad();
190 }
191 
192 typedef DenseMap<Instruction *, Value *> UnwindDestMemoTy;
193 
194 /// Helper for getUnwindDestToken that does the descendant-ward part of
195 /// the search.
196 static Value *getUnwindDestTokenHelper(Instruction *EHPad,
197                                        UnwindDestMemoTy &MemoMap) {
198   SmallVector<Instruction *, 8> Worklist(1, EHPad);
199 
200   while (!Worklist.empty()) {
201     Instruction *CurrentPad = Worklist.pop_back_val();
202     // We only put pads on the worklist that aren't in the MemoMap.  When
203     // we find an unwind dest for a pad we may update its ancestors, but
204     // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
205     // so they should never get updated while queued on the worklist.
206     assert(!MemoMap.count(CurrentPad));
207     Value *UnwindDestToken = nullptr;
208     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
209       if (CatchSwitch->hasUnwindDest()) {
210         UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
211       } else {
212         // Catchswitch doesn't have a 'nounwind' variant, and one might be
213         // annotated as "unwinds to caller" when really it's nounwind (see
214         // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
215         // parent's unwind dest from this.  We can check its catchpads'
216         // descendants, since they might include a cleanuppad with an
217         // "unwinds to caller" cleanupret, which can be trusted.
218         for (auto HI = CatchSwitch->handler_begin(),
219                   HE = CatchSwitch->handler_end();
220              HI != HE && !UnwindDestToken; ++HI) {
221           BasicBlock *HandlerBlock = *HI;
222           auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
223           for (User *Child : CatchPad->users()) {
224             // Intentionally ignore invokes here -- since the catchswitch is
225             // marked "unwind to caller", it would be a verifier error if it
226             // contained an invoke which unwinds out of it, so any invoke we'd
227             // encounter must unwind to some child of the catch.
228             if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
229               continue;
230 
231             Instruction *ChildPad = cast<Instruction>(Child);
232             auto Memo = MemoMap.find(ChildPad);
233             if (Memo == MemoMap.end()) {
234               // Haven't figured out this child pad yet; queue it.
235               Worklist.push_back(ChildPad);
236               continue;
237             }
238             // We've already checked this child, but might have found that
239             // it offers no proof either way.
240             Value *ChildUnwindDestToken = Memo->second;
241             if (!ChildUnwindDestToken)
242               continue;
243             // We already know the child's unwind dest, which can either
244             // be ConstantTokenNone to indicate unwind to caller, or can
245             // be another child of the catchpad.  Only the former indicates
246             // the unwind dest of the catchswitch.
247             if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
248               UnwindDestToken = ChildUnwindDestToken;
249               break;
250             }
251             assert(getParentPad(ChildUnwindDestToken) == CatchPad);
252           }
253         }
254       }
255     } else {
256       auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
257       for (User *U : CleanupPad->users()) {
258         if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
259           if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
260             UnwindDestToken = RetUnwindDest->getFirstNonPHI();
261           else
262             UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
263           break;
264         }
265         Value *ChildUnwindDestToken;
266         if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
267           ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
268         } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
269           Instruction *ChildPad = cast<Instruction>(U);
270           auto Memo = MemoMap.find(ChildPad);
271           if (Memo == MemoMap.end()) {
272             // Haven't resolved this child yet; queue it and keep searching.
273             Worklist.push_back(ChildPad);
274             continue;
275           }
276           // We've checked this child, but still need to ignore it if it
277           // had no proof either way.
278           ChildUnwindDestToken = Memo->second;
279           if (!ChildUnwindDestToken)
280             continue;
281         } else {
282           // Not a relevant user of the cleanuppad
283           continue;
284         }
285         // In a well-formed program, the child/invoke must either unwind to
286         // an(other) child of the cleanup, or exit the cleanup.  In the
287         // first case, continue searching.
288         if (isa<Instruction>(ChildUnwindDestToken) &&
289             getParentPad(ChildUnwindDestToken) == CleanupPad)
290           continue;
291         UnwindDestToken = ChildUnwindDestToken;
292         break;
293       }
294     }
295     // If we haven't found an unwind dest for CurrentPad, we may have queued its
296     // children, so move on to the next in the worklist.
297     if (!UnwindDestToken)
298       continue;
299 
300     // Now we know that CurrentPad unwinds to UnwindDestToken.  It also exits
301     // any ancestors of CurrentPad up to but not including UnwindDestToken's
302     // parent pad.  Record this in the memo map, and check to see if the
303     // original EHPad being queried is one of the ones exited.
304     Value *UnwindParent;
305     if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
306       UnwindParent = getParentPad(UnwindPad);
307     else
308       UnwindParent = nullptr;
309     bool ExitedOriginalPad = false;
310     for (Instruction *ExitedPad = CurrentPad;
311          ExitedPad && ExitedPad != UnwindParent;
312          ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
313       // Skip over catchpads since they just follow their catchswitches.
314       if (isa<CatchPadInst>(ExitedPad))
315         continue;
316       MemoMap[ExitedPad] = UnwindDestToken;
317       ExitedOriginalPad |= (ExitedPad == EHPad);
318     }
319 
320     if (ExitedOriginalPad)
321       return UnwindDestToken;
322 
323     // Continue the search.
324   }
325 
326   // No definitive information is contained within this funclet.
327   return nullptr;
328 }
329 
330 /// Given an EH pad, find where it unwinds.  If it unwinds to an EH pad,
331 /// return that pad instruction.  If it unwinds to caller, return
332 /// ConstantTokenNone.  If it does not have a definitive unwind destination,
333 /// return nullptr.
334 ///
335 /// This routine gets invoked for calls in funclets in inlinees when inlining
336 /// an invoke.  Since many funclets don't have calls inside them, it's queried
337 /// on-demand rather than building a map of pads to unwind dests up front.
338 /// Determining a funclet's unwind dest may require recursively searching its
339 /// descendants, and also ancestors and cousins if the descendants don't provide
340 /// an answer.  Since most funclets will have their unwind dest immediately
341 /// available as the unwind dest of a catchswitch or cleanupret, this routine
342 /// searches top-down from the given pad and then up. To avoid worst-case
343 /// quadratic run-time given that approach, it uses a memo map to avoid
344 /// re-processing funclet trees.  The callers that rewrite the IR as they go
345 /// take advantage of this, for correctness, by checking/forcing rewritten
346 /// pads' entries to match the original callee view.
347 static Value *getUnwindDestToken(Instruction *EHPad,
348                                  UnwindDestMemoTy &MemoMap) {
349   // Catchpads unwind to the same place as their catchswitch;
350   // redirct any queries on catchpads so the code below can
351   // deal with just catchswitches and cleanuppads.
352   if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
353     EHPad = CPI->getCatchSwitch();
354 
355   // Check if we've already determined the unwind dest for this pad.
356   auto Memo = MemoMap.find(EHPad);
357   if (Memo != MemoMap.end())
358     return Memo->second;
359 
360   // Search EHPad and, if necessary, its descendants.
361   Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
362   assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
363   if (UnwindDestToken)
364     return UnwindDestToken;
365 
366   // No information is available for this EHPad from itself or any of its
367   // descendants.  An unwind all the way out to a pad in the caller would
368   // need also to agree with the unwind dest of the parent funclet, so
369   // search up the chain to try to find a funclet with information.  Put
370   // null entries in the memo map to avoid re-processing as we go up.
371   MemoMap[EHPad] = nullptr;
372 #ifndef NDEBUG
373   SmallPtrSet<Instruction *, 4> TempMemos;
374   TempMemos.insert(EHPad);
375 #endif
376   Instruction *LastUselessPad = EHPad;
377   Value *AncestorToken;
378   for (AncestorToken = getParentPad(EHPad);
379        auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
380        AncestorToken = getParentPad(AncestorToken)) {
381     // Skip over catchpads since they just follow their catchswitches.
382     if (isa<CatchPadInst>(AncestorPad))
383       continue;
384     // If the MemoMap had an entry mapping AncestorPad to nullptr, since we
385     // haven't yet called getUnwindDestTokenHelper for AncestorPad in this
386     // call to getUnwindDestToken, that would mean that AncestorPad had no
387     // information in itself, its descendants, or its ancestors.  If that
388     // were the case, then we should also have recorded the lack of information
389     // for the descendant that we're coming from.  So assert that we don't
390     // find a null entry in the MemoMap for AncestorPad.
391     assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
392     auto AncestorMemo = MemoMap.find(AncestorPad);
393     if (AncestorMemo == MemoMap.end()) {
394       UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
395     } else {
396       UnwindDestToken = AncestorMemo->second;
397     }
398     if (UnwindDestToken)
399       break;
400     LastUselessPad = AncestorPad;
401     MemoMap[LastUselessPad] = nullptr;
402 #ifndef NDEBUG
403     TempMemos.insert(LastUselessPad);
404 #endif
405   }
406 
407   // We know that getUnwindDestTokenHelper was called on LastUselessPad and
408   // returned nullptr (and likewise for EHPad and any of its ancestors up to
409   // LastUselessPad), so LastUselessPad has no information from below.  Since
410   // getUnwindDestTokenHelper must investigate all downward paths through
411   // no-information nodes to prove that a node has no information like this,
412   // and since any time it finds information it records it in the MemoMap for
413   // not just the immediately-containing funclet but also any ancestors also
414   // exited, it must be the case that, walking downward from LastUselessPad,
415   // visiting just those nodes which have not been mapped to an unwind dest
416   // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since
417   // they are just used to keep getUnwindDestTokenHelper from repeating work),
418   // any node visited must have been exhaustively searched with no information
419   // for it found.
420   SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
421   while (!Worklist.empty()) {
422     Instruction *UselessPad = Worklist.pop_back_val();
423     auto Memo = MemoMap.find(UselessPad);
424     if (Memo != MemoMap.end() && Memo->second) {
425       // Here the name 'UselessPad' is a bit of a misnomer, because we've found
426       // that it is a funclet that does have information about unwinding to
427       // a particular destination; its parent was a useless pad.
428       // Since its parent has no information, the unwind edge must not escape
429       // the parent, and must target a sibling of this pad.  This local unwind
430       // gives us no information about EHPad.  Leave it and the subtree rooted
431       // at it alone.
432       assert(getParentPad(Memo->second) == getParentPad(UselessPad));
433       continue;
434     }
435     // We know we don't have information for UselesPad.  If it has an entry in
436     // the MemoMap (mapping it to nullptr), it must be one of the TempMemos
437     // added on this invocation of getUnwindDestToken; if a previous invocation
438     // recorded nullptr, it would have had to prove that the ancestors of
439     // UselessPad, which include LastUselessPad, had no information, and that
440     // in turn would have required proving that the descendants of
441     // LastUselesPad, which include EHPad, have no information about
442     // LastUselessPad, which would imply that EHPad was mapped to nullptr in
443     // the MemoMap on that invocation, which isn't the case if we got here.
444     assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad));
445     // Assert as we enumerate users that 'UselessPad' doesn't have any unwind
446     // information that we'd be contradicting by making a map entry for it
447     // (which is something that getUnwindDestTokenHelper must have proved for
448     // us to get here).  Just assert on is direct users here; the checks in
449     // this downward walk at its descendants will verify that they don't have
450     // any unwind edges that exit 'UselessPad' either (i.e. they either have no
451     // unwind edges or unwind to a sibling).
452     MemoMap[UselessPad] = UnwindDestToken;
453     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
454       assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad");
455       for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) {
456         auto *CatchPad = HandlerBlock->getFirstNonPHI();
457         for (User *U : CatchPad->users()) {
458           assert(
459               (!isa<InvokeInst>(U) ||
460                (getParentPad(
461                     cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
462                 CatchPad)) &&
463               "Expected useless pad");
464           if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
465             Worklist.push_back(cast<Instruction>(U));
466         }
467       }
468     } else {
469       assert(isa<CleanupPadInst>(UselessPad));
470       for (User *U : UselessPad->users()) {
471         assert(!isa<CleanupReturnInst>(U) && "Expected useless pad");
472         assert((!isa<InvokeInst>(U) ||
473                 (getParentPad(
474                      cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
475                  UselessPad)) &&
476                "Expected useless pad");
477         if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
478           Worklist.push_back(cast<Instruction>(U));
479       }
480     }
481   }
482 
483   return UnwindDestToken;
484 }
485 
486 /// When we inline a basic block into an invoke,
487 /// we have to turn all of the calls that can throw into invokes.
488 /// This function analyze BB to see if there are any calls, and if so,
489 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
490 /// nodes in that block with the values specified in InvokeDestPHIValues.
491 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
492     BasicBlock *BB, BasicBlock *UnwindEdge,
493     UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
494   for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
495     Instruction *I = &*BBI++;
496 
497     // We only need to check for function calls: inlined invoke
498     // instructions require no special handling.
499     CallInst *CI = dyn_cast<CallInst>(I);
500 
501     if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue()))
502       continue;
503 
504     // We do not need to (and in fact, cannot) convert possibly throwing calls
505     // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
506     // invokes.  The caller's "segment" of the deoptimization continuation
507     // attached to the newly inlined @llvm.experimental_deoptimize
508     // (resp. @llvm.experimental.guard) call should contain the exception
509     // handling logic, if any.
510     if (auto *F = CI->getCalledFunction())
511       if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize ||
512           F->getIntrinsicID() == Intrinsic::experimental_guard)
513         continue;
514 
515     if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
516       // This call is nested inside a funclet.  If that funclet has an unwind
517       // destination within the inlinee, then unwinding out of this call would
518       // be UB.  Rewriting this call to an invoke which targets the inlined
519       // invoke's unwind dest would give the call's parent funclet multiple
520       // unwind destinations, which is something that subsequent EH table
521       // generation can't handle and that the veirifer rejects.  So when we
522       // see such a call, leave it as a call.
523       auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
524       Value *UnwindDestToken =
525           getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
526       if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
527         continue;
528 #ifndef NDEBUG
529       Instruction *MemoKey;
530       if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
531         MemoKey = CatchPad->getCatchSwitch();
532       else
533         MemoKey = FuncletPad;
534       assert(FuncletUnwindMap->count(MemoKey) &&
535              (*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
536              "must get memoized to avoid confusing later searches");
537 #endif // NDEBUG
538     }
539 
540     changeToInvokeAndSplitBasicBlock(CI, UnwindEdge);
541     return BB;
542   }
543   return nullptr;
544 }
545 
546 /// If we inlined an invoke site, we need to convert calls
547 /// in the body of the inlined function into invokes.
548 ///
549 /// II is the invoke instruction being inlined.  FirstNewBlock is the first
550 /// block of the inlined code (the last block is the end of the function),
551 /// and InlineCodeInfo is information about the code that got inlined.
552 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
553                                     ClonedCodeInfo &InlinedCodeInfo) {
554   BasicBlock *InvokeDest = II->getUnwindDest();
555 
556   Function *Caller = FirstNewBlock->getParent();
557 
558   // The inlined code is currently at the end of the function, scan from the
559   // start of the inlined code to its end, checking for stuff we need to
560   // rewrite.
561   LandingPadInliningInfo Invoke(II);
562 
563   // Get all of the inlined landing pad instructions.
564   SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
565   for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
566        I != E; ++I)
567     if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
568       InlinedLPads.insert(II->getLandingPadInst());
569 
570   // Append the clauses from the outer landing pad instruction into the inlined
571   // landing pad instructions.
572   LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
573   for (LandingPadInst *InlinedLPad : InlinedLPads) {
574     unsigned OuterNum = OuterLPad->getNumClauses();
575     InlinedLPad->reserveClauses(OuterNum);
576     for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
577       InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
578     if (OuterLPad->isCleanup())
579       InlinedLPad->setCleanup(true);
580   }
581 
582   for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
583        BB != E; ++BB) {
584     if (InlinedCodeInfo.ContainsCalls)
585       if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
586               &*BB, Invoke.getOuterResumeDest()))
587         // Update any PHI nodes in the exceptional block to indicate that there
588         // is now a new entry in them.
589         Invoke.addIncomingPHIValuesFor(NewBB);
590 
591     // Forward any resumes that are remaining here.
592     if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
593       Invoke.forwardResume(RI, InlinedLPads);
594   }
595 
596   // Now that everything is happy, we have one final detail.  The PHI nodes in
597   // the exception destination block still have entries due to the original
598   // invoke instruction. Eliminate these entries (which might even delete the
599   // PHI node) now.
600   InvokeDest->removePredecessor(II->getParent());
601 }
602 
603 /// If we inlined an invoke site, we need to convert calls
604 /// in the body of the inlined function into invokes.
605 ///
606 /// II is the invoke instruction being inlined.  FirstNewBlock is the first
607 /// block of the inlined code (the last block is the end of the function),
608 /// and InlineCodeInfo is information about the code that got inlined.
609 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
610                                ClonedCodeInfo &InlinedCodeInfo) {
611   BasicBlock *UnwindDest = II->getUnwindDest();
612   Function *Caller = FirstNewBlock->getParent();
613 
614   assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");
615 
616   // If there are PHI nodes in the unwind destination block, we need to keep
617   // track of which values came into them from the invoke before removing the
618   // edge from this block.
619   SmallVector<Value *, 8> UnwindDestPHIValues;
620   llvm::BasicBlock *InvokeBB = II->getParent();
621   for (Instruction &I : *UnwindDest) {
622     // Save the value to use for this edge.
623     PHINode *PHI = dyn_cast<PHINode>(&I);
624     if (!PHI)
625       break;
626     UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
627   }
628 
629   // Add incoming-PHI values to the unwind destination block for the given basic
630   // block, using the values for the original invoke's source block.
631   auto UpdatePHINodes = [&](BasicBlock *Src) {
632     BasicBlock::iterator I = UnwindDest->begin();
633     for (Value *V : UnwindDestPHIValues) {
634       PHINode *PHI = cast<PHINode>(I);
635       PHI->addIncoming(V, Src);
636       ++I;
637     }
638   };
639 
640   // This connects all the instructions which 'unwind to caller' to the invoke
641   // destination.
642   UnwindDestMemoTy FuncletUnwindMap;
643   for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
644        BB != E; ++BB) {
645     if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
646       if (CRI->unwindsToCaller()) {
647         auto *CleanupPad = CRI->getCleanupPad();
648         CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
649         CRI->eraseFromParent();
650         UpdatePHINodes(&*BB);
651         // Finding a cleanupret with an unwind destination would confuse
652         // subsequent calls to getUnwindDestToken, so map the cleanuppad
653         // to short-circuit any such calls and recognize this as an "unwind
654         // to caller" cleanup.
655         assert(!FuncletUnwindMap.count(CleanupPad) ||
656                isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
657         FuncletUnwindMap[CleanupPad] =
658             ConstantTokenNone::get(Caller->getContext());
659       }
660     }
661 
662     Instruction *I = BB->getFirstNonPHI();
663     if (!I->isEHPad())
664       continue;
665 
666     Instruction *Replacement = nullptr;
667     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
668       if (CatchSwitch->unwindsToCaller()) {
669         Value *UnwindDestToken;
670         if (auto *ParentPad =
671                 dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
672           // This catchswitch is nested inside another funclet.  If that
673           // funclet has an unwind destination within the inlinee, then
674           // unwinding out of this catchswitch would be UB.  Rewriting this
675           // catchswitch to unwind to the inlined invoke's unwind dest would
676           // give the parent funclet multiple unwind destinations, which is
677           // something that subsequent EH table generation can't handle and
678           // that the veirifer rejects.  So when we see such a call, leave it
679           // as "unwind to caller".
680           UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
681           if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
682             continue;
683         } else {
684           // This catchswitch has no parent to inherit constraints from, and
685           // none of its descendants can have an unwind edge that exits it and
686           // targets another funclet in the inlinee.  It may or may not have a
687           // descendant that definitively has an unwind to caller.  In either
688           // case, we'll have to assume that any unwinds out of it may need to
689           // be routed to the caller, so treat it as though it has a definitive
690           // unwind to caller.
691           UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
692         }
693         auto *NewCatchSwitch = CatchSwitchInst::Create(
694             CatchSwitch->getParentPad(), UnwindDest,
695             CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
696             CatchSwitch);
697         for (BasicBlock *PadBB : CatchSwitch->handlers())
698           NewCatchSwitch->addHandler(PadBB);
699         // Propagate info for the old catchswitch over to the new one in
700         // the unwind map.  This also serves to short-circuit any subsequent
701         // checks for the unwind dest of this catchswitch, which would get
702         // confused if they found the outer handler in the callee.
703         FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
704         Replacement = NewCatchSwitch;
705       }
706     } else if (!isa<FuncletPadInst>(I)) {
707       llvm_unreachable("unexpected EHPad!");
708     }
709 
710     if (Replacement) {
711       Replacement->takeName(I);
712       I->replaceAllUsesWith(Replacement);
713       I->eraseFromParent();
714       UpdatePHINodes(&*BB);
715     }
716   }
717 
718   if (InlinedCodeInfo.ContainsCalls)
719     for (Function::iterator BB = FirstNewBlock->getIterator(),
720                             E = Caller->end();
721          BB != E; ++BB)
722       if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
723               &*BB, UnwindDest, &FuncletUnwindMap))
724         // Update any PHI nodes in the exceptional block to indicate that there
725         // is now a new entry in them.
726         UpdatePHINodes(NewBB);
727 
728   // Now that everything is happy, we have one final detail.  The PHI nodes in
729   // the exception destination block still have entries due to the original
730   // invoke instruction. Eliminate these entries (which might even delete the
731   // PHI node) now.
732   UnwindDest->removePredecessor(InvokeBB);
733 }
734 
735 /// When inlining a call site that has !llvm.mem.parallel_loop_access metadata,
736 /// that metadata should be propagated to all memory-accessing cloned
737 /// instructions.
738 static void PropagateParallelLoopAccessMetadata(CallSite CS,
739                                                 ValueToValueMapTy &VMap) {
740   MDNode *M =
741     CS.getInstruction()->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
742   if (!M)
743     return;
744 
745   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
746        VMI != VMIE; ++VMI) {
747     if (!VMI->second)
748       continue;
749 
750     Instruction *NI = dyn_cast<Instruction>(VMI->second);
751     if (!NI)
752       continue;
753 
754     if (MDNode *PM = NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access)) {
755         M = MDNode::concatenate(PM, M);
756       NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
757     } else if (NI->mayReadOrWriteMemory()) {
758       NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
759     }
760   }
761 }
762 
763 /// When inlining a function that contains noalias scope metadata,
764 /// this metadata needs to be cloned so that the inlined blocks
765 /// have different "unique scopes" at every call site. Were this not done, then
766 /// aliasing scopes from a function inlined into a caller multiple times could
767 /// not be differentiated (and this would lead to miscompiles because the
768 /// non-aliasing property communicated by the metadata could have
769 /// call-site-specific control dependencies).
770 static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) {
771   const Function *CalledFunc = CS.getCalledFunction();
772   SetVector<const MDNode *> MD;
773 
774   // Note: We could only clone the metadata if it is already used in the
775   // caller. I'm omitting that check here because it might confuse
776   // inter-procedural alias analysis passes. We can revisit this if it becomes
777   // an efficiency or overhead problem.
778 
779   for (const BasicBlock &I : *CalledFunc)
780     for (const Instruction &J : I) {
781       if (const MDNode *M = J.getMetadata(LLVMContext::MD_alias_scope))
782         MD.insert(M);
783       if (const MDNode *M = J.getMetadata(LLVMContext::MD_noalias))
784         MD.insert(M);
785     }
786 
787   if (MD.empty())
788     return;
789 
790   // Walk the existing metadata, adding the complete (perhaps cyclic) chain to
791   // the set.
792   SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
793   while (!Queue.empty()) {
794     const MDNode *M = cast<MDNode>(Queue.pop_back_val());
795     for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i)
796       if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i)))
797         if (MD.insert(M1))
798           Queue.push_back(M1);
799   }
800 
801   // Now we have a complete set of all metadata in the chains used to specify
802   // the noalias scopes and the lists of those scopes.
803   SmallVector<TempMDTuple, 16> DummyNodes;
804   DenseMap<const MDNode *, TrackingMDNodeRef> MDMap;
805   for (const MDNode *I : MD) {
806     DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None));
807     MDMap[I].reset(DummyNodes.back().get());
808   }
809 
810   // Create new metadata nodes to replace the dummy nodes, replacing old
811   // metadata references with either a dummy node or an already-created new
812   // node.
813   for (const MDNode *I : MD) {
814     SmallVector<Metadata *, 4> NewOps;
815     for (unsigned i = 0, ie = I->getNumOperands(); i != ie; ++i) {
816       const Metadata *V = I->getOperand(i);
817       if (const MDNode *M = dyn_cast<MDNode>(V))
818         NewOps.push_back(MDMap[M]);
819       else
820         NewOps.push_back(const_cast<Metadata *>(V));
821     }
822 
823     MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps);
824     MDTuple *TempM = cast<MDTuple>(MDMap[I]);
825     assert(TempM->isTemporary() && "Expected temporary node");
826 
827     TempM->replaceAllUsesWith(NewM);
828   }
829 
830   // Now replace the metadata in the new inlined instructions with the
831   // repacements from the map.
832   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
833        VMI != VMIE; ++VMI) {
834     if (!VMI->second)
835       continue;
836 
837     Instruction *NI = dyn_cast<Instruction>(VMI->second);
838     if (!NI)
839       continue;
840 
841     if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) {
842       MDNode *NewMD = MDMap[M];
843       // If the call site also had alias scope metadata (a list of scopes to
844       // which instructions inside it might belong), propagate those scopes to
845       // the inlined instructions.
846       if (MDNode *CSM =
847               CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
848         NewMD = MDNode::concatenate(NewMD, CSM);
849       NI->setMetadata(LLVMContext::MD_alias_scope, NewMD);
850     } else if (NI->mayReadOrWriteMemory()) {
851       if (MDNode *M =
852               CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
853         NI->setMetadata(LLVMContext::MD_alias_scope, M);
854     }
855 
856     if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) {
857       MDNode *NewMD = MDMap[M];
858       // If the call site also had noalias metadata (a list of scopes with
859       // which instructions inside it don't alias), propagate those scopes to
860       // the inlined instructions.
861       if (MDNode *CSM =
862               CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
863         NewMD = MDNode::concatenate(NewMD, CSM);
864       NI->setMetadata(LLVMContext::MD_noalias, NewMD);
865     } else if (NI->mayReadOrWriteMemory()) {
866       if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
867         NI->setMetadata(LLVMContext::MD_noalias, M);
868     }
869   }
870 }
871 
872 /// If the inlined function has noalias arguments,
873 /// then add new alias scopes for each noalias argument, tag the mapped noalias
874 /// parameters with noalias metadata specifying the new scope, and tag all
875 /// non-derived loads, stores and memory intrinsics with the new alias scopes.
876 static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap,
877                                   const DataLayout &DL, AAResults *CalleeAAR) {
878   if (!EnableNoAliasConversion)
879     return;
880 
881   const Function *CalledFunc = CS.getCalledFunction();
882   SmallVector<const Argument *, 4> NoAliasArgs;
883 
884   for (const Argument &Arg : CalledFunc->args())
885     if (Arg.hasNoAliasAttr() && !Arg.use_empty())
886       NoAliasArgs.push_back(&Arg);
887 
888   if (NoAliasArgs.empty())
889     return;
890 
891   // To do a good job, if a noalias variable is captured, we need to know if
892   // the capture point dominates the particular use we're considering.
893   DominatorTree DT;
894   DT.recalculate(const_cast<Function&>(*CalledFunc));
895 
896   // noalias indicates that pointer values based on the argument do not alias
897   // pointer values which are not based on it. So we add a new "scope" for each
898   // noalias function argument. Accesses using pointers based on that argument
899   // become part of that alias scope, accesses using pointers not based on that
900   // argument are tagged as noalias with that scope.
901 
902   DenseMap<const Argument *, MDNode *> NewScopes;
903   MDBuilder MDB(CalledFunc->getContext());
904 
905   // Create a new scope domain for this function.
906   MDNode *NewDomain =
907     MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
908   for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
909     const Argument *A = NoAliasArgs[i];
910 
911     std::string Name = CalledFunc->getName();
912     if (A->hasName()) {
913       Name += ": %";
914       Name += A->getName();
915     } else {
916       Name += ": argument ";
917       Name += utostr(i);
918     }
919 
920     // Note: We always create a new anonymous root here. This is true regardless
921     // of the linkage of the callee because the aliasing "scope" is not just a
922     // property of the callee, but also all control dependencies in the caller.
923     MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
924     NewScopes.insert(std::make_pair(A, NewScope));
925   }
926 
927   // Iterate over all new instructions in the map; for all memory-access
928   // instructions, add the alias scope metadata.
929   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
930        VMI != VMIE; ++VMI) {
931     if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
932       if (!VMI->second)
933         continue;
934 
935       Instruction *NI = dyn_cast<Instruction>(VMI->second);
936       if (!NI)
937         continue;
938 
939       bool IsArgMemOnlyCall = false, IsFuncCall = false;
940       SmallVector<const Value *, 2> PtrArgs;
941 
942       if (const LoadInst *LI = dyn_cast<LoadInst>(I))
943         PtrArgs.push_back(LI->getPointerOperand());
944       else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
945         PtrArgs.push_back(SI->getPointerOperand());
946       else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
947         PtrArgs.push_back(VAAI->getPointerOperand());
948       else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
949         PtrArgs.push_back(CXI->getPointerOperand());
950       else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
951         PtrArgs.push_back(RMWI->getPointerOperand());
952       else if (ImmutableCallSite ICS = ImmutableCallSite(I)) {
953         // If we know that the call does not access memory, then we'll still
954         // know that about the inlined clone of this call site, and we don't
955         // need to add metadata.
956         if (ICS.doesNotAccessMemory())
957           continue;
958 
959         IsFuncCall = true;
960         if (CalleeAAR) {
961           FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(ICS);
962           if (MRB == FMRB_OnlyAccessesArgumentPointees ||
963               MRB == FMRB_OnlyReadsArgumentPointees)
964             IsArgMemOnlyCall = true;
965         }
966 
967         for (Value *Arg : ICS.args()) {
968           // We need to check the underlying objects of all arguments, not just
969           // the pointer arguments, because we might be passing pointers as
970           // integers, etc.
971           // However, if we know that the call only accesses pointer arguments,
972           // then we only need to check the pointer arguments.
973           if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy())
974             continue;
975 
976           PtrArgs.push_back(Arg);
977         }
978       }
979 
980       // If we found no pointers, then this instruction is not suitable for
981       // pairing with an instruction to receive aliasing metadata.
982       // However, if this is a call, this we might just alias with none of the
983       // noalias arguments.
984       if (PtrArgs.empty() && !IsFuncCall)
985         continue;
986 
987       // It is possible that there is only one underlying object, but you
988       // need to go through several PHIs to see it, and thus could be
989       // repeated in the Objects list.
990       SmallPtrSet<const Value *, 4> ObjSet;
991       SmallVector<Metadata *, 4> Scopes, NoAliases;
992 
993       SmallSetVector<const Argument *, 4> NAPtrArgs;
994       for (const Value *V : PtrArgs) {
995         SmallVector<Value *, 4> Objects;
996         GetUnderlyingObjects(const_cast<Value*>(V),
997                              Objects, DL, /* LI = */ nullptr);
998 
999         for (Value *O : Objects)
1000           ObjSet.insert(O);
1001       }
1002 
1003       // Figure out if we're derived from anything that is not a noalias
1004       // argument.
1005       bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
1006       for (const Value *V : ObjSet) {
1007         // Is this value a constant that cannot be derived from any pointer
1008         // value (we need to exclude constant expressions, for example, that
1009         // are formed from arithmetic on global symbols).
1010         bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
1011                              isa<ConstantPointerNull>(V) ||
1012                              isa<ConstantDataVector>(V) || isa<UndefValue>(V);
1013         if (IsNonPtrConst)
1014           continue;
1015 
1016         // If this is anything other than a noalias argument, then we cannot
1017         // completely describe the aliasing properties using alias.scope
1018         // metadata (and, thus, won't add any).
1019         if (const Argument *A = dyn_cast<Argument>(V)) {
1020           if (!A->hasNoAliasAttr())
1021             UsesAliasingPtr = true;
1022         } else {
1023           UsesAliasingPtr = true;
1024         }
1025 
1026         // If this is not some identified function-local object (which cannot
1027         // directly alias a noalias argument), or some other argument (which,
1028         // by definition, also cannot alias a noalias argument), then we could
1029         // alias a noalias argument that has been captured).
1030         if (!isa<Argument>(V) &&
1031             !isIdentifiedFunctionLocal(const_cast<Value*>(V)))
1032           CanDeriveViaCapture = true;
1033       }
1034 
1035       // A function call can always get captured noalias pointers (via other
1036       // parameters, globals, etc.).
1037       if (IsFuncCall && !IsArgMemOnlyCall)
1038         CanDeriveViaCapture = true;
1039 
1040       // First, we want to figure out all of the sets with which we definitely
1041       // don't alias. Iterate over all noalias set, and add those for which:
1042       //   1. The noalias argument is not in the set of objects from which we
1043       //      definitely derive.
1044       //   2. The noalias argument has not yet been captured.
1045       // An arbitrary function that might load pointers could see captured
1046       // noalias arguments via other noalias arguments or globals, and so we
1047       // must always check for prior capture.
1048       for (const Argument *A : NoAliasArgs) {
1049         if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
1050                                  // It might be tempting to skip the
1051                                  // PointerMayBeCapturedBefore check if
1052                                  // A->hasNoCaptureAttr() is true, but this is
1053                                  // incorrect because nocapture only guarantees
1054                                  // that no copies outlive the function, not
1055                                  // that the value cannot be locally captured.
1056                                  !PointerMayBeCapturedBefore(A,
1057                                    /* ReturnCaptures */ false,
1058                                    /* StoreCaptures */ false, I, &DT)))
1059           NoAliases.push_back(NewScopes[A]);
1060       }
1061 
1062       if (!NoAliases.empty())
1063         NI->setMetadata(LLVMContext::MD_noalias,
1064                         MDNode::concatenate(
1065                             NI->getMetadata(LLVMContext::MD_noalias),
1066                             MDNode::get(CalledFunc->getContext(), NoAliases)));
1067 
1068       // Next, we want to figure out all of the sets to which we might belong.
1069       // We might belong to a set if the noalias argument is in the set of
1070       // underlying objects. If there is some non-noalias argument in our list
1071       // of underlying objects, then we cannot add a scope because the fact
1072       // that some access does not alias with any set of our noalias arguments
1073       // cannot itself guarantee that it does not alias with this access
1074       // (because there is some pointer of unknown origin involved and the
1075       // other access might also depend on this pointer). We also cannot add
1076       // scopes to arbitrary functions unless we know they don't access any
1077       // non-parameter pointer-values.
1078       bool CanAddScopes = !UsesAliasingPtr;
1079       if (CanAddScopes && IsFuncCall)
1080         CanAddScopes = IsArgMemOnlyCall;
1081 
1082       if (CanAddScopes)
1083         for (const Argument *A : NoAliasArgs) {
1084           if (ObjSet.count(A))
1085             Scopes.push_back(NewScopes[A]);
1086         }
1087 
1088       if (!Scopes.empty())
1089         NI->setMetadata(
1090             LLVMContext::MD_alias_scope,
1091             MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
1092                                 MDNode::get(CalledFunc->getContext(), Scopes)));
1093     }
1094   }
1095 }
1096 
1097 /// If the inlined function has non-byval align arguments, then
1098 /// add @llvm.assume-based alignment assumptions to preserve this information.
1099 static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) {
1100   if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache)
1101     return;
1102 
1103   AssumptionCache *AC = &(*IFI.GetAssumptionCache)(*CS.getCaller());
1104   auto &DL = CS.getCaller()->getParent()->getDataLayout();
1105 
1106   // To avoid inserting redundant assumptions, we should check for assumptions
1107   // already in the caller. To do this, we might need a DT of the caller.
1108   DominatorTree DT;
1109   bool DTCalculated = false;
1110 
1111   Function *CalledFunc = CS.getCalledFunction();
1112   for (Argument &Arg : CalledFunc->args()) {
1113     unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0;
1114     if (Align && !Arg.hasByValOrInAllocaAttr() && !Arg.hasNUses(0)) {
1115       if (!DTCalculated) {
1116         DT.recalculate(*CS.getCaller());
1117         DTCalculated = true;
1118       }
1119 
1120       // If we can already prove the asserted alignment in the context of the
1121       // caller, then don't bother inserting the assumption.
1122       Value *ArgVal = CS.getArgument(Arg.getArgNo());
1123       if (getKnownAlignment(ArgVal, DL, CS.getInstruction(), AC, &DT) >= Align)
1124         continue;
1125 
1126       CallInst *NewAsmp = IRBuilder<>(CS.getInstruction())
1127                               .CreateAlignmentAssumption(DL, ArgVal, Align);
1128       AC->registerAssumption(NewAsmp);
1129     }
1130   }
1131 }
1132 
1133 /// Once we have cloned code over from a callee into the caller,
1134 /// update the specified callgraph to reflect the changes we made.
1135 /// Note that it's possible that not all code was copied over, so only
1136 /// some edges of the callgraph may remain.
1137 static void UpdateCallGraphAfterInlining(CallSite CS,
1138                                          Function::iterator FirstNewBlock,
1139                                          ValueToValueMapTy &VMap,
1140                                          InlineFunctionInfo &IFI) {
1141   CallGraph &CG = *IFI.CG;
1142   const Function *Caller = CS.getCaller();
1143   const Function *Callee = CS.getCalledFunction();
1144   CallGraphNode *CalleeNode = CG[Callee];
1145   CallGraphNode *CallerNode = CG[Caller];
1146 
1147   // Since we inlined some uninlined call sites in the callee into the caller,
1148   // add edges from the caller to all of the callees of the callee.
1149   CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
1150 
1151   // Consider the case where CalleeNode == CallerNode.
1152   CallGraphNode::CalledFunctionsVector CallCache;
1153   if (CalleeNode == CallerNode) {
1154     CallCache.assign(I, E);
1155     I = CallCache.begin();
1156     E = CallCache.end();
1157   }
1158 
1159   for (; I != E; ++I) {
1160     const Value *OrigCall = I->first;
1161 
1162     ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
1163     // Only copy the edge if the call was inlined!
1164     if (VMI == VMap.end() || VMI->second == nullptr)
1165       continue;
1166 
1167     // If the call was inlined, but then constant folded, there is no edge to
1168     // add.  Check for this case.
1169     Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
1170     if (!NewCall)
1171       continue;
1172 
1173     // We do not treat intrinsic calls like real function calls because we
1174     // expect them to become inline code; do not add an edge for an intrinsic.
1175     CallSite CS = CallSite(NewCall);
1176     if (CS && CS.getCalledFunction() && CS.getCalledFunction()->isIntrinsic())
1177       continue;
1178 
1179     // Remember that this call site got inlined for the client of
1180     // InlineFunction.
1181     IFI.InlinedCalls.push_back(NewCall);
1182 
1183     // It's possible that inlining the callsite will cause it to go from an
1184     // indirect to a direct call by resolving a function pointer.  If this
1185     // happens, set the callee of the new call site to a more precise
1186     // destination.  This can also happen if the call graph node of the caller
1187     // was just unnecessarily imprecise.
1188     if (!I->second->getFunction())
1189       if (Function *F = CallSite(NewCall).getCalledFunction()) {
1190         // Indirect call site resolved to direct call.
1191         CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
1192 
1193         continue;
1194       }
1195 
1196     CallerNode->addCalledFunction(CallSite(NewCall), I->second);
1197   }
1198 
1199   // Update the call graph by deleting the edge from Callee to Caller.  We must
1200   // do this after the loop above in case Caller and Callee are the same.
1201   CallerNode->removeCallEdgeFor(CS);
1202 }
1203 
1204 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
1205                                     BasicBlock *InsertBlock,
1206                                     InlineFunctionInfo &IFI) {
1207   Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
1208   IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
1209 
1210   Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy));
1211 
1212   // Always generate a memcpy of alignment 1 here because we don't know
1213   // the alignment of the src pointer.  Other optimizations can infer
1214   // better alignment.
1215   Builder.CreateMemCpy(Dst, Src, Size, /*Align=*/1);
1216 }
1217 
1218 /// When inlining a call site that has a byval argument,
1219 /// we have to make the implicit memcpy explicit by adding it.
1220 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
1221                                   const Function *CalledFunc,
1222                                   InlineFunctionInfo &IFI,
1223                                   unsigned ByValAlignment) {
1224   PointerType *ArgTy = cast<PointerType>(Arg->getType());
1225   Type *AggTy = ArgTy->getElementType();
1226 
1227   Function *Caller = TheCall->getFunction();
1228   const DataLayout &DL = Caller->getParent()->getDataLayout();
1229 
1230   // If the called function is readonly, then it could not mutate the caller's
1231   // copy of the byval'd memory.  In this case, it is safe to elide the copy and
1232   // temporary.
1233   if (CalledFunc->onlyReadsMemory()) {
1234     // If the byval argument has a specified alignment that is greater than the
1235     // passed in pointer, then we either have to round up the input pointer or
1236     // give up on this transformation.
1237     if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
1238       return Arg;
1239 
1240     AssumptionCache *AC =
1241         IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr;
1242 
1243     // If the pointer is already known to be sufficiently aligned, or if we can
1244     // round it up to a larger alignment, then we don't need a temporary.
1245     if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall, AC) >=
1246         ByValAlignment)
1247       return Arg;
1248 
1249     // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
1250     // for code quality, but rarely happens and is required for correctness.
1251   }
1252 
1253   // Create the alloca.  If we have DataLayout, use nice alignment.
1254   unsigned Align = DL.getPrefTypeAlignment(AggTy);
1255 
1256   // If the byval had an alignment specified, we *must* use at least that
1257   // alignment, as it is required by the byval argument (and uses of the
1258   // pointer inside the callee).
1259   Align = std::max(Align, ByValAlignment);
1260 
1261   Value *NewAlloca = new AllocaInst(AggTy, DL.getAllocaAddrSpace(),
1262                                     nullptr, Align, Arg->getName(),
1263                                     &*Caller->begin()->begin());
1264   IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
1265 
1266   // Uses of the argument in the function should use our new alloca
1267   // instead.
1268   return NewAlloca;
1269 }
1270 
1271 // Check whether this Value is used by a lifetime intrinsic.
1272 static bool isUsedByLifetimeMarker(Value *V) {
1273   for (User *U : V->users()) {
1274     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
1275       switch (II->getIntrinsicID()) {
1276       default: break;
1277       case Intrinsic::lifetime_start:
1278       case Intrinsic::lifetime_end:
1279         return true;
1280       }
1281     }
1282   }
1283   return false;
1284 }
1285 
1286 // Check whether the given alloca already has
1287 // lifetime.start or lifetime.end intrinsics.
1288 static bool hasLifetimeMarkers(AllocaInst *AI) {
1289   Type *Ty = AI->getType();
1290   Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
1291                                        Ty->getPointerAddressSpace());
1292   if (Ty == Int8PtrTy)
1293     return isUsedByLifetimeMarker(AI);
1294 
1295   // Do a scan to find all the casts to i8*.
1296   for (User *U : AI->users()) {
1297     if (U->getType() != Int8PtrTy) continue;
1298     if (U->stripPointerCasts() != AI) continue;
1299     if (isUsedByLifetimeMarker(U))
1300       return true;
1301   }
1302   return false;
1303 }
1304 
1305 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry
1306 /// block. Allocas used in inalloca calls and allocas of dynamic array size
1307 /// cannot be static.
1308 static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) {
1309   return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca();
1310 }
1311 
1312 /// Update inlined instructions' line numbers to
1313 /// to encode location where these instructions are inlined.
1314 static void fixupLineNumbers(Function *Fn, Function::iterator FI,
1315                              Instruction *TheCall, bool CalleeHasDebugInfo) {
1316   const DebugLoc &TheCallDL = TheCall->getDebugLoc();
1317   if (!TheCallDL)
1318     return;
1319 
1320   auto &Ctx = Fn->getContext();
1321   DILocation *InlinedAtNode = TheCallDL;
1322 
1323   // Create a unique call site, not to be confused with any other call from the
1324   // same location.
1325   InlinedAtNode = DILocation::getDistinct(
1326       Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
1327       InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
1328 
1329   // Cache the inlined-at nodes as they're built so they are reused, without
1330   // this every instruction's inlined-at chain would become distinct from each
1331   // other.
1332   DenseMap<const MDNode *, MDNode *> IANodes;
1333 
1334   for (; FI != Fn->end(); ++FI) {
1335     for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
1336          BI != BE; ++BI) {
1337       if (DebugLoc DL = BI->getDebugLoc()) {
1338         auto IA = DebugLoc::appendInlinedAt(DL, InlinedAtNode, BI->getContext(),
1339                                             IANodes);
1340         auto IDL = DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(), IA);
1341         BI->setDebugLoc(IDL);
1342         continue;
1343       }
1344 
1345       if (CalleeHasDebugInfo)
1346         continue;
1347 
1348       // If the inlined instruction has no line number, make it look as if it
1349       // originates from the call location. This is important for
1350       // ((__always_inline__, __nodebug__)) functions which must use caller
1351       // location for all instructions in their function body.
1352 
1353       // Don't update static allocas, as they may get moved later.
1354       if (auto *AI = dyn_cast<AllocaInst>(BI))
1355         if (allocaWouldBeStaticInEntry(AI))
1356           continue;
1357 
1358       BI->setDebugLoc(TheCallDL);
1359     }
1360   }
1361 }
1362 /// Update the block frequencies of the caller after a callee has been inlined.
1363 ///
1364 /// Each block cloned into the caller has its block frequency scaled by the
1365 /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of
1366 /// callee's entry block gets the same frequency as the callsite block and the
1367 /// relative frequencies of all cloned blocks remain the same after cloning.
1368 static void updateCallerBFI(BasicBlock *CallSiteBlock,
1369                             const ValueToValueMapTy &VMap,
1370                             BlockFrequencyInfo *CallerBFI,
1371                             BlockFrequencyInfo *CalleeBFI,
1372                             const BasicBlock &CalleeEntryBlock) {
1373   SmallPtrSet<BasicBlock *, 16> ClonedBBs;
1374   for (auto const &Entry : VMap) {
1375     if (!isa<BasicBlock>(Entry.first) || !Entry.second)
1376       continue;
1377     auto *OrigBB = cast<BasicBlock>(Entry.first);
1378     auto *ClonedBB = cast<BasicBlock>(Entry.second);
1379     uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency();
1380     if (!ClonedBBs.insert(ClonedBB).second) {
1381       // Multiple blocks in the callee might get mapped to one cloned block in
1382       // the caller since we prune the callee as we clone it. When that happens,
1383       // we want to use the maximum among the original blocks' frequencies.
1384       uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency();
1385       if (NewFreq > Freq)
1386         Freq = NewFreq;
1387     }
1388     CallerBFI->setBlockFreq(ClonedBB, Freq);
1389   }
1390   BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock));
1391   CallerBFI->setBlockFreqAndScale(
1392       EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(),
1393       ClonedBBs);
1394 }
1395 
1396 /// Update the branch metadata for cloned call instructions.
1397 static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap,
1398                               const Optional<uint64_t> &CalleeEntryCount,
1399                               const Instruction *TheCall,
1400                               ProfileSummaryInfo *PSI) {
1401   if (!CalleeEntryCount.hasValue() || CalleeEntryCount.getValue() < 1)
1402     return;
1403   Optional<uint64_t> CallSiteCount =
1404       PSI ? PSI->getProfileCount(TheCall, nullptr) : None;
1405   uint64_t CallCount =
1406       std::min(CallSiteCount.hasValue() ? CallSiteCount.getValue() : 0,
1407                CalleeEntryCount.getValue());
1408 
1409   for (auto const &Entry : VMap)
1410     if (isa<CallInst>(Entry.first))
1411       if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second))
1412         CI->updateProfWeight(CallCount, CalleeEntryCount.getValue());
1413   for (BasicBlock &BB : *Callee)
1414     // No need to update the callsite if it is pruned during inlining.
1415     if (VMap.count(&BB))
1416       for (Instruction &I : BB)
1417         if (CallInst *CI = dyn_cast<CallInst>(&I))
1418           CI->updateProfWeight(CalleeEntryCount.getValue() - CallCount,
1419                                CalleeEntryCount.getValue());
1420 }
1421 
1422 /// Update the entry count of callee after inlining.
1423 ///
1424 /// The callsite's block count is subtracted from the callee's function entry
1425 /// count.
1426 static void updateCalleeCount(BlockFrequencyInfo *CallerBFI, BasicBlock *CallBB,
1427                               Instruction *CallInst, Function *Callee,
1428                               ProfileSummaryInfo *PSI) {
1429   // If the callee has a original count of N, and the estimated count of
1430   // callsite is M, the new callee count is set to N - M. M is estimated from
1431   // the caller's entry count, its entry block frequency and the block frequency
1432   // of the callsite.
1433   Optional<uint64_t> CalleeCount = Callee->getEntryCount();
1434   if (!CalleeCount.hasValue() || !PSI)
1435     return;
1436   Optional<uint64_t> CallCount = PSI->getProfileCount(CallInst, CallerBFI);
1437   if (!CallCount.hasValue())
1438     return;
1439   // Since CallSiteCount is an estimate, it could exceed the original callee
1440   // count and has to be set to 0.
1441   if (CallCount.getValue() > CalleeCount.getValue())
1442     Callee->setEntryCount(0);
1443   else
1444     Callee->setEntryCount(CalleeCount.getValue() - CallCount.getValue());
1445 }
1446 
1447 /// This function inlines the called function into the basic block of the
1448 /// caller. This returns false if it is not possible to inline this call.
1449 /// The program is still in a well defined state if this occurs though.
1450 ///
1451 /// Note that this only does one level of inlining.  For example, if the
1452 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
1453 /// exists in the instruction stream.  Similarly this will inline a recursive
1454 /// function by one level.
1455 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
1456                           AAResults *CalleeAAR, bool InsertLifetime) {
1457   Instruction *TheCall = CS.getInstruction();
1458   assert(TheCall->getParent() && TheCall->getFunction()
1459          && "Instruction not in function!");
1460 
1461   // If IFI has any state in it, zap it before we fill it in.
1462   IFI.reset();
1463 
1464   Function *CalledFunc = CS.getCalledFunction();
1465   if (!CalledFunc ||              // Can't inline external function or indirect
1466       CalledFunc->isDeclaration() || // call, or call to a vararg function!
1467       CalledFunc->getFunctionType()->isVarArg()) return false;
1468 
1469   // The inliner does not know how to inline through calls with operand bundles
1470   // in general ...
1471   if (CS.hasOperandBundles()) {
1472     for (int i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
1473       uint32_t Tag = CS.getOperandBundleAt(i).getTagID();
1474       // ... but it knows how to inline through "deopt" operand bundles ...
1475       if (Tag == LLVMContext::OB_deopt)
1476         continue;
1477       // ... and "funclet" operand bundles.
1478       if (Tag == LLVMContext::OB_funclet)
1479         continue;
1480 
1481       return false;
1482     }
1483   }
1484 
1485   // If the call to the callee cannot throw, set the 'nounwind' flag on any
1486   // calls that we inline.
1487   bool MarkNoUnwind = CS.doesNotThrow();
1488 
1489   BasicBlock *OrigBB = TheCall->getParent();
1490   Function *Caller = OrigBB->getParent();
1491 
1492   // GC poses two hazards to inlining, which only occur when the callee has GC:
1493   //  1. If the caller has no GC, then the callee's GC must be propagated to the
1494   //     caller.
1495   //  2. If the caller has a differing GC, it is invalid to inline.
1496   if (CalledFunc->hasGC()) {
1497     if (!Caller->hasGC())
1498       Caller->setGC(CalledFunc->getGC());
1499     else if (CalledFunc->getGC() != Caller->getGC())
1500       return false;
1501   }
1502 
1503   // Get the personality function from the callee if it contains a landing pad.
1504   Constant *CalledPersonality =
1505       CalledFunc->hasPersonalityFn()
1506           ? CalledFunc->getPersonalityFn()->stripPointerCasts()
1507           : nullptr;
1508 
1509   // Find the personality function used by the landing pads of the caller. If it
1510   // exists, then check to see that it matches the personality function used in
1511   // the callee.
1512   Constant *CallerPersonality =
1513       Caller->hasPersonalityFn()
1514           ? Caller->getPersonalityFn()->stripPointerCasts()
1515           : nullptr;
1516   if (CalledPersonality) {
1517     if (!CallerPersonality)
1518       Caller->setPersonalityFn(CalledPersonality);
1519     // If the personality functions match, then we can perform the
1520     // inlining. Otherwise, we can't inline.
1521     // TODO: This isn't 100% true. Some personality functions are proper
1522     //       supersets of others and can be used in place of the other.
1523     else if (CalledPersonality != CallerPersonality)
1524       return false;
1525   }
1526 
1527   // We need to figure out which funclet the callsite was in so that we may
1528   // properly nest the callee.
1529   Instruction *CallSiteEHPad = nullptr;
1530   if (CallerPersonality) {
1531     EHPersonality Personality = classifyEHPersonality(CallerPersonality);
1532     if (isFuncletEHPersonality(Personality)) {
1533       Optional<OperandBundleUse> ParentFunclet =
1534           CS.getOperandBundle(LLVMContext::OB_funclet);
1535       if (ParentFunclet)
1536         CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
1537 
1538       // OK, the inlining site is legal.  What about the target function?
1539 
1540       if (CallSiteEHPad) {
1541         if (Personality == EHPersonality::MSVC_CXX) {
1542           // The MSVC personality cannot tolerate catches getting inlined into
1543           // cleanup funclets.
1544           if (isa<CleanupPadInst>(CallSiteEHPad)) {
1545             // Ok, the call site is within a cleanuppad.  Let's check the callee
1546             // for catchpads.
1547             for (const BasicBlock &CalledBB : *CalledFunc) {
1548               if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
1549                 return false;
1550             }
1551           }
1552         } else if (isAsynchronousEHPersonality(Personality)) {
1553           // SEH is even less tolerant, there may not be any sort of exceptional
1554           // funclet in the callee.
1555           for (const BasicBlock &CalledBB : *CalledFunc) {
1556             if (CalledBB.isEHPad())
1557               return false;
1558           }
1559         }
1560       }
1561     }
1562   }
1563 
1564   // Determine if we are dealing with a call in an EHPad which does not unwind
1565   // to caller.
1566   bool EHPadForCallUnwindsLocally = false;
1567   if (CallSiteEHPad && CS.isCall()) {
1568     UnwindDestMemoTy FuncletUnwindMap;
1569     Value *CallSiteUnwindDestToken =
1570         getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap);
1571 
1572     EHPadForCallUnwindsLocally =
1573         CallSiteUnwindDestToken &&
1574         !isa<ConstantTokenNone>(CallSiteUnwindDestToken);
1575   }
1576 
1577   // Get an iterator to the last basic block in the function, which will have
1578   // the new function inlined after it.
1579   Function::iterator LastBlock = --Caller->end();
1580 
1581   // Make sure to capture all of the return instructions from the cloned
1582   // function.
1583   SmallVector<ReturnInst*, 8> Returns;
1584   ClonedCodeInfo InlinedFunctionInfo;
1585   Function::iterator FirstNewBlock;
1586 
1587   { // Scope to destroy VMap after cloning.
1588     ValueToValueMapTy VMap;
1589     // Keep a list of pair (dst, src) to emit byval initializations.
1590     SmallVector<std::pair<Value*, Value*>, 4> ByValInit;
1591 
1592     auto &DL = Caller->getParent()->getDataLayout();
1593 
1594     assert(CalledFunc->arg_size() == CS.arg_size() &&
1595            "No varargs calls can be inlined!");
1596 
1597     // Calculate the vector of arguments to pass into the function cloner, which
1598     // matches up the formal to the actual argument values.
1599     CallSite::arg_iterator AI = CS.arg_begin();
1600     unsigned ArgNo = 0;
1601     for (Function::arg_iterator I = CalledFunc->arg_begin(),
1602          E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
1603       Value *ActualArg = *AI;
1604 
1605       // When byval arguments actually inlined, we need to make the copy implied
1606       // by them explicit.  However, we don't do this if the callee is readonly
1607       // or readnone, because the copy would be unneeded: the callee doesn't
1608       // modify the struct.
1609       if (CS.isByValArgument(ArgNo)) {
1610         ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
1611                                         CalledFunc->getParamAlignment(ArgNo));
1612         if (ActualArg != *AI)
1613           ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
1614       }
1615 
1616       VMap[&*I] = ActualArg;
1617     }
1618 
1619     // Add alignment assumptions if necessary. We do this before the inlined
1620     // instructions are actually cloned into the caller so that we can easily
1621     // check what will be known at the start of the inlined code.
1622     AddAlignmentAssumptions(CS, IFI);
1623 
1624     // We want the inliner to prune the code as it copies.  We would LOVE to
1625     // have no dead or constant instructions leftover after inlining occurs
1626     // (which can happen, e.g., because an argument was constant), but we'll be
1627     // happy with whatever the cloner can do.
1628     CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
1629                               /*ModuleLevelChanges=*/false, Returns, ".i",
1630                               &InlinedFunctionInfo, TheCall);
1631     // Remember the first block that is newly cloned over.
1632     FirstNewBlock = LastBlock; ++FirstNewBlock;
1633 
1634     if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr)
1635       // Update the BFI of blocks cloned into the caller.
1636       updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI,
1637                       CalledFunc->front());
1638 
1639     updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), TheCall,
1640                       IFI.PSI);
1641     // Update the profile count of callee.
1642     updateCalleeCount(IFI.CallerBFI, OrigBB, TheCall, CalledFunc, IFI.PSI);
1643 
1644     // Inject byval arguments initialization.
1645     for (std::pair<Value*, Value*> &Init : ByValInit)
1646       HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
1647                               &*FirstNewBlock, IFI);
1648 
1649     Optional<OperandBundleUse> ParentDeopt =
1650         CS.getOperandBundle(LLVMContext::OB_deopt);
1651     if (ParentDeopt) {
1652       SmallVector<OperandBundleDef, 2> OpDefs;
1653 
1654       for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
1655         Instruction *I = dyn_cast_or_null<Instruction>(VH);
1656         if (!I) continue;  // instruction was DCE'd or RAUW'ed to undef
1657 
1658         OpDefs.clear();
1659 
1660         CallSite ICS(I);
1661         OpDefs.reserve(ICS.getNumOperandBundles());
1662 
1663         for (unsigned i = 0, e = ICS.getNumOperandBundles(); i < e; ++i) {
1664           auto ChildOB = ICS.getOperandBundleAt(i);
1665           if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
1666             // If the inlined call has other operand bundles, let them be
1667             OpDefs.emplace_back(ChildOB);
1668             continue;
1669           }
1670 
1671           // It may be useful to separate this logic (of handling operand
1672           // bundles) out to a separate "policy" component if this gets crowded.
1673           // Prepend the parent's deoptimization continuation to the newly
1674           // inlined call's deoptimization continuation.
1675           std::vector<Value *> MergedDeoptArgs;
1676           MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
1677                                   ChildOB.Inputs.size());
1678 
1679           MergedDeoptArgs.insert(MergedDeoptArgs.end(),
1680                                  ParentDeopt->Inputs.begin(),
1681                                  ParentDeopt->Inputs.end());
1682           MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(),
1683                                  ChildOB.Inputs.end());
1684 
1685           OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
1686         }
1687 
1688         Instruction *NewI = nullptr;
1689         if (isa<CallInst>(I))
1690           NewI = CallInst::Create(cast<CallInst>(I), OpDefs, I);
1691         else
1692           NewI = InvokeInst::Create(cast<InvokeInst>(I), OpDefs, I);
1693 
1694         // Note: the RAUW does the appropriate fixup in VMap, so we need to do
1695         // this even if the call returns void.
1696         I->replaceAllUsesWith(NewI);
1697 
1698         VH = nullptr;
1699         I->eraseFromParent();
1700       }
1701     }
1702 
1703     // Update the callgraph if requested.
1704     if (IFI.CG)
1705       UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
1706 
1707     // For 'nodebug' functions, the associated DISubprogram is always null.
1708     // Conservatively avoid propagating the callsite debug location to
1709     // instructions inlined from a function whose DISubprogram is not null.
1710     fixupLineNumbers(Caller, FirstNewBlock, TheCall,
1711                      CalledFunc->getSubprogram() != nullptr);
1712 
1713     // Clone existing noalias metadata if necessary.
1714     CloneAliasScopeMetadata(CS, VMap);
1715 
1716     // Add noalias metadata if necessary.
1717     AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR);
1718 
1719     // Propagate llvm.mem.parallel_loop_access if necessary.
1720     PropagateParallelLoopAccessMetadata(CS, VMap);
1721 
1722     // Register any cloned assumptions.
1723     if (IFI.GetAssumptionCache)
1724       for (BasicBlock &NewBlock :
1725            make_range(FirstNewBlock->getIterator(), Caller->end()))
1726         for (Instruction &I : NewBlock) {
1727           if (auto *II = dyn_cast<IntrinsicInst>(&I))
1728             if (II->getIntrinsicID() == Intrinsic::assume)
1729               (*IFI.GetAssumptionCache)(*Caller).registerAssumption(II);
1730         }
1731   }
1732 
1733   // If there are any alloca instructions in the block that used to be the entry
1734   // block for the callee, move them to the entry block of the caller.  First
1735   // calculate which instruction they should be inserted before.  We insert the
1736   // instructions at the end of the current alloca list.
1737   {
1738     BasicBlock::iterator InsertPoint = Caller->begin()->begin();
1739     for (BasicBlock::iterator I = FirstNewBlock->begin(),
1740          E = FirstNewBlock->end(); I != E; ) {
1741       AllocaInst *AI = dyn_cast<AllocaInst>(I++);
1742       if (!AI) continue;
1743 
1744       // If the alloca is now dead, remove it.  This often occurs due to code
1745       // specialization.
1746       if (AI->use_empty()) {
1747         AI->eraseFromParent();
1748         continue;
1749       }
1750 
1751       if (!allocaWouldBeStaticInEntry(AI))
1752         continue;
1753 
1754       // Keep track of the static allocas that we inline into the caller.
1755       IFI.StaticAllocas.push_back(AI);
1756 
1757       // Scan for the block of allocas that we can move over, and move them
1758       // all at once.
1759       while (isa<AllocaInst>(I) &&
1760              allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) {
1761         IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
1762         ++I;
1763       }
1764 
1765       // Transfer all of the allocas over in a block.  Using splice means
1766       // that the instructions aren't removed from the symbol table, then
1767       // reinserted.
1768       Caller->getEntryBlock().getInstList().splice(
1769           InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I);
1770     }
1771     // Move any dbg.declares describing the allocas into the entry basic block.
1772     DIBuilder DIB(*Caller->getParent());
1773     for (auto &AI : IFI.StaticAllocas)
1774       replaceDbgDeclareForAlloca(AI, AI, DIB, /*Deref=*/false);
1775   }
1776 
1777   bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false;
1778   if (InlinedFunctionInfo.ContainsCalls) {
1779     CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
1780     if (CallInst *CI = dyn_cast<CallInst>(TheCall))
1781       CallSiteTailKind = CI->getTailCallKind();
1782 
1783     for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
1784          ++BB) {
1785       for (Instruction &I : *BB) {
1786         CallInst *CI = dyn_cast<CallInst>(&I);
1787         if (!CI)
1788           continue;
1789 
1790         if (Function *F = CI->getCalledFunction())
1791           InlinedDeoptimizeCalls |=
1792               F->getIntrinsicID() == Intrinsic::experimental_deoptimize;
1793 
1794         // We need to reduce the strength of any inlined tail calls.  For
1795         // musttail, we have to avoid introducing potential unbounded stack
1796         // growth.  For example, if functions 'f' and 'g' are mutually recursive
1797         // with musttail, we can inline 'g' into 'f' so long as we preserve
1798         // musttail on the cloned call to 'f'.  If either the inlined call site
1799         // or the cloned call site is *not* musttail, the program already has
1800         // one frame of stack growth, so it's safe to remove musttail.  Here is
1801         // a table of example transformations:
1802         //
1803         //    f -> musttail g -> musttail f  ==>  f -> musttail f
1804         //    f -> musttail g ->     tail f  ==>  f ->     tail f
1805         //    f ->          g -> musttail f  ==>  f ->          f
1806         //    f ->          g ->     tail f  ==>  f ->          f
1807         CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
1808         ChildTCK = std::min(CallSiteTailKind, ChildTCK);
1809         CI->setTailCallKind(ChildTCK);
1810         InlinedMustTailCalls |= CI->isMustTailCall();
1811 
1812         // Calls inlined through a 'nounwind' call site should be marked
1813         // 'nounwind'.
1814         if (MarkNoUnwind)
1815           CI->setDoesNotThrow();
1816       }
1817     }
1818   }
1819 
1820   // Leave lifetime markers for the static alloca's, scoping them to the
1821   // function we just inlined.
1822   if (InsertLifetime && !IFI.StaticAllocas.empty()) {
1823     IRBuilder<> builder(&FirstNewBlock->front());
1824     for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
1825       AllocaInst *AI = IFI.StaticAllocas[ai];
1826       // Don't mark swifterror allocas. They can't have bitcast uses.
1827       if (AI->isSwiftError())
1828         continue;
1829 
1830       // If the alloca is already scoped to something smaller than the whole
1831       // function then there's no need to add redundant, less accurate markers.
1832       if (hasLifetimeMarkers(AI))
1833         continue;
1834 
1835       // Try to determine the size of the allocation.
1836       ConstantInt *AllocaSize = nullptr;
1837       if (ConstantInt *AIArraySize =
1838           dyn_cast<ConstantInt>(AI->getArraySize())) {
1839         auto &DL = Caller->getParent()->getDataLayout();
1840         Type *AllocaType = AI->getAllocatedType();
1841         uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
1842         uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
1843 
1844         // Don't add markers for zero-sized allocas.
1845         if (AllocaArraySize == 0)
1846           continue;
1847 
1848         // Check that array size doesn't saturate uint64_t and doesn't
1849         // overflow when it's multiplied by type size.
1850         if (AllocaArraySize != ~0ULL &&
1851             UINT64_MAX / AllocaArraySize >= AllocaTypeSize) {
1852           AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
1853                                         AllocaArraySize * AllocaTypeSize);
1854         }
1855       }
1856 
1857       builder.CreateLifetimeStart(AI, AllocaSize);
1858       for (ReturnInst *RI : Returns) {
1859         // Don't insert llvm.lifetime.end calls between a musttail or deoptimize
1860         // call and a return.  The return kills all local allocas.
1861         if (InlinedMustTailCalls &&
1862             RI->getParent()->getTerminatingMustTailCall())
1863           continue;
1864         if (InlinedDeoptimizeCalls &&
1865             RI->getParent()->getTerminatingDeoptimizeCall())
1866           continue;
1867         IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
1868       }
1869     }
1870   }
1871 
1872   // If the inlined code contained dynamic alloca instructions, wrap the inlined
1873   // code with llvm.stacksave/llvm.stackrestore intrinsics.
1874   if (InlinedFunctionInfo.ContainsDynamicAllocas) {
1875     Module *M = Caller->getParent();
1876     // Get the two intrinsics we care about.
1877     Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
1878     Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
1879 
1880     // Insert the llvm.stacksave.
1881     CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
1882                              .CreateCall(StackSave, {}, "savedstack");
1883 
1884     // Insert a call to llvm.stackrestore before any return instructions in the
1885     // inlined function.
1886     for (ReturnInst *RI : Returns) {
1887       // Don't insert llvm.stackrestore calls between a musttail or deoptimize
1888       // call and a return.  The return will restore the stack pointer.
1889       if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
1890         continue;
1891       if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall())
1892         continue;
1893       IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
1894     }
1895   }
1896 
1897   // If we are inlining for an invoke instruction, we must make sure to rewrite
1898   // any call instructions into invoke instructions.  This is sensitive to which
1899   // funclet pads were top-level in the inlinee, so must be done before
1900   // rewriting the "parent pad" links.
1901   if (auto *II = dyn_cast<InvokeInst>(TheCall)) {
1902     BasicBlock *UnwindDest = II->getUnwindDest();
1903     Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
1904     if (isa<LandingPadInst>(FirstNonPHI)) {
1905       HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
1906     } else {
1907       HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
1908     }
1909   }
1910 
1911   // Update the lexical scopes of the new funclets and callsites.
1912   // Anything that had 'none' as its parent is now nested inside the callsite's
1913   // EHPad.
1914 
1915   if (CallSiteEHPad) {
1916     for (Function::iterator BB = FirstNewBlock->getIterator(),
1917                             E = Caller->end();
1918          BB != E; ++BB) {
1919       // Add bundle operands to any top-level call sites.
1920       SmallVector<OperandBundleDef, 1> OpBundles;
1921       for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) {
1922         Instruction *I = &*BBI++;
1923         CallSite CS(I);
1924         if (!CS)
1925           continue;
1926 
1927         // Skip call sites which are nounwind intrinsics.
1928         auto *CalledFn =
1929             dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
1930         if (CalledFn && CalledFn->isIntrinsic() && CS.doesNotThrow())
1931           continue;
1932 
1933         // Skip call sites which already have a "funclet" bundle.
1934         if (CS.getOperandBundle(LLVMContext::OB_funclet))
1935           continue;
1936 
1937         CS.getOperandBundlesAsDefs(OpBundles);
1938         OpBundles.emplace_back("funclet", CallSiteEHPad);
1939 
1940         Instruction *NewInst;
1941         if (CS.isCall())
1942           NewInst = CallInst::Create(cast<CallInst>(I), OpBundles, I);
1943         else
1944           NewInst = InvokeInst::Create(cast<InvokeInst>(I), OpBundles, I);
1945         NewInst->takeName(I);
1946         I->replaceAllUsesWith(NewInst);
1947         I->eraseFromParent();
1948 
1949         OpBundles.clear();
1950       }
1951 
1952       // It is problematic if the inlinee has a cleanupret which unwinds to
1953       // caller and we inline it into a call site which doesn't unwind but into
1954       // an EH pad that does.  Such an edge must be dynamically unreachable.
1955       // As such, we replace the cleanupret with unreachable.
1956       if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
1957         if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
1958           changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false);
1959 
1960       Instruction *I = BB->getFirstNonPHI();
1961       if (!I->isEHPad())
1962         continue;
1963 
1964       if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
1965         if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
1966           CatchSwitch->setParentPad(CallSiteEHPad);
1967       } else {
1968         auto *FPI = cast<FuncletPadInst>(I);
1969         if (isa<ConstantTokenNone>(FPI->getParentPad()))
1970           FPI->setParentPad(CallSiteEHPad);
1971       }
1972     }
1973   }
1974 
1975   if (InlinedDeoptimizeCalls) {
1976     // We need to at least remove the deoptimizing returns from the Return set,
1977     // so that the control flow from those returns does not get merged into the
1978     // caller (but terminate it instead).  If the caller's return type does not
1979     // match the callee's return type, we also need to change the return type of
1980     // the intrinsic.
1981     if (Caller->getReturnType() == TheCall->getType()) {
1982       auto NewEnd = remove_if(Returns, [](ReturnInst *RI) {
1983         return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr;
1984       });
1985       Returns.erase(NewEnd, Returns.end());
1986     } else {
1987       SmallVector<ReturnInst *, 8> NormalReturns;
1988       Function *NewDeoptIntrinsic = Intrinsic::getDeclaration(
1989           Caller->getParent(), Intrinsic::experimental_deoptimize,
1990           {Caller->getReturnType()});
1991 
1992       for (ReturnInst *RI : Returns) {
1993         CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall();
1994         if (!DeoptCall) {
1995           NormalReturns.push_back(RI);
1996           continue;
1997         }
1998 
1999         // The calling convention on the deoptimize call itself may be bogus,
2000         // since the code we're inlining may have undefined behavior (and may
2001         // never actually execute at runtime); but all
2002         // @llvm.experimental.deoptimize declarations have to have the same
2003         // calling convention in a well-formed module.
2004         auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv();
2005         NewDeoptIntrinsic->setCallingConv(CallingConv);
2006         auto *CurBB = RI->getParent();
2007         RI->eraseFromParent();
2008 
2009         SmallVector<Value *, 4> CallArgs(DeoptCall->arg_begin(),
2010                                          DeoptCall->arg_end());
2011 
2012         SmallVector<OperandBundleDef, 1> OpBundles;
2013         DeoptCall->getOperandBundlesAsDefs(OpBundles);
2014         DeoptCall->eraseFromParent();
2015         assert(!OpBundles.empty() &&
2016                "Expected at least the deopt operand bundle");
2017 
2018         IRBuilder<> Builder(CurBB);
2019         CallInst *NewDeoptCall =
2020             Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles);
2021         NewDeoptCall->setCallingConv(CallingConv);
2022         if (NewDeoptCall->getType()->isVoidTy())
2023           Builder.CreateRetVoid();
2024         else
2025           Builder.CreateRet(NewDeoptCall);
2026       }
2027 
2028       // Leave behind the normal returns so we can merge control flow.
2029       std::swap(Returns, NormalReturns);
2030     }
2031   }
2032 
2033   // Handle any inlined musttail call sites.  In order for a new call site to be
2034   // musttail, the source of the clone and the inlined call site must have been
2035   // musttail.  Therefore it's safe to return without merging control into the
2036   // phi below.
2037   if (InlinedMustTailCalls) {
2038     // Check if we need to bitcast the result of any musttail calls.
2039     Type *NewRetTy = Caller->getReturnType();
2040     bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy;
2041 
2042     // Handle the returns preceded by musttail calls separately.
2043     SmallVector<ReturnInst *, 8> NormalReturns;
2044     for (ReturnInst *RI : Returns) {
2045       CallInst *ReturnedMustTail =
2046           RI->getParent()->getTerminatingMustTailCall();
2047       if (!ReturnedMustTail) {
2048         NormalReturns.push_back(RI);
2049         continue;
2050       }
2051       if (!NeedBitCast)
2052         continue;
2053 
2054       // Delete the old return and any preceding bitcast.
2055       BasicBlock *CurBB = RI->getParent();
2056       auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
2057       RI->eraseFromParent();
2058       if (OldCast)
2059         OldCast->eraseFromParent();
2060 
2061       // Insert a new bitcast and return with the right type.
2062       IRBuilder<> Builder(CurBB);
2063       Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
2064     }
2065 
2066     // Leave behind the normal returns so we can merge control flow.
2067     std::swap(Returns, NormalReturns);
2068   }
2069 
2070   // Now that all of the transforms on the inlined code have taken place but
2071   // before we splice the inlined code into the CFG and lose track of which
2072   // blocks were actually inlined, collect the call sites. We only do this if
2073   // call graph updates weren't requested, as those provide value handle based
2074   // tracking of inlined call sites instead.
2075   if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) {
2076     // Otherwise just collect the raw call sites that were inlined.
2077     for (BasicBlock &NewBB :
2078          make_range(FirstNewBlock->getIterator(), Caller->end()))
2079       for (Instruction &I : NewBB)
2080         if (auto CS = CallSite(&I))
2081           IFI.InlinedCallSites.push_back(CS);
2082   }
2083 
2084   // If we cloned in _exactly one_ basic block, and if that block ends in a
2085   // return instruction, we splice the body of the inlined callee directly into
2086   // the calling basic block.
2087   if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
2088     // Move all of the instructions right before the call.
2089     OrigBB->getInstList().splice(TheCall->getIterator(),
2090                                  FirstNewBlock->getInstList(),
2091                                  FirstNewBlock->begin(), FirstNewBlock->end());
2092     // Remove the cloned basic block.
2093     Caller->getBasicBlockList().pop_back();
2094 
2095     // If the call site was an invoke instruction, add a branch to the normal
2096     // destination.
2097     if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
2098       BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
2099       NewBr->setDebugLoc(Returns[0]->getDebugLoc());
2100     }
2101 
2102     // If the return instruction returned a value, replace uses of the call with
2103     // uses of the returned value.
2104     if (!TheCall->use_empty()) {
2105       ReturnInst *R = Returns[0];
2106       if (TheCall == R->getReturnValue())
2107         TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
2108       else
2109         TheCall->replaceAllUsesWith(R->getReturnValue());
2110     }
2111     // Since we are now done with the Call/Invoke, we can delete it.
2112     TheCall->eraseFromParent();
2113 
2114     // Since we are now done with the return instruction, delete it also.
2115     Returns[0]->eraseFromParent();
2116 
2117     // We are now done with the inlining.
2118     return true;
2119   }
2120 
2121   // Otherwise, we have the normal case, of more than one block to inline or
2122   // multiple return sites.
2123 
2124   // We want to clone the entire callee function into the hole between the
2125   // "starter" and "ender" blocks.  How we accomplish this depends on whether
2126   // this is an invoke instruction or a call instruction.
2127   BasicBlock *AfterCallBB;
2128   BranchInst *CreatedBranchToNormalDest = nullptr;
2129   if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
2130 
2131     // Add an unconditional branch to make this look like the CallInst case...
2132     CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall);
2133 
2134     // Split the basic block.  This guarantees that no PHI nodes will have to be
2135     // updated due to new incoming edges, and make the invoke case more
2136     // symmetric to the call case.
2137     AfterCallBB =
2138         OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
2139                                 CalledFunc->getName() + ".exit");
2140 
2141   } else {  // It's a call
2142     // If this is a call instruction, we need to split the basic block that
2143     // the call lives in.
2144     //
2145     AfterCallBB = OrigBB->splitBasicBlock(TheCall->getIterator(),
2146                                           CalledFunc->getName() + ".exit");
2147   }
2148 
2149   if (IFI.CallerBFI) {
2150     // Copy original BB's block frequency to AfterCallBB
2151     IFI.CallerBFI->setBlockFreq(
2152         AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency());
2153   }
2154 
2155   // Change the branch that used to go to AfterCallBB to branch to the first
2156   // basic block of the inlined function.
2157   //
2158   TerminatorInst *Br = OrigBB->getTerminator();
2159   assert(Br && Br->getOpcode() == Instruction::Br &&
2160          "splitBasicBlock broken!");
2161   Br->setOperand(0, &*FirstNewBlock);
2162 
2163   // Now that the function is correct, make it a little bit nicer.  In
2164   // particular, move the basic blocks inserted from the end of the function
2165   // into the space made by splitting the source basic block.
2166   Caller->getBasicBlockList().splice(AfterCallBB->getIterator(),
2167                                      Caller->getBasicBlockList(), FirstNewBlock,
2168                                      Caller->end());
2169 
2170   // Handle all of the return instructions that we just cloned in, and eliminate
2171   // any users of the original call/invoke instruction.
2172   Type *RTy = CalledFunc->getReturnType();
2173 
2174   PHINode *PHI = nullptr;
2175   if (Returns.size() > 1) {
2176     // The PHI node should go at the front of the new basic block to merge all
2177     // possible incoming values.
2178     if (!TheCall->use_empty()) {
2179       PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
2180                             &AfterCallBB->front());
2181       // Anything that used the result of the function call should now use the
2182       // PHI node as their operand.
2183       TheCall->replaceAllUsesWith(PHI);
2184     }
2185 
2186     // Loop over all of the return instructions adding entries to the PHI node
2187     // as appropriate.
2188     if (PHI) {
2189       for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2190         ReturnInst *RI = Returns[i];
2191         assert(RI->getReturnValue()->getType() == PHI->getType() &&
2192                "Ret value not consistent in function!");
2193         PHI->addIncoming(RI->getReturnValue(), RI->getParent());
2194       }
2195     }
2196 
2197     // Add a branch to the merge points and remove return instructions.
2198     DebugLoc Loc;
2199     for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2200       ReturnInst *RI = Returns[i];
2201       BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
2202       Loc = RI->getDebugLoc();
2203       BI->setDebugLoc(Loc);
2204       RI->eraseFromParent();
2205     }
2206     // We need to set the debug location to *somewhere* inside the
2207     // inlined function. The line number may be nonsensical, but the
2208     // instruction will at least be associated with the right
2209     // function.
2210     if (CreatedBranchToNormalDest)
2211       CreatedBranchToNormalDest->setDebugLoc(Loc);
2212   } else if (!Returns.empty()) {
2213     // Otherwise, if there is exactly one return value, just replace anything
2214     // using the return value of the call with the computed value.
2215     if (!TheCall->use_empty()) {
2216       if (TheCall == Returns[0]->getReturnValue())
2217         TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
2218       else
2219         TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
2220     }
2221 
2222     // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
2223     BasicBlock *ReturnBB = Returns[0]->getParent();
2224     ReturnBB->replaceAllUsesWith(AfterCallBB);
2225 
2226     // Splice the code from the return block into the block that it will return
2227     // to, which contains the code that was after the call.
2228     AfterCallBB->getInstList().splice(AfterCallBB->begin(),
2229                                       ReturnBB->getInstList());
2230 
2231     if (CreatedBranchToNormalDest)
2232       CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
2233 
2234     // Delete the return instruction now and empty ReturnBB now.
2235     Returns[0]->eraseFromParent();
2236     ReturnBB->eraseFromParent();
2237   } else if (!TheCall->use_empty()) {
2238     // No returns, but something is using the return value of the call.  Just
2239     // nuke the result.
2240     TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
2241   }
2242 
2243   // Since we are now done with the Call/Invoke, we can delete it.
2244   TheCall->eraseFromParent();
2245 
2246   // If we inlined any musttail calls and the original return is now
2247   // unreachable, delete it.  It can only contain a bitcast and ret.
2248   if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB))
2249     AfterCallBB->eraseFromParent();
2250 
2251   // We should always be able to fold the entry block of the function into the
2252   // single predecessor of the block...
2253   assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
2254   BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
2255 
2256   // Splice the code entry block into calling block, right before the
2257   // unconditional branch.
2258   CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
2259   OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList());
2260 
2261   // Remove the unconditional branch.
2262   OrigBB->getInstList().erase(Br);
2263 
2264   // Now we can remove the CalleeEntry block, which is now empty.
2265   Caller->getBasicBlockList().erase(CalleeEntry);
2266 
2267   // If we inserted a phi node, check to see if it has a single value (e.g. all
2268   // the entries are the same or undef).  If so, remove the PHI so it doesn't
2269   // block other optimizations.
2270   if (PHI) {
2271     AssumptionCache *AC =
2272         IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr;
2273     auto &DL = Caller->getParent()->getDataLayout();
2274     if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) {
2275       PHI->replaceAllUsesWith(V);
2276       PHI->eraseFromParent();
2277     }
2278   }
2279 
2280   return true;
2281 }
2282