1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements inlining of a function into a call site, resolving 10 // parameters and the return value as appropriate. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/BlockFrequencyInfo.h" 26 #include "llvm/Analysis/CallGraph.h" 27 #include "llvm/Analysis/CaptureTracking.h" 28 #include "llvm/Analysis/EHPersonalities.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/ObjCARCAnalysisUtils.h" 31 #include "llvm/Analysis/ObjCARCUtil.h" 32 #include "llvm/Analysis/ProfileSummaryInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/DebugInfoMetadata.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Dominators.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/MDBuilder.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 65 #include "llvm/Transforms/Utils/Cloning.h" 66 #include "llvm/Transforms/Utils/Local.h" 67 #include "llvm/Transforms/Utils/ValueMapper.h" 68 #include <algorithm> 69 #include <cassert> 70 #include <cstdint> 71 #include <iterator> 72 #include <limits> 73 #include <string> 74 #include <utility> 75 #include <vector> 76 77 using namespace llvm; 78 using ProfileCount = Function::ProfileCount; 79 80 static cl::opt<bool> 81 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), 82 cl::Hidden, 83 cl::desc("Convert noalias attributes to metadata during inlining.")); 84 85 static cl::opt<bool> 86 UseNoAliasIntrinsic("use-noalias-intrinsic-during-inlining", cl::Hidden, 87 cl::ZeroOrMore, cl::init(true), 88 cl::desc("Use the llvm.experimental.noalias.scope.decl " 89 "intrinsic during inlining.")); 90 91 // Disabled by default, because the added alignment assumptions may increase 92 // compile-time and block optimizations. This option is not suitable for use 93 // with frontends that emit comprehensive parameter alignment annotations. 94 static cl::opt<bool> 95 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", 96 cl::init(false), cl::Hidden, 97 cl::desc("Convert align attributes to assumptions during inlining.")); 98 99 static cl::opt<bool> UpdateReturnAttributes( 100 "update-return-attrs", cl::init(true), cl::Hidden, 101 cl::desc("Update return attributes on calls within inlined body")); 102 103 static cl::opt<unsigned> InlinerAttributeWindow( 104 "max-inst-checked-for-throw-during-inlining", cl::Hidden, 105 cl::desc("the maximum number of instructions analyzed for may throw during " 106 "attribute inference in inlined body"), 107 cl::init(4)); 108 109 namespace { 110 111 /// A class for recording information about inlining a landing pad. 112 class LandingPadInliningInfo { 113 /// Destination of the invoke's unwind. 114 BasicBlock *OuterResumeDest; 115 116 /// Destination for the callee's resume. 117 BasicBlock *InnerResumeDest = nullptr; 118 119 /// LandingPadInst associated with the invoke. 120 LandingPadInst *CallerLPad = nullptr; 121 122 /// PHI for EH values from landingpad insts. 123 PHINode *InnerEHValuesPHI = nullptr; 124 125 SmallVector<Value*, 8> UnwindDestPHIValues; 126 127 public: 128 LandingPadInliningInfo(InvokeInst *II) 129 : OuterResumeDest(II->getUnwindDest()) { 130 // If there are PHI nodes in the unwind destination block, we need to keep 131 // track of which values came into them from the invoke before removing 132 // the edge from this block. 133 BasicBlock *InvokeBB = II->getParent(); 134 BasicBlock::iterator I = OuterResumeDest->begin(); 135 for (; isa<PHINode>(I); ++I) { 136 // Save the value to use for this edge. 137 PHINode *PHI = cast<PHINode>(I); 138 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 139 } 140 141 CallerLPad = cast<LandingPadInst>(I); 142 } 143 144 /// The outer unwind destination is the target of 145 /// unwind edges introduced for calls within the inlined function. 146 BasicBlock *getOuterResumeDest() const { 147 return OuterResumeDest; 148 } 149 150 BasicBlock *getInnerResumeDest(); 151 152 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 153 154 /// Forward the 'resume' instruction to the caller's landing pad block. 155 /// When the landing pad block has only one predecessor, this is 156 /// a simple branch. When there is more than one predecessor, we need to 157 /// split the landing pad block after the landingpad instruction and jump 158 /// to there. 159 void forwardResume(ResumeInst *RI, 160 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); 161 162 /// Add incoming-PHI values to the unwind destination block for the given 163 /// basic block, using the values for the original invoke's source block. 164 void addIncomingPHIValuesFor(BasicBlock *BB) const { 165 addIncomingPHIValuesForInto(BB, OuterResumeDest); 166 } 167 168 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 169 BasicBlock::iterator I = dest->begin(); 170 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 171 PHINode *phi = cast<PHINode>(I); 172 phi->addIncoming(UnwindDestPHIValues[i], src); 173 } 174 } 175 }; 176 177 } // end anonymous namespace 178 179 /// Get or create a target for the branch from ResumeInsts. 180 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() { 181 if (InnerResumeDest) return InnerResumeDest; 182 183 // Split the landing pad. 184 BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator(); 185 InnerResumeDest = 186 OuterResumeDest->splitBasicBlock(SplitPoint, 187 OuterResumeDest->getName() + ".body"); 188 189 // The number of incoming edges we expect to the inner landing pad. 190 const unsigned PHICapacity = 2; 191 192 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 193 Instruction *InsertPoint = &InnerResumeDest->front(); 194 BasicBlock::iterator I = OuterResumeDest->begin(); 195 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 196 PHINode *OuterPHI = cast<PHINode>(I); 197 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 198 OuterPHI->getName() + ".lpad-body", 199 InsertPoint); 200 OuterPHI->replaceAllUsesWith(InnerPHI); 201 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 202 } 203 204 // Create a PHI for the exception values. 205 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 206 "eh.lpad-body", InsertPoint); 207 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 208 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 209 210 // All done. 211 return InnerResumeDest; 212 } 213 214 /// Forward the 'resume' instruction to the caller's landing pad block. 215 /// When the landing pad block has only one predecessor, this is a simple 216 /// branch. When there is more than one predecessor, we need to split the 217 /// landing pad block after the landingpad instruction and jump to there. 218 void LandingPadInliningInfo::forwardResume( 219 ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) { 220 BasicBlock *Dest = getInnerResumeDest(); 221 BasicBlock *Src = RI->getParent(); 222 223 BranchInst::Create(Dest, Src); 224 225 // Update the PHIs in the destination. They were inserted in an order which 226 // makes this work. 227 addIncomingPHIValuesForInto(Src, Dest); 228 229 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 230 RI->eraseFromParent(); 231 } 232 233 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper. 234 static Value *getParentPad(Value *EHPad) { 235 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 236 return FPI->getParentPad(); 237 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 238 } 239 240 using UnwindDestMemoTy = DenseMap<Instruction *, Value *>; 241 242 /// Helper for getUnwindDestToken that does the descendant-ward part of 243 /// the search. 244 static Value *getUnwindDestTokenHelper(Instruction *EHPad, 245 UnwindDestMemoTy &MemoMap) { 246 SmallVector<Instruction *, 8> Worklist(1, EHPad); 247 248 while (!Worklist.empty()) { 249 Instruction *CurrentPad = Worklist.pop_back_val(); 250 // We only put pads on the worklist that aren't in the MemoMap. When 251 // we find an unwind dest for a pad we may update its ancestors, but 252 // the queue only ever contains uncles/great-uncles/etc. of CurrentPad, 253 // so they should never get updated while queued on the worklist. 254 assert(!MemoMap.count(CurrentPad)); 255 Value *UnwindDestToken = nullptr; 256 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) { 257 if (CatchSwitch->hasUnwindDest()) { 258 UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI(); 259 } else { 260 // Catchswitch doesn't have a 'nounwind' variant, and one might be 261 // annotated as "unwinds to caller" when really it's nounwind (see 262 // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the 263 // parent's unwind dest from this. We can check its catchpads' 264 // descendants, since they might include a cleanuppad with an 265 // "unwinds to caller" cleanupret, which can be trusted. 266 for (auto HI = CatchSwitch->handler_begin(), 267 HE = CatchSwitch->handler_end(); 268 HI != HE && !UnwindDestToken; ++HI) { 269 BasicBlock *HandlerBlock = *HI; 270 auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI()); 271 for (User *Child : CatchPad->users()) { 272 // Intentionally ignore invokes here -- since the catchswitch is 273 // marked "unwind to caller", it would be a verifier error if it 274 // contained an invoke which unwinds out of it, so any invoke we'd 275 // encounter must unwind to some child of the catch. 276 if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child)) 277 continue; 278 279 Instruction *ChildPad = cast<Instruction>(Child); 280 auto Memo = MemoMap.find(ChildPad); 281 if (Memo == MemoMap.end()) { 282 // Haven't figured out this child pad yet; queue it. 283 Worklist.push_back(ChildPad); 284 continue; 285 } 286 // We've already checked this child, but might have found that 287 // it offers no proof either way. 288 Value *ChildUnwindDestToken = Memo->second; 289 if (!ChildUnwindDestToken) 290 continue; 291 // We already know the child's unwind dest, which can either 292 // be ConstantTokenNone to indicate unwind to caller, or can 293 // be another child of the catchpad. Only the former indicates 294 // the unwind dest of the catchswitch. 295 if (isa<ConstantTokenNone>(ChildUnwindDestToken)) { 296 UnwindDestToken = ChildUnwindDestToken; 297 break; 298 } 299 assert(getParentPad(ChildUnwindDestToken) == CatchPad); 300 } 301 } 302 } 303 } else { 304 auto *CleanupPad = cast<CleanupPadInst>(CurrentPad); 305 for (User *U : CleanupPad->users()) { 306 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) { 307 if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest()) 308 UnwindDestToken = RetUnwindDest->getFirstNonPHI(); 309 else 310 UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext()); 311 break; 312 } 313 Value *ChildUnwindDestToken; 314 if (auto *Invoke = dyn_cast<InvokeInst>(U)) { 315 ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI(); 316 } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) { 317 Instruction *ChildPad = cast<Instruction>(U); 318 auto Memo = MemoMap.find(ChildPad); 319 if (Memo == MemoMap.end()) { 320 // Haven't resolved this child yet; queue it and keep searching. 321 Worklist.push_back(ChildPad); 322 continue; 323 } 324 // We've checked this child, but still need to ignore it if it 325 // had no proof either way. 326 ChildUnwindDestToken = Memo->second; 327 if (!ChildUnwindDestToken) 328 continue; 329 } else { 330 // Not a relevant user of the cleanuppad 331 continue; 332 } 333 // In a well-formed program, the child/invoke must either unwind to 334 // an(other) child of the cleanup, or exit the cleanup. In the 335 // first case, continue searching. 336 if (isa<Instruction>(ChildUnwindDestToken) && 337 getParentPad(ChildUnwindDestToken) == CleanupPad) 338 continue; 339 UnwindDestToken = ChildUnwindDestToken; 340 break; 341 } 342 } 343 // If we haven't found an unwind dest for CurrentPad, we may have queued its 344 // children, so move on to the next in the worklist. 345 if (!UnwindDestToken) 346 continue; 347 348 // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits 349 // any ancestors of CurrentPad up to but not including UnwindDestToken's 350 // parent pad. Record this in the memo map, and check to see if the 351 // original EHPad being queried is one of the ones exited. 352 Value *UnwindParent; 353 if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken)) 354 UnwindParent = getParentPad(UnwindPad); 355 else 356 UnwindParent = nullptr; 357 bool ExitedOriginalPad = false; 358 for (Instruction *ExitedPad = CurrentPad; 359 ExitedPad && ExitedPad != UnwindParent; 360 ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) { 361 // Skip over catchpads since they just follow their catchswitches. 362 if (isa<CatchPadInst>(ExitedPad)) 363 continue; 364 MemoMap[ExitedPad] = UnwindDestToken; 365 ExitedOriginalPad |= (ExitedPad == EHPad); 366 } 367 368 if (ExitedOriginalPad) 369 return UnwindDestToken; 370 371 // Continue the search. 372 } 373 374 // No definitive information is contained within this funclet. 375 return nullptr; 376 } 377 378 /// Given an EH pad, find where it unwinds. If it unwinds to an EH pad, 379 /// return that pad instruction. If it unwinds to caller, return 380 /// ConstantTokenNone. If it does not have a definitive unwind destination, 381 /// return nullptr. 382 /// 383 /// This routine gets invoked for calls in funclets in inlinees when inlining 384 /// an invoke. Since many funclets don't have calls inside them, it's queried 385 /// on-demand rather than building a map of pads to unwind dests up front. 386 /// Determining a funclet's unwind dest may require recursively searching its 387 /// descendants, and also ancestors and cousins if the descendants don't provide 388 /// an answer. Since most funclets will have their unwind dest immediately 389 /// available as the unwind dest of a catchswitch or cleanupret, this routine 390 /// searches top-down from the given pad and then up. To avoid worst-case 391 /// quadratic run-time given that approach, it uses a memo map to avoid 392 /// re-processing funclet trees. The callers that rewrite the IR as they go 393 /// take advantage of this, for correctness, by checking/forcing rewritten 394 /// pads' entries to match the original callee view. 395 static Value *getUnwindDestToken(Instruction *EHPad, 396 UnwindDestMemoTy &MemoMap) { 397 // Catchpads unwind to the same place as their catchswitch; 398 // redirct any queries on catchpads so the code below can 399 // deal with just catchswitches and cleanuppads. 400 if (auto *CPI = dyn_cast<CatchPadInst>(EHPad)) 401 EHPad = CPI->getCatchSwitch(); 402 403 // Check if we've already determined the unwind dest for this pad. 404 auto Memo = MemoMap.find(EHPad); 405 if (Memo != MemoMap.end()) 406 return Memo->second; 407 408 // Search EHPad and, if necessary, its descendants. 409 Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap); 410 assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0)); 411 if (UnwindDestToken) 412 return UnwindDestToken; 413 414 // No information is available for this EHPad from itself or any of its 415 // descendants. An unwind all the way out to a pad in the caller would 416 // need also to agree with the unwind dest of the parent funclet, so 417 // search up the chain to try to find a funclet with information. Put 418 // null entries in the memo map to avoid re-processing as we go up. 419 MemoMap[EHPad] = nullptr; 420 #ifndef NDEBUG 421 SmallPtrSet<Instruction *, 4> TempMemos; 422 TempMemos.insert(EHPad); 423 #endif 424 Instruction *LastUselessPad = EHPad; 425 Value *AncestorToken; 426 for (AncestorToken = getParentPad(EHPad); 427 auto *AncestorPad = dyn_cast<Instruction>(AncestorToken); 428 AncestorToken = getParentPad(AncestorToken)) { 429 // Skip over catchpads since they just follow their catchswitches. 430 if (isa<CatchPadInst>(AncestorPad)) 431 continue; 432 // If the MemoMap had an entry mapping AncestorPad to nullptr, since we 433 // haven't yet called getUnwindDestTokenHelper for AncestorPad in this 434 // call to getUnwindDestToken, that would mean that AncestorPad had no 435 // information in itself, its descendants, or its ancestors. If that 436 // were the case, then we should also have recorded the lack of information 437 // for the descendant that we're coming from. So assert that we don't 438 // find a null entry in the MemoMap for AncestorPad. 439 assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]); 440 auto AncestorMemo = MemoMap.find(AncestorPad); 441 if (AncestorMemo == MemoMap.end()) { 442 UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap); 443 } else { 444 UnwindDestToken = AncestorMemo->second; 445 } 446 if (UnwindDestToken) 447 break; 448 LastUselessPad = AncestorPad; 449 MemoMap[LastUselessPad] = nullptr; 450 #ifndef NDEBUG 451 TempMemos.insert(LastUselessPad); 452 #endif 453 } 454 455 // We know that getUnwindDestTokenHelper was called on LastUselessPad and 456 // returned nullptr (and likewise for EHPad and any of its ancestors up to 457 // LastUselessPad), so LastUselessPad has no information from below. Since 458 // getUnwindDestTokenHelper must investigate all downward paths through 459 // no-information nodes to prove that a node has no information like this, 460 // and since any time it finds information it records it in the MemoMap for 461 // not just the immediately-containing funclet but also any ancestors also 462 // exited, it must be the case that, walking downward from LastUselessPad, 463 // visiting just those nodes which have not been mapped to an unwind dest 464 // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since 465 // they are just used to keep getUnwindDestTokenHelper from repeating work), 466 // any node visited must have been exhaustively searched with no information 467 // for it found. 468 SmallVector<Instruction *, 8> Worklist(1, LastUselessPad); 469 while (!Worklist.empty()) { 470 Instruction *UselessPad = Worklist.pop_back_val(); 471 auto Memo = MemoMap.find(UselessPad); 472 if (Memo != MemoMap.end() && Memo->second) { 473 // Here the name 'UselessPad' is a bit of a misnomer, because we've found 474 // that it is a funclet that does have information about unwinding to 475 // a particular destination; its parent was a useless pad. 476 // Since its parent has no information, the unwind edge must not escape 477 // the parent, and must target a sibling of this pad. This local unwind 478 // gives us no information about EHPad. Leave it and the subtree rooted 479 // at it alone. 480 assert(getParentPad(Memo->second) == getParentPad(UselessPad)); 481 continue; 482 } 483 // We know we don't have information for UselesPad. If it has an entry in 484 // the MemoMap (mapping it to nullptr), it must be one of the TempMemos 485 // added on this invocation of getUnwindDestToken; if a previous invocation 486 // recorded nullptr, it would have had to prove that the ancestors of 487 // UselessPad, which include LastUselessPad, had no information, and that 488 // in turn would have required proving that the descendants of 489 // LastUselesPad, which include EHPad, have no information about 490 // LastUselessPad, which would imply that EHPad was mapped to nullptr in 491 // the MemoMap on that invocation, which isn't the case if we got here. 492 assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad)); 493 // Assert as we enumerate users that 'UselessPad' doesn't have any unwind 494 // information that we'd be contradicting by making a map entry for it 495 // (which is something that getUnwindDestTokenHelper must have proved for 496 // us to get here). Just assert on is direct users here; the checks in 497 // this downward walk at its descendants will verify that they don't have 498 // any unwind edges that exit 'UselessPad' either (i.e. they either have no 499 // unwind edges or unwind to a sibling). 500 MemoMap[UselessPad] = UnwindDestToken; 501 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) { 502 assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad"); 503 for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) { 504 auto *CatchPad = HandlerBlock->getFirstNonPHI(); 505 for (User *U : CatchPad->users()) { 506 assert( 507 (!isa<InvokeInst>(U) || 508 (getParentPad( 509 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 510 CatchPad)) && 511 "Expected useless pad"); 512 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 513 Worklist.push_back(cast<Instruction>(U)); 514 } 515 } 516 } else { 517 assert(isa<CleanupPadInst>(UselessPad)); 518 for (User *U : UselessPad->users()) { 519 assert(!isa<CleanupReturnInst>(U) && "Expected useless pad"); 520 assert((!isa<InvokeInst>(U) || 521 (getParentPad( 522 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 523 UselessPad)) && 524 "Expected useless pad"); 525 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 526 Worklist.push_back(cast<Instruction>(U)); 527 } 528 } 529 } 530 531 return UnwindDestToken; 532 } 533 534 /// When we inline a basic block into an invoke, 535 /// we have to turn all of the calls that can throw into invokes. 536 /// This function analyze BB to see if there are any calls, and if so, 537 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 538 /// nodes in that block with the values specified in InvokeDestPHIValues. 539 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke( 540 BasicBlock *BB, BasicBlock *UnwindEdge, 541 UnwindDestMemoTy *FuncletUnwindMap = nullptr) { 542 for (Instruction &I : llvm::make_early_inc_range(*BB)) { 543 // We only need to check for function calls: inlined invoke 544 // instructions require no special handling. 545 CallInst *CI = dyn_cast<CallInst>(&I); 546 547 if (!CI || CI->doesNotThrow()) 548 continue; 549 550 if (CI->isInlineAsm()) { 551 InlineAsm *IA = cast<InlineAsm>(CI->getCalledOperand()); 552 if (!IA->canThrow()) { 553 continue; 554 } 555 } 556 557 // We do not need to (and in fact, cannot) convert possibly throwing calls 558 // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into 559 // invokes. The caller's "segment" of the deoptimization continuation 560 // attached to the newly inlined @llvm.experimental_deoptimize 561 // (resp. @llvm.experimental.guard) call should contain the exception 562 // handling logic, if any. 563 if (auto *F = CI->getCalledFunction()) 564 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize || 565 F->getIntrinsicID() == Intrinsic::experimental_guard) 566 continue; 567 568 if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) { 569 // This call is nested inside a funclet. If that funclet has an unwind 570 // destination within the inlinee, then unwinding out of this call would 571 // be UB. Rewriting this call to an invoke which targets the inlined 572 // invoke's unwind dest would give the call's parent funclet multiple 573 // unwind destinations, which is something that subsequent EH table 574 // generation can't handle and that the veirifer rejects. So when we 575 // see such a call, leave it as a call. 576 auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]); 577 Value *UnwindDestToken = 578 getUnwindDestToken(FuncletPad, *FuncletUnwindMap); 579 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 580 continue; 581 #ifndef NDEBUG 582 Instruction *MemoKey; 583 if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad)) 584 MemoKey = CatchPad->getCatchSwitch(); 585 else 586 MemoKey = FuncletPad; 587 assert(FuncletUnwindMap->count(MemoKey) && 588 (*FuncletUnwindMap)[MemoKey] == UnwindDestToken && 589 "must get memoized to avoid confusing later searches"); 590 #endif // NDEBUG 591 } 592 593 changeToInvokeAndSplitBasicBlock(CI, UnwindEdge); 594 return BB; 595 } 596 return nullptr; 597 } 598 599 /// If we inlined an invoke site, we need to convert calls 600 /// in the body of the inlined function into invokes. 601 /// 602 /// II is the invoke instruction being inlined. FirstNewBlock is the first 603 /// block of the inlined code (the last block is the end of the function), 604 /// and InlineCodeInfo is information about the code that got inlined. 605 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock, 606 ClonedCodeInfo &InlinedCodeInfo) { 607 BasicBlock *InvokeDest = II->getUnwindDest(); 608 609 Function *Caller = FirstNewBlock->getParent(); 610 611 // The inlined code is currently at the end of the function, scan from the 612 // start of the inlined code to its end, checking for stuff we need to 613 // rewrite. 614 LandingPadInliningInfo Invoke(II); 615 616 // Get all of the inlined landing pad instructions. 617 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 618 for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end(); 619 I != E; ++I) 620 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 621 InlinedLPads.insert(II->getLandingPadInst()); 622 623 // Append the clauses from the outer landing pad instruction into the inlined 624 // landing pad instructions. 625 LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 626 for (LandingPadInst *InlinedLPad : InlinedLPads) { 627 unsigned OuterNum = OuterLPad->getNumClauses(); 628 InlinedLPad->reserveClauses(OuterNum); 629 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 630 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 631 if (OuterLPad->isCleanup()) 632 InlinedLPad->setCleanup(true); 633 } 634 635 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 636 BB != E; ++BB) { 637 if (InlinedCodeInfo.ContainsCalls) 638 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 639 &*BB, Invoke.getOuterResumeDest())) 640 // Update any PHI nodes in the exceptional block to indicate that there 641 // is now a new entry in them. 642 Invoke.addIncomingPHIValuesFor(NewBB); 643 644 // Forward any resumes that are remaining here. 645 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 646 Invoke.forwardResume(RI, InlinedLPads); 647 } 648 649 // Now that everything is happy, we have one final detail. The PHI nodes in 650 // the exception destination block still have entries due to the original 651 // invoke instruction. Eliminate these entries (which might even delete the 652 // PHI node) now. 653 InvokeDest->removePredecessor(II->getParent()); 654 } 655 656 /// If we inlined an invoke site, we need to convert calls 657 /// in the body of the inlined function into invokes. 658 /// 659 /// II is the invoke instruction being inlined. FirstNewBlock is the first 660 /// block of the inlined code (the last block is the end of the function), 661 /// and InlineCodeInfo is information about the code that got inlined. 662 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock, 663 ClonedCodeInfo &InlinedCodeInfo) { 664 BasicBlock *UnwindDest = II->getUnwindDest(); 665 Function *Caller = FirstNewBlock->getParent(); 666 667 assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!"); 668 669 // If there are PHI nodes in the unwind destination block, we need to keep 670 // track of which values came into them from the invoke before removing the 671 // edge from this block. 672 SmallVector<Value *, 8> UnwindDestPHIValues; 673 BasicBlock *InvokeBB = II->getParent(); 674 for (PHINode &PHI : UnwindDest->phis()) { 675 // Save the value to use for this edge. 676 UnwindDestPHIValues.push_back(PHI.getIncomingValueForBlock(InvokeBB)); 677 } 678 679 // Add incoming-PHI values to the unwind destination block for the given basic 680 // block, using the values for the original invoke's source block. 681 auto UpdatePHINodes = [&](BasicBlock *Src) { 682 BasicBlock::iterator I = UnwindDest->begin(); 683 for (Value *V : UnwindDestPHIValues) { 684 PHINode *PHI = cast<PHINode>(I); 685 PHI->addIncoming(V, Src); 686 ++I; 687 } 688 }; 689 690 // This connects all the instructions which 'unwind to caller' to the invoke 691 // destination. 692 UnwindDestMemoTy FuncletUnwindMap; 693 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 694 BB != E; ++BB) { 695 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 696 if (CRI->unwindsToCaller()) { 697 auto *CleanupPad = CRI->getCleanupPad(); 698 CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI); 699 CRI->eraseFromParent(); 700 UpdatePHINodes(&*BB); 701 // Finding a cleanupret with an unwind destination would confuse 702 // subsequent calls to getUnwindDestToken, so map the cleanuppad 703 // to short-circuit any such calls and recognize this as an "unwind 704 // to caller" cleanup. 705 assert(!FuncletUnwindMap.count(CleanupPad) || 706 isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad])); 707 FuncletUnwindMap[CleanupPad] = 708 ConstantTokenNone::get(Caller->getContext()); 709 } 710 } 711 712 Instruction *I = BB->getFirstNonPHI(); 713 if (!I->isEHPad()) 714 continue; 715 716 Instruction *Replacement = nullptr; 717 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 718 if (CatchSwitch->unwindsToCaller()) { 719 Value *UnwindDestToken; 720 if (auto *ParentPad = 721 dyn_cast<Instruction>(CatchSwitch->getParentPad())) { 722 // This catchswitch is nested inside another funclet. If that 723 // funclet has an unwind destination within the inlinee, then 724 // unwinding out of this catchswitch would be UB. Rewriting this 725 // catchswitch to unwind to the inlined invoke's unwind dest would 726 // give the parent funclet multiple unwind destinations, which is 727 // something that subsequent EH table generation can't handle and 728 // that the veirifer rejects. So when we see such a call, leave it 729 // as "unwind to caller". 730 UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap); 731 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 732 continue; 733 } else { 734 // This catchswitch has no parent to inherit constraints from, and 735 // none of its descendants can have an unwind edge that exits it and 736 // targets another funclet in the inlinee. It may or may not have a 737 // descendant that definitively has an unwind to caller. In either 738 // case, we'll have to assume that any unwinds out of it may need to 739 // be routed to the caller, so treat it as though it has a definitive 740 // unwind to caller. 741 UnwindDestToken = ConstantTokenNone::get(Caller->getContext()); 742 } 743 auto *NewCatchSwitch = CatchSwitchInst::Create( 744 CatchSwitch->getParentPad(), UnwindDest, 745 CatchSwitch->getNumHandlers(), CatchSwitch->getName(), 746 CatchSwitch); 747 for (BasicBlock *PadBB : CatchSwitch->handlers()) 748 NewCatchSwitch->addHandler(PadBB); 749 // Propagate info for the old catchswitch over to the new one in 750 // the unwind map. This also serves to short-circuit any subsequent 751 // checks for the unwind dest of this catchswitch, which would get 752 // confused if they found the outer handler in the callee. 753 FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken; 754 Replacement = NewCatchSwitch; 755 } 756 } else if (!isa<FuncletPadInst>(I)) { 757 llvm_unreachable("unexpected EHPad!"); 758 } 759 760 if (Replacement) { 761 Replacement->takeName(I); 762 I->replaceAllUsesWith(Replacement); 763 I->eraseFromParent(); 764 UpdatePHINodes(&*BB); 765 } 766 } 767 768 if (InlinedCodeInfo.ContainsCalls) 769 for (Function::iterator BB = FirstNewBlock->getIterator(), 770 E = Caller->end(); 771 BB != E; ++BB) 772 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 773 &*BB, UnwindDest, &FuncletUnwindMap)) 774 // Update any PHI nodes in the exceptional block to indicate that there 775 // is now a new entry in them. 776 UpdatePHINodes(NewBB); 777 778 // Now that everything is happy, we have one final detail. The PHI nodes in 779 // the exception destination block still have entries due to the original 780 // invoke instruction. Eliminate these entries (which might even delete the 781 // PHI node) now. 782 UnwindDest->removePredecessor(InvokeBB); 783 } 784 785 /// When inlining a call site that has !llvm.mem.parallel_loop_access, 786 /// !llvm.access.group, !alias.scope or !noalias metadata, that metadata should 787 /// be propagated to all memory-accessing cloned instructions. 788 static void PropagateCallSiteMetadata(CallBase &CB, Function::iterator FStart, 789 Function::iterator FEnd) { 790 MDNode *MemParallelLoopAccess = 791 CB.getMetadata(LLVMContext::MD_mem_parallel_loop_access); 792 MDNode *AccessGroup = CB.getMetadata(LLVMContext::MD_access_group); 793 MDNode *AliasScope = CB.getMetadata(LLVMContext::MD_alias_scope); 794 MDNode *NoAlias = CB.getMetadata(LLVMContext::MD_noalias); 795 if (!MemParallelLoopAccess && !AccessGroup && !AliasScope && !NoAlias) 796 return; 797 798 for (BasicBlock &BB : make_range(FStart, FEnd)) { 799 for (Instruction &I : BB) { 800 // This metadata is only relevant for instructions that access memory. 801 if (!I.mayReadOrWriteMemory()) 802 continue; 803 804 if (MemParallelLoopAccess) { 805 // TODO: This probably should not overwrite MemParalleLoopAccess. 806 MemParallelLoopAccess = MDNode::concatenate( 807 I.getMetadata(LLVMContext::MD_mem_parallel_loop_access), 808 MemParallelLoopAccess); 809 I.setMetadata(LLVMContext::MD_mem_parallel_loop_access, 810 MemParallelLoopAccess); 811 } 812 813 if (AccessGroup) 814 I.setMetadata(LLVMContext::MD_access_group, uniteAccessGroups( 815 I.getMetadata(LLVMContext::MD_access_group), AccessGroup)); 816 817 if (AliasScope) 818 I.setMetadata(LLVMContext::MD_alias_scope, MDNode::concatenate( 819 I.getMetadata(LLVMContext::MD_alias_scope), AliasScope)); 820 821 if (NoAlias) 822 I.setMetadata(LLVMContext::MD_noalias, MDNode::concatenate( 823 I.getMetadata(LLVMContext::MD_noalias), NoAlias)); 824 } 825 } 826 } 827 828 namespace { 829 /// Utility for cloning !noalias and !alias.scope metadata. When a code region 830 /// using scoped alias metadata is inlined, the aliasing relationships may not 831 /// hold between the two version. It is necessary to create a deep clone of the 832 /// metadata, putting the two versions in separate scope domains. 833 class ScopedAliasMetadataDeepCloner { 834 using MetadataMap = DenseMap<const MDNode *, TrackingMDNodeRef>; 835 SetVector<const MDNode *> MD; 836 MetadataMap MDMap; 837 void addRecursiveMetadataUses(); 838 839 public: 840 ScopedAliasMetadataDeepCloner(const Function *F); 841 842 /// Create a new clone of the scoped alias metadata, which will be used by 843 /// subsequent remap() calls. 844 void clone(); 845 846 /// Remap instructions in the given range from the original to the cloned 847 /// metadata. 848 void remap(Function::iterator FStart, Function::iterator FEnd); 849 }; 850 } // namespace 851 852 ScopedAliasMetadataDeepCloner::ScopedAliasMetadataDeepCloner( 853 const Function *F) { 854 for (const BasicBlock &BB : *F) { 855 for (const Instruction &I : BB) { 856 if (const MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope)) 857 MD.insert(M); 858 if (const MDNode *M = I.getMetadata(LLVMContext::MD_noalias)) 859 MD.insert(M); 860 861 // We also need to clone the metadata in noalias intrinsics. 862 if (const auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) 863 MD.insert(Decl->getScopeList()); 864 } 865 } 866 addRecursiveMetadataUses(); 867 } 868 869 void ScopedAliasMetadataDeepCloner::addRecursiveMetadataUses() { 870 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end()); 871 while (!Queue.empty()) { 872 const MDNode *M = cast<MDNode>(Queue.pop_back_val()); 873 for (const Metadata *Op : M->operands()) 874 if (const MDNode *OpMD = dyn_cast<MDNode>(Op)) 875 if (MD.insert(OpMD)) 876 Queue.push_back(OpMD); 877 } 878 } 879 880 void ScopedAliasMetadataDeepCloner::clone() { 881 assert(MDMap.empty() && "clone() already called ?"); 882 883 SmallVector<TempMDTuple, 16> DummyNodes; 884 for (const MDNode *I : MD) { 885 DummyNodes.push_back(MDTuple::getTemporary(I->getContext(), None)); 886 MDMap[I].reset(DummyNodes.back().get()); 887 } 888 889 // Create new metadata nodes to replace the dummy nodes, replacing old 890 // metadata references with either a dummy node or an already-created new 891 // node. 892 SmallVector<Metadata *, 4> NewOps; 893 for (const MDNode *I : MD) { 894 for (const Metadata *Op : I->operands()) { 895 if (const MDNode *M = dyn_cast<MDNode>(Op)) 896 NewOps.push_back(MDMap[M]); 897 else 898 NewOps.push_back(const_cast<Metadata *>(Op)); 899 } 900 901 MDNode *NewM = MDNode::get(I->getContext(), NewOps); 902 MDTuple *TempM = cast<MDTuple>(MDMap[I]); 903 assert(TempM->isTemporary() && "Expected temporary node"); 904 905 TempM->replaceAllUsesWith(NewM); 906 NewOps.clear(); 907 } 908 } 909 910 void ScopedAliasMetadataDeepCloner::remap(Function::iterator FStart, 911 Function::iterator FEnd) { 912 if (MDMap.empty()) 913 return; // Nothing to do. 914 915 for (BasicBlock &BB : make_range(FStart, FEnd)) { 916 for (Instruction &I : BB) { 917 // TODO: The null checks for the MDMap.lookup() results should no longer 918 // be necessary. 919 if (MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope)) 920 if (MDNode *MNew = MDMap.lookup(M)) 921 I.setMetadata(LLVMContext::MD_alias_scope, MNew); 922 923 if (MDNode *M = I.getMetadata(LLVMContext::MD_noalias)) 924 if (MDNode *MNew = MDMap.lookup(M)) 925 I.setMetadata(LLVMContext::MD_noalias, MNew); 926 927 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) 928 if (MDNode *MNew = MDMap.lookup(Decl->getScopeList())) 929 Decl->setScopeList(MNew); 930 } 931 } 932 } 933 934 /// If the inlined function has noalias arguments, 935 /// then add new alias scopes for each noalias argument, tag the mapped noalias 936 /// parameters with noalias metadata specifying the new scope, and tag all 937 /// non-derived loads, stores and memory intrinsics with the new alias scopes. 938 static void AddAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap, 939 const DataLayout &DL, AAResults *CalleeAAR, 940 ClonedCodeInfo &InlinedFunctionInfo) { 941 if (!EnableNoAliasConversion) 942 return; 943 944 const Function *CalledFunc = CB.getCalledFunction(); 945 SmallVector<const Argument *, 4> NoAliasArgs; 946 947 for (const Argument &Arg : CalledFunc->args()) 948 if (CB.paramHasAttr(Arg.getArgNo(), Attribute::NoAlias) && !Arg.use_empty()) 949 NoAliasArgs.push_back(&Arg); 950 951 if (NoAliasArgs.empty()) 952 return; 953 954 // To do a good job, if a noalias variable is captured, we need to know if 955 // the capture point dominates the particular use we're considering. 956 DominatorTree DT; 957 DT.recalculate(const_cast<Function&>(*CalledFunc)); 958 959 // noalias indicates that pointer values based on the argument do not alias 960 // pointer values which are not based on it. So we add a new "scope" for each 961 // noalias function argument. Accesses using pointers based on that argument 962 // become part of that alias scope, accesses using pointers not based on that 963 // argument are tagged as noalias with that scope. 964 965 DenseMap<const Argument *, MDNode *> NewScopes; 966 MDBuilder MDB(CalledFunc->getContext()); 967 968 // Create a new scope domain for this function. 969 MDNode *NewDomain = 970 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); 971 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { 972 const Argument *A = NoAliasArgs[i]; 973 974 std::string Name = std::string(CalledFunc->getName()); 975 if (A->hasName()) { 976 Name += ": %"; 977 Name += A->getName(); 978 } else { 979 Name += ": argument "; 980 Name += utostr(i); 981 } 982 983 // Note: We always create a new anonymous root here. This is true regardless 984 // of the linkage of the callee because the aliasing "scope" is not just a 985 // property of the callee, but also all control dependencies in the caller. 986 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); 987 NewScopes.insert(std::make_pair(A, NewScope)); 988 989 if (UseNoAliasIntrinsic) { 990 // Introduce a llvm.experimental.noalias.scope.decl for the noalias 991 // argument. 992 MDNode *AScopeList = MDNode::get(CalledFunc->getContext(), NewScope); 993 auto *NoAliasDecl = 994 IRBuilder<>(&CB).CreateNoAliasScopeDeclaration(AScopeList); 995 // Ignore the result for now. The result will be used when the 996 // llvm.noalias intrinsic is introduced. 997 (void)NoAliasDecl; 998 } 999 } 1000 1001 // Iterate over all new instructions in the map; for all memory-access 1002 // instructions, add the alias scope metadata. 1003 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 1004 VMI != VMIE; ++VMI) { 1005 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { 1006 if (!VMI->second) 1007 continue; 1008 1009 Instruction *NI = dyn_cast<Instruction>(VMI->second); 1010 if (!NI || InlinedFunctionInfo.isSimplified(I, NI)) 1011 continue; 1012 1013 bool IsArgMemOnlyCall = false, IsFuncCall = false; 1014 SmallVector<const Value *, 2> PtrArgs; 1015 1016 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 1017 PtrArgs.push_back(LI->getPointerOperand()); 1018 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 1019 PtrArgs.push_back(SI->getPointerOperand()); 1020 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) 1021 PtrArgs.push_back(VAAI->getPointerOperand()); 1022 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 1023 PtrArgs.push_back(CXI->getPointerOperand()); 1024 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 1025 PtrArgs.push_back(RMWI->getPointerOperand()); 1026 else if (const auto *Call = dyn_cast<CallBase>(I)) { 1027 // If we know that the call does not access memory, then we'll still 1028 // know that about the inlined clone of this call site, and we don't 1029 // need to add metadata. 1030 if (Call->doesNotAccessMemory()) 1031 continue; 1032 1033 IsFuncCall = true; 1034 if (CalleeAAR) { 1035 FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call); 1036 1037 // We'll retain this knowledge without additional metadata. 1038 if (AAResults::onlyAccessesInaccessibleMem(MRB)) 1039 continue; 1040 1041 if (AAResults::onlyAccessesArgPointees(MRB)) 1042 IsArgMemOnlyCall = true; 1043 } 1044 1045 for (Value *Arg : Call->args()) { 1046 // We need to check the underlying objects of all arguments, not just 1047 // the pointer arguments, because we might be passing pointers as 1048 // integers, etc. 1049 // However, if we know that the call only accesses pointer arguments, 1050 // then we only need to check the pointer arguments. 1051 if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy()) 1052 continue; 1053 1054 PtrArgs.push_back(Arg); 1055 } 1056 } 1057 1058 // If we found no pointers, then this instruction is not suitable for 1059 // pairing with an instruction to receive aliasing metadata. 1060 // However, if this is a call, this we might just alias with none of the 1061 // noalias arguments. 1062 if (PtrArgs.empty() && !IsFuncCall) 1063 continue; 1064 1065 // It is possible that there is only one underlying object, but you 1066 // need to go through several PHIs to see it, and thus could be 1067 // repeated in the Objects list. 1068 SmallPtrSet<const Value *, 4> ObjSet; 1069 SmallVector<Metadata *, 4> Scopes, NoAliases; 1070 1071 SmallSetVector<const Argument *, 4> NAPtrArgs; 1072 for (const Value *V : PtrArgs) { 1073 SmallVector<const Value *, 4> Objects; 1074 getUnderlyingObjects(V, Objects, /* LI = */ nullptr); 1075 1076 for (const Value *O : Objects) 1077 ObjSet.insert(O); 1078 } 1079 1080 // Figure out if we're derived from anything that is not a noalias 1081 // argument. 1082 bool CanDeriveViaCapture = false, UsesAliasingPtr = false; 1083 for (const Value *V : ObjSet) { 1084 // Is this value a constant that cannot be derived from any pointer 1085 // value (we need to exclude constant expressions, for example, that 1086 // are formed from arithmetic on global symbols). 1087 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || 1088 isa<ConstantPointerNull>(V) || 1089 isa<ConstantDataVector>(V) || isa<UndefValue>(V); 1090 if (IsNonPtrConst) 1091 continue; 1092 1093 // If this is anything other than a noalias argument, then we cannot 1094 // completely describe the aliasing properties using alias.scope 1095 // metadata (and, thus, won't add any). 1096 if (const Argument *A = dyn_cast<Argument>(V)) { 1097 if (!CB.paramHasAttr(A->getArgNo(), Attribute::NoAlias)) 1098 UsesAliasingPtr = true; 1099 } else { 1100 UsesAliasingPtr = true; 1101 } 1102 1103 // If this is not some identified function-local object (which cannot 1104 // directly alias a noalias argument), or some other argument (which, 1105 // by definition, also cannot alias a noalias argument), then we could 1106 // alias a noalias argument that has been captured). 1107 if (!isa<Argument>(V) && 1108 !isIdentifiedFunctionLocal(const_cast<Value*>(V))) 1109 CanDeriveViaCapture = true; 1110 } 1111 1112 // A function call can always get captured noalias pointers (via other 1113 // parameters, globals, etc.). 1114 if (IsFuncCall && !IsArgMemOnlyCall) 1115 CanDeriveViaCapture = true; 1116 1117 // First, we want to figure out all of the sets with which we definitely 1118 // don't alias. Iterate over all noalias set, and add those for which: 1119 // 1. The noalias argument is not in the set of objects from which we 1120 // definitely derive. 1121 // 2. The noalias argument has not yet been captured. 1122 // An arbitrary function that might load pointers could see captured 1123 // noalias arguments via other noalias arguments or globals, and so we 1124 // must always check for prior capture. 1125 for (const Argument *A : NoAliasArgs) { 1126 if (!ObjSet.count(A) && (!CanDeriveViaCapture || 1127 // It might be tempting to skip the 1128 // PointerMayBeCapturedBefore check if 1129 // A->hasNoCaptureAttr() is true, but this is 1130 // incorrect because nocapture only guarantees 1131 // that no copies outlive the function, not 1132 // that the value cannot be locally captured. 1133 !PointerMayBeCapturedBefore(A, 1134 /* ReturnCaptures */ false, 1135 /* StoreCaptures */ false, I, &DT))) 1136 NoAliases.push_back(NewScopes[A]); 1137 } 1138 1139 if (!NoAliases.empty()) 1140 NI->setMetadata(LLVMContext::MD_noalias, 1141 MDNode::concatenate( 1142 NI->getMetadata(LLVMContext::MD_noalias), 1143 MDNode::get(CalledFunc->getContext(), NoAliases))); 1144 1145 // Next, we want to figure out all of the sets to which we might belong. 1146 // We might belong to a set if the noalias argument is in the set of 1147 // underlying objects. If there is some non-noalias argument in our list 1148 // of underlying objects, then we cannot add a scope because the fact 1149 // that some access does not alias with any set of our noalias arguments 1150 // cannot itself guarantee that it does not alias with this access 1151 // (because there is some pointer of unknown origin involved and the 1152 // other access might also depend on this pointer). We also cannot add 1153 // scopes to arbitrary functions unless we know they don't access any 1154 // non-parameter pointer-values. 1155 bool CanAddScopes = !UsesAliasingPtr; 1156 if (CanAddScopes && IsFuncCall) 1157 CanAddScopes = IsArgMemOnlyCall; 1158 1159 if (CanAddScopes) 1160 for (const Argument *A : NoAliasArgs) { 1161 if (ObjSet.count(A)) 1162 Scopes.push_back(NewScopes[A]); 1163 } 1164 1165 if (!Scopes.empty()) 1166 NI->setMetadata( 1167 LLVMContext::MD_alias_scope, 1168 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), 1169 MDNode::get(CalledFunc->getContext(), Scopes))); 1170 } 1171 } 1172 } 1173 1174 static bool MayContainThrowingOrExitingCall(Instruction *Begin, 1175 Instruction *End) { 1176 1177 assert(Begin->getParent() == End->getParent() && 1178 "Expected to be in same basic block!"); 1179 return !llvm::isGuaranteedToTransferExecutionToSuccessor( 1180 Begin->getIterator(), End->getIterator(), InlinerAttributeWindow + 1); 1181 } 1182 1183 static AttrBuilder IdentifyValidAttributes(CallBase &CB) { 1184 1185 AttrBuilder AB(CB.getContext(), CB.getAttributes().getRetAttrs()); 1186 if (!AB.hasAttributes()) 1187 return AB; 1188 AttrBuilder Valid(CB.getContext()); 1189 // Only allow these white listed attributes to be propagated back to the 1190 // callee. This is because other attributes may only be valid on the call 1191 // itself, i.e. attributes such as signext and zeroext. 1192 if (auto DerefBytes = AB.getDereferenceableBytes()) 1193 Valid.addDereferenceableAttr(DerefBytes); 1194 if (auto DerefOrNullBytes = AB.getDereferenceableOrNullBytes()) 1195 Valid.addDereferenceableOrNullAttr(DerefOrNullBytes); 1196 if (AB.contains(Attribute::NoAlias)) 1197 Valid.addAttribute(Attribute::NoAlias); 1198 if (AB.contains(Attribute::NonNull)) 1199 Valid.addAttribute(Attribute::NonNull); 1200 return Valid; 1201 } 1202 1203 static void AddReturnAttributes(CallBase &CB, ValueToValueMapTy &VMap) { 1204 if (!UpdateReturnAttributes) 1205 return; 1206 1207 AttrBuilder Valid = IdentifyValidAttributes(CB); 1208 if (!Valid.hasAttributes()) 1209 return; 1210 auto *CalledFunction = CB.getCalledFunction(); 1211 auto &Context = CalledFunction->getContext(); 1212 1213 for (auto &BB : *CalledFunction) { 1214 auto *RI = dyn_cast<ReturnInst>(BB.getTerminator()); 1215 if (!RI || !isa<CallBase>(RI->getOperand(0))) 1216 continue; 1217 auto *RetVal = cast<CallBase>(RI->getOperand(0)); 1218 // Check that the cloned RetVal exists and is a call, otherwise we cannot 1219 // add the attributes on the cloned RetVal. Simplification during inlining 1220 // could have transformed the cloned instruction. 1221 auto *NewRetVal = dyn_cast_or_null<CallBase>(VMap.lookup(RetVal)); 1222 if (!NewRetVal) 1223 continue; 1224 // Backward propagation of attributes to the returned value may be incorrect 1225 // if it is control flow dependent. 1226 // Consider: 1227 // @callee { 1228 // %rv = call @foo() 1229 // %rv2 = call @bar() 1230 // if (%rv2 != null) 1231 // return %rv2 1232 // if (%rv == null) 1233 // exit() 1234 // return %rv 1235 // } 1236 // caller() { 1237 // %val = call nonnull @callee() 1238 // } 1239 // Here we cannot add the nonnull attribute on either foo or bar. So, we 1240 // limit the check to both RetVal and RI are in the same basic block and 1241 // there are no throwing/exiting instructions between these instructions. 1242 if (RI->getParent() != RetVal->getParent() || 1243 MayContainThrowingOrExitingCall(RetVal, RI)) 1244 continue; 1245 // Add to the existing attributes of NewRetVal, i.e. the cloned call 1246 // instruction. 1247 // NB! When we have the same attribute already existing on NewRetVal, but 1248 // with a differing value, the AttributeList's merge API honours the already 1249 // existing attribute value (i.e. attributes such as dereferenceable, 1250 // dereferenceable_or_null etc). See AttrBuilder::merge for more details. 1251 AttributeList AL = NewRetVal->getAttributes(); 1252 AttributeList NewAL = AL.addRetAttributes(Context, Valid); 1253 NewRetVal->setAttributes(NewAL); 1254 } 1255 } 1256 1257 /// If the inlined function has non-byval align arguments, then 1258 /// add @llvm.assume-based alignment assumptions to preserve this information. 1259 static void AddAlignmentAssumptions(CallBase &CB, InlineFunctionInfo &IFI) { 1260 if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache) 1261 return; 1262 1263 AssumptionCache *AC = &IFI.GetAssumptionCache(*CB.getCaller()); 1264 auto &DL = CB.getCaller()->getParent()->getDataLayout(); 1265 1266 // To avoid inserting redundant assumptions, we should check for assumptions 1267 // already in the caller. To do this, we might need a DT of the caller. 1268 DominatorTree DT; 1269 bool DTCalculated = false; 1270 1271 Function *CalledFunc = CB.getCalledFunction(); 1272 for (Argument &Arg : CalledFunc->args()) { 1273 unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0; 1274 if (Align && !Arg.hasPassPointeeByValueCopyAttr() && !Arg.hasNUses(0)) { 1275 if (!DTCalculated) { 1276 DT.recalculate(*CB.getCaller()); 1277 DTCalculated = true; 1278 } 1279 1280 // If we can already prove the asserted alignment in the context of the 1281 // caller, then don't bother inserting the assumption. 1282 Value *ArgVal = CB.getArgOperand(Arg.getArgNo()); 1283 if (getKnownAlignment(ArgVal, DL, &CB, AC, &DT) >= Align) 1284 continue; 1285 1286 CallInst *NewAsmp = 1287 IRBuilder<>(&CB).CreateAlignmentAssumption(DL, ArgVal, Align); 1288 AC->registerAssumption(cast<AssumeInst>(NewAsmp)); 1289 } 1290 } 1291 } 1292 1293 /// Once we have cloned code over from a callee into the caller, 1294 /// update the specified callgraph to reflect the changes we made. 1295 /// Note that it's possible that not all code was copied over, so only 1296 /// some edges of the callgraph may remain. 1297 static void UpdateCallGraphAfterInlining(CallBase &CB, 1298 Function::iterator FirstNewBlock, 1299 ValueToValueMapTy &VMap, 1300 InlineFunctionInfo &IFI) { 1301 CallGraph &CG = *IFI.CG; 1302 const Function *Caller = CB.getCaller(); 1303 const Function *Callee = CB.getCalledFunction(); 1304 CallGraphNode *CalleeNode = CG[Callee]; 1305 CallGraphNode *CallerNode = CG[Caller]; 1306 1307 // Since we inlined some uninlined call sites in the callee into the caller, 1308 // add edges from the caller to all of the callees of the callee. 1309 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 1310 1311 // Consider the case where CalleeNode == CallerNode. 1312 CallGraphNode::CalledFunctionsVector CallCache; 1313 if (CalleeNode == CallerNode) { 1314 CallCache.assign(I, E); 1315 I = CallCache.begin(); 1316 E = CallCache.end(); 1317 } 1318 1319 for (; I != E; ++I) { 1320 // Skip 'refererence' call records. 1321 if (!I->first) 1322 continue; 1323 1324 const Value *OrigCall = *I->first; 1325 1326 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 1327 // Only copy the edge if the call was inlined! 1328 if (VMI == VMap.end() || VMI->second == nullptr) 1329 continue; 1330 1331 // If the call was inlined, but then constant folded, there is no edge to 1332 // add. Check for this case. 1333 auto *NewCall = dyn_cast<CallBase>(VMI->second); 1334 if (!NewCall) 1335 continue; 1336 1337 // We do not treat intrinsic calls like real function calls because we 1338 // expect them to become inline code; do not add an edge for an intrinsic. 1339 if (NewCall->getCalledFunction() && 1340 NewCall->getCalledFunction()->isIntrinsic()) 1341 continue; 1342 1343 // Remember that this call site got inlined for the client of 1344 // InlineFunction. 1345 IFI.InlinedCalls.push_back(NewCall); 1346 1347 // It's possible that inlining the callsite will cause it to go from an 1348 // indirect to a direct call by resolving a function pointer. If this 1349 // happens, set the callee of the new call site to a more precise 1350 // destination. This can also happen if the call graph node of the caller 1351 // was just unnecessarily imprecise. 1352 if (!I->second->getFunction()) 1353 if (Function *F = NewCall->getCalledFunction()) { 1354 // Indirect call site resolved to direct call. 1355 CallerNode->addCalledFunction(NewCall, CG[F]); 1356 1357 continue; 1358 } 1359 1360 CallerNode->addCalledFunction(NewCall, I->second); 1361 } 1362 1363 // Update the call graph by deleting the edge from Callee to Caller. We must 1364 // do this after the loop above in case Caller and Callee are the same. 1365 CallerNode->removeCallEdgeFor(*cast<CallBase>(&CB)); 1366 } 1367 1368 static void HandleByValArgumentInit(Type *ByValType, Value *Dst, Value *Src, 1369 Module *M, BasicBlock *InsertBlock, 1370 InlineFunctionInfo &IFI) { 1371 IRBuilder<> Builder(InsertBlock, InsertBlock->begin()); 1372 1373 Value *Size = 1374 Builder.getInt64(M->getDataLayout().getTypeStoreSize(ByValType)); 1375 1376 // Always generate a memcpy of alignment 1 here because we don't know 1377 // the alignment of the src pointer. Other optimizations can infer 1378 // better alignment. 1379 Builder.CreateMemCpy(Dst, /*DstAlign*/ Align(1), Src, 1380 /*SrcAlign*/ Align(1), Size); 1381 } 1382 1383 /// When inlining a call site that has a byval argument, 1384 /// we have to make the implicit memcpy explicit by adding it. 1385 static Value *HandleByValArgument(Type *ByValType, Value *Arg, 1386 Instruction *TheCall, 1387 const Function *CalledFunc, 1388 InlineFunctionInfo &IFI, 1389 unsigned ByValAlignment) { 1390 assert(cast<PointerType>(Arg->getType()) 1391 ->isOpaqueOrPointeeTypeMatches(ByValType)); 1392 Function *Caller = TheCall->getFunction(); 1393 const DataLayout &DL = Caller->getParent()->getDataLayout(); 1394 1395 // If the called function is readonly, then it could not mutate the caller's 1396 // copy of the byval'd memory. In this case, it is safe to elide the copy and 1397 // temporary. 1398 if (CalledFunc->onlyReadsMemory()) { 1399 // If the byval argument has a specified alignment that is greater than the 1400 // passed in pointer, then we either have to round up the input pointer or 1401 // give up on this transformation. 1402 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 1403 return Arg; 1404 1405 AssumptionCache *AC = 1406 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr; 1407 1408 // If the pointer is already known to be sufficiently aligned, or if we can 1409 // round it up to a larger alignment, then we don't need a temporary. 1410 if (getOrEnforceKnownAlignment(Arg, Align(ByValAlignment), DL, TheCall, 1411 AC) >= ByValAlignment) 1412 return Arg; 1413 1414 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 1415 // for code quality, but rarely happens and is required for correctness. 1416 } 1417 1418 // Create the alloca. If we have DataLayout, use nice alignment. 1419 Align Alignment(DL.getPrefTypeAlignment(ByValType)); 1420 1421 // If the byval had an alignment specified, we *must* use at least that 1422 // alignment, as it is required by the byval argument (and uses of the 1423 // pointer inside the callee). 1424 Alignment = max(Alignment, MaybeAlign(ByValAlignment)); 1425 1426 Value *NewAlloca = 1427 new AllocaInst(ByValType, DL.getAllocaAddrSpace(), nullptr, Alignment, 1428 Arg->getName(), &*Caller->begin()->begin()); 1429 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); 1430 1431 // Uses of the argument in the function should use our new alloca 1432 // instead. 1433 return NewAlloca; 1434 } 1435 1436 // Check whether this Value is used by a lifetime intrinsic. 1437 static bool isUsedByLifetimeMarker(Value *V) { 1438 for (User *U : V->users()) 1439 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) 1440 if (II->isLifetimeStartOrEnd()) 1441 return true; 1442 return false; 1443 } 1444 1445 // Check whether the given alloca already has 1446 // lifetime.start or lifetime.end intrinsics. 1447 static bool hasLifetimeMarkers(AllocaInst *AI) { 1448 Type *Ty = AI->getType(); 1449 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), 1450 Ty->getPointerAddressSpace()); 1451 if (Ty == Int8PtrTy) 1452 return isUsedByLifetimeMarker(AI); 1453 1454 // Do a scan to find all the casts to i8*. 1455 for (User *U : AI->users()) { 1456 if (U->getType() != Int8PtrTy) continue; 1457 if (U->stripPointerCasts() != AI) continue; 1458 if (isUsedByLifetimeMarker(U)) 1459 return true; 1460 } 1461 return false; 1462 } 1463 1464 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry 1465 /// block. Allocas used in inalloca calls and allocas of dynamic array size 1466 /// cannot be static. 1467 static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) { 1468 return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca(); 1469 } 1470 1471 /// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL 1472 /// inlined at \p InlinedAt. \p IANodes is an inlined-at cache. 1473 static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt, 1474 LLVMContext &Ctx, 1475 DenseMap<const MDNode *, MDNode *> &IANodes) { 1476 auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes); 1477 return DILocation::get(Ctx, OrigDL.getLine(), OrigDL.getCol(), 1478 OrigDL.getScope(), IA); 1479 } 1480 1481 /// Update inlined instructions' line numbers to 1482 /// to encode location where these instructions are inlined. 1483 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 1484 Instruction *TheCall, bool CalleeHasDebugInfo) { 1485 const DebugLoc &TheCallDL = TheCall->getDebugLoc(); 1486 if (!TheCallDL) 1487 return; 1488 1489 auto &Ctx = Fn->getContext(); 1490 DILocation *InlinedAtNode = TheCallDL; 1491 1492 // Create a unique call site, not to be confused with any other call from the 1493 // same location. 1494 InlinedAtNode = DILocation::getDistinct( 1495 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(), 1496 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt()); 1497 1498 // Cache the inlined-at nodes as they're built so they are reused, without 1499 // this every instruction's inlined-at chain would become distinct from each 1500 // other. 1501 DenseMap<const MDNode *, MDNode *> IANodes; 1502 1503 // Check if we are not generating inline line tables and want to use 1504 // the call site location instead. 1505 bool NoInlineLineTables = Fn->hasFnAttribute("no-inline-line-tables"); 1506 1507 for (; FI != Fn->end(); ++FI) { 1508 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 1509 BI != BE; ++BI) { 1510 // Loop metadata needs to be updated so that the start and end locs 1511 // reference inlined-at locations. 1512 auto updateLoopInfoLoc = [&Ctx, &InlinedAtNode, 1513 &IANodes](Metadata *MD) -> Metadata * { 1514 if (auto *Loc = dyn_cast_or_null<DILocation>(MD)) 1515 return inlineDebugLoc(Loc, InlinedAtNode, Ctx, IANodes).get(); 1516 return MD; 1517 }; 1518 updateLoopMetadataDebugLocations(*BI, updateLoopInfoLoc); 1519 1520 if (!NoInlineLineTables) 1521 if (DebugLoc DL = BI->getDebugLoc()) { 1522 DebugLoc IDL = 1523 inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes); 1524 BI->setDebugLoc(IDL); 1525 continue; 1526 } 1527 1528 if (CalleeHasDebugInfo && !NoInlineLineTables) 1529 continue; 1530 1531 // If the inlined instruction has no line number, or if inline info 1532 // is not being generated, make it look as if it originates from the call 1533 // location. This is important for ((__always_inline, __nodebug__)) 1534 // functions which must use caller location for all instructions in their 1535 // function body. 1536 1537 // Don't update static allocas, as they may get moved later. 1538 if (auto *AI = dyn_cast<AllocaInst>(BI)) 1539 if (allocaWouldBeStaticInEntry(AI)) 1540 continue; 1541 1542 BI->setDebugLoc(TheCallDL); 1543 } 1544 1545 // Remove debug info intrinsics if we're not keeping inline info. 1546 if (NoInlineLineTables) { 1547 BasicBlock::iterator BI = FI->begin(); 1548 while (BI != FI->end()) { 1549 if (isa<DbgInfoIntrinsic>(BI)) { 1550 BI = BI->eraseFromParent(); 1551 continue; 1552 } 1553 ++BI; 1554 } 1555 } 1556 1557 } 1558 } 1559 1560 /// Update the block frequencies of the caller after a callee has been inlined. 1561 /// 1562 /// Each block cloned into the caller has its block frequency scaled by the 1563 /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of 1564 /// callee's entry block gets the same frequency as the callsite block and the 1565 /// relative frequencies of all cloned blocks remain the same after cloning. 1566 static void updateCallerBFI(BasicBlock *CallSiteBlock, 1567 const ValueToValueMapTy &VMap, 1568 BlockFrequencyInfo *CallerBFI, 1569 BlockFrequencyInfo *CalleeBFI, 1570 const BasicBlock &CalleeEntryBlock) { 1571 SmallPtrSet<BasicBlock *, 16> ClonedBBs; 1572 for (auto Entry : VMap) { 1573 if (!isa<BasicBlock>(Entry.first) || !Entry.second) 1574 continue; 1575 auto *OrigBB = cast<BasicBlock>(Entry.first); 1576 auto *ClonedBB = cast<BasicBlock>(Entry.second); 1577 uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency(); 1578 if (!ClonedBBs.insert(ClonedBB).second) { 1579 // Multiple blocks in the callee might get mapped to one cloned block in 1580 // the caller since we prune the callee as we clone it. When that happens, 1581 // we want to use the maximum among the original blocks' frequencies. 1582 uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency(); 1583 if (NewFreq > Freq) 1584 Freq = NewFreq; 1585 } 1586 CallerBFI->setBlockFreq(ClonedBB, Freq); 1587 } 1588 BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock)); 1589 CallerBFI->setBlockFreqAndScale( 1590 EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(), 1591 ClonedBBs); 1592 } 1593 1594 /// Update the branch metadata for cloned call instructions. 1595 static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap, 1596 const ProfileCount &CalleeEntryCount, 1597 const CallBase &TheCall, ProfileSummaryInfo *PSI, 1598 BlockFrequencyInfo *CallerBFI) { 1599 if (CalleeEntryCount.isSynthetic() || CalleeEntryCount.getCount() < 1) 1600 return; 1601 auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None; 1602 int64_t CallCount = 1603 std::min(CallSiteCount.getValueOr(0), CalleeEntryCount.getCount()); 1604 updateProfileCallee(Callee, -CallCount, &VMap); 1605 } 1606 1607 void llvm::updateProfileCallee( 1608 Function *Callee, int64_t EntryDelta, 1609 const ValueMap<const Value *, WeakTrackingVH> *VMap) { 1610 auto CalleeCount = Callee->getEntryCount(); 1611 if (!CalleeCount.hasValue()) 1612 return; 1613 1614 const uint64_t PriorEntryCount = CalleeCount->getCount(); 1615 1616 // Since CallSiteCount is an estimate, it could exceed the original callee 1617 // count and has to be set to 0 so guard against underflow. 1618 const uint64_t NewEntryCount = 1619 (EntryDelta < 0 && static_cast<uint64_t>(-EntryDelta) > PriorEntryCount) 1620 ? 0 1621 : PriorEntryCount + EntryDelta; 1622 1623 // During inlining ? 1624 if (VMap) { 1625 uint64_t CloneEntryCount = PriorEntryCount - NewEntryCount; 1626 for (auto Entry : *VMap) 1627 if (isa<CallInst>(Entry.first)) 1628 if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second)) 1629 CI->updateProfWeight(CloneEntryCount, PriorEntryCount); 1630 } 1631 1632 if (EntryDelta) { 1633 Callee->setEntryCount(NewEntryCount); 1634 1635 for (BasicBlock &BB : *Callee) 1636 // No need to update the callsite if it is pruned during inlining. 1637 if (!VMap || VMap->count(&BB)) 1638 for (Instruction &I : BB) 1639 if (CallInst *CI = dyn_cast<CallInst>(&I)) 1640 CI->updateProfWeight(NewEntryCount, PriorEntryCount); 1641 } 1642 } 1643 1644 /// An operand bundle "clang.arc.attachedcall" on a call indicates the call 1645 /// result is implicitly consumed by a call to retainRV or claimRV immediately 1646 /// after the call. This function inlines the retainRV/claimRV calls. 1647 /// 1648 /// There are three cases to consider: 1649 /// 1650 /// 1. If there is a call to autoreleaseRV that takes a pointer to the returned 1651 /// object in the callee return block, the autoreleaseRV call and the 1652 /// retainRV/claimRV call in the caller cancel out. If the call in the caller 1653 /// is a claimRV call, a call to objc_release is emitted. 1654 /// 1655 /// 2. If there is a call in the callee return block that doesn't have operand 1656 /// bundle "clang.arc.attachedcall", the operand bundle on the original call 1657 /// is transferred to the call in the callee. 1658 /// 1659 /// 3. Otherwise, a call to objc_retain is inserted if the call in the caller is 1660 /// a retainRV call. 1661 static void 1662 inlineRetainOrClaimRVCalls(CallBase &CB, objcarc::ARCInstKind RVCallKind, 1663 const SmallVectorImpl<ReturnInst *> &Returns) { 1664 Module *Mod = CB.getModule(); 1665 assert(objcarc::isRetainOrClaimRV(RVCallKind) && "unexpected ARC function"); 1666 bool IsRetainRV = RVCallKind == objcarc::ARCInstKind::RetainRV, 1667 IsUnsafeClaimRV = !IsRetainRV; 1668 1669 for (auto *RI : Returns) { 1670 Value *RetOpnd = objcarc::GetRCIdentityRoot(RI->getOperand(0)); 1671 bool InsertRetainCall = IsRetainRV; 1672 IRBuilder<> Builder(RI->getContext()); 1673 1674 // Walk backwards through the basic block looking for either a matching 1675 // autoreleaseRV call or an unannotated call. 1676 auto InstRange = llvm::make_range(++(RI->getIterator().getReverse()), 1677 RI->getParent()->rend()); 1678 for (Instruction &I : llvm::make_early_inc_range(InstRange)) { 1679 // Ignore casts. 1680 if (isa<CastInst>(I)) 1681 continue; 1682 1683 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 1684 if (II->getIntrinsicID() != Intrinsic::objc_autoreleaseReturnValue || 1685 !II->hasNUses(0) || 1686 objcarc::GetRCIdentityRoot(II->getOperand(0)) != RetOpnd) 1687 break; 1688 1689 // If we've found a matching authoreleaseRV call: 1690 // - If claimRV is attached to the call, insert a call to objc_release 1691 // and erase the autoreleaseRV call. 1692 // - If retainRV is attached to the call, just erase the autoreleaseRV 1693 // call. 1694 if (IsUnsafeClaimRV) { 1695 Builder.SetInsertPoint(II); 1696 Function *IFn = 1697 Intrinsic::getDeclaration(Mod, Intrinsic::objc_release); 1698 Value *BC = Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType()); 1699 Builder.CreateCall(IFn, BC, ""); 1700 } 1701 II->eraseFromParent(); 1702 InsertRetainCall = false; 1703 break; 1704 } 1705 1706 auto *CI = dyn_cast<CallInst>(&I); 1707 1708 if (!CI) 1709 break; 1710 1711 if (objcarc::GetRCIdentityRoot(CI) != RetOpnd || 1712 objcarc::hasAttachedCallOpBundle(CI)) 1713 break; 1714 1715 // If we've found an unannotated call that defines RetOpnd, add a 1716 // "clang.arc.attachedcall" operand bundle. 1717 Value *BundleArgs[] = {*objcarc::getAttachedARCFunction(&CB)}; 1718 OperandBundleDef OB("clang.arc.attachedcall", BundleArgs); 1719 auto *NewCall = CallBase::addOperandBundle( 1720 CI, LLVMContext::OB_clang_arc_attachedcall, OB, CI); 1721 NewCall->copyMetadata(*CI); 1722 CI->replaceAllUsesWith(NewCall); 1723 CI->eraseFromParent(); 1724 InsertRetainCall = false; 1725 break; 1726 } 1727 1728 if (InsertRetainCall) { 1729 // The retainRV is attached to the call and we've failed to find a 1730 // matching autoreleaseRV or an annotated call in the callee. Emit a call 1731 // to objc_retain. 1732 Builder.SetInsertPoint(RI); 1733 Function *IFn = Intrinsic::getDeclaration(Mod, Intrinsic::objc_retain); 1734 Value *BC = Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType()); 1735 Builder.CreateCall(IFn, BC, ""); 1736 } 1737 } 1738 } 1739 1740 /// This function inlines the called function into the basic block of the 1741 /// caller. This returns false if it is not possible to inline this call. 1742 /// The program is still in a well defined state if this occurs though. 1743 /// 1744 /// Note that this only does one level of inlining. For example, if the 1745 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 1746 /// exists in the instruction stream. Similarly this will inline a recursive 1747 /// function by one level. 1748 llvm::InlineResult llvm::InlineFunction(CallBase &CB, InlineFunctionInfo &IFI, 1749 AAResults *CalleeAAR, 1750 bool InsertLifetime, 1751 Function *ForwardVarArgsTo) { 1752 assert(CB.getParent() && CB.getFunction() && "Instruction not in function!"); 1753 1754 // FIXME: we don't inline callbr yet. 1755 if (isa<CallBrInst>(CB)) 1756 return InlineResult::failure("We don't inline callbr yet."); 1757 1758 // If IFI has any state in it, zap it before we fill it in. 1759 IFI.reset(); 1760 1761 Function *CalledFunc = CB.getCalledFunction(); 1762 if (!CalledFunc || // Can't inline external function or indirect 1763 CalledFunc->isDeclaration()) // call! 1764 return InlineResult::failure("external or indirect"); 1765 1766 // The inliner does not know how to inline through calls with operand bundles 1767 // in general ... 1768 if (CB.hasOperandBundles()) { 1769 for (int i = 0, e = CB.getNumOperandBundles(); i != e; ++i) { 1770 uint32_t Tag = CB.getOperandBundleAt(i).getTagID(); 1771 // ... but it knows how to inline through "deopt" operand bundles ... 1772 if (Tag == LLVMContext::OB_deopt) 1773 continue; 1774 // ... and "funclet" operand bundles. 1775 if (Tag == LLVMContext::OB_funclet) 1776 continue; 1777 if (Tag == LLVMContext::OB_clang_arc_attachedcall) 1778 continue; 1779 1780 return InlineResult::failure("unsupported operand bundle"); 1781 } 1782 } 1783 1784 // If the call to the callee cannot throw, set the 'nounwind' flag on any 1785 // calls that we inline. 1786 bool MarkNoUnwind = CB.doesNotThrow(); 1787 1788 BasicBlock *OrigBB = CB.getParent(); 1789 Function *Caller = OrigBB->getParent(); 1790 1791 // GC poses two hazards to inlining, which only occur when the callee has GC: 1792 // 1. If the caller has no GC, then the callee's GC must be propagated to the 1793 // caller. 1794 // 2. If the caller has a differing GC, it is invalid to inline. 1795 if (CalledFunc->hasGC()) { 1796 if (!Caller->hasGC()) 1797 Caller->setGC(CalledFunc->getGC()); 1798 else if (CalledFunc->getGC() != Caller->getGC()) 1799 return InlineResult::failure("incompatible GC"); 1800 } 1801 1802 // Get the personality function from the callee if it contains a landing pad. 1803 Constant *CalledPersonality = 1804 CalledFunc->hasPersonalityFn() 1805 ? CalledFunc->getPersonalityFn()->stripPointerCasts() 1806 : nullptr; 1807 1808 // Find the personality function used by the landing pads of the caller. If it 1809 // exists, then check to see that it matches the personality function used in 1810 // the callee. 1811 Constant *CallerPersonality = 1812 Caller->hasPersonalityFn() 1813 ? Caller->getPersonalityFn()->stripPointerCasts() 1814 : nullptr; 1815 if (CalledPersonality) { 1816 if (!CallerPersonality) 1817 Caller->setPersonalityFn(CalledPersonality); 1818 // If the personality functions match, then we can perform the 1819 // inlining. Otherwise, we can't inline. 1820 // TODO: This isn't 100% true. Some personality functions are proper 1821 // supersets of others and can be used in place of the other. 1822 else if (CalledPersonality != CallerPersonality) 1823 return InlineResult::failure("incompatible personality"); 1824 } 1825 1826 // We need to figure out which funclet the callsite was in so that we may 1827 // properly nest the callee. 1828 Instruction *CallSiteEHPad = nullptr; 1829 if (CallerPersonality) { 1830 EHPersonality Personality = classifyEHPersonality(CallerPersonality); 1831 if (isScopedEHPersonality(Personality)) { 1832 Optional<OperandBundleUse> ParentFunclet = 1833 CB.getOperandBundle(LLVMContext::OB_funclet); 1834 if (ParentFunclet) 1835 CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front()); 1836 1837 // OK, the inlining site is legal. What about the target function? 1838 1839 if (CallSiteEHPad) { 1840 if (Personality == EHPersonality::MSVC_CXX) { 1841 // The MSVC personality cannot tolerate catches getting inlined into 1842 // cleanup funclets. 1843 if (isa<CleanupPadInst>(CallSiteEHPad)) { 1844 // Ok, the call site is within a cleanuppad. Let's check the callee 1845 // for catchpads. 1846 for (const BasicBlock &CalledBB : *CalledFunc) { 1847 if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI())) 1848 return InlineResult::failure("catch in cleanup funclet"); 1849 } 1850 } 1851 } else if (isAsynchronousEHPersonality(Personality)) { 1852 // SEH is even less tolerant, there may not be any sort of exceptional 1853 // funclet in the callee. 1854 for (const BasicBlock &CalledBB : *CalledFunc) { 1855 if (CalledBB.isEHPad()) 1856 return InlineResult::failure("SEH in cleanup funclet"); 1857 } 1858 } 1859 } 1860 } 1861 } 1862 1863 // Determine if we are dealing with a call in an EHPad which does not unwind 1864 // to caller. 1865 bool EHPadForCallUnwindsLocally = false; 1866 if (CallSiteEHPad && isa<CallInst>(CB)) { 1867 UnwindDestMemoTy FuncletUnwindMap; 1868 Value *CallSiteUnwindDestToken = 1869 getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap); 1870 1871 EHPadForCallUnwindsLocally = 1872 CallSiteUnwindDestToken && 1873 !isa<ConstantTokenNone>(CallSiteUnwindDestToken); 1874 } 1875 1876 // Get an iterator to the last basic block in the function, which will have 1877 // the new function inlined after it. 1878 Function::iterator LastBlock = --Caller->end(); 1879 1880 // Make sure to capture all of the return instructions from the cloned 1881 // function. 1882 SmallVector<ReturnInst*, 8> Returns; 1883 ClonedCodeInfo InlinedFunctionInfo; 1884 Function::iterator FirstNewBlock; 1885 1886 { // Scope to destroy VMap after cloning. 1887 ValueToValueMapTy VMap; 1888 struct ByValInit { 1889 Value *Dst; 1890 Value *Src; 1891 Type *Ty; 1892 }; 1893 // Keep a list of pair (dst, src) to emit byval initializations. 1894 SmallVector<ByValInit, 4> ByValInits; 1895 1896 // When inlining a function that contains noalias scope metadata, 1897 // this metadata needs to be cloned so that the inlined blocks 1898 // have different "unique scopes" at every call site. 1899 // Track the metadata that must be cloned. Do this before other changes to 1900 // the function, so that we do not get in trouble when inlining caller == 1901 // callee. 1902 ScopedAliasMetadataDeepCloner SAMetadataCloner(CB.getCalledFunction()); 1903 1904 auto &DL = Caller->getParent()->getDataLayout(); 1905 1906 // Calculate the vector of arguments to pass into the function cloner, which 1907 // matches up the formal to the actual argument values. 1908 auto AI = CB.arg_begin(); 1909 unsigned ArgNo = 0; 1910 for (Function::arg_iterator I = CalledFunc->arg_begin(), 1911 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 1912 Value *ActualArg = *AI; 1913 1914 // When byval arguments actually inlined, we need to make the copy implied 1915 // by them explicit. However, we don't do this if the callee is readonly 1916 // or readnone, because the copy would be unneeded: the callee doesn't 1917 // modify the struct. 1918 if (CB.isByValArgument(ArgNo)) { 1919 ActualArg = HandleByValArgument(CB.getParamByValType(ArgNo), ActualArg, 1920 &CB, CalledFunc, IFI, 1921 CalledFunc->getParamAlignment(ArgNo)); 1922 if (ActualArg != *AI) 1923 ByValInits.push_back( 1924 {ActualArg, (Value *)*AI, CB.getParamByValType(ArgNo)}); 1925 } 1926 1927 VMap[&*I] = ActualArg; 1928 } 1929 1930 // TODO: Remove this when users have been updated to the assume bundles. 1931 // Add alignment assumptions if necessary. We do this before the inlined 1932 // instructions are actually cloned into the caller so that we can easily 1933 // check what will be known at the start of the inlined code. 1934 AddAlignmentAssumptions(CB, IFI); 1935 1936 AssumptionCache *AC = 1937 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr; 1938 1939 /// Preserve all attributes on of the call and its parameters. 1940 salvageKnowledge(&CB, AC); 1941 1942 // We want the inliner to prune the code as it copies. We would LOVE to 1943 // have no dead or constant instructions leftover after inlining occurs 1944 // (which can happen, e.g., because an argument was constant), but we'll be 1945 // happy with whatever the cloner can do. 1946 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 1947 /*ModuleLevelChanges=*/false, Returns, ".i", 1948 &InlinedFunctionInfo); 1949 // Remember the first block that is newly cloned over. 1950 FirstNewBlock = LastBlock; ++FirstNewBlock; 1951 1952 // Insert retainRV/clainRV runtime calls. 1953 objcarc::ARCInstKind RVCallKind = objcarc::getAttachedARCFunctionKind(&CB); 1954 if (RVCallKind != objcarc::ARCInstKind::None) 1955 inlineRetainOrClaimRVCalls(CB, RVCallKind, Returns); 1956 1957 // Updated caller/callee profiles only when requested. For sample loader 1958 // inlining, the context-sensitive inlinee profile doesn't need to be 1959 // subtracted from callee profile, and the inlined clone also doesn't need 1960 // to be scaled based on call site count. 1961 if (IFI.UpdateProfile) { 1962 if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr) 1963 // Update the BFI of blocks cloned into the caller. 1964 updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI, 1965 CalledFunc->front()); 1966 1967 if (auto Profile = CalledFunc->getEntryCount()) 1968 updateCallProfile(CalledFunc, VMap, *Profile, CB, IFI.PSI, 1969 IFI.CallerBFI); 1970 } 1971 1972 // Inject byval arguments initialization. 1973 for (ByValInit &Init : ByValInits) 1974 HandleByValArgumentInit(Init.Ty, Init.Dst, Init.Src, Caller->getParent(), 1975 &*FirstNewBlock, IFI); 1976 1977 Optional<OperandBundleUse> ParentDeopt = 1978 CB.getOperandBundle(LLVMContext::OB_deopt); 1979 if (ParentDeopt) { 1980 SmallVector<OperandBundleDef, 2> OpDefs; 1981 1982 for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) { 1983 CallBase *ICS = dyn_cast_or_null<CallBase>(VH); 1984 if (!ICS) 1985 continue; // instruction was DCE'd or RAUW'ed to undef 1986 1987 OpDefs.clear(); 1988 1989 OpDefs.reserve(ICS->getNumOperandBundles()); 1990 1991 for (unsigned COBi = 0, COBe = ICS->getNumOperandBundles(); COBi < COBe; 1992 ++COBi) { 1993 auto ChildOB = ICS->getOperandBundleAt(COBi); 1994 if (ChildOB.getTagID() != LLVMContext::OB_deopt) { 1995 // If the inlined call has other operand bundles, let them be 1996 OpDefs.emplace_back(ChildOB); 1997 continue; 1998 } 1999 2000 // It may be useful to separate this logic (of handling operand 2001 // bundles) out to a separate "policy" component if this gets crowded. 2002 // Prepend the parent's deoptimization continuation to the newly 2003 // inlined call's deoptimization continuation. 2004 std::vector<Value *> MergedDeoptArgs; 2005 MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() + 2006 ChildOB.Inputs.size()); 2007 2008 llvm::append_range(MergedDeoptArgs, ParentDeopt->Inputs); 2009 llvm::append_range(MergedDeoptArgs, ChildOB.Inputs); 2010 2011 OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs)); 2012 } 2013 2014 Instruction *NewI = CallBase::Create(ICS, OpDefs, ICS); 2015 2016 // Note: the RAUW does the appropriate fixup in VMap, so we need to do 2017 // this even if the call returns void. 2018 ICS->replaceAllUsesWith(NewI); 2019 2020 VH = nullptr; 2021 ICS->eraseFromParent(); 2022 } 2023 } 2024 2025 // Update the callgraph if requested. 2026 if (IFI.CG) 2027 UpdateCallGraphAfterInlining(CB, FirstNewBlock, VMap, IFI); 2028 2029 // For 'nodebug' functions, the associated DISubprogram is always null. 2030 // Conservatively avoid propagating the callsite debug location to 2031 // instructions inlined from a function whose DISubprogram is not null. 2032 fixupLineNumbers(Caller, FirstNewBlock, &CB, 2033 CalledFunc->getSubprogram() != nullptr); 2034 2035 // Now clone the inlined noalias scope metadata. 2036 SAMetadataCloner.clone(); 2037 SAMetadataCloner.remap(FirstNewBlock, Caller->end()); 2038 2039 // Add noalias metadata if necessary. 2040 AddAliasScopeMetadata(CB, VMap, DL, CalleeAAR, InlinedFunctionInfo); 2041 2042 // Clone return attributes on the callsite into the calls within the inlined 2043 // function which feed into its return value. 2044 AddReturnAttributes(CB, VMap); 2045 2046 // Propagate metadata on the callsite if necessary. 2047 PropagateCallSiteMetadata(CB, FirstNewBlock, Caller->end()); 2048 2049 // Register any cloned assumptions. 2050 if (IFI.GetAssumptionCache) 2051 for (BasicBlock &NewBlock : 2052 make_range(FirstNewBlock->getIterator(), Caller->end())) 2053 for (Instruction &I : NewBlock) 2054 if (auto *II = dyn_cast<AssumeInst>(&I)) 2055 IFI.GetAssumptionCache(*Caller).registerAssumption(II); 2056 } 2057 2058 // If there are any alloca instructions in the block that used to be the entry 2059 // block for the callee, move them to the entry block of the caller. First 2060 // calculate which instruction they should be inserted before. We insert the 2061 // instructions at the end of the current alloca list. 2062 { 2063 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 2064 for (BasicBlock::iterator I = FirstNewBlock->begin(), 2065 E = FirstNewBlock->end(); I != E; ) { 2066 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 2067 if (!AI) continue; 2068 2069 // If the alloca is now dead, remove it. This often occurs due to code 2070 // specialization. 2071 if (AI->use_empty()) { 2072 AI->eraseFromParent(); 2073 continue; 2074 } 2075 2076 if (!allocaWouldBeStaticInEntry(AI)) 2077 continue; 2078 2079 // Keep track of the static allocas that we inline into the caller. 2080 IFI.StaticAllocas.push_back(AI); 2081 2082 // Scan for the block of allocas that we can move over, and move them 2083 // all at once. 2084 while (isa<AllocaInst>(I) && 2085 !cast<AllocaInst>(I)->use_empty() && 2086 allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) { 2087 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 2088 ++I; 2089 } 2090 2091 // Transfer all of the allocas over in a block. Using splice means 2092 // that the instructions aren't removed from the symbol table, then 2093 // reinserted. 2094 Caller->getEntryBlock().getInstList().splice( 2095 InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I); 2096 } 2097 } 2098 2099 SmallVector<Value*,4> VarArgsToForward; 2100 SmallVector<AttributeSet, 4> VarArgsAttrs; 2101 for (unsigned i = CalledFunc->getFunctionType()->getNumParams(); 2102 i < CB.arg_size(); i++) { 2103 VarArgsToForward.push_back(CB.getArgOperand(i)); 2104 VarArgsAttrs.push_back(CB.getAttributes().getParamAttrs(i)); 2105 } 2106 2107 bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false; 2108 if (InlinedFunctionInfo.ContainsCalls) { 2109 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; 2110 if (CallInst *CI = dyn_cast<CallInst>(&CB)) 2111 CallSiteTailKind = CI->getTailCallKind(); 2112 2113 // For inlining purposes, the "notail" marker is the same as no marker. 2114 if (CallSiteTailKind == CallInst::TCK_NoTail) 2115 CallSiteTailKind = CallInst::TCK_None; 2116 2117 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 2118 ++BB) { 2119 for (Instruction &I : llvm::make_early_inc_range(*BB)) { 2120 CallInst *CI = dyn_cast<CallInst>(&I); 2121 if (!CI) 2122 continue; 2123 2124 // Forward varargs from inlined call site to calls to the 2125 // ForwardVarArgsTo function, if requested, and to musttail calls. 2126 if (!VarArgsToForward.empty() && 2127 ((ForwardVarArgsTo && 2128 CI->getCalledFunction() == ForwardVarArgsTo) || 2129 CI->isMustTailCall())) { 2130 // Collect attributes for non-vararg parameters. 2131 AttributeList Attrs = CI->getAttributes(); 2132 SmallVector<AttributeSet, 8> ArgAttrs; 2133 if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) { 2134 for (unsigned ArgNo = 0; 2135 ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo) 2136 ArgAttrs.push_back(Attrs.getParamAttrs(ArgNo)); 2137 } 2138 2139 // Add VarArg attributes. 2140 ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end()); 2141 Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttrs(), 2142 Attrs.getRetAttrs(), ArgAttrs); 2143 // Add VarArgs to existing parameters. 2144 SmallVector<Value *, 6> Params(CI->args()); 2145 Params.append(VarArgsToForward.begin(), VarArgsToForward.end()); 2146 CallInst *NewCI = CallInst::Create( 2147 CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI); 2148 NewCI->setDebugLoc(CI->getDebugLoc()); 2149 NewCI->setAttributes(Attrs); 2150 NewCI->setCallingConv(CI->getCallingConv()); 2151 CI->replaceAllUsesWith(NewCI); 2152 CI->eraseFromParent(); 2153 CI = NewCI; 2154 } 2155 2156 if (Function *F = CI->getCalledFunction()) 2157 InlinedDeoptimizeCalls |= 2158 F->getIntrinsicID() == Intrinsic::experimental_deoptimize; 2159 2160 // We need to reduce the strength of any inlined tail calls. For 2161 // musttail, we have to avoid introducing potential unbounded stack 2162 // growth. For example, if functions 'f' and 'g' are mutually recursive 2163 // with musttail, we can inline 'g' into 'f' so long as we preserve 2164 // musttail on the cloned call to 'f'. If either the inlined call site 2165 // or the cloned call site is *not* musttail, the program already has 2166 // one frame of stack growth, so it's safe to remove musttail. Here is 2167 // a table of example transformations: 2168 // 2169 // f -> musttail g -> musttail f ==> f -> musttail f 2170 // f -> musttail g -> tail f ==> f -> tail f 2171 // f -> g -> musttail f ==> f -> f 2172 // f -> g -> tail f ==> f -> f 2173 // 2174 // Inlined notail calls should remain notail calls. 2175 CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); 2176 if (ChildTCK != CallInst::TCK_NoTail) 2177 ChildTCK = std::min(CallSiteTailKind, ChildTCK); 2178 CI->setTailCallKind(ChildTCK); 2179 InlinedMustTailCalls |= CI->isMustTailCall(); 2180 2181 // Calls inlined through a 'nounwind' call site should be marked 2182 // 'nounwind'. 2183 if (MarkNoUnwind) 2184 CI->setDoesNotThrow(); 2185 } 2186 } 2187 } 2188 2189 // Leave lifetime markers for the static alloca's, scoping them to the 2190 // function we just inlined. 2191 // We need to insert lifetime intrinsics even at O0 to avoid invalid 2192 // access caused by multithreaded coroutines. The check 2193 // `Caller->isPresplitCoroutine()` would affect AlwaysInliner at O0 only. 2194 if ((InsertLifetime || Caller->isPresplitCoroutine()) && 2195 !IFI.StaticAllocas.empty()) { 2196 IRBuilder<> builder(&FirstNewBlock->front()); 2197 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 2198 AllocaInst *AI = IFI.StaticAllocas[ai]; 2199 // Don't mark swifterror allocas. They can't have bitcast uses. 2200 if (AI->isSwiftError()) 2201 continue; 2202 2203 // If the alloca is already scoped to something smaller than the whole 2204 // function then there's no need to add redundant, less accurate markers. 2205 if (hasLifetimeMarkers(AI)) 2206 continue; 2207 2208 // Try to determine the size of the allocation. 2209 ConstantInt *AllocaSize = nullptr; 2210 if (ConstantInt *AIArraySize = 2211 dyn_cast<ConstantInt>(AI->getArraySize())) { 2212 auto &DL = Caller->getParent()->getDataLayout(); 2213 Type *AllocaType = AI->getAllocatedType(); 2214 TypeSize AllocaTypeSize = DL.getTypeAllocSize(AllocaType); 2215 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 2216 2217 // Don't add markers for zero-sized allocas. 2218 if (AllocaArraySize == 0) 2219 continue; 2220 2221 // Check that array size doesn't saturate uint64_t and doesn't 2222 // overflow when it's multiplied by type size. 2223 if (!AllocaTypeSize.isScalable() && 2224 AllocaArraySize != std::numeric_limits<uint64_t>::max() && 2225 std::numeric_limits<uint64_t>::max() / AllocaArraySize >= 2226 AllocaTypeSize.getFixedSize()) { 2227 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 2228 AllocaArraySize * AllocaTypeSize); 2229 } 2230 } 2231 2232 builder.CreateLifetimeStart(AI, AllocaSize); 2233 for (ReturnInst *RI : Returns) { 2234 // Don't insert llvm.lifetime.end calls between a musttail or deoptimize 2235 // call and a return. The return kills all local allocas. 2236 if (InlinedMustTailCalls && 2237 RI->getParent()->getTerminatingMustTailCall()) 2238 continue; 2239 if (InlinedDeoptimizeCalls && 2240 RI->getParent()->getTerminatingDeoptimizeCall()) 2241 continue; 2242 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); 2243 } 2244 } 2245 } 2246 2247 // If the inlined code contained dynamic alloca instructions, wrap the inlined 2248 // code with llvm.stacksave/llvm.stackrestore intrinsics. 2249 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 2250 Module *M = Caller->getParent(); 2251 // Get the two intrinsics we care about. 2252 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 2253 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 2254 2255 // Insert the llvm.stacksave. 2256 CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin()) 2257 .CreateCall(StackSave, {}, "savedstack"); 2258 2259 // Insert a call to llvm.stackrestore before any return instructions in the 2260 // inlined function. 2261 for (ReturnInst *RI : Returns) { 2262 // Don't insert llvm.stackrestore calls between a musttail or deoptimize 2263 // call and a return. The return will restore the stack pointer. 2264 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) 2265 continue; 2266 if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall()) 2267 continue; 2268 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); 2269 } 2270 } 2271 2272 // If we are inlining for an invoke instruction, we must make sure to rewrite 2273 // any call instructions into invoke instructions. This is sensitive to which 2274 // funclet pads were top-level in the inlinee, so must be done before 2275 // rewriting the "parent pad" links. 2276 if (auto *II = dyn_cast<InvokeInst>(&CB)) { 2277 BasicBlock *UnwindDest = II->getUnwindDest(); 2278 Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI(); 2279 if (isa<LandingPadInst>(FirstNonPHI)) { 2280 HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo); 2281 } else { 2282 HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo); 2283 } 2284 } 2285 2286 // Update the lexical scopes of the new funclets and callsites. 2287 // Anything that had 'none' as its parent is now nested inside the callsite's 2288 // EHPad. 2289 2290 if (CallSiteEHPad) { 2291 for (Function::iterator BB = FirstNewBlock->getIterator(), 2292 E = Caller->end(); 2293 BB != E; ++BB) { 2294 // Add bundle operands to any top-level call sites. 2295 SmallVector<OperandBundleDef, 1> OpBundles; 2296 for (Instruction &II : llvm::make_early_inc_range(*BB)) { 2297 CallBase *I = dyn_cast<CallBase>(&II); 2298 if (!I) 2299 continue; 2300 2301 // Skip call sites which are nounwind intrinsics. 2302 auto *CalledFn = 2303 dyn_cast<Function>(I->getCalledOperand()->stripPointerCasts()); 2304 if (CalledFn && CalledFn->isIntrinsic() && I->doesNotThrow()) 2305 continue; 2306 2307 // Skip call sites which already have a "funclet" bundle. 2308 if (I->getOperandBundle(LLVMContext::OB_funclet)) 2309 continue; 2310 2311 I->getOperandBundlesAsDefs(OpBundles); 2312 OpBundles.emplace_back("funclet", CallSiteEHPad); 2313 2314 Instruction *NewInst = CallBase::Create(I, OpBundles, I); 2315 NewInst->takeName(I); 2316 I->replaceAllUsesWith(NewInst); 2317 I->eraseFromParent(); 2318 2319 OpBundles.clear(); 2320 } 2321 2322 // It is problematic if the inlinee has a cleanupret which unwinds to 2323 // caller and we inline it into a call site which doesn't unwind but into 2324 // an EH pad that does. Such an edge must be dynamically unreachable. 2325 // As such, we replace the cleanupret with unreachable. 2326 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator())) 2327 if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally) 2328 changeToUnreachable(CleanupRet); 2329 2330 Instruction *I = BB->getFirstNonPHI(); 2331 if (!I->isEHPad()) 2332 continue; 2333 2334 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 2335 if (isa<ConstantTokenNone>(CatchSwitch->getParentPad())) 2336 CatchSwitch->setParentPad(CallSiteEHPad); 2337 } else { 2338 auto *FPI = cast<FuncletPadInst>(I); 2339 if (isa<ConstantTokenNone>(FPI->getParentPad())) 2340 FPI->setParentPad(CallSiteEHPad); 2341 } 2342 } 2343 } 2344 2345 if (InlinedDeoptimizeCalls) { 2346 // We need to at least remove the deoptimizing returns from the Return set, 2347 // so that the control flow from those returns does not get merged into the 2348 // caller (but terminate it instead). If the caller's return type does not 2349 // match the callee's return type, we also need to change the return type of 2350 // the intrinsic. 2351 if (Caller->getReturnType() == CB.getType()) { 2352 llvm::erase_if(Returns, [](ReturnInst *RI) { 2353 return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr; 2354 }); 2355 } else { 2356 SmallVector<ReturnInst *, 8> NormalReturns; 2357 Function *NewDeoptIntrinsic = Intrinsic::getDeclaration( 2358 Caller->getParent(), Intrinsic::experimental_deoptimize, 2359 {Caller->getReturnType()}); 2360 2361 for (ReturnInst *RI : Returns) { 2362 CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall(); 2363 if (!DeoptCall) { 2364 NormalReturns.push_back(RI); 2365 continue; 2366 } 2367 2368 // The calling convention on the deoptimize call itself may be bogus, 2369 // since the code we're inlining may have undefined behavior (and may 2370 // never actually execute at runtime); but all 2371 // @llvm.experimental.deoptimize declarations have to have the same 2372 // calling convention in a well-formed module. 2373 auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv(); 2374 NewDeoptIntrinsic->setCallingConv(CallingConv); 2375 auto *CurBB = RI->getParent(); 2376 RI->eraseFromParent(); 2377 2378 SmallVector<Value *, 4> CallArgs(DeoptCall->args()); 2379 2380 SmallVector<OperandBundleDef, 1> OpBundles; 2381 DeoptCall->getOperandBundlesAsDefs(OpBundles); 2382 auto DeoptAttributes = DeoptCall->getAttributes(); 2383 DeoptCall->eraseFromParent(); 2384 assert(!OpBundles.empty() && 2385 "Expected at least the deopt operand bundle"); 2386 2387 IRBuilder<> Builder(CurBB); 2388 CallInst *NewDeoptCall = 2389 Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles); 2390 NewDeoptCall->setCallingConv(CallingConv); 2391 NewDeoptCall->setAttributes(DeoptAttributes); 2392 if (NewDeoptCall->getType()->isVoidTy()) 2393 Builder.CreateRetVoid(); 2394 else 2395 Builder.CreateRet(NewDeoptCall); 2396 } 2397 2398 // Leave behind the normal returns so we can merge control flow. 2399 std::swap(Returns, NormalReturns); 2400 } 2401 } 2402 2403 // Handle any inlined musttail call sites. In order for a new call site to be 2404 // musttail, the source of the clone and the inlined call site must have been 2405 // musttail. Therefore it's safe to return without merging control into the 2406 // phi below. 2407 if (InlinedMustTailCalls) { 2408 // Check if we need to bitcast the result of any musttail calls. 2409 Type *NewRetTy = Caller->getReturnType(); 2410 bool NeedBitCast = !CB.use_empty() && CB.getType() != NewRetTy; 2411 2412 // Handle the returns preceded by musttail calls separately. 2413 SmallVector<ReturnInst *, 8> NormalReturns; 2414 for (ReturnInst *RI : Returns) { 2415 CallInst *ReturnedMustTail = 2416 RI->getParent()->getTerminatingMustTailCall(); 2417 if (!ReturnedMustTail) { 2418 NormalReturns.push_back(RI); 2419 continue; 2420 } 2421 if (!NeedBitCast) 2422 continue; 2423 2424 // Delete the old return and any preceding bitcast. 2425 BasicBlock *CurBB = RI->getParent(); 2426 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); 2427 RI->eraseFromParent(); 2428 if (OldCast) 2429 OldCast->eraseFromParent(); 2430 2431 // Insert a new bitcast and return with the right type. 2432 IRBuilder<> Builder(CurBB); 2433 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); 2434 } 2435 2436 // Leave behind the normal returns so we can merge control flow. 2437 std::swap(Returns, NormalReturns); 2438 } 2439 2440 // Now that all of the transforms on the inlined code have taken place but 2441 // before we splice the inlined code into the CFG and lose track of which 2442 // blocks were actually inlined, collect the call sites. We only do this if 2443 // call graph updates weren't requested, as those provide value handle based 2444 // tracking of inlined call sites instead. Calls to intrinsics are not 2445 // collected because they are not inlineable. 2446 if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) { 2447 // Otherwise just collect the raw call sites that were inlined. 2448 for (BasicBlock &NewBB : 2449 make_range(FirstNewBlock->getIterator(), Caller->end())) 2450 for (Instruction &I : NewBB) 2451 if (auto *CB = dyn_cast<CallBase>(&I)) 2452 if (!(CB->getCalledFunction() && 2453 CB->getCalledFunction()->isIntrinsic())) 2454 IFI.InlinedCallSites.push_back(CB); 2455 } 2456 2457 // If we cloned in _exactly one_ basic block, and if that block ends in a 2458 // return instruction, we splice the body of the inlined callee directly into 2459 // the calling basic block. 2460 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 2461 // Move all of the instructions right before the call. 2462 OrigBB->getInstList().splice(CB.getIterator(), FirstNewBlock->getInstList(), 2463 FirstNewBlock->begin(), FirstNewBlock->end()); 2464 // Remove the cloned basic block. 2465 Caller->getBasicBlockList().pop_back(); 2466 2467 // If the call site was an invoke instruction, add a branch to the normal 2468 // destination. 2469 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 2470 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), &CB); 2471 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 2472 } 2473 2474 // If the return instruction returned a value, replace uses of the call with 2475 // uses of the returned value. 2476 if (!CB.use_empty()) { 2477 ReturnInst *R = Returns[0]; 2478 if (&CB == R->getReturnValue()) 2479 CB.replaceAllUsesWith(UndefValue::get(CB.getType())); 2480 else 2481 CB.replaceAllUsesWith(R->getReturnValue()); 2482 } 2483 // Since we are now done with the Call/Invoke, we can delete it. 2484 CB.eraseFromParent(); 2485 2486 // Since we are now done with the return instruction, delete it also. 2487 Returns[0]->eraseFromParent(); 2488 2489 // We are now done with the inlining. 2490 return InlineResult::success(); 2491 } 2492 2493 // Otherwise, we have the normal case, of more than one block to inline or 2494 // multiple return sites. 2495 2496 // We want to clone the entire callee function into the hole between the 2497 // "starter" and "ender" blocks. How we accomplish this depends on whether 2498 // this is an invoke instruction or a call instruction. 2499 BasicBlock *AfterCallBB; 2500 BranchInst *CreatedBranchToNormalDest = nullptr; 2501 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 2502 2503 // Add an unconditional branch to make this look like the CallInst case... 2504 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), &CB); 2505 2506 // Split the basic block. This guarantees that no PHI nodes will have to be 2507 // updated due to new incoming edges, and make the invoke case more 2508 // symmetric to the call case. 2509 AfterCallBB = 2510 OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(), 2511 CalledFunc->getName() + ".exit"); 2512 2513 } else { // It's a call 2514 // If this is a call instruction, we need to split the basic block that 2515 // the call lives in. 2516 // 2517 AfterCallBB = OrigBB->splitBasicBlock(CB.getIterator(), 2518 CalledFunc->getName() + ".exit"); 2519 } 2520 2521 if (IFI.CallerBFI) { 2522 // Copy original BB's block frequency to AfterCallBB 2523 IFI.CallerBFI->setBlockFreq( 2524 AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency()); 2525 } 2526 2527 // Change the branch that used to go to AfterCallBB to branch to the first 2528 // basic block of the inlined function. 2529 // 2530 Instruction *Br = OrigBB->getTerminator(); 2531 assert(Br && Br->getOpcode() == Instruction::Br && 2532 "splitBasicBlock broken!"); 2533 Br->setOperand(0, &*FirstNewBlock); 2534 2535 // Now that the function is correct, make it a little bit nicer. In 2536 // particular, move the basic blocks inserted from the end of the function 2537 // into the space made by splitting the source basic block. 2538 Caller->getBasicBlockList().splice(AfterCallBB->getIterator(), 2539 Caller->getBasicBlockList(), FirstNewBlock, 2540 Caller->end()); 2541 2542 // Handle all of the return instructions that we just cloned in, and eliminate 2543 // any users of the original call/invoke instruction. 2544 Type *RTy = CalledFunc->getReturnType(); 2545 2546 PHINode *PHI = nullptr; 2547 if (Returns.size() > 1) { 2548 // The PHI node should go at the front of the new basic block to merge all 2549 // possible incoming values. 2550 if (!CB.use_empty()) { 2551 PHI = PHINode::Create(RTy, Returns.size(), CB.getName(), 2552 &AfterCallBB->front()); 2553 // Anything that used the result of the function call should now use the 2554 // PHI node as their operand. 2555 CB.replaceAllUsesWith(PHI); 2556 } 2557 2558 // Loop over all of the return instructions adding entries to the PHI node 2559 // as appropriate. 2560 if (PHI) { 2561 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2562 ReturnInst *RI = Returns[i]; 2563 assert(RI->getReturnValue()->getType() == PHI->getType() && 2564 "Ret value not consistent in function!"); 2565 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 2566 } 2567 } 2568 2569 // Add a branch to the merge points and remove return instructions. 2570 DebugLoc Loc; 2571 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2572 ReturnInst *RI = Returns[i]; 2573 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 2574 Loc = RI->getDebugLoc(); 2575 BI->setDebugLoc(Loc); 2576 RI->eraseFromParent(); 2577 } 2578 // We need to set the debug location to *somewhere* inside the 2579 // inlined function. The line number may be nonsensical, but the 2580 // instruction will at least be associated with the right 2581 // function. 2582 if (CreatedBranchToNormalDest) 2583 CreatedBranchToNormalDest->setDebugLoc(Loc); 2584 } else if (!Returns.empty()) { 2585 // Otherwise, if there is exactly one return value, just replace anything 2586 // using the return value of the call with the computed value. 2587 if (!CB.use_empty()) { 2588 if (&CB == Returns[0]->getReturnValue()) 2589 CB.replaceAllUsesWith(UndefValue::get(CB.getType())); 2590 else 2591 CB.replaceAllUsesWith(Returns[0]->getReturnValue()); 2592 } 2593 2594 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 2595 BasicBlock *ReturnBB = Returns[0]->getParent(); 2596 ReturnBB->replaceAllUsesWith(AfterCallBB); 2597 2598 // Splice the code from the return block into the block that it will return 2599 // to, which contains the code that was after the call. 2600 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 2601 ReturnBB->getInstList()); 2602 2603 if (CreatedBranchToNormalDest) 2604 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 2605 2606 // Delete the return instruction now and empty ReturnBB now. 2607 Returns[0]->eraseFromParent(); 2608 ReturnBB->eraseFromParent(); 2609 } else if (!CB.use_empty()) { 2610 // No returns, but something is using the return value of the call. Just 2611 // nuke the result. 2612 CB.replaceAllUsesWith(UndefValue::get(CB.getType())); 2613 } 2614 2615 // Since we are now done with the Call/Invoke, we can delete it. 2616 CB.eraseFromParent(); 2617 2618 // If we inlined any musttail calls and the original return is now 2619 // unreachable, delete it. It can only contain a bitcast and ret. 2620 if (InlinedMustTailCalls && pred_empty(AfterCallBB)) 2621 AfterCallBB->eraseFromParent(); 2622 2623 // We should always be able to fold the entry block of the function into the 2624 // single predecessor of the block... 2625 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 2626 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 2627 2628 // Splice the code entry block into calling block, right before the 2629 // unconditional branch. 2630 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 2631 OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList()); 2632 2633 // Remove the unconditional branch. 2634 OrigBB->getInstList().erase(Br); 2635 2636 // Now we can remove the CalleeEntry block, which is now empty. 2637 Caller->getBasicBlockList().erase(CalleeEntry); 2638 2639 // If we inserted a phi node, check to see if it has a single value (e.g. all 2640 // the entries are the same or undef). If so, remove the PHI so it doesn't 2641 // block other optimizations. 2642 if (PHI) { 2643 AssumptionCache *AC = 2644 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr; 2645 auto &DL = Caller->getParent()->getDataLayout(); 2646 if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) { 2647 PHI->replaceAllUsesWith(V); 2648 PHI->eraseFromParent(); 2649 } 2650 } 2651 2652 return InlineResult::success(); 2653 } 2654