1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements inlining of a function into a call site, resolving 10 // parameters and the return value as appropriate. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/BlockFrequencyInfo.h" 26 #include "llvm/Analysis/CallGraph.h" 27 #include "llvm/Analysis/CaptureTracking.h" 28 #include "llvm/Analysis/EHPersonalities.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/ObjCARCAnalysisUtils.h" 31 #include "llvm/Analysis/ObjCARCUtil.h" 32 #include "llvm/Analysis/ProfileSummaryInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DIBuilder.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfoMetadata.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Dominators.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/User.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 64 #include "llvm/Transforms/Utils/Cloning.h" 65 #include "llvm/Transforms/Utils/Local.h" 66 #include "llvm/Transforms/Utils/ValueMapper.h" 67 #include <algorithm> 68 #include <cassert> 69 #include <cstdint> 70 #include <iterator> 71 #include <limits> 72 #include <string> 73 #include <utility> 74 #include <vector> 75 76 using namespace llvm; 77 using ProfileCount = Function::ProfileCount; 78 79 static cl::opt<bool> 80 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), 81 cl::Hidden, 82 cl::desc("Convert noalias attributes to metadata during inlining.")); 83 84 static cl::opt<bool> 85 UseNoAliasIntrinsic("use-noalias-intrinsic-during-inlining", cl::Hidden, 86 cl::ZeroOrMore, cl::init(true), 87 cl::desc("Use the llvm.experimental.noalias.scope.decl " 88 "intrinsic during inlining.")); 89 90 // Disabled by default, because the added alignment assumptions may increase 91 // compile-time and block optimizations. This option is not suitable for use 92 // with frontends that emit comprehensive parameter alignment annotations. 93 static cl::opt<bool> 94 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", 95 cl::init(false), cl::Hidden, 96 cl::desc("Convert align attributes to assumptions during inlining.")); 97 98 static cl::opt<bool> UpdateReturnAttributes( 99 "update-return-attrs", cl::init(true), cl::Hidden, 100 cl::desc("Update return attributes on calls within inlined body")); 101 102 static cl::opt<unsigned> InlinerAttributeWindow( 103 "max-inst-checked-for-throw-during-inlining", cl::Hidden, 104 cl::desc("the maximum number of instructions analyzed for may throw during " 105 "attribute inference in inlined body"), 106 cl::init(4)); 107 108 namespace { 109 110 /// A class for recording information about inlining a landing pad. 111 class LandingPadInliningInfo { 112 /// Destination of the invoke's unwind. 113 BasicBlock *OuterResumeDest; 114 115 /// Destination for the callee's resume. 116 BasicBlock *InnerResumeDest = nullptr; 117 118 /// LandingPadInst associated with the invoke. 119 LandingPadInst *CallerLPad = nullptr; 120 121 /// PHI for EH values from landingpad insts. 122 PHINode *InnerEHValuesPHI = nullptr; 123 124 SmallVector<Value*, 8> UnwindDestPHIValues; 125 126 public: 127 LandingPadInliningInfo(InvokeInst *II) 128 : OuterResumeDest(II->getUnwindDest()) { 129 // If there are PHI nodes in the unwind destination block, we need to keep 130 // track of which values came into them from the invoke before removing 131 // the edge from this block. 132 BasicBlock *InvokeBB = II->getParent(); 133 BasicBlock::iterator I = OuterResumeDest->begin(); 134 for (; isa<PHINode>(I); ++I) { 135 // Save the value to use for this edge. 136 PHINode *PHI = cast<PHINode>(I); 137 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 138 } 139 140 CallerLPad = cast<LandingPadInst>(I); 141 } 142 143 /// The outer unwind destination is the target of 144 /// unwind edges introduced for calls within the inlined function. 145 BasicBlock *getOuterResumeDest() const { 146 return OuterResumeDest; 147 } 148 149 BasicBlock *getInnerResumeDest(); 150 151 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 152 153 /// Forward the 'resume' instruction to the caller's landing pad block. 154 /// When the landing pad block has only one predecessor, this is 155 /// a simple branch. When there is more than one predecessor, we need to 156 /// split the landing pad block after the landingpad instruction and jump 157 /// to there. 158 void forwardResume(ResumeInst *RI, 159 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); 160 161 /// Add incoming-PHI values to the unwind destination block for the given 162 /// basic block, using the values for the original invoke's source block. 163 void addIncomingPHIValuesFor(BasicBlock *BB) const { 164 addIncomingPHIValuesForInto(BB, OuterResumeDest); 165 } 166 167 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 168 BasicBlock::iterator I = dest->begin(); 169 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 170 PHINode *phi = cast<PHINode>(I); 171 phi->addIncoming(UnwindDestPHIValues[i], src); 172 } 173 } 174 }; 175 176 } // end anonymous namespace 177 178 /// Get or create a target for the branch from ResumeInsts. 179 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() { 180 if (InnerResumeDest) return InnerResumeDest; 181 182 // Split the landing pad. 183 BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator(); 184 InnerResumeDest = 185 OuterResumeDest->splitBasicBlock(SplitPoint, 186 OuterResumeDest->getName() + ".body"); 187 188 // The number of incoming edges we expect to the inner landing pad. 189 const unsigned PHICapacity = 2; 190 191 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 192 Instruction *InsertPoint = &InnerResumeDest->front(); 193 BasicBlock::iterator I = OuterResumeDest->begin(); 194 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 195 PHINode *OuterPHI = cast<PHINode>(I); 196 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 197 OuterPHI->getName() + ".lpad-body", 198 InsertPoint); 199 OuterPHI->replaceAllUsesWith(InnerPHI); 200 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 201 } 202 203 // Create a PHI for the exception values. 204 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 205 "eh.lpad-body", InsertPoint); 206 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 207 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 208 209 // All done. 210 return InnerResumeDest; 211 } 212 213 /// Forward the 'resume' instruction to the caller's landing pad block. 214 /// When the landing pad block has only one predecessor, this is a simple 215 /// branch. When there is more than one predecessor, we need to split the 216 /// landing pad block after the landingpad instruction and jump to there. 217 void LandingPadInliningInfo::forwardResume( 218 ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) { 219 BasicBlock *Dest = getInnerResumeDest(); 220 BasicBlock *Src = RI->getParent(); 221 222 BranchInst::Create(Dest, Src); 223 224 // Update the PHIs in the destination. They were inserted in an order which 225 // makes this work. 226 addIncomingPHIValuesForInto(Src, Dest); 227 228 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 229 RI->eraseFromParent(); 230 } 231 232 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper. 233 static Value *getParentPad(Value *EHPad) { 234 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 235 return FPI->getParentPad(); 236 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 237 } 238 239 using UnwindDestMemoTy = DenseMap<Instruction *, Value *>; 240 241 /// Helper for getUnwindDestToken that does the descendant-ward part of 242 /// the search. 243 static Value *getUnwindDestTokenHelper(Instruction *EHPad, 244 UnwindDestMemoTy &MemoMap) { 245 SmallVector<Instruction *, 8> Worklist(1, EHPad); 246 247 while (!Worklist.empty()) { 248 Instruction *CurrentPad = Worklist.pop_back_val(); 249 // We only put pads on the worklist that aren't in the MemoMap. When 250 // we find an unwind dest for a pad we may update its ancestors, but 251 // the queue only ever contains uncles/great-uncles/etc. of CurrentPad, 252 // so they should never get updated while queued on the worklist. 253 assert(!MemoMap.count(CurrentPad)); 254 Value *UnwindDestToken = nullptr; 255 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) { 256 if (CatchSwitch->hasUnwindDest()) { 257 UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI(); 258 } else { 259 // Catchswitch doesn't have a 'nounwind' variant, and one might be 260 // annotated as "unwinds to caller" when really it's nounwind (see 261 // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the 262 // parent's unwind dest from this. We can check its catchpads' 263 // descendants, since they might include a cleanuppad with an 264 // "unwinds to caller" cleanupret, which can be trusted. 265 for (auto HI = CatchSwitch->handler_begin(), 266 HE = CatchSwitch->handler_end(); 267 HI != HE && !UnwindDestToken; ++HI) { 268 BasicBlock *HandlerBlock = *HI; 269 auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI()); 270 for (User *Child : CatchPad->users()) { 271 // Intentionally ignore invokes here -- since the catchswitch is 272 // marked "unwind to caller", it would be a verifier error if it 273 // contained an invoke which unwinds out of it, so any invoke we'd 274 // encounter must unwind to some child of the catch. 275 if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child)) 276 continue; 277 278 Instruction *ChildPad = cast<Instruction>(Child); 279 auto Memo = MemoMap.find(ChildPad); 280 if (Memo == MemoMap.end()) { 281 // Haven't figured out this child pad yet; queue it. 282 Worklist.push_back(ChildPad); 283 continue; 284 } 285 // We've already checked this child, but might have found that 286 // it offers no proof either way. 287 Value *ChildUnwindDestToken = Memo->second; 288 if (!ChildUnwindDestToken) 289 continue; 290 // We already know the child's unwind dest, which can either 291 // be ConstantTokenNone to indicate unwind to caller, or can 292 // be another child of the catchpad. Only the former indicates 293 // the unwind dest of the catchswitch. 294 if (isa<ConstantTokenNone>(ChildUnwindDestToken)) { 295 UnwindDestToken = ChildUnwindDestToken; 296 break; 297 } 298 assert(getParentPad(ChildUnwindDestToken) == CatchPad); 299 } 300 } 301 } 302 } else { 303 auto *CleanupPad = cast<CleanupPadInst>(CurrentPad); 304 for (User *U : CleanupPad->users()) { 305 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) { 306 if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest()) 307 UnwindDestToken = RetUnwindDest->getFirstNonPHI(); 308 else 309 UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext()); 310 break; 311 } 312 Value *ChildUnwindDestToken; 313 if (auto *Invoke = dyn_cast<InvokeInst>(U)) { 314 ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI(); 315 } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) { 316 Instruction *ChildPad = cast<Instruction>(U); 317 auto Memo = MemoMap.find(ChildPad); 318 if (Memo == MemoMap.end()) { 319 // Haven't resolved this child yet; queue it and keep searching. 320 Worklist.push_back(ChildPad); 321 continue; 322 } 323 // We've checked this child, but still need to ignore it if it 324 // had no proof either way. 325 ChildUnwindDestToken = Memo->second; 326 if (!ChildUnwindDestToken) 327 continue; 328 } else { 329 // Not a relevant user of the cleanuppad 330 continue; 331 } 332 // In a well-formed program, the child/invoke must either unwind to 333 // an(other) child of the cleanup, or exit the cleanup. In the 334 // first case, continue searching. 335 if (isa<Instruction>(ChildUnwindDestToken) && 336 getParentPad(ChildUnwindDestToken) == CleanupPad) 337 continue; 338 UnwindDestToken = ChildUnwindDestToken; 339 break; 340 } 341 } 342 // If we haven't found an unwind dest for CurrentPad, we may have queued its 343 // children, so move on to the next in the worklist. 344 if (!UnwindDestToken) 345 continue; 346 347 // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits 348 // any ancestors of CurrentPad up to but not including UnwindDestToken's 349 // parent pad. Record this in the memo map, and check to see if the 350 // original EHPad being queried is one of the ones exited. 351 Value *UnwindParent; 352 if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken)) 353 UnwindParent = getParentPad(UnwindPad); 354 else 355 UnwindParent = nullptr; 356 bool ExitedOriginalPad = false; 357 for (Instruction *ExitedPad = CurrentPad; 358 ExitedPad && ExitedPad != UnwindParent; 359 ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) { 360 // Skip over catchpads since they just follow their catchswitches. 361 if (isa<CatchPadInst>(ExitedPad)) 362 continue; 363 MemoMap[ExitedPad] = UnwindDestToken; 364 ExitedOriginalPad |= (ExitedPad == EHPad); 365 } 366 367 if (ExitedOriginalPad) 368 return UnwindDestToken; 369 370 // Continue the search. 371 } 372 373 // No definitive information is contained within this funclet. 374 return nullptr; 375 } 376 377 /// Given an EH pad, find where it unwinds. If it unwinds to an EH pad, 378 /// return that pad instruction. If it unwinds to caller, return 379 /// ConstantTokenNone. If it does not have a definitive unwind destination, 380 /// return nullptr. 381 /// 382 /// This routine gets invoked for calls in funclets in inlinees when inlining 383 /// an invoke. Since many funclets don't have calls inside them, it's queried 384 /// on-demand rather than building a map of pads to unwind dests up front. 385 /// Determining a funclet's unwind dest may require recursively searching its 386 /// descendants, and also ancestors and cousins if the descendants don't provide 387 /// an answer. Since most funclets will have their unwind dest immediately 388 /// available as the unwind dest of a catchswitch or cleanupret, this routine 389 /// searches top-down from the given pad and then up. To avoid worst-case 390 /// quadratic run-time given that approach, it uses a memo map to avoid 391 /// re-processing funclet trees. The callers that rewrite the IR as they go 392 /// take advantage of this, for correctness, by checking/forcing rewritten 393 /// pads' entries to match the original callee view. 394 static Value *getUnwindDestToken(Instruction *EHPad, 395 UnwindDestMemoTy &MemoMap) { 396 // Catchpads unwind to the same place as their catchswitch; 397 // redirct any queries on catchpads so the code below can 398 // deal with just catchswitches and cleanuppads. 399 if (auto *CPI = dyn_cast<CatchPadInst>(EHPad)) 400 EHPad = CPI->getCatchSwitch(); 401 402 // Check if we've already determined the unwind dest for this pad. 403 auto Memo = MemoMap.find(EHPad); 404 if (Memo != MemoMap.end()) 405 return Memo->second; 406 407 // Search EHPad and, if necessary, its descendants. 408 Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap); 409 assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0)); 410 if (UnwindDestToken) 411 return UnwindDestToken; 412 413 // No information is available for this EHPad from itself or any of its 414 // descendants. An unwind all the way out to a pad in the caller would 415 // need also to agree with the unwind dest of the parent funclet, so 416 // search up the chain to try to find a funclet with information. Put 417 // null entries in the memo map to avoid re-processing as we go up. 418 MemoMap[EHPad] = nullptr; 419 #ifndef NDEBUG 420 SmallPtrSet<Instruction *, 4> TempMemos; 421 TempMemos.insert(EHPad); 422 #endif 423 Instruction *LastUselessPad = EHPad; 424 Value *AncestorToken; 425 for (AncestorToken = getParentPad(EHPad); 426 auto *AncestorPad = dyn_cast<Instruction>(AncestorToken); 427 AncestorToken = getParentPad(AncestorToken)) { 428 // Skip over catchpads since they just follow their catchswitches. 429 if (isa<CatchPadInst>(AncestorPad)) 430 continue; 431 // If the MemoMap had an entry mapping AncestorPad to nullptr, since we 432 // haven't yet called getUnwindDestTokenHelper for AncestorPad in this 433 // call to getUnwindDestToken, that would mean that AncestorPad had no 434 // information in itself, its descendants, or its ancestors. If that 435 // were the case, then we should also have recorded the lack of information 436 // for the descendant that we're coming from. So assert that we don't 437 // find a null entry in the MemoMap for AncestorPad. 438 assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]); 439 auto AncestorMemo = MemoMap.find(AncestorPad); 440 if (AncestorMemo == MemoMap.end()) { 441 UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap); 442 } else { 443 UnwindDestToken = AncestorMemo->second; 444 } 445 if (UnwindDestToken) 446 break; 447 LastUselessPad = AncestorPad; 448 MemoMap[LastUselessPad] = nullptr; 449 #ifndef NDEBUG 450 TempMemos.insert(LastUselessPad); 451 #endif 452 } 453 454 // We know that getUnwindDestTokenHelper was called on LastUselessPad and 455 // returned nullptr (and likewise for EHPad and any of its ancestors up to 456 // LastUselessPad), so LastUselessPad has no information from below. Since 457 // getUnwindDestTokenHelper must investigate all downward paths through 458 // no-information nodes to prove that a node has no information like this, 459 // and since any time it finds information it records it in the MemoMap for 460 // not just the immediately-containing funclet but also any ancestors also 461 // exited, it must be the case that, walking downward from LastUselessPad, 462 // visiting just those nodes which have not been mapped to an unwind dest 463 // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since 464 // they are just used to keep getUnwindDestTokenHelper from repeating work), 465 // any node visited must have been exhaustively searched with no information 466 // for it found. 467 SmallVector<Instruction *, 8> Worklist(1, LastUselessPad); 468 while (!Worklist.empty()) { 469 Instruction *UselessPad = Worklist.pop_back_val(); 470 auto Memo = MemoMap.find(UselessPad); 471 if (Memo != MemoMap.end() && Memo->second) { 472 // Here the name 'UselessPad' is a bit of a misnomer, because we've found 473 // that it is a funclet that does have information about unwinding to 474 // a particular destination; its parent was a useless pad. 475 // Since its parent has no information, the unwind edge must not escape 476 // the parent, and must target a sibling of this pad. This local unwind 477 // gives us no information about EHPad. Leave it and the subtree rooted 478 // at it alone. 479 assert(getParentPad(Memo->second) == getParentPad(UselessPad)); 480 continue; 481 } 482 // We know we don't have information for UselesPad. If it has an entry in 483 // the MemoMap (mapping it to nullptr), it must be one of the TempMemos 484 // added on this invocation of getUnwindDestToken; if a previous invocation 485 // recorded nullptr, it would have had to prove that the ancestors of 486 // UselessPad, which include LastUselessPad, had no information, and that 487 // in turn would have required proving that the descendants of 488 // LastUselesPad, which include EHPad, have no information about 489 // LastUselessPad, which would imply that EHPad was mapped to nullptr in 490 // the MemoMap on that invocation, which isn't the case if we got here. 491 assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad)); 492 // Assert as we enumerate users that 'UselessPad' doesn't have any unwind 493 // information that we'd be contradicting by making a map entry for it 494 // (which is something that getUnwindDestTokenHelper must have proved for 495 // us to get here). Just assert on is direct users here; the checks in 496 // this downward walk at its descendants will verify that they don't have 497 // any unwind edges that exit 'UselessPad' either (i.e. they either have no 498 // unwind edges or unwind to a sibling). 499 MemoMap[UselessPad] = UnwindDestToken; 500 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) { 501 assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad"); 502 for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) { 503 auto *CatchPad = HandlerBlock->getFirstNonPHI(); 504 for (User *U : CatchPad->users()) { 505 assert( 506 (!isa<InvokeInst>(U) || 507 (getParentPad( 508 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 509 CatchPad)) && 510 "Expected useless pad"); 511 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 512 Worklist.push_back(cast<Instruction>(U)); 513 } 514 } 515 } else { 516 assert(isa<CleanupPadInst>(UselessPad)); 517 for (User *U : UselessPad->users()) { 518 assert(!isa<CleanupReturnInst>(U) && "Expected useless pad"); 519 assert((!isa<InvokeInst>(U) || 520 (getParentPad( 521 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 522 UselessPad)) && 523 "Expected useless pad"); 524 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 525 Worklist.push_back(cast<Instruction>(U)); 526 } 527 } 528 } 529 530 return UnwindDestToken; 531 } 532 533 /// When we inline a basic block into an invoke, 534 /// we have to turn all of the calls that can throw into invokes. 535 /// This function analyze BB to see if there are any calls, and if so, 536 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 537 /// nodes in that block with the values specified in InvokeDestPHIValues. 538 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke( 539 BasicBlock *BB, BasicBlock *UnwindEdge, 540 UnwindDestMemoTy *FuncletUnwindMap = nullptr) { 541 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 542 Instruction *I = &*BBI++; 543 544 // We only need to check for function calls: inlined invoke 545 // instructions require no special handling. 546 CallInst *CI = dyn_cast<CallInst>(I); 547 548 if (!CI || CI->doesNotThrow() || CI->isInlineAsm()) 549 continue; 550 551 // We do not need to (and in fact, cannot) convert possibly throwing calls 552 // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into 553 // invokes. The caller's "segment" of the deoptimization continuation 554 // attached to the newly inlined @llvm.experimental_deoptimize 555 // (resp. @llvm.experimental.guard) call should contain the exception 556 // handling logic, if any. 557 if (auto *F = CI->getCalledFunction()) 558 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize || 559 F->getIntrinsicID() == Intrinsic::experimental_guard) 560 continue; 561 562 if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) { 563 // This call is nested inside a funclet. If that funclet has an unwind 564 // destination within the inlinee, then unwinding out of this call would 565 // be UB. Rewriting this call to an invoke which targets the inlined 566 // invoke's unwind dest would give the call's parent funclet multiple 567 // unwind destinations, which is something that subsequent EH table 568 // generation can't handle and that the veirifer rejects. So when we 569 // see such a call, leave it as a call. 570 auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]); 571 Value *UnwindDestToken = 572 getUnwindDestToken(FuncletPad, *FuncletUnwindMap); 573 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 574 continue; 575 #ifndef NDEBUG 576 Instruction *MemoKey; 577 if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad)) 578 MemoKey = CatchPad->getCatchSwitch(); 579 else 580 MemoKey = FuncletPad; 581 assert(FuncletUnwindMap->count(MemoKey) && 582 (*FuncletUnwindMap)[MemoKey] == UnwindDestToken && 583 "must get memoized to avoid confusing later searches"); 584 #endif // NDEBUG 585 } 586 587 changeToInvokeAndSplitBasicBlock(CI, UnwindEdge); 588 return BB; 589 } 590 return nullptr; 591 } 592 593 /// If we inlined an invoke site, we need to convert calls 594 /// in the body of the inlined function into invokes. 595 /// 596 /// II is the invoke instruction being inlined. FirstNewBlock is the first 597 /// block of the inlined code (the last block is the end of the function), 598 /// and InlineCodeInfo is information about the code that got inlined. 599 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock, 600 ClonedCodeInfo &InlinedCodeInfo) { 601 BasicBlock *InvokeDest = II->getUnwindDest(); 602 603 Function *Caller = FirstNewBlock->getParent(); 604 605 // The inlined code is currently at the end of the function, scan from the 606 // start of the inlined code to its end, checking for stuff we need to 607 // rewrite. 608 LandingPadInliningInfo Invoke(II); 609 610 // Get all of the inlined landing pad instructions. 611 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 612 for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end(); 613 I != E; ++I) 614 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 615 InlinedLPads.insert(II->getLandingPadInst()); 616 617 // Append the clauses from the outer landing pad instruction into the inlined 618 // landing pad instructions. 619 LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 620 for (LandingPadInst *InlinedLPad : InlinedLPads) { 621 unsigned OuterNum = OuterLPad->getNumClauses(); 622 InlinedLPad->reserveClauses(OuterNum); 623 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 624 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 625 if (OuterLPad->isCleanup()) 626 InlinedLPad->setCleanup(true); 627 } 628 629 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 630 BB != E; ++BB) { 631 if (InlinedCodeInfo.ContainsCalls) 632 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 633 &*BB, Invoke.getOuterResumeDest())) 634 // Update any PHI nodes in the exceptional block to indicate that there 635 // is now a new entry in them. 636 Invoke.addIncomingPHIValuesFor(NewBB); 637 638 // Forward any resumes that are remaining here. 639 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 640 Invoke.forwardResume(RI, InlinedLPads); 641 } 642 643 // Now that everything is happy, we have one final detail. The PHI nodes in 644 // the exception destination block still have entries due to the original 645 // invoke instruction. Eliminate these entries (which might even delete the 646 // PHI node) now. 647 InvokeDest->removePredecessor(II->getParent()); 648 } 649 650 /// If we inlined an invoke site, we need to convert calls 651 /// in the body of the inlined function into invokes. 652 /// 653 /// II is the invoke instruction being inlined. FirstNewBlock is the first 654 /// block of the inlined code (the last block is the end of the function), 655 /// and InlineCodeInfo is information about the code that got inlined. 656 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock, 657 ClonedCodeInfo &InlinedCodeInfo) { 658 BasicBlock *UnwindDest = II->getUnwindDest(); 659 Function *Caller = FirstNewBlock->getParent(); 660 661 assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!"); 662 663 // If there are PHI nodes in the unwind destination block, we need to keep 664 // track of which values came into them from the invoke before removing the 665 // edge from this block. 666 SmallVector<Value *, 8> UnwindDestPHIValues; 667 BasicBlock *InvokeBB = II->getParent(); 668 for (Instruction &I : *UnwindDest) { 669 // Save the value to use for this edge. 670 PHINode *PHI = dyn_cast<PHINode>(&I); 671 if (!PHI) 672 break; 673 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 674 } 675 676 // Add incoming-PHI values to the unwind destination block for the given basic 677 // block, using the values for the original invoke's source block. 678 auto UpdatePHINodes = [&](BasicBlock *Src) { 679 BasicBlock::iterator I = UnwindDest->begin(); 680 for (Value *V : UnwindDestPHIValues) { 681 PHINode *PHI = cast<PHINode>(I); 682 PHI->addIncoming(V, Src); 683 ++I; 684 } 685 }; 686 687 // This connects all the instructions which 'unwind to caller' to the invoke 688 // destination. 689 UnwindDestMemoTy FuncletUnwindMap; 690 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 691 BB != E; ++BB) { 692 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 693 if (CRI->unwindsToCaller()) { 694 auto *CleanupPad = CRI->getCleanupPad(); 695 CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI); 696 CRI->eraseFromParent(); 697 UpdatePHINodes(&*BB); 698 // Finding a cleanupret with an unwind destination would confuse 699 // subsequent calls to getUnwindDestToken, so map the cleanuppad 700 // to short-circuit any such calls and recognize this as an "unwind 701 // to caller" cleanup. 702 assert(!FuncletUnwindMap.count(CleanupPad) || 703 isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad])); 704 FuncletUnwindMap[CleanupPad] = 705 ConstantTokenNone::get(Caller->getContext()); 706 } 707 } 708 709 Instruction *I = BB->getFirstNonPHI(); 710 if (!I->isEHPad()) 711 continue; 712 713 Instruction *Replacement = nullptr; 714 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 715 if (CatchSwitch->unwindsToCaller()) { 716 Value *UnwindDestToken; 717 if (auto *ParentPad = 718 dyn_cast<Instruction>(CatchSwitch->getParentPad())) { 719 // This catchswitch is nested inside another funclet. If that 720 // funclet has an unwind destination within the inlinee, then 721 // unwinding out of this catchswitch would be UB. Rewriting this 722 // catchswitch to unwind to the inlined invoke's unwind dest would 723 // give the parent funclet multiple unwind destinations, which is 724 // something that subsequent EH table generation can't handle and 725 // that the veirifer rejects. So when we see such a call, leave it 726 // as "unwind to caller". 727 UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap); 728 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 729 continue; 730 } else { 731 // This catchswitch has no parent to inherit constraints from, and 732 // none of its descendants can have an unwind edge that exits it and 733 // targets another funclet in the inlinee. It may or may not have a 734 // descendant that definitively has an unwind to caller. In either 735 // case, we'll have to assume that any unwinds out of it may need to 736 // be routed to the caller, so treat it as though it has a definitive 737 // unwind to caller. 738 UnwindDestToken = ConstantTokenNone::get(Caller->getContext()); 739 } 740 auto *NewCatchSwitch = CatchSwitchInst::Create( 741 CatchSwitch->getParentPad(), UnwindDest, 742 CatchSwitch->getNumHandlers(), CatchSwitch->getName(), 743 CatchSwitch); 744 for (BasicBlock *PadBB : CatchSwitch->handlers()) 745 NewCatchSwitch->addHandler(PadBB); 746 // Propagate info for the old catchswitch over to the new one in 747 // the unwind map. This also serves to short-circuit any subsequent 748 // checks for the unwind dest of this catchswitch, which would get 749 // confused if they found the outer handler in the callee. 750 FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken; 751 Replacement = NewCatchSwitch; 752 } 753 } else if (!isa<FuncletPadInst>(I)) { 754 llvm_unreachable("unexpected EHPad!"); 755 } 756 757 if (Replacement) { 758 Replacement->takeName(I); 759 I->replaceAllUsesWith(Replacement); 760 I->eraseFromParent(); 761 UpdatePHINodes(&*BB); 762 } 763 } 764 765 if (InlinedCodeInfo.ContainsCalls) 766 for (Function::iterator BB = FirstNewBlock->getIterator(), 767 E = Caller->end(); 768 BB != E; ++BB) 769 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 770 &*BB, UnwindDest, &FuncletUnwindMap)) 771 // Update any PHI nodes in the exceptional block to indicate that there 772 // is now a new entry in them. 773 UpdatePHINodes(NewBB); 774 775 // Now that everything is happy, we have one final detail. The PHI nodes in 776 // the exception destination block still have entries due to the original 777 // invoke instruction. Eliminate these entries (which might even delete the 778 // PHI node) now. 779 UnwindDest->removePredecessor(InvokeBB); 780 } 781 782 /// When inlining a call site that has !llvm.mem.parallel_loop_access, 783 /// !llvm.access.group, !alias.scope or !noalias metadata, that metadata should 784 /// be propagated to all memory-accessing cloned instructions. 785 static void PropagateCallSiteMetadata(CallBase &CB, ValueToValueMapTy &VMap) { 786 MDNode *MemParallelLoopAccess = 787 CB.getMetadata(LLVMContext::MD_mem_parallel_loop_access); 788 MDNode *AccessGroup = CB.getMetadata(LLVMContext::MD_access_group); 789 MDNode *AliasScope = CB.getMetadata(LLVMContext::MD_alias_scope); 790 MDNode *NoAlias = CB.getMetadata(LLVMContext::MD_noalias); 791 if (!MemParallelLoopAccess && !AccessGroup && !AliasScope && !NoAlias) 792 return; 793 794 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 795 VMI != VMIE; ++VMI) { 796 // Check that key is an instruction, to skip the Argument mapping, which 797 // points to an instruction in the original function, not the inlined one. 798 if (!VMI->second || !isa<Instruction>(VMI->first)) 799 continue; 800 801 Instruction *NI = dyn_cast<Instruction>(VMI->second); 802 if (!NI) 803 continue; 804 805 // This metadata is only relevant for instructions that access memory. 806 if (!NI->mayReadOrWriteMemory()) 807 continue; 808 809 if (MemParallelLoopAccess) { 810 // TODO: This probably should not overwrite MemParalleLoopAccess. 811 MemParallelLoopAccess = MDNode::concatenate( 812 NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access), 813 MemParallelLoopAccess); 814 NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, 815 MemParallelLoopAccess); 816 } 817 818 if (AccessGroup) 819 NI->setMetadata(LLVMContext::MD_access_group, uniteAccessGroups( 820 NI->getMetadata(LLVMContext::MD_access_group), AccessGroup)); 821 822 if (AliasScope) 823 NI->setMetadata(LLVMContext::MD_alias_scope, MDNode::concatenate( 824 NI->getMetadata(LLVMContext::MD_alias_scope), AliasScope)); 825 826 if (NoAlias) 827 NI->setMetadata(LLVMContext::MD_noalias, MDNode::concatenate( 828 NI->getMetadata(LLVMContext::MD_noalias), NoAlias)); 829 } 830 } 831 832 /// Utility for cloning !noalias and !alias.scope metadata. When a code region 833 /// using scoped alias metadata is inlined, the aliasing relationships may not 834 /// hold between the two version. It is necessary to create a deep clone of the 835 /// metadata, putting the two versions in separate scope domains. 836 class ScopedAliasMetadataDeepCloner { 837 using MetadataMap = DenseMap<const MDNode *, TrackingMDNodeRef>; 838 SetVector<const MDNode *> MD; 839 MetadataMap MDMap; 840 void addRecursiveMetadataUses(); 841 842 public: 843 ScopedAliasMetadataDeepCloner(const Function *F); 844 845 /// Create a new clone of the scoped alias metadata, which will be used by 846 /// subsequent remap() calls. 847 void clone(); 848 849 /// Remap instructions in the given VMap from the original to the cloned 850 /// metadata. 851 void remap(ValueToValueMapTy &VMap); 852 }; 853 854 ScopedAliasMetadataDeepCloner::ScopedAliasMetadataDeepCloner( 855 const Function *F) { 856 for (const BasicBlock &BB : *F) { 857 for (const Instruction &I : BB) { 858 if (const MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope)) 859 MD.insert(M); 860 if (const MDNode *M = I.getMetadata(LLVMContext::MD_noalias)) 861 MD.insert(M); 862 863 // We also need to clone the metadata in noalias intrinsics. 864 if (const auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) 865 MD.insert(Decl->getScopeList()); 866 } 867 } 868 addRecursiveMetadataUses(); 869 } 870 871 void ScopedAliasMetadataDeepCloner::addRecursiveMetadataUses() { 872 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end()); 873 while (!Queue.empty()) { 874 const MDNode *M = cast<MDNode>(Queue.pop_back_val()); 875 for (const Metadata *Op : M->operands()) 876 if (const MDNode *OpMD = dyn_cast<MDNode>(Op)) 877 if (MD.insert(OpMD)) 878 Queue.push_back(OpMD); 879 } 880 } 881 882 void ScopedAliasMetadataDeepCloner::clone() { 883 assert(MDMap.empty() && "clone() already called ?"); 884 885 SmallVector<TempMDTuple, 16> DummyNodes; 886 for (const MDNode *I : MD) { 887 DummyNodes.push_back(MDTuple::getTemporary(I->getContext(), None)); 888 MDMap[I].reset(DummyNodes.back().get()); 889 } 890 891 // Create new metadata nodes to replace the dummy nodes, replacing old 892 // metadata references with either a dummy node or an already-created new 893 // node. 894 SmallVector<Metadata *, 4> NewOps; 895 for (const MDNode *I : MD) { 896 for (const Metadata *Op : I->operands()) { 897 if (const MDNode *M = dyn_cast<MDNode>(Op)) 898 NewOps.push_back(MDMap[M]); 899 else 900 NewOps.push_back(const_cast<Metadata *>(Op)); 901 } 902 903 MDNode *NewM = MDNode::get(I->getContext(), NewOps); 904 MDTuple *TempM = cast<MDTuple>(MDMap[I]); 905 assert(TempM->isTemporary() && "Expected temporary node"); 906 907 TempM->replaceAllUsesWith(NewM); 908 NewOps.clear(); 909 } 910 } 911 912 void ScopedAliasMetadataDeepCloner::remap(ValueToValueMapTy &VMap) { 913 if (MDMap.empty()) 914 return; // Nothing to do. 915 916 for (auto Entry : VMap) { 917 // Check that key is an instruction, to skip the Argument mapping, which 918 // points to an instruction in the original function, not the inlined one. 919 if (!Entry->second || !isa<Instruction>(Entry->first)) 920 continue; 921 922 Instruction *I = dyn_cast<Instruction>(Entry->second); 923 if (!I) 924 continue; 925 926 // Only update scopes when we find them in the map. If they are not, it is 927 // because we already handled that instruction before. This is faster than 928 // tracking which instructions we already updated. 929 if (MDNode *M = I->getMetadata(LLVMContext::MD_alias_scope)) 930 if (MDNode *MNew = MDMap.lookup(M)) 931 I->setMetadata(LLVMContext::MD_alias_scope, MNew); 932 933 if (MDNode *M = I->getMetadata(LLVMContext::MD_noalias)) 934 if (MDNode *MNew = MDMap.lookup(M)) 935 I->setMetadata(LLVMContext::MD_noalias, MNew); 936 937 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(I)) 938 if (MDNode *MNew = MDMap.lookup(Decl->getScopeList())) 939 Decl->setScopeList(MNew); 940 } 941 } 942 943 /// If the inlined function has noalias arguments, 944 /// then add new alias scopes for each noalias argument, tag the mapped noalias 945 /// parameters with noalias metadata specifying the new scope, and tag all 946 /// non-derived loads, stores and memory intrinsics with the new alias scopes. 947 static void AddAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap, 948 const DataLayout &DL, AAResults *CalleeAAR) { 949 if (!EnableNoAliasConversion) 950 return; 951 952 const Function *CalledFunc = CB.getCalledFunction(); 953 SmallVector<const Argument *, 4> NoAliasArgs; 954 955 for (const Argument &Arg : CalledFunc->args()) 956 if (CB.paramHasAttr(Arg.getArgNo(), Attribute::NoAlias) && !Arg.use_empty()) 957 NoAliasArgs.push_back(&Arg); 958 959 if (NoAliasArgs.empty()) 960 return; 961 962 // To do a good job, if a noalias variable is captured, we need to know if 963 // the capture point dominates the particular use we're considering. 964 DominatorTree DT; 965 DT.recalculate(const_cast<Function&>(*CalledFunc)); 966 967 // noalias indicates that pointer values based on the argument do not alias 968 // pointer values which are not based on it. So we add a new "scope" for each 969 // noalias function argument. Accesses using pointers based on that argument 970 // become part of that alias scope, accesses using pointers not based on that 971 // argument are tagged as noalias with that scope. 972 973 DenseMap<const Argument *, MDNode *> NewScopes; 974 MDBuilder MDB(CalledFunc->getContext()); 975 976 // Create a new scope domain for this function. 977 MDNode *NewDomain = 978 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); 979 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { 980 const Argument *A = NoAliasArgs[i]; 981 982 std::string Name = std::string(CalledFunc->getName()); 983 if (A->hasName()) { 984 Name += ": %"; 985 Name += A->getName(); 986 } else { 987 Name += ": argument "; 988 Name += utostr(i); 989 } 990 991 // Note: We always create a new anonymous root here. This is true regardless 992 // of the linkage of the callee because the aliasing "scope" is not just a 993 // property of the callee, but also all control dependencies in the caller. 994 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); 995 NewScopes.insert(std::make_pair(A, NewScope)); 996 997 if (UseNoAliasIntrinsic) { 998 // Introduce a llvm.experimental.noalias.scope.decl for the noalias 999 // argument. 1000 MDNode *AScopeList = MDNode::get(CalledFunc->getContext(), NewScope); 1001 auto *NoAliasDecl = 1002 IRBuilder<>(&CB).CreateNoAliasScopeDeclaration(AScopeList); 1003 // Ignore the result for now. The result will be used when the 1004 // llvm.noalias intrinsic is introduced. 1005 (void)NoAliasDecl; 1006 } 1007 } 1008 1009 // Iterate over all new instructions in the map; for all memory-access 1010 // instructions, add the alias scope metadata. 1011 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 1012 VMI != VMIE; ++VMI) { 1013 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { 1014 if (!VMI->second) 1015 continue; 1016 1017 Instruction *NI = dyn_cast<Instruction>(VMI->second); 1018 if (!NI) 1019 continue; 1020 1021 bool IsArgMemOnlyCall = false, IsFuncCall = false; 1022 SmallVector<const Value *, 2> PtrArgs; 1023 1024 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 1025 PtrArgs.push_back(LI->getPointerOperand()); 1026 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 1027 PtrArgs.push_back(SI->getPointerOperand()); 1028 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) 1029 PtrArgs.push_back(VAAI->getPointerOperand()); 1030 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 1031 PtrArgs.push_back(CXI->getPointerOperand()); 1032 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 1033 PtrArgs.push_back(RMWI->getPointerOperand()); 1034 else if (const auto *Call = dyn_cast<CallBase>(I)) { 1035 // If we know that the call does not access memory, then we'll still 1036 // know that about the inlined clone of this call site, and we don't 1037 // need to add metadata. 1038 if (Call->doesNotAccessMemory()) 1039 continue; 1040 1041 IsFuncCall = true; 1042 if (CalleeAAR) { 1043 FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call); 1044 if (AAResults::onlyAccessesArgPointees(MRB)) 1045 IsArgMemOnlyCall = true; 1046 } 1047 1048 for (Value *Arg : Call->args()) { 1049 // We need to check the underlying objects of all arguments, not just 1050 // the pointer arguments, because we might be passing pointers as 1051 // integers, etc. 1052 // However, if we know that the call only accesses pointer arguments, 1053 // then we only need to check the pointer arguments. 1054 if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy()) 1055 continue; 1056 1057 PtrArgs.push_back(Arg); 1058 } 1059 } 1060 1061 // If we found no pointers, then this instruction is not suitable for 1062 // pairing with an instruction to receive aliasing metadata. 1063 // However, if this is a call, this we might just alias with none of the 1064 // noalias arguments. 1065 if (PtrArgs.empty() && !IsFuncCall) 1066 continue; 1067 1068 // It is possible that there is only one underlying object, but you 1069 // need to go through several PHIs to see it, and thus could be 1070 // repeated in the Objects list. 1071 SmallPtrSet<const Value *, 4> ObjSet; 1072 SmallVector<Metadata *, 4> Scopes, NoAliases; 1073 1074 SmallSetVector<const Argument *, 4> NAPtrArgs; 1075 for (const Value *V : PtrArgs) { 1076 SmallVector<const Value *, 4> Objects; 1077 getUnderlyingObjects(V, Objects, /* LI = */ nullptr); 1078 1079 for (const Value *O : Objects) 1080 ObjSet.insert(O); 1081 } 1082 1083 // Figure out if we're derived from anything that is not a noalias 1084 // argument. 1085 bool CanDeriveViaCapture = false, UsesAliasingPtr = false; 1086 for (const Value *V : ObjSet) { 1087 // Is this value a constant that cannot be derived from any pointer 1088 // value (we need to exclude constant expressions, for example, that 1089 // are formed from arithmetic on global symbols). 1090 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || 1091 isa<ConstantPointerNull>(V) || 1092 isa<ConstantDataVector>(V) || isa<UndefValue>(V); 1093 if (IsNonPtrConst) 1094 continue; 1095 1096 // If this is anything other than a noalias argument, then we cannot 1097 // completely describe the aliasing properties using alias.scope 1098 // metadata (and, thus, won't add any). 1099 if (const Argument *A = dyn_cast<Argument>(V)) { 1100 if (!CB.paramHasAttr(A->getArgNo(), Attribute::NoAlias)) 1101 UsesAliasingPtr = true; 1102 } else { 1103 UsesAliasingPtr = true; 1104 } 1105 1106 // If this is not some identified function-local object (which cannot 1107 // directly alias a noalias argument), or some other argument (which, 1108 // by definition, also cannot alias a noalias argument), then we could 1109 // alias a noalias argument that has been captured). 1110 if (!isa<Argument>(V) && 1111 !isIdentifiedFunctionLocal(const_cast<Value*>(V))) 1112 CanDeriveViaCapture = true; 1113 } 1114 1115 // A function call can always get captured noalias pointers (via other 1116 // parameters, globals, etc.). 1117 if (IsFuncCall && !IsArgMemOnlyCall) 1118 CanDeriveViaCapture = true; 1119 1120 // First, we want to figure out all of the sets with which we definitely 1121 // don't alias. Iterate over all noalias set, and add those for which: 1122 // 1. The noalias argument is not in the set of objects from which we 1123 // definitely derive. 1124 // 2. The noalias argument has not yet been captured. 1125 // An arbitrary function that might load pointers could see captured 1126 // noalias arguments via other noalias arguments or globals, and so we 1127 // must always check for prior capture. 1128 for (const Argument *A : NoAliasArgs) { 1129 if (!ObjSet.count(A) && (!CanDeriveViaCapture || 1130 // It might be tempting to skip the 1131 // PointerMayBeCapturedBefore check if 1132 // A->hasNoCaptureAttr() is true, but this is 1133 // incorrect because nocapture only guarantees 1134 // that no copies outlive the function, not 1135 // that the value cannot be locally captured. 1136 !PointerMayBeCapturedBefore(A, 1137 /* ReturnCaptures */ false, 1138 /* StoreCaptures */ false, I, &DT))) 1139 NoAliases.push_back(NewScopes[A]); 1140 } 1141 1142 if (!NoAliases.empty()) 1143 NI->setMetadata(LLVMContext::MD_noalias, 1144 MDNode::concatenate( 1145 NI->getMetadata(LLVMContext::MD_noalias), 1146 MDNode::get(CalledFunc->getContext(), NoAliases))); 1147 1148 // Next, we want to figure out all of the sets to which we might belong. 1149 // We might belong to a set if the noalias argument is in the set of 1150 // underlying objects. If there is some non-noalias argument in our list 1151 // of underlying objects, then we cannot add a scope because the fact 1152 // that some access does not alias with any set of our noalias arguments 1153 // cannot itself guarantee that it does not alias with this access 1154 // (because there is some pointer of unknown origin involved and the 1155 // other access might also depend on this pointer). We also cannot add 1156 // scopes to arbitrary functions unless we know they don't access any 1157 // non-parameter pointer-values. 1158 bool CanAddScopes = !UsesAliasingPtr; 1159 if (CanAddScopes && IsFuncCall) 1160 CanAddScopes = IsArgMemOnlyCall; 1161 1162 if (CanAddScopes) 1163 for (const Argument *A : NoAliasArgs) { 1164 if (ObjSet.count(A)) 1165 Scopes.push_back(NewScopes[A]); 1166 } 1167 1168 if (!Scopes.empty()) 1169 NI->setMetadata( 1170 LLVMContext::MD_alias_scope, 1171 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), 1172 MDNode::get(CalledFunc->getContext(), Scopes))); 1173 } 1174 } 1175 } 1176 1177 static bool MayContainThrowingOrExitingCall(Instruction *Begin, 1178 Instruction *End) { 1179 1180 assert(Begin->getParent() == End->getParent() && 1181 "Expected to be in same basic block!"); 1182 unsigned NumInstChecked = 0; 1183 // Check that all instructions in the range [Begin, End) are guaranteed to 1184 // transfer execution to successor. 1185 for (auto &I : make_range(Begin->getIterator(), End->getIterator())) 1186 if (NumInstChecked++ > InlinerAttributeWindow || 1187 !isGuaranteedToTransferExecutionToSuccessor(&I)) 1188 return true; 1189 return false; 1190 } 1191 1192 static AttrBuilder IdentifyValidAttributes(CallBase &CB) { 1193 1194 AttrBuilder AB(CB.getAttributes(), AttributeList::ReturnIndex); 1195 if (AB.empty()) 1196 return AB; 1197 AttrBuilder Valid; 1198 // Only allow these white listed attributes to be propagated back to the 1199 // callee. This is because other attributes may only be valid on the call 1200 // itself, i.e. attributes such as signext and zeroext. 1201 if (auto DerefBytes = AB.getDereferenceableBytes()) 1202 Valid.addDereferenceableAttr(DerefBytes); 1203 if (auto DerefOrNullBytes = AB.getDereferenceableOrNullBytes()) 1204 Valid.addDereferenceableOrNullAttr(DerefOrNullBytes); 1205 if (AB.contains(Attribute::NoAlias)) 1206 Valid.addAttribute(Attribute::NoAlias); 1207 if (AB.contains(Attribute::NonNull)) 1208 Valid.addAttribute(Attribute::NonNull); 1209 return Valid; 1210 } 1211 1212 static void AddReturnAttributes(CallBase &CB, ValueToValueMapTy &VMap) { 1213 if (!UpdateReturnAttributes) 1214 return; 1215 1216 AttrBuilder Valid = IdentifyValidAttributes(CB); 1217 if (Valid.empty()) 1218 return; 1219 auto *CalledFunction = CB.getCalledFunction(); 1220 auto &Context = CalledFunction->getContext(); 1221 1222 for (auto &BB : *CalledFunction) { 1223 auto *RI = dyn_cast<ReturnInst>(BB.getTerminator()); 1224 if (!RI || !isa<CallBase>(RI->getOperand(0))) 1225 continue; 1226 auto *RetVal = cast<CallBase>(RI->getOperand(0)); 1227 // Sanity check that the cloned RetVal exists and is a call, otherwise we 1228 // cannot add the attributes on the cloned RetVal. 1229 // Simplification during inlining could have transformed the cloned 1230 // instruction. 1231 auto *NewRetVal = dyn_cast_or_null<CallBase>(VMap.lookup(RetVal)); 1232 if (!NewRetVal) 1233 continue; 1234 // Backward propagation of attributes to the returned value may be incorrect 1235 // if it is control flow dependent. 1236 // Consider: 1237 // @callee { 1238 // %rv = call @foo() 1239 // %rv2 = call @bar() 1240 // if (%rv2 != null) 1241 // return %rv2 1242 // if (%rv == null) 1243 // exit() 1244 // return %rv 1245 // } 1246 // caller() { 1247 // %val = call nonnull @callee() 1248 // } 1249 // Here we cannot add the nonnull attribute on either foo or bar. So, we 1250 // limit the check to both RetVal and RI are in the same basic block and 1251 // there are no throwing/exiting instructions between these instructions. 1252 if (RI->getParent() != RetVal->getParent() || 1253 MayContainThrowingOrExitingCall(RetVal, RI)) 1254 continue; 1255 // Add to the existing attributes of NewRetVal, i.e. the cloned call 1256 // instruction. 1257 // NB! When we have the same attribute already existing on NewRetVal, but 1258 // with a differing value, the AttributeList's merge API honours the already 1259 // existing attribute value (i.e. attributes such as dereferenceable, 1260 // dereferenceable_or_null etc). See AttrBuilder::merge for more details. 1261 AttributeList AL = NewRetVal->getAttributes(); 1262 AttributeList NewAL = 1263 AL.addAttributes(Context, AttributeList::ReturnIndex, Valid); 1264 NewRetVal->setAttributes(NewAL); 1265 } 1266 } 1267 1268 /// If the inlined function has non-byval align arguments, then 1269 /// add @llvm.assume-based alignment assumptions to preserve this information. 1270 static void AddAlignmentAssumptions(CallBase &CB, InlineFunctionInfo &IFI) { 1271 if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache) 1272 return; 1273 1274 AssumptionCache *AC = &IFI.GetAssumptionCache(*CB.getCaller()); 1275 auto &DL = CB.getCaller()->getParent()->getDataLayout(); 1276 1277 // To avoid inserting redundant assumptions, we should check for assumptions 1278 // already in the caller. To do this, we might need a DT of the caller. 1279 DominatorTree DT; 1280 bool DTCalculated = false; 1281 1282 Function *CalledFunc = CB.getCalledFunction(); 1283 for (Argument &Arg : CalledFunc->args()) { 1284 unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0; 1285 if (Align && !Arg.hasPassPointeeByValueCopyAttr() && !Arg.hasNUses(0)) { 1286 if (!DTCalculated) { 1287 DT.recalculate(*CB.getCaller()); 1288 DTCalculated = true; 1289 } 1290 1291 // If we can already prove the asserted alignment in the context of the 1292 // caller, then don't bother inserting the assumption. 1293 Value *ArgVal = CB.getArgOperand(Arg.getArgNo()); 1294 if (getKnownAlignment(ArgVal, DL, &CB, AC, &DT) >= Align) 1295 continue; 1296 1297 CallInst *NewAsmp = 1298 IRBuilder<>(&CB).CreateAlignmentAssumption(DL, ArgVal, Align); 1299 AC->registerAssumption(NewAsmp); 1300 } 1301 } 1302 } 1303 1304 /// Once we have cloned code over from a callee into the caller, 1305 /// update the specified callgraph to reflect the changes we made. 1306 /// Note that it's possible that not all code was copied over, so only 1307 /// some edges of the callgraph may remain. 1308 static void UpdateCallGraphAfterInlining(CallBase &CB, 1309 Function::iterator FirstNewBlock, 1310 ValueToValueMapTy &VMap, 1311 InlineFunctionInfo &IFI) { 1312 CallGraph &CG = *IFI.CG; 1313 const Function *Caller = CB.getCaller(); 1314 const Function *Callee = CB.getCalledFunction(); 1315 CallGraphNode *CalleeNode = CG[Callee]; 1316 CallGraphNode *CallerNode = CG[Caller]; 1317 1318 // Since we inlined some uninlined call sites in the callee into the caller, 1319 // add edges from the caller to all of the callees of the callee. 1320 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 1321 1322 // Consider the case where CalleeNode == CallerNode. 1323 CallGraphNode::CalledFunctionsVector CallCache; 1324 if (CalleeNode == CallerNode) { 1325 CallCache.assign(I, E); 1326 I = CallCache.begin(); 1327 E = CallCache.end(); 1328 } 1329 1330 for (; I != E; ++I) { 1331 // Skip 'refererence' call records. 1332 if (!I->first) 1333 continue; 1334 1335 const Value *OrigCall = *I->first; 1336 1337 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 1338 // Only copy the edge if the call was inlined! 1339 if (VMI == VMap.end() || VMI->second == nullptr) 1340 continue; 1341 1342 // If the call was inlined, but then constant folded, there is no edge to 1343 // add. Check for this case. 1344 auto *NewCall = dyn_cast<CallBase>(VMI->second); 1345 if (!NewCall) 1346 continue; 1347 1348 // We do not treat intrinsic calls like real function calls because we 1349 // expect them to become inline code; do not add an edge for an intrinsic. 1350 if (NewCall->getCalledFunction() && 1351 NewCall->getCalledFunction()->isIntrinsic()) 1352 continue; 1353 1354 // Remember that this call site got inlined for the client of 1355 // InlineFunction. 1356 IFI.InlinedCalls.push_back(NewCall); 1357 1358 // It's possible that inlining the callsite will cause it to go from an 1359 // indirect to a direct call by resolving a function pointer. If this 1360 // happens, set the callee of the new call site to a more precise 1361 // destination. This can also happen if the call graph node of the caller 1362 // was just unnecessarily imprecise. 1363 if (!I->second->getFunction()) 1364 if (Function *F = NewCall->getCalledFunction()) { 1365 // Indirect call site resolved to direct call. 1366 CallerNode->addCalledFunction(NewCall, CG[F]); 1367 1368 continue; 1369 } 1370 1371 CallerNode->addCalledFunction(NewCall, I->second); 1372 } 1373 1374 // Update the call graph by deleting the edge from Callee to Caller. We must 1375 // do this after the loop above in case Caller and Callee are the same. 1376 CallerNode->removeCallEdgeFor(*cast<CallBase>(&CB)); 1377 } 1378 1379 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M, 1380 BasicBlock *InsertBlock, 1381 InlineFunctionInfo &IFI) { 1382 Type *AggTy = cast<PointerType>(Src->getType())->getElementType(); 1383 IRBuilder<> Builder(InsertBlock, InsertBlock->begin()); 1384 1385 Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy)); 1386 1387 // Always generate a memcpy of alignment 1 here because we don't know 1388 // the alignment of the src pointer. Other optimizations can infer 1389 // better alignment. 1390 Builder.CreateMemCpy(Dst, /*DstAlign*/ Align(1), Src, 1391 /*SrcAlign*/ Align(1), Size); 1392 } 1393 1394 /// When inlining a call site that has a byval argument, 1395 /// we have to make the implicit memcpy explicit by adding it. 1396 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 1397 const Function *CalledFunc, 1398 InlineFunctionInfo &IFI, 1399 unsigned ByValAlignment) { 1400 PointerType *ArgTy = cast<PointerType>(Arg->getType()); 1401 Type *AggTy = ArgTy->getElementType(); 1402 1403 Function *Caller = TheCall->getFunction(); 1404 const DataLayout &DL = Caller->getParent()->getDataLayout(); 1405 1406 // If the called function is readonly, then it could not mutate the caller's 1407 // copy of the byval'd memory. In this case, it is safe to elide the copy and 1408 // temporary. 1409 if (CalledFunc->onlyReadsMemory()) { 1410 // If the byval argument has a specified alignment that is greater than the 1411 // passed in pointer, then we either have to round up the input pointer or 1412 // give up on this transformation. 1413 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 1414 return Arg; 1415 1416 AssumptionCache *AC = 1417 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr; 1418 1419 // If the pointer is already known to be sufficiently aligned, or if we can 1420 // round it up to a larger alignment, then we don't need a temporary. 1421 if (getOrEnforceKnownAlignment(Arg, Align(ByValAlignment), DL, TheCall, 1422 AC) >= ByValAlignment) 1423 return Arg; 1424 1425 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 1426 // for code quality, but rarely happens and is required for correctness. 1427 } 1428 1429 // Create the alloca. If we have DataLayout, use nice alignment. 1430 Align Alignment(DL.getPrefTypeAlignment(AggTy)); 1431 1432 // If the byval had an alignment specified, we *must* use at least that 1433 // alignment, as it is required by the byval argument (and uses of the 1434 // pointer inside the callee). 1435 Alignment = max(Alignment, MaybeAlign(ByValAlignment)); 1436 1437 Value *NewAlloca = 1438 new AllocaInst(AggTy, DL.getAllocaAddrSpace(), nullptr, Alignment, 1439 Arg->getName(), &*Caller->begin()->begin()); 1440 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); 1441 1442 // Uses of the argument in the function should use our new alloca 1443 // instead. 1444 return NewAlloca; 1445 } 1446 1447 // Check whether this Value is used by a lifetime intrinsic. 1448 static bool isUsedByLifetimeMarker(Value *V) { 1449 for (User *U : V->users()) 1450 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) 1451 if (II->isLifetimeStartOrEnd()) 1452 return true; 1453 return false; 1454 } 1455 1456 // Check whether the given alloca already has 1457 // lifetime.start or lifetime.end intrinsics. 1458 static bool hasLifetimeMarkers(AllocaInst *AI) { 1459 Type *Ty = AI->getType(); 1460 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), 1461 Ty->getPointerAddressSpace()); 1462 if (Ty == Int8PtrTy) 1463 return isUsedByLifetimeMarker(AI); 1464 1465 // Do a scan to find all the casts to i8*. 1466 for (User *U : AI->users()) { 1467 if (U->getType() != Int8PtrTy) continue; 1468 if (U->stripPointerCasts() != AI) continue; 1469 if (isUsedByLifetimeMarker(U)) 1470 return true; 1471 } 1472 return false; 1473 } 1474 1475 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry 1476 /// block. Allocas used in inalloca calls and allocas of dynamic array size 1477 /// cannot be static. 1478 static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) { 1479 return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca(); 1480 } 1481 1482 /// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL 1483 /// inlined at \p InlinedAt. \p IANodes is an inlined-at cache. 1484 static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt, 1485 LLVMContext &Ctx, 1486 DenseMap<const MDNode *, MDNode *> &IANodes) { 1487 auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes); 1488 return DILocation::get(Ctx, OrigDL.getLine(), OrigDL.getCol(), 1489 OrigDL.getScope(), IA); 1490 } 1491 1492 /// Update inlined instructions' line numbers to 1493 /// to encode location where these instructions are inlined. 1494 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 1495 Instruction *TheCall, bool CalleeHasDebugInfo) { 1496 const DebugLoc &TheCallDL = TheCall->getDebugLoc(); 1497 if (!TheCallDL) 1498 return; 1499 1500 auto &Ctx = Fn->getContext(); 1501 DILocation *InlinedAtNode = TheCallDL; 1502 1503 // Create a unique call site, not to be confused with any other call from the 1504 // same location. 1505 InlinedAtNode = DILocation::getDistinct( 1506 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(), 1507 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt()); 1508 1509 // Cache the inlined-at nodes as they're built so they are reused, without 1510 // this every instruction's inlined-at chain would become distinct from each 1511 // other. 1512 DenseMap<const MDNode *, MDNode *> IANodes; 1513 1514 // Check if we are not generating inline line tables and want to use 1515 // the call site location instead. 1516 bool NoInlineLineTables = Fn->hasFnAttribute("no-inline-line-tables"); 1517 1518 for (; FI != Fn->end(); ++FI) { 1519 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 1520 BI != BE; ++BI) { 1521 // Loop metadata needs to be updated so that the start and end locs 1522 // reference inlined-at locations. 1523 auto updateLoopInfoLoc = [&Ctx, &InlinedAtNode, &IANodes]( 1524 const DILocation &Loc) -> DILocation * { 1525 return inlineDebugLoc(&Loc, InlinedAtNode, Ctx, IANodes).get(); 1526 }; 1527 updateLoopMetadataDebugLocations(*BI, updateLoopInfoLoc); 1528 1529 if (!NoInlineLineTables) 1530 if (DebugLoc DL = BI->getDebugLoc()) { 1531 DebugLoc IDL = 1532 inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes); 1533 BI->setDebugLoc(IDL); 1534 continue; 1535 } 1536 1537 if (CalleeHasDebugInfo && !NoInlineLineTables) 1538 continue; 1539 1540 // If the inlined instruction has no line number, or if inline info 1541 // is not being generated, make it look as if it originates from the call 1542 // location. This is important for ((__always_inline, __nodebug__)) 1543 // functions which must use caller location for all instructions in their 1544 // function body. 1545 1546 // Don't update static allocas, as they may get moved later. 1547 if (auto *AI = dyn_cast<AllocaInst>(BI)) 1548 if (allocaWouldBeStaticInEntry(AI)) 1549 continue; 1550 1551 BI->setDebugLoc(TheCallDL); 1552 } 1553 1554 // Remove debug info intrinsics if we're not keeping inline info. 1555 if (NoInlineLineTables) { 1556 BasicBlock::iterator BI = FI->begin(); 1557 while (BI != FI->end()) { 1558 if (isa<DbgInfoIntrinsic>(BI)) { 1559 BI = BI->eraseFromParent(); 1560 continue; 1561 } 1562 ++BI; 1563 } 1564 } 1565 1566 } 1567 } 1568 1569 /// Update the block frequencies of the caller after a callee has been inlined. 1570 /// 1571 /// Each block cloned into the caller has its block frequency scaled by the 1572 /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of 1573 /// callee's entry block gets the same frequency as the callsite block and the 1574 /// relative frequencies of all cloned blocks remain the same after cloning. 1575 static void updateCallerBFI(BasicBlock *CallSiteBlock, 1576 const ValueToValueMapTy &VMap, 1577 BlockFrequencyInfo *CallerBFI, 1578 BlockFrequencyInfo *CalleeBFI, 1579 const BasicBlock &CalleeEntryBlock) { 1580 SmallPtrSet<BasicBlock *, 16> ClonedBBs; 1581 for (auto Entry : VMap) { 1582 if (!isa<BasicBlock>(Entry.first) || !Entry.second) 1583 continue; 1584 auto *OrigBB = cast<BasicBlock>(Entry.first); 1585 auto *ClonedBB = cast<BasicBlock>(Entry.second); 1586 uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency(); 1587 if (!ClonedBBs.insert(ClonedBB).second) { 1588 // Multiple blocks in the callee might get mapped to one cloned block in 1589 // the caller since we prune the callee as we clone it. When that happens, 1590 // we want to use the maximum among the original blocks' frequencies. 1591 uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency(); 1592 if (NewFreq > Freq) 1593 Freq = NewFreq; 1594 } 1595 CallerBFI->setBlockFreq(ClonedBB, Freq); 1596 } 1597 BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock)); 1598 CallerBFI->setBlockFreqAndScale( 1599 EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(), 1600 ClonedBBs); 1601 } 1602 1603 /// Update the branch metadata for cloned call instructions. 1604 static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap, 1605 const ProfileCount &CalleeEntryCount, 1606 const CallBase &TheCall, ProfileSummaryInfo *PSI, 1607 BlockFrequencyInfo *CallerBFI) { 1608 if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() || 1609 CalleeEntryCount.getCount() < 1) 1610 return; 1611 auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None; 1612 int64_t CallCount = 1613 std::min(CallSiteCount.getValueOr(0), CalleeEntryCount.getCount()); 1614 updateProfileCallee(Callee, -CallCount, &VMap); 1615 } 1616 1617 void llvm::updateProfileCallee( 1618 Function *Callee, int64_t entryDelta, 1619 const ValueMap<const Value *, WeakTrackingVH> *VMap) { 1620 auto CalleeCount = Callee->getEntryCount(); 1621 if (!CalleeCount.hasValue()) 1622 return; 1623 1624 uint64_t priorEntryCount = CalleeCount.getCount(); 1625 uint64_t newEntryCount; 1626 1627 // Since CallSiteCount is an estimate, it could exceed the original callee 1628 // count and has to be set to 0 so guard against underflow. 1629 if (entryDelta < 0 && static_cast<uint64_t>(-entryDelta) > priorEntryCount) 1630 newEntryCount = 0; 1631 else 1632 newEntryCount = priorEntryCount + entryDelta; 1633 1634 // During inlining ? 1635 if (VMap) { 1636 uint64_t cloneEntryCount = priorEntryCount - newEntryCount; 1637 for (auto Entry : *VMap) 1638 if (isa<CallInst>(Entry.first)) 1639 if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second)) 1640 CI->updateProfWeight(cloneEntryCount, priorEntryCount); 1641 } 1642 1643 if (entryDelta) { 1644 Callee->setEntryCount(newEntryCount); 1645 1646 for (BasicBlock &BB : *Callee) 1647 // No need to update the callsite if it is pruned during inlining. 1648 if (!VMap || VMap->count(&BB)) 1649 for (Instruction &I : BB) 1650 if (CallInst *CI = dyn_cast<CallInst>(&I)) 1651 CI->updateProfWeight(newEntryCount, priorEntryCount); 1652 } 1653 } 1654 1655 /// An operand bundle "clang.arc.attachedcall" on a call indicates the call 1656 /// result is implicitly consumed by a call to retainRV or claimRV immediately 1657 /// after the call. This function inlines the retainRV/claimRV calls. 1658 /// 1659 /// There are three cases to consider: 1660 /// 1661 /// 1. If there is a call to autoreleaseRV that takes a pointer to the returned 1662 /// object in the callee return block, the autoreleaseRV call and the 1663 /// retainRV/claimRV call in the caller cancel out. If the call in the caller 1664 /// is a claimRV call, a call to objc_release is emitted. 1665 /// 1666 /// 2. If there is a call in the callee return block that doesn't have operand 1667 /// bundle "clang.arc.attachedcall", the operand bundle on the original call 1668 /// is transferred to the call in the callee. 1669 /// 1670 /// 3. Otherwise, a call to objc_retain is inserted if the call in the caller is 1671 /// a retainRV call. 1672 static void 1673 inlineRetainOrClaimRVCalls(CallBase &CB, 1674 const SmallVectorImpl<ReturnInst *> &Returns) { 1675 Module *Mod = CB.getModule(); 1676 bool IsRetainRV = objcarc::hasAttachedCallOpBundle(&CB, true), 1677 IsClaimRV = !IsRetainRV; 1678 1679 for (auto *RI : Returns) { 1680 Value *RetOpnd = objcarc::GetRCIdentityRoot(RI->getOperand(0)); 1681 BasicBlock::reverse_iterator I = ++(RI->getIterator().getReverse()); 1682 BasicBlock::reverse_iterator EI = RI->getParent()->rend(); 1683 bool InsertRetainCall = IsRetainRV; 1684 IRBuilder<> Builder(RI->getContext()); 1685 1686 // Walk backwards through the basic block looking for either a matching 1687 // autoreleaseRV call or an unannotated call. 1688 for (; I != EI;) { 1689 auto CurI = I++; 1690 1691 // Ignore casts. 1692 if (isa<CastInst>(*CurI)) 1693 continue; 1694 1695 if (auto *II = dyn_cast<IntrinsicInst>(&*CurI)) { 1696 if (II->getIntrinsicID() == Intrinsic::objc_autoreleaseReturnValue && 1697 II->hasNUses(0) && 1698 objcarc::GetRCIdentityRoot(II->getOperand(0)) == RetOpnd) { 1699 // If we've found a matching authoreleaseRV call: 1700 // - If claimRV is attached to the call, insert a call to objc_release 1701 // and erase the autoreleaseRV call. 1702 // - If retainRV is attached to the call, just erase the autoreleaseRV 1703 // call. 1704 if (IsClaimRV) { 1705 Builder.SetInsertPoint(II); 1706 Function *IFn = 1707 Intrinsic::getDeclaration(Mod, Intrinsic::objc_release); 1708 Value *BC = 1709 Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType()); 1710 Builder.CreateCall(IFn, BC, ""); 1711 } 1712 II->eraseFromParent(); 1713 InsertRetainCall = false; 1714 } 1715 } else if (auto *CI = dyn_cast<CallInst>(&*CurI)) { 1716 if (objcarc::GetRCIdentityRoot(CI) == RetOpnd && 1717 !objcarc::hasAttachedCallOpBundle(CI)) { 1718 // If we've found an unannotated call that defines RetOpnd, add a 1719 // "clang.arc.attachedcall" operand bundle. 1720 Value *BundleArgs[] = {ConstantInt::get( 1721 Builder.getInt64Ty(), 1722 objcarc::getAttachedCallOperandBundleEnum(IsRetainRV))}; 1723 OperandBundleDef OB("clang.arc.attachedcall", BundleArgs); 1724 auto *NewCall = CallBase::addOperandBundle( 1725 CI, LLVMContext::OB_clang_arc_attachedcall, OB, CI); 1726 NewCall->copyMetadata(*CI); 1727 CI->replaceAllUsesWith(NewCall); 1728 CI->eraseFromParent(); 1729 InsertRetainCall = false; 1730 } 1731 } 1732 1733 break; 1734 } 1735 1736 if (InsertRetainCall) { 1737 // The retainRV is attached to the call and we've failed to find a 1738 // matching autoreleaseRV or an annotated call in the callee. Emit a call 1739 // to objc_retain. 1740 Builder.SetInsertPoint(RI); 1741 Function *IFn = Intrinsic::getDeclaration(Mod, Intrinsic::objc_retain); 1742 Value *BC = Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType()); 1743 Builder.CreateCall(IFn, BC, ""); 1744 } 1745 } 1746 } 1747 1748 /// This function inlines the called function into the basic block of the 1749 /// caller. This returns false if it is not possible to inline this call. 1750 /// The program is still in a well defined state if this occurs though. 1751 /// 1752 /// Note that this only does one level of inlining. For example, if the 1753 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 1754 /// exists in the instruction stream. Similarly this will inline a recursive 1755 /// function by one level. 1756 llvm::InlineResult llvm::InlineFunction(CallBase &CB, InlineFunctionInfo &IFI, 1757 AAResults *CalleeAAR, 1758 bool InsertLifetime, 1759 Function *ForwardVarArgsTo) { 1760 assert(CB.getParent() && CB.getFunction() && "Instruction not in function!"); 1761 1762 // FIXME: we don't inline callbr yet. 1763 if (isa<CallBrInst>(CB)) 1764 return InlineResult::failure("We don't inline callbr yet."); 1765 1766 // If IFI has any state in it, zap it before we fill it in. 1767 IFI.reset(); 1768 1769 Function *CalledFunc = CB.getCalledFunction(); 1770 if (!CalledFunc || // Can't inline external function or indirect 1771 CalledFunc->isDeclaration()) // call! 1772 return InlineResult::failure("external or indirect"); 1773 1774 // The inliner does not know how to inline through calls with operand bundles 1775 // in general ... 1776 if (CB.hasOperandBundles()) { 1777 for (int i = 0, e = CB.getNumOperandBundles(); i != e; ++i) { 1778 uint32_t Tag = CB.getOperandBundleAt(i).getTagID(); 1779 // ... but it knows how to inline through "deopt" operand bundles ... 1780 if (Tag == LLVMContext::OB_deopt) 1781 continue; 1782 // ... and "funclet" operand bundles. 1783 if (Tag == LLVMContext::OB_funclet) 1784 continue; 1785 if (Tag == LLVMContext::OB_clang_arc_attachedcall) 1786 continue; 1787 1788 return InlineResult::failure("unsupported operand bundle"); 1789 } 1790 } 1791 1792 // If the call to the callee cannot throw, set the 'nounwind' flag on any 1793 // calls that we inline. 1794 bool MarkNoUnwind = CB.doesNotThrow(); 1795 1796 BasicBlock *OrigBB = CB.getParent(); 1797 Function *Caller = OrigBB->getParent(); 1798 1799 // GC poses two hazards to inlining, which only occur when the callee has GC: 1800 // 1. If the caller has no GC, then the callee's GC must be propagated to the 1801 // caller. 1802 // 2. If the caller has a differing GC, it is invalid to inline. 1803 if (CalledFunc->hasGC()) { 1804 if (!Caller->hasGC()) 1805 Caller->setGC(CalledFunc->getGC()); 1806 else if (CalledFunc->getGC() != Caller->getGC()) 1807 return InlineResult::failure("incompatible GC"); 1808 } 1809 1810 // Get the personality function from the callee if it contains a landing pad. 1811 Constant *CalledPersonality = 1812 CalledFunc->hasPersonalityFn() 1813 ? CalledFunc->getPersonalityFn()->stripPointerCasts() 1814 : nullptr; 1815 1816 // Find the personality function used by the landing pads of the caller. If it 1817 // exists, then check to see that it matches the personality function used in 1818 // the callee. 1819 Constant *CallerPersonality = 1820 Caller->hasPersonalityFn() 1821 ? Caller->getPersonalityFn()->stripPointerCasts() 1822 : nullptr; 1823 if (CalledPersonality) { 1824 if (!CallerPersonality) 1825 Caller->setPersonalityFn(CalledPersonality); 1826 // If the personality functions match, then we can perform the 1827 // inlining. Otherwise, we can't inline. 1828 // TODO: This isn't 100% true. Some personality functions are proper 1829 // supersets of others and can be used in place of the other. 1830 else if (CalledPersonality != CallerPersonality) 1831 return InlineResult::failure("incompatible personality"); 1832 } 1833 1834 // We need to figure out which funclet the callsite was in so that we may 1835 // properly nest the callee. 1836 Instruction *CallSiteEHPad = nullptr; 1837 if (CallerPersonality) { 1838 EHPersonality Personality = classifyEHPersonality(CallerPersonality); 1839 if (isScopedEHPersonality(Personality)) { 1840 Optional<OperandBundleUse> ParentFunclet = 1841 CB.getOperandBundle(LLVMContext::OB_funclet); 1842 if (ParentFunclet) 1843 CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front()); 1844 1845 // OK, the inlining site is legal. What about the target function? 1846 1847 if (CallSiteEHPad) { 1848 if (Personality == EHPersonality::MSVC_CXX) { 1849 // The MSVC personality cannot tolerate catches getting inlined into 1850 // cleanup funclets. 1851 if (isa<CleanupPadInst>(CallSiteEHPad)) { 1852 // Ok, the call site is within a cleanuppad. Let's check the callee 1853 // for catchpads. 1854 for (const BasicBlock &CalledBB : *CalledFunc) { 1855 if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI())) 1856 return InlineResult::failure("catch in cleanup funclet"); 1857 } 1858 } 1859 } else if (isAsynchronousEHPersonality(Personality)) { 1860 // SEH is even less tolerant, there may not be any sort of exceptional 1861 // funclet in the callee. 1862 for (const BasicBlock &CalledBB : *CalledFunc) { 1863 if (CalledBB.isEHPad()) 1864 return InlineResult::failure("SEH in cleanup funclet"); 1865 } 1866 } 1867 } 1868 } 1869 } 1870 1871 // Determine if we are dealing with a call in an EHPad which does not unwind 1872 // to caller. 1873 bool EHPadForCallUnwindsLocally = false; 1874 if (CallSiteEHPad && isa<CallInst>(CB)) { 1875 UnwindDestMemoTy FuncletUnwindMap; 1876 Value *CallSiteUnwindDestToken = 1877 getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap); 1878 1879 EHPadForCallUnwindsLocally = 1880 CallSiteUnwindDestToken && 1881 !isa<ConstantTokenNone>(CallSiteUnwindDestToken); 1882 } 1883 1884 // Get an iterator to the last basic block in the function, which will have 1885 // the new function inlined after it. 1886 Function::iterator LastBlock = --Caller->end(); 1887 1888 // Make sure to capture all of the return instructions from the cloned 1889 // function. 1890 SmallVector<ReturnInst*, 8> Returns; 1891 ClonedCodeInfo InlinedFunctionInfo; 1892 Function::iterator FirstNewBlock; 1893 1894 { // Scope to destroy VMap after cloning. 1895 ValueToValueMapTy VMap; 1896 // Keep a list of pair (dst, src) to emit byval initializations. 1897 SmallVector<std::pair<Value*, Value*>, 4> ByValInit; 1898 1899 // When inlining a function that contains noalias scope metadata, 1900 // this metadata needs to be cloned so that the inlined blocks 1901 // have different "unique scopes" at every call site. 1902 // Track the metadata that must be cloned. Do this before other changes to 1903 // the function, so that we do not get in trouble when inlining caller == 1904 // callee. 1905 ScopedAliasMetadataDeepCloner SAMetadataCloner(CB.getCalledFunction()); 1906 1907 auto &DL = Caller->getParent()->getDataLayout(); 1908 1909 // Calculate the vector of arguments to pass into the function cloner, which 1910 // matches up the formal to the actual argument values. 1911 auto AI = CB.arg_begin(); 1912 unsigned ArgNo = 0; 1913 for (Function::arg_iterator I = CalledFunc->arg_begin(), 1914 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 1915 Value *ActualArg = *AI; 1916 1917 // When byval arguments actually inlined, we need to make the copy implied 1918 // by them explicit. However, we don't do this if the callee is readonly 1919 // or readnone, because the copy would be unneeded: the callee doesn't 1920 // modify the struct. 1921 if (CB.isByValArgument(ArgNo)) { 1922 ActualArg = HandleByValArgument(ActualArg, &CB, CalledFunc, IFI, 1923 CalledFunc->getParamAlignment(ArgNo)); 1924 if (ActualArg != *AI) 1925 ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI)); 1926 } 1927 1928 VMap[&*I] = ActualArg; 1929 } 1930 1931 // TODO: Remove this when users have been updated to the assume bundles. 1932 // Add alignment assumptions if necessary. We do this before the inlined 1933 // instructions are actually cloned into the caller so that we can easily 1934 // check what will be known at the start of the inlined code. 1935 AddAlignmentAssumptions(CB, IFI); 1936 1937 AssumptionCache *AC = 1938 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr; 1939 1940 /// Preserve all attributes on of the call and its parameters. 1941 salvageKnowledge(&CB, AC); 1942 1943 // We want the inliner to prune the code as it copies. We would LOVE to 1944 // have no dead or constant instructions leftover after inlining occurs 1945 // (which can happen, e.g., because an argument was constant), but we'll be 1946 // happy with whatever the cloner can do. 1947 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 1948 /*ModuleLevelChanges=*/false, Returns, ".i", 1949 &InlinedFunctionInfo, &CB); 1950 // Remember the first block that is newly cloned over. 1951 FirstNewBlock = LastBlock; ++FirstNewBlock; 1952 1953 // Insert retainRV/clainRV runtime calls. 1954 if (objcarc::hasAttachedCallOpBundle(&CB)) 1955 inlineRetainOrClaimRVCalls(CB, Returns); 1956 1957 if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr) 1958 // Update the BFI of blocks cloned into the caller. 1959 updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI, 1960 CalledFunc->front()); 1961 1962 updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), CB, 1963 IFI.PSI, IFI.CallerBFI); 1964 1965 // Inject byval arguments initialization. 1966 for (std::pair<Value*, Value*> &Init : ByValInit) 1967 HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(), 1968 &*FirstNewBlock, IFI); 1969 1970 Optional<OperandBundleUse> ParentDeopt = 1971 CB.getOperandBundle(LLVMContext::OB_deopt); 1972 if (ParentDeopt) { 1973 SmallVector<OperandBundleDef, 2> OpDefs; 1974 1975 for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) { 1976 CallBase *ICS = dyn_cast_or_null<CallBase>(VH); 1977 if (!ICS) 1978 continue; // instruction was DCE'd or RAUW'ed to undef 1979 1980 OpDefs.clear(); 1981 1982 OpDefs.reserve(ICS->getNumOperandBundles()); 1983 1984 for (unsigned COBi = 0, COBe = ICS->getNumOperandBundles(); COBi < COBe; 1985 ++COBi) { 1986 auto ChildOB = ICS->getOperandBundleAt(COBi); 1987 if (ChildOB.getTagID() != LLVMContext::OB_deopt) { 1988 // If the inlined call has other operand bundles, let them be 1989 OpDefs.emplace_back(ChildOB); 1990 continue; 1991 } 1992 1993 // It may be useful to separate this logic (of handling operand 1994 // bundles) out to a separate "policy" component if this gets crowded. 1995 // Prepend the parent's deoptimization continuation to the newly 1996 // inlined call's deoptimization continuation. 1997 std::vector<Value *> MergedDeoptArgs; 1998 MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() + 1999 ChildOB.Inputs.size()); 2000 2001 llvm::append_range(MergedDeoptArgs, ParentDeopt->Inputs); 2002 llvm::append_range(MergedDeoptArgs, ChildOB.Inputs); 2003 2004 OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs)); 2005 } 2006 2007 Instruction *NewI = CallBase::Create(ICS, OpDefs, ICS); 2008 2009 // Note: the RAUW does the appropriate fixup in VMap, so we need to do 2010 // this even if the call returns void. 2011 ICS->replaceAllUsesWith(NewI); 2012 2013 VH = nullptr; 2014 ICS->eraseFromParent(); 2015 } 2016 } 2017 2018 // Update the callgraph if requested. 2019 if (IFI.CG) 2020 UpdateCallGraphAfterInlining(CB, FirstNewBlock, VMap, IFI); 2021 2022 // For 'nodebug' functions, the associated DISubprogram is always null. 2023 // Conservatively avoid propagating the callsite debug location to 2024 // instructions inlined from a function whose DISubprogram is not null. 2025 fixupLineNumbers(Caller, FirstNewBlock, &CB, 2026 CalledFunc->getSubprogram() != nullptr); 2027 2028 // Now clone the inlined noalias scope metadata. 2029 SAMetadataCloner.clone(); 2030 SAMetadataCloner.remap(VMap); 2031 2032 // Add noalias metadata if necessary. 2033 AddAliasScopeMetadata(CB, VMap, DL, CalleeAAR); 2034 2035 // Clone return attributes on the callsite into the calls within the inlined 2036 // function which feed into its return value. 2037 AddReturnAttributes(CB, VMap); 2038 2039 // Propagate metadata on the callsite if necessary. 2040 PropagateCallSiteMetadata(CB, VMap); 2041 2042 // Register any cloned assumptions. 2043 if (IFI.GetAssumptionCache) 2044 for (BasicBlock &NewBlock : 2045 make_range(FirstNewBlock->getIterator(), Caller->end())) 2046 for (Instruction &I : NewBlock) 2047 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 2048 if (II->getIntrinsicID() == Intrinsic::assume) 2049 IFI.GetAssumptionCache(*Caller).registerAssumption(II); 2050 } 2051 2052 // If there are any alloca instructions in the block that used to be the entry 2053 // block for the callee, move them to the entry block of the caller. First 2054 // calculate which instruction they should be inserted before. We insert the 2055 // instructions at the end of the current alloca list. 2056 { 2057 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 2058 for (BasicBlock::iterator I = FirstNewBlock->begin(), 2059 E = FirstNewBlock->end(); I != E; ) { 2060 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 2061 if (!AI) continue; 2062 2063 // If the alloca is now dead, remove it. This often occurs due to code 2064 // specialization. 2065 if (AI->use_empty()) { 2066 AI->eraseFromParent(); 2067 continue; 2068 } 2069 2070 if (!allocaWouldBeStaticInEntry(AI)) 2071 continue; 2072 2073 // Keep track of the static allocas that we inline into the caller. 2074 IFI.StaticAllocas.push_back(AI); 2075 2076 // Scan for the block of allocas that we can move over, and move them 2077 // all at once. 2078 while (isa<AllocaInst>(I) && 2079 !cast<AllocaInst>(I)->use_empty() && 2080 allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) { 2081 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 2082 ++I; 2083 } 2084 2085 // Transfer all of the allocas over in a block. Using splice means 2086 // that the instructions aren't removed from the symbol table, then 2087 // reinserted. 2088 Caller->getEntryBlock().getInstList().splice( 2089 InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I); 2090 } 2091 } 2092 2093 SmallVector<Value*,4> VarArgsToForward; 2094 SmallVector<AttributeSet, 4> VarArgsAttrs; 2095 for (unsigned i = CalledFunc->getFunctionType()->getNumParams(); 2096 i < CB.getNumArgOperands(); i++) { 2097 VarArgsToForward.push_back(CB.getArgOperand(i)); 2098 VarArgsAttrs.push_back(CB.getAttributes().getParamAttributes(i)); 2099 } 2100 2101 bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false; 2102 if (InlinedFunctionInfo.ContainsCalls) { 2103 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; 2104 if (CallInst *CI = dyn_cast<CallInst>(&CB)) 2105 CallSiteTailKind = CI->getTailCallKind(); 2106 2107 // For inlining purposes, the "notail" marker is the same as no marker. 2108 if (CallSiteTailKind == CallInst::TCK_NoTail) 2109 CallSiteTailKind = CallInst::TCK_None; 2110 2111 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 2112 ++BB) { 2113 for (auto II = BB->begin(); II != BB->end();) { 2114 Instruction &I = *II++; 2115 CallInst *CI = dyn_cast<CallInst>(&I); 2116 if (!CI) 2117 continue; 2118 2119 // Forward varargs from inlined call site to calls to the 2120 // ForwardVarArgsTo function, if requested, and to musttail calls. 2121 if (!VarArgsToForward.empty() && 2122 ((ForwardVarArgsTo && 2123 CI->getCalledFunction() == ForwardVarArgsTo) || 2124 CI->isMustTailCall())) { 2125 // Collect attributes for non-vararg parameters. 2126 AttributeList Attrs = CI->getAttributes(); 2127 SmallVector<AttributeSet, 8> ArgAttrs; 2128 if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) { 2129 for (unsigned ArgNo = 0; 2130 ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo) 2131 ArgAttrs.push_back(Attrs.getParamAttributes(ArgNo)); 2132 } 2133 2134 // Add VarArg attributes. 2135 ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end()); 2136 Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttributes(), 2137 Attrs.getRetAttributes(), ArgAttrs); 2138 // Add VarArgs to existing parameters. 2139 SmallVector<Value *, 6> Params(CI->arg_operands()); 2140 Params.append(VarArgsToForward.begin(), VarArgsToForward.end()); 2141 CallInst *NewCI = CallInst::Create( 2142 CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI); 2143 NewCI->setDebugLoc(CI->getDebugLoc()); 2144 NewCI->setAttributes(Attrs); 2145 NewCI->setCallingConv(CI->getCallingConv()); 2146 CI->replaceAllUsesWith(NewCI); 2147 CI->eraseFromParent(); 2148 CI = NewCI; 2149 } 2150 2151 if (Function *F = CI->getCalledFunction()) 2152 InlinedDeoptimizeCalls |= 2153 F->getIntrinsicID() == Intrinsic::experimental_deoptimize; 2154 2155 // We need to reduce the strength of any inlined tail calls. For 2156 // musttail, we have to avoid introducing potential unbounded stack 2157 // growth. For example, if functions 'f' and 'g' are mutually recursive 2158 // with musttail, we can inline 'g' into 'f' so long as we preserve 2159 // musttail on the cloned call to 'f'. If either the inlined call site 2160 // or the cloned call site is *not* musttail, the program already has 2161 // one frame of stack growth, so it's safe to remove musttail. Here is 2162 // a table of example transformations: 2163 // 2164 // f -> musttail g -> musttail f ==> f -> musttail f 2165 // f -> musttail g -> tail f ==> f -> tail f 2166 // f -> g -> musttail f ==> f -> f 2167 // f -> g -> tail f ==> f -> f 2168 // 2169 // Inlined notail calls should remain notail calls. 2170 CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); 2171 if (ChildTCK != CallInst::TCK_NoTail) 2172 ChildTCK = std::min(CallSiteTailKind, ChildTCK); 2173 CI->setTailCallKind(ChildTCK); 2174 InlinedMustTailCalls |= CI->isMustTailCall(); 2175 2176 // Calls inlined through a 'nounwind' call site should be marked 2177 // 'nounwind'. 2178 if (MarkNoUnwind) 2179 CI->setDoesNotThrow(); 2180 } 2181 } 2182 } 2183 2184 // Leave lifetime markers for the static alloca's, scoping them to the 2185 // function we just inlined. 2186 if (InsertLifetime && !IFI.StaticAllocas.empty()) { 2187 IRBuilder<> builder(&FirstNewBlock->front()); 2188 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 2189 AllocaInst *AI = IFI.StaticAllocas[ai]; 2190 // Don't mark swifterror allocas. They can't have bitcast uses. 2191 if (AI->isSwiftError()) 2192 continue; 2193 2194 // If the alloca is already scoped to something smaller than the whole 2195 // function then there's no need to add redundant, less accurate markers. 2196 if (hasLifetimeMarkers(AI)) 2197 continue; 2198 2199 // Try to determine the size of the allocation. 2200 ConstantInt *AllocaSize = nullptr; 2201 if (ConstantInt *AIArraySize = 2202 dyn_cast<ConstantInt>(AI->getArraySize())) { 2203 auto &DL = Caller->getParent()->getDataLayout(); 2204 Type *AllocaType = AI->getAllocatedType(); 2205 TypeSize AllocaTypeSize = DL.getTypeAllocSize(AllocaType); 2206 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 2207 2208 // Don't add markers for zero-sized allocas. 2209 if (AllocaArraySize == 0) 2210 continue; 2211 2212 // Check that array size doesn't saturate uint64_t and doesn't 2213 // overflow when it's multiplied by type size. 2214 if (!AllocaTypeSize.isScalable() && 2215 AllocaArraySize != std::numeric_limits<uint64_t>::max() && 2216 std::numeric_limits<uint64_t>::max() / AllocaArraySize >= 2217 AllocaTypeSize.getFixedSize()) { 2218 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 2219 AllocaArraySize * AllocaTypeSize); 2220 } 2221 } 2222 2223 builder.CreateLifetimeStart(AI, AllocaSize); 2224 for (ReturnInst *RI : Returns) { 2225 // Don't insert llvm.lifetime.end calls between a musttail or deoptimize 2226 // call and a return. The return kills all local allocas. 2227 if (InlinedMustTailCalls && 2228 RI->getParent()->getTerminatingMustTailCall()) 2229 continue; 2230 if (InlinedDeoptimizeCalls && 2231 RI->getParent()->getTerminatingDeoptimizeCall()) 2232 continue; 2233 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); 2234 } 2235 } 2236 } 2237 2238 // If the inlined code contained dynamic alloca instructions, wrap the inlined 2239 // code with llvm.stacksave/llvm.stackrestore intrinsics. 2240 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 2241 Module *M = Caller->getParent(); 2242 // Get the two intrinsics we care about. 2243 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 2244 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 2245 2246 // Insert the llvm.stacksave. 2247 CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin()) 2248 .CreateCall(StackSave, {}, "savedstack"); 2249 2250 // Insert a call to llvm.stackrestore before any return instructions in the 2251 // inlined function. 2252 for (ReturnInst *RI : Returns) { 2253 // Don't insert llvm.stackrestore calls between a musttail or deoptimize 2254 // call and a return. The return will restore the stack pointer. 2255 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) 2256 continue; 2257 if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall()) 2258 continue; 2259 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); 2260 } 2261 } 2262 2263 // If we are inlining for an invoke instruction, we must make sure to rewrite 2264 // any call instructions into invoke instructions. This is sensitive to which 2265 // funclet pads were top-level in the inlinee, so must be done before 2266 // rewriting the "parent pad" links. 2267 if (auto *II = dyn_cast<InvokeInst>(&CB)) { 2268 BasicBlock *UnwindDest = II->getUnwindDest(); 2269 Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI(); 2270 if (isa<LandingPadInst>(FirstNonPHI)) { 2271 HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo); 2272 } else { 2273 HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo); 2274 } 2275 } 2276 2277 // Update the lexical scopes of the new funclets and callsites. 2278 // Anything that had 'none' as its parent is now nested inside the callsite's 2279 // EHPad. 2280 2281 if (CallSiteEHPad) { 2282 for (Function::iterator BB = FirstNewBlock->getIterator(), 2283 E = Caller->end(); 2284 BB != E; ++BB) { 2285 // Add bundle operands to any top-level call sites. 2286 SmallVector<OperandBundleDef, 1> OpBundles; 2287 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) { 2288 CallBase *I = dyn_cast<CallBase>(&*BBI++); 2289 if (!I) 2290 continue; 2291 2292 // Skip call sites which are nounwind intrinsics. 2293 auto *CalledFn = 2294 dyn_cast<Function>(I->getCalledOperand()->stripPointerCasts()); 2295 if (CalledFn && CalledFn->isIntrinsic() && I->doesNotThrow()) 2296 continue; 2297 2298 // Skip call sites which already have a "funclet" bundle. 2299 if (I->getOperandBundle(LLVMContext::OB_funclet)) 2300 continue; 2301 2302 I->getOperandBundlesAsDefs(OpBundles); 2303 OpBundles.emplace_back("funclet", CallSiteEHPad); 2304 2305 Instruction *NewInst = CallBase::Create(I, OpBundles, I); 2306 NewInst->takeName(I); 2307 I->replaceAllUsesWith(NewInst); 2308 I->eraseFromParent(); 2309 2310 OpBundles.clear(); 2311 } 2312 2313 // It is problematic if the inlinee has a cleanupret which unwinds to 2314 // caller and we inline it into a call site which doesn't unwind but into 2315 // an EH pad that does. Such an edge must be dynamically unreachable. 2316 // As such, we replace the cleanupret with unreachable. 2317 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator())) 2318 if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally) 2319 changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false); 2320 2321 Instruction *I = BB->getFirstNonPHI(); 2322 if (!I->isEHPad()) 2323 continue; 2324 2325 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 2326 if (isa<ConstantTokenNone>(CatchSwitch->getParentPad())) 2327 CatchSwitch->setParentPad(CallSiteEHPad); 2328 } else { 2329 auto *FPI = cast<FuncletPadInst>(I); 2330 if (isa<ConstantTokenNone>(FPI->getParentPad())) 2331 FPI->setParentPad(CallSiteEHPad); 2332 } 2333 } 2334 } 2335 2336 if (InlinedDeoptimizeCalls) { 2337 // We need to at least remove the deoptimizing returns from the Return set, 2338 // so that the control flow from those returns does not get merged into the 2339 // caller (but terminate it instead). If the caller's return type does not 2340 // match the callee's return type, we also need to change the return type of 2341 // the intrinsic. 2342 if (Caller->getReturnType() == CB.getType()) { 2343 llvm::erase_if(Returns, [](ReturnInst *RI) { 2344 return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr; 2345 }); 2346 } else { 2347 SmallVector<ReturnInst *, 8> NormalReturns; 2348 Function *NewDeoptIntrinsic = Intrinsic::getDeclaration( 2349 Caller->getParent(), Intrinsic::experimental_deoptimize, 2350 {Caller->getReturnType()}); 2351 2352 for (ReturnInst *RI : Returns) { 2353 CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall(); 2354 if (!DeoptCall) { 2355 NormalReturns.push_back(RI); 2356 continue; 2357 } 2358 2359 // The calling convention on the deoptimize call itself may be bogus, 2360 // since the code we're inlining may have undefined behavior (and may 2361 // never actually execute at runtime); but all 2362 // @llvm.experimental.deoptimize declarations have to have the same 2363 // calling convention in a well-formed module. 2364 auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv(); 2365 NewDeoptIntrinsic->setCallingConv(CallingConv); 2366 auto *CurBB = RI->getParent(); 2367 RI->eraseFromParent(); 2368 2369 SmallVector<Value *, 4> CallArgs(DeoptCall->args()); 2370 2371 SmallVector<OperandBundleDef, 1> OpBundles; 2372 DeoptCall->getOperandBundlesAsDefs(OpBundles); 2373 DeoptCall->eraseFromParent(); 2374 assert(!OpBundles.empty() && 2375 "Expected at least the deopt operand bundle"); 2376 2377 IRBuilder<> Builder(CurBB); 2378 CallInst *NewDeoptCall = 2379 Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles); 2380 NewDeoptCall->setCallingConv(CallingConv); 2381 if (NewDeoptCall->getType()->isVoidTy()) 2382 Builder.CreateRetVoid(); 2383 else 2384 Builder.CreateRet(NewDeoptCall); 2385 } 2386 2387 // Leave behind the normal returns so we can merge control flow. 2388 std::swap(Returns, NormalReturns); 2389 } 2390 } 2391 2392 // Handle any inlined musttail call sites. In order for a new call site to be 2393 // musttail, the source of the clone and the inlined call site must have been 2394 // musttail. Therefore it's safe to return without merging control into the 2395 // phi below. 2396 if (InlinedMustTailCalls) { 2397 // Check if we need to bitcast the result of any musttail calls. 2398 Type *NewRetTy = Caller->getReturnType(); 2399 bool NeedBitCast = !CB.use_empty() && CB.getType() != NewRetTy; 2400 2401 // Handle the returns preceded by musttail calls separately. 2402 SmallVector<ReturnInst *, 8> NormalReturns; 2403 for (ReturnInst *RI : Returns) { 2404 CallInst *ReturnedMustTail = 2405 RI->getParent()->getTerminatingMustTailCall(); 2406 if (!ReturnedMustTail) { 2407 NormalReturns.push_back(RI); 2408 continue; 2409 } 2410 if (!NeedBitCast) 2411 continue; 2412 2413 // Delete the old return and any preceding bitcast. 2414 BasicBlock *CurBB = RI->getParent(); 2415 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); 2416 RI->eraseFromParent(); 2417 if (OldCast) 2418 OldCast->eraseFromParent(); 2419 2420 // Insert a new bitcast and return with the right type. 2421 IRBuilder<> Builder(CurBB); 2422 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); 2423 } 2424 2425 // Leave behind the normal returns so we can merge control flow. 2426 std::swap(Returns, NormalReturns); 2427 } 2428 2429 // Now that all of the transforms on the inlined code have taken place but 2430 // before we splice the inlined code into the CFG and lose track of which 2431 // blocks were actually inlined, collect the call sites. We only do this if 2432 // call graph updates weren't requested, as those provide value handle based 2433 // tracking of inlined call sites instead. 2434 if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) { 2435 // Otherwise just collect the raw call sites that were inlined. 2436 for (BasicBlock &NewBB : 2437 make_range(FirstNewBlock->getIterator(), Caller->end())) 2438 for (Instruction &I : NewBB) 2439 if (auto *CB = dyn_cast<CallBase>(&I)) 2440 IFI.InlinedCallSites.push_back(CB); 2441 } 2442 2443 // If we cloned in _exactly one_ basic block, and if that block ends in a 2444 // return instruction, we splice the body of the inlined callee directly into 2445 // the calling basic block. 2446 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 2447 // Move all of the instructions right before the call. 2448 OrigBB->getInstList().splice(CB.getIterator(), FirstNewBlock->getInstList(), 2449 FirstNewBlock->begin(), FirstNewBlock->end()); 2450 // Remove the cloned basic block. 2451 Caller->getBasicBlockList().pop_back(); 2452 2453 // If the call site was an invoke instruction, add a branch to the normal 2454 // destination. 2455 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 2456 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), &CB); 2457 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 2458 } 2459 2460 // If the return instruction returned a value, replace uses of the call with 2461 // uses of the returned value. 2462 if (!CB.use_empty()) { 2463 ReturnInst *R = Returns[0]; 2464 if (&CB == R->getReturnValue()) 2465 CB.replaceAllUsesWith(UndefValue::get(CB.getType())); 2466 else 2467 CB.replaceAllUsesWith(R->getReturnValue()); 2468 } 2469 // Since we are now done with the Call/Invoke, we can delete it. 2470 CB.eraseFromParent(); 2471 2472 // Since we are now done with the return instruction, delete it also. 2473 Returns[0]->eraseFromParent(); 2474 2475 // We are now done with the inlining. 2476 return InlineResult::success(); 2477 } 2478 2479 // Otherwise, we have the normal case, of more than one block to inline or 2480 // multiple return sites. 2481 2482 // We want to clone the entire callee function into the hole between the 2483 // "starter" and "ender" blocks. How we accomplish this depends on whether 2484 // this is an invoke instruction or a call instruction. 2485 BasicBlock *AfterCallBB; 2486 BranchInst *CreatedBranchToNormalDest = nullptr; 2487 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 2488 2489 // Add an unconditional branch to make this look like the CallInst case... 2490 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), &CB); 2491 2492 // Split the basic block. This guarantees that no PHI nodes will have to be 2493 // updated due to new incoming edges, and make the invoke case more 2494 // symmetric to the call case. 2495 AfterCallBB = 2496 OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(), 2497 CalledFunc->getName() + ".exit"); 2498 2499 } else { // It's a call 2500 // If this is a call instruction, we need to split the basic block that 2501 // the call lives in. 2502 // 2503 AfterCallBB = OrigBB->splitBasicBlock(CB.getIterator(), 2504 CalledFunc->getName() + ".exit"); 2505 } 2506 2507 if (IFI.CallerBFI) { 2508 // Copy original BB's block frequency to AfterCallBB 2509 IFI.CallerBFI->setBlockFreq( 2510 AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency()); 2511 } 2512 2513 // Change the branch that used to go to AfterCallBB to branch to the first 2514 // basic block of the inlined function. 2515 // 2516 Instruction *Br = OrigBB->getTerminator(); 2517 assert(Br && Br->getOpcode() == Instruction::Br && 2518 "splitBasicBlock broken!"); 2519 Br->setOperand(0, &*FirstNewBlock); 2520 2521 // Now that the function is correct, make it a little bit nicer. In 2522 // particular, move the basic blocks inserted from the end of the function 2523 // into the space made by splitting the source basic block. 2524 Caller->getBasicBlockList().splice(AfterCallBB->getIterator(), 2525 Caller->getBasicBlockList(), FirstNewBlock, 2526 Caller->end()); 2527 2528 // Handle all of the return instructions that we just cloned in, and eliminate 2529 // any users of the original call/invoke instruction. 2530 Type *RTy = CalledFunc->getReturnType(); 2531 2532 PHINode *PHI = nullptr; 2533 if (Returns.size() > 1) { 2534 // The PHI node should go at the front of the new basic block to merge all 2535 // possible incoming values. 2536 if (!CB.use_empty()) { 2537 PHI = PHINode::Create(RTy, Returns.size(), CB.getName(), 2538 &AfterCallBB->front()); 2539 // Anything that used the result of the function call should now use the 2540 // PHI node as their operand. 2541 CB.replaceAllUsesWith(PHI); 2542 } 2543 2544 // Loop over all of the return instructions adding entries to the PHI node 2545 // as appropriate. 2546 if (PHI) { 2547 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2548 ReturnInst *RI = Returns[i]; 2549 assert(RI->getReturnValue()->getType() == PHI->getType() && 2550 "Ret value not consistent in function!"); 2551 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 2552 } 2553 } 2554 2555 // Add a branch to the merge points and remove return instructions. 2556 DebugLoc Loc; 2557 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2558 ReturnInst *RI = Returns[i]; 2559 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 2560 Loc = RI->getDebugLoc(); 2561 BI->setDebugLoc(Loc); 2562 RI->eraseFromParent(); 2563 } 2564 // We need to set the debug location to *somewhere* inside the 2565 // inlined function. The line number may be nonsensical, but the 2566 // instruction will at least be associated with the right 2567 // function. 2568 if (CreatedBranchToNormalDest) 2569 CreatedBranchToNormalDest->setDebugLoc(Loc); 2570 } else if (!Returns.empty()) { 2571 // Otherwise, if there is exactly one return value, just replace anything 2572 // using the return value of the call with the computed value. 2573 if (!CB.use_empty()) { 2574 if (&CB == Returns[0]->getReturnValue()) 2575 CB.replaceAllUsesWith(UndefValue::get(CB.getType())); 2576 else 2577 CB.replaceAllUsesWith(Returns[0]->getReturnValue()); 2578 } 2579 2580 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 2581 BasicBlock *ReturnBB = Returns[0]->getParent(); 2582 ReturnBB->replaceAllUsesWith(AfterCallBB); 2583 2584 // Splice the code from the return block into the block that it will return 2585 // to, which contains the code that was after the call. 2586 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 2587 ReturnBB->getInstList()); 2588 2589 if (CreatedBranchToNormalDest) 2590 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 2591 2592 // Delete the return instruction now and empty ReturnBB now. 2593 Returns[0]->eraseFromParent(); 2594 ReturnBB->eraseFromParent(); 2595 } else if (!CB.use_empty()) { 2596 // No returns, but something is using the return value of the call. Just 2597 // nuke the result. 2598 CB.replaceAllUsesWith(UndefValue::get(CB.getType())); 2599 } 2600 2601 // Since we are now done with the Call/Invoke, we can delete it. 2602 CB.eraseFromParent(); 2603 2604 // If we inlined any musttail calls and the original return is now 2605 // unreachable, delete it. It can only contain a bitcast and ret. 2606 if (InlinedMustTailCalls && pred_empty(AfterCallBB)) 2607 AfterCallBB->eraseFromParent(); 2608 2609 // We should always be able to fold the entry block of the function into the 2610 // single predecessor of the block... 2611 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 2612 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 2613 2614 // Splice the code entry block into calling block, right before the 2615 // unconditional branch. 2616 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 2617 OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList()); 2618 2619 // Remove the unconditional branch. 2620 OrigBB->getInstList().erase(Br); 2621 2622 // Now we can remove the CalleeEntry block, which is now empty. 2623 Caller->getBasicBlockList().erase(CalleeEntry); 2624 2625 // If we inserted a phi node, check to see if it has a single value (e.g. all 2626 // the entries are the same or undef). If so, remove the PHI so it doesn't 2627 // block other optimizations. 2628 if (PHI) { 2629 AssumptionCache *AC = 2630 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr; 2631 auto &DL = Caller->getParent()->getDataLayout(); 2632 if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) { 2633 PHI->replaceAllUsesWith(V); 2634 PHI->eraseFromParent(); 2635 } 2636 } 2637 2638 return InlineResult::success(); 2639 } 2640