1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements inlining of a function into a call site, resolving 10 // parameters and the return value as appropriate. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/BlockFrequencyInfo.h" 26 #include "llvm/Analysis/CallGraph.h" 27 #include "llvm/Analysis/CaptureTracking.h" 28 #include "llvm/Analysis/EHPersonalities.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/Analysis/VectorUtils.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/CFG.h" 37 #include "llvm/IR/CallSite.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DIBuilder.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfoMetadata.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Dominators.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/User.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 64 #include "llvm/Transforms/Utils/Cloning.h" 65 #include "llvm/Transforms/Utils/ValueMapper.h" 66 #include <algorithm> 67 #include <cassert> 68 #include <cstdint> 69 #include <iterator> 70 #include <limits> 71 #include <string> 72 #include <utility> 73 #include <vector> 74 75 using namespace llvm; 76 using ProfileCount = Function::ProfileCount; 77 78 static cl::opt<bool> 79 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), 80 cl::Hidden, 81 cl::desc("Convert noalias attributes to metadata during inlining.")); 82 83 static cl::opt<bool> 84 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", 85 cl::init(true), cl::Hidden, 86 cl::desc("Convert align attributes to assumptions during inlining.")); 87 88 static cl::opt<bool> UpdateReturnAttributes( 89 "update-return-attrs", cl::init(true), cl::Hidden, 90 cl::desc("Update return attributes on calls within inlined body")); 91 92 static cl::opt<unsigned> InlinerAttributeWindow( 93 "max-inst-checked-for-throw-during-inlining", cl::Hidden, 94 cl::desc("the maximum number of instructions analyzed for may throw during " 95 "attribute inference in inlined body"), 96 cl::init(4)); 97 98 llvm::InlineResult llvm::InlineFunction(CallBase *CB, InlineFunctionInfo &IFI, 99 AAResults *CalleeAAR, 100 bool InsertLifetime) { 101 return InlineFunction(CallSite(CB), IFI, CalleeAAR, InsertLifetime); 102 } 103 104 namespace { 105 106 /// A class for recording information about inlining a landing pad. 107 class LandingPadInliningInfo { 108 /// Destination of the invoke's unwind. 109 BasicBlock *OuterResumeDest; 110 111 /// Destination for the callee's resume. 112 BasicBlock *InnerResumeDest = nullptr; 113 114 /// LandingPadInst associated with the invoke. 115 LandingPadInst *CallerLPad = nullptr; 116 117 /// PHI for EH values from landingpad insts. 118 PHINode *InnerEHValuesPHI = nullptr; 119 120 SmallVector<Value*, 8> UnwindDestPHIValues; 121 122 public: 123 LandingPadInliningInfo(InvokeInst *II) 124 : OuterResumeDest(II->getUnwindDest()) { 125 // If there are PHI nodes in the unwind destination block, we need to keep 126 // track of which values came into them from the invoke before removing 127 // the edge from this block. 128 BasicBlock *InvokeBB = II->getParent(); 129 BasicBlock::iterator I = OuterResumeDest->begin(); 130 for (; isa<PHINode>(I); ++I) { 131 // Save the value to use for this edge. 132 PHINode *PHI = cast<PHINode>(I); 133 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 134 } 135 136 CallerLPad = cast<LandingPadInst>(I); 137 } 138 139 /// The outer unwind destination is the target of 140 /// unwind edges introduced for calls within the inlined function. 141 BasicBlock *getOuterResumeDest() const { 142 return OuterResumeDest; 143 } 144 145 BasicBlock *getInnerResumeDest(); 146 147 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 148 149 /// Forward the 'resume' instruction to the caller's landing pad block. 150 /// When the landing pad block has only one predecessor, this is 151 /// a simple branch. When there is more than one predecessor, we need to 152 /// split the landing pad block after the landingpad instruction and jump 153 /// to there. 154 void forwardResume(ResumeInst *RI, 155 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); 156 157 /// Add incoming-PHI values to the unwind destination block for the given 158 /// basic block, using the values for the original invoke's source block. 159 void addIncomingPHIValuesFor(BasicBlock *BB) const { 160 addIncomingPHIValuesForInto(BB, OuterResumeDest); 161 } 162 163 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 164 BasicBlock::iterator I = dest->begin(); 165 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 166 PHINode *phi = cast<PHINode>(I); 167 phi->addIncoming(UnwindDestPHIValues[i], src); 168 } 169 } 170 }; 171 172 } // end anonymous namespace 173 174 /// Get or create a target for the branch from ResumeInsts. 175 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() { 176 if (InnerResumeDest) return InnerResumeDest; 177 178 // Split the landing pad. 179 BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator(); 180 InnerResumeDest = 181 OuterResumeDest->splitBasicBlock(SplitPoint, 182 OuterResumeDest->getName() + ".body"); 183 184 // The number of incoming edges we expect to the inner landing pad. 185 const unsigned PHICapacity = 2; 186 187 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 188 Instruction *InsertPoint = &InnerResumeDest->front(); 189 BasicBlock::iterator I = OuterResumeDest->begin(); 190 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 191 PHINode *OuterPHI = cast<PHINode>(I); 192 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 193 OuterPHI->getName() + ".lpad-body", 194 InsertPoint); 195 OuterPHI->replaceAllUsesWith(InnerPHI); 196 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 197 } 198 199 // Create a PHI for the exception values. 200 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 201 "eh.lpad-body", InsertPoint); 202 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 203 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 204 205 // All done. 206 return InnerResumeDest; 207 } 208 209 /// Forward the 'resume' instruction to the caller's landing pad block. 210 /// When the landing pad block has only one predecessor, this is a simple 211 /// branch. When there is more than one predecessor, we need to split the 212 /// landing pad block after the landingpad instruction and jump to there. 213 void LandingPadInliningInfo::forwardResume( 214 ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) { 215 BasicBlock *Dest = getInnerResumeDest(); 216 BasicBlock *Src = RI->getParent(); 217 218 BranchInst::Create(Dest, Src); 219 220 // Update the PHIs in the destination. They were inserted in an order which 221 // makes this work. 222 addIncomingPHIValuesForInto(Src, Dest); 223 224 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 225 RI->eraseFromParent(); 226 } 227 228 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper. 229 static Value *getParentPad(Value *EHPad) { 230 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 231 return FPI->getParentPad(); 232 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 233 } 234 235 using UnwindDestMemoTy = DenseMap<Instruction *, Value *>; 236 237 /// Helper for getUnwindDestToken that does the descendant-ward part of 238 /// the search. 239 static Value *getUnwindDestTokenHelper(Instruction *EHPad, 240 UnwindDestMemoTy &MemoMap) { 241 SmallVector<Instruction *, 8> Worklist(1, EHPad); 242 243 while (!Worklist.empty()) { 244 Instruction *CurrentPad = Worklist.pop_back_val(); 245 // We only put pads on the worklist that aren't in the MemoMap. When 246 // we find an unwind dest for a pad we may update its ancestors, but 247 // the queue only ever contains uncles/great-uncles/etc. of CurrentPad, 248 // so they should never get updated while queued on the worklist. 249 assert(!MemoMap.count(CurrentPad)); 250 Value *UnwindDestToken = nullptr; 251 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) { 252 if (CatchSwitch->hasUnwindDest()) { 253 UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI(); 254 } else { 255 // Catchswitch doesn't have a 'nounwind' variant, and one might be 256 // annotated as "unwinds to caller" when really it's nounwind (see 257 // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the 258 // parent's unwind dest from this. We can check its catchpads' 259 // descendants, since they might include a cleanuppad with an 260 // "unwinds to caller" cleanupret, which can be trusted. 261 for (auto HI = CatchSwitch->handler_begin(), 262 HE = CatchSwitch->handler_end(); 263 HI != HE && !UnwindDestToken; ++HI) { 264 BasicBlock *HandlerBlock = *HI; 265 auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI()); 266 for (User *Child : CatchPad->users()) { 267 // Intentionally ignore invokes here -- since the catchswitch is 268 // marked "unwind to caller", it would be a verifier error if it 269 // contained an invoke which unwinds out of it, so any invoke we'd 270 // encounter must unwind to some child of the catch. 271 if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child)) 272 continue; 273 274 Instruction *ChildPad = cast<Instruction>(Child); 275 auto Memo = MemoMap.find(ChildPad); 276 if (Memo == MemoMap.end()) { 277 // Haven't figured out this child pad yet; queue it. 278 Worklist.push_back(ChildPad); 279 continue; 280 } 281 // We've already checked this child, but might have found that 282 // it offers no proof either way. 283 Value *ChildUnwindDestToken = Memo->second; 284 if (!ChildUnwindDestToken) 285 continue; 286 // We already know the child's unwind dest, which can either 287 // be ConstantTokenNone to indicate unwind to caller, or can 288 // be another child of the catchpad. Only the former indicates 289 // the unwind dest of the catchswitch. 290 if (isa<ConstantTokenNone>(ChildUnwindDestToken)) { 291 UnwindDestToken = ChildUnwindDestToken; 292 break; 293 } 294 assert(getParentPad(ChildUnwindDestToken) == CatchPad); 295 } 296 } 297 } 298 } else { 299 auto *CleanupPad = cast<CleanupPadInst>(CurrentPad); 300 for (User *U : CleanupPad->users()) { 301 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) { 302 if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest()) 303 UnwindDestToken = RetUnwindDest->getFirstNonPHI(); 304 else 305 UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext()); 306 break; 307 } 308 Value *ChildUnwindDestToken; 309 if (auto *Invoke = dyn_cast<InvokeInst>(U)) { 310 ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI(); 311 } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) { 312 Instruction *ChildPad = cast<Instruction>(U); 313 auto Memo = MemoMap.find(ChildPad); 314 if (Memo == MemoMap.end()) { 315 // Haven't resolved this child yet; queue it and keep searching. 316 Worklist.push_back(ChildPad); 317 continue; 318 } 319 // We've checked this child, but still need to ignore it if it 320 // had no proof either way. 321 ChildUnwindDestToken = Memo->second; 322 if (!ChildUnwindDestToken) 323 continue; 324 } else { 325 // Not a relevant user of the cleanuppad 326 continue; 327 } 328 // In a well-formed program, the child/invoke must either unwind to 329 // an(other) child of the cleanup, or exit the cleanup. In the 330 // first case, continue searching. 331 if (isa<Instruction>(ChildUnwindDestToken) && 332 getParentPad(ChildUnwindDestToken) == CleanupPad) 333 continue; 334 UnwindDestToken = ChildUnwindDestToken; 335 break; 336 } 337 } 338 // If we haven't found an unwind dest for CurrentPad, we may have queued its 339 // children, so move on to the next in the worklist. 340 if (!UnwindDestToken) 341 continue; 342 343 // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits 344 // any ancestors of CurrentPad up to but not including UnwindDestToken's 345 // parent pad. Record this in the memo map, and check to see if the 346 // original EHPad being queried is one of the ones exited. 347 Value *UnwindParent; 348 if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken)) 349 UnwindParent = getParentPad(UnwindPad); 350 else 351 UnwindParent = nullptr; 352 bool ExitedOriginalPad = false; 353 for (Instruction *ExitedPad = CurrentPad; 354 ExitedPad && ExitedPad != UnwindParent; 355 ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) { 356 // Skip over catchpads since they just follow their catchswitches. 357 if (isa<CatchPadInst>(ExitedPad)) 358 continue; 359 MemoMap[ExitedPad] = UnwindDestToken; 360 ExitedOriginalPad |= (ExitedPad == EHPad); 361 } 362 363 if (ExitedOriginalPad) 364 return UnwindDestToken; 365 366 // Continue the search. 367 } 368 369 // No definitive information is contained within this funclet. 370 return nullptr; 371 } 372 373 /// Given an EH pad, find where it unwinds. If it unwinds to an EH pad, 374 /// return that pad instruction. If it unwinds to caller, return 375 /// ConstantTokenNone. If it does not have a definitive unwind destination, 376 /// return nullptr. 377 /// 378 /// This routine gets invoked for calls in funclets in inlinees when inlining 379 /// an invoke. Since many funclets don't have calls inside them, it's queried 380 /// on-demand rather than building a map of pads to unwind dests up front. 381 /// Determining a funclet's unwind dest may require recursively searching its 382 /// descendants, and also ancestors and cousins if the descendants don't provide 383 /// an answer. Since most funclets will have their unwind dest immediately 384 /// available as the unwind dest of a catchswitch or cleanupret, this routine 385 /// searches top-down from the given pad and then up. To avoid worst-case 386 /// quadratic run-time given that approach, it uses a memo map to avoid 387 /// re-processing funclet trees. The callers that rewrite the IR as they go 388 /// take advantage of this, for correctness, by checking/forcing rewritten 389 /// pads' entries to match the original callee view. 390 static Value *getUnwindDestToken(Instruction *EHPad, 391 UnwindDestMemoTy &MemoMap) { 392 // Catchpads unwind to the same place as their catchswitch; 393 // redirct any queries on catchpads so the code below can 394 // deal with just catchswitches and cleanuppads. 395 if (auto *CPI = dyn_cast<CatchPadInst>(EHPad)) 396 EHPad = CPI->getCatchSwitch(); 397 398 // Check if we've already determined the unwind dest for this pad. 399 auto Memo = MemoMap.find(EHPad); 400 if (Memo != MemoMap.end()) 401 return Memo->second; 402 403 // Search EHPad and, if necessary, its descendants. 404 Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap); 405 assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0)); 406 if (UnwindDestToken) 407 return UnwindDestToken; 408 409 // No information is available for this EHPad from itself or any of its 410 // descendants. An unwind all the way out to a pad in the caller would 411 // need also to agree with the unwind dest of the parent funclet, so 412 // search up the chain to try to find a funclet with information. Put 413 // null entries in the memo map to avoid re-processing as we go up. 414 MemoMap[EHPad] = nullptr; 415 #ifndef NDEBUG 416 SmallPtrSet<Instruction *, 4> TempMemos; 417 TempMemos.insert(EHPad); 418 #endif 419 Instruction *LastUselessPad = EHPad; 420 Value *AncestorToken; 421 for (AncestorToken = getParentPad(EHPad); 422 auto *AncestorPad = dyn_cast<Instruction>(AncestorToken); 423 AncestorToken = getParentPad(AncestorToken)) { 424 // Skip over catchpads since they just follow their catchswitches. 425 if (isa<CatchPadInst>(AncestorPad)) 426 continue; 427 // If the MemoMap had an entry mapping AncestorPad to nullptr, since we 428 // haven't yet called getUnwindDestTokenHelper for AncestorPad in this 429 // call to getUnwindDestToken, that would mean that AncestorPad had no 430 // information in itself, its descendants, or its ancestors. If that 431 // were the case, then we should also have recorded the lack of information 432 // for the descendant that we're coming from. So assert that we don't 433 // find a null entry in the MemoMap for AncestorPad. 434 assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]); 435 auto AncestorMemo = MemoMap.find(AncestorPad); 436 if (AncestorMemo == MemoMap.end()) { 437 UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap); 438 } else { 439 UnwindDestToken = AncestorMemo->second; 440 } 441 if (UnwindDestToken) 442 break; 443 LastUselessPad = AncestorPad; 444 MemoMap[LastUselessPad] = nullptr; 445 #ifndef NDEBUG 446 TempMemos.insert(LastUselessPad); 447 #endif 448 } 449 450 // We know that getUnwindDestTokenHelper was called on LastUselessPad and 451 // returned nullptr (and likewise for EHPad and any of its ancestors up to 452 // LastUselessPad), so LastUselessPad has no information from below. Since 453 // getUnwindDestTokenHelper must investigate all downward paths through 454 // no-information nodes to prove that a node has no information like this, 455 // and since any time it finds information it records it in the MemoMap for 456 // not just the immediately-containing funclet but also any ancestors also 457 // exited, it must be the case that, walking downward from LastUselessPad, 458 // visiting just those nodes which have not been mapped to an unwind dest 459 // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since 460 // they are just used to keep getUnwindDestTokenHelper from repeating work), 461 // any node visited must have been exhaustively searched with no information 462 // for it found. 463 SmallVector<Instruction *, 8> Worklist(1, LastUselessPad); 464 while (!Worklist.empty()) { 465 Instruction *UselessPad = Worklist.pop_back_val(); 466 auto Memo = MemoMap.find(UselessPad); 467 if (Memo != MemoMap.end() && Memo->second) { 468 // Here the name 'UselessPad' is a bit of a misnomer, because we've found 469 // that it is a funclet that does have information about unwinding to 470 // a particular destination; its parent was a useless pad. 471 // Since its parent has no information, the unwind edge must not escape 472 // the parent, and must target a sibling of this pad. This local unwind 473 // gives us no information about EHPad. Leave it and the subtree rooted 474 // at it alone. 475 assert(getParentPad(Memo->second) == getParentPad(UselessPad)); 476 continue; 477 } 478 // We know we don't have information for UselesPad. If it has an entry in 479 // the MemoMap (mapping it to nullptr), it must be one of the TempMemos 480 // added on this invocation of getUnwindDestToken; if a previous invocation 481 // recorded nullptr, it would have had to prove that the ancestors of 482 // UselessPad, which include LastUselessPad, had no information, and that 483 // in turn would have required proving that the descendants of 484 // LastUselesPad, which include EHPad, have no information about 485 // LastUselessPad, which would imply that EHPad was mapped to nullptr in 486 // the MemoMap on that invocation, which isn't the case if we got here. 487 assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad)); 488 // Assert as we enumerate users that 'UselessPad' doesn't have any unwind 489 // information that we'd be contradicting by making a map entry for it 490 // (which is something that getUnwindDestTokenHelper must have proved for 491 // us to get here). Just assert on is direct users here; the checks in 492 // this downward walk at its descendants will verify that they don't have 493 // any unwind edges that exit 'UselessPad' either (i.e. they either have no 494 // unwind edges or unwind to a sibling). 495 MemoMap[UselessPad] = UnwindDestToken; 496 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) { 497 assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad"); 498 for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) { 499 auto *CatchPad = HandlerBlock->getFirstNonPHI(); 500 for (User *U : CatchPad->users()) { 501 assert( 502 (!isa<InvokeInst>(U) || 503 (getParentPad( 504 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 505 CatchPad)) && 506 "Expected useless pad"); 507 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 508 Worklist.push_back(cast<Instruction>(U)); 509 } 510 } 511 } else { 512 assert(isa<CleanupPadInst>(UselessPad)); 513 for (User *U : UselessPad->users()) { 514 assert(!isa<CleanupReturnInst>(U) && "Expected useless pad"); 515 assert((!isa<InvokeInst>(U) || 516 (getParentPad( 517 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 518 UselessPad)) && 519 "Expected useless pad"); 520 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 521 Worklist.push_back(cast<Instruction>(U)); 522 } 523 } 524 } 525 526 return UnwindDestToken; 527 } 528 529 /// When we inline a basic block into an invoke, 530 /// we have to turn all of the calls that can throw into invokes. 531 /// This function analyze BB to see if there are any calls, and if so, 532 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 533 /// nodes in that block with the values specified in InvokeDestPHIValues. 534 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke( 535 BasicBlock *BB, BasicBlock *UnwindEdge, 536 UnwindDestMemoTy *FuncletUnwindMap = nullptr) { 537 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 538 Instruction *I = &*BBI++; 539 540 // We only need to check for function calls: inlined invoke 541 // instructions require no special handling. 542 CallInst *CI = dyn_cast<CallInst>(I); 543 544 if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue())) 545 continue; 546 547 // We do not need to (and in fact, cannot) convert possibly throwing calls 548 // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into 549 // invokes. The caller's "segment" of the deoptimization continuation 550 // attached to the newly inlined @llvm.experimental_deoptimize 551 // (resp. @llvm.experimental.guard) call should contain the exception 552 // handling logic, if any. 553 if (auto *F = CI->getCalledFunction()) 554 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize || 555 F->getIntrinsicID() == Intrinsic::experimental_guard) 556 continue; 557 558 if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) { 559 // This call is nested inside a funclet. If that funclet has an unwind 560 // destination within the inlinee, then unwinding out of this call would 561 // be UB. Rewriting this call to an invoke which targets the inlined 562 // invoke's unwind dest would give the call's parent funclet multiple 563 // unwind destinations, which is something that subsequent EH table 564 // generation can't handle and that the veirifer rejects. So when we 565 // see such a call, leave it as a call. 566 auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]); 567 Value *UnwindDestToken = 568 getUnwindDestToken(FuncletPad, *FuncletUnwindMap); 569 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 570 continue; 571 #ifndef NDEBUG 572 Instruction *MemoKey; 573 if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad)) 574 MemoKey = CatchPad->getCatchSwitch(); 575 else 576 MemoKey = FuncletPad; 577 assert(FuncletUnwindMap->count(MemoKey) && 578 (*FuncletUnwindMap)[MemoKey] == UnwindDestToken && 579 "must get memoized to avoid confusing later searches"); 580 #endif // NDEBUG 581 } 582 583 changeToInvokeAndSplitBasicBlock(CI, UnwindEdge); 584 return BB; 585 } 586 return nullptr; 587 } 588 589 /// If we inlined an invoke site, we need to convert calls 590 /// in the body of the inlined function into invokes. 591 /// 592 /// II is the invoke instruction being inlined. FirstNewBlock is the first 593 /// block of the inlined code (the last block is the end of the function), 594 /// and InlineCodeInfo is information about the code that got inlined. 595 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock, 596 ClonedCodeInfo &InlinedCodeInfo) { 597 BasicBlock *InvokeDest = II->getUnwindDest(); 598 599 Function *Caller = FirstNewBlock->getParent(); 600 601 // The inlined code is currently at the end of the function, scan from the 602 // start of the inlined code to its end, checking for stuff we need to 603 // rewrite. 604 LandingPadInliningInfo Invoke(II); 605 606 // Get all of the inlined landing pad instructions. 607 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 608 for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end(); 609 I != E; ++I) 610 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 611 InlinedLPads.insert(II->getLandingPadInst()); 612 613 // Append the clauses from the outer landing pad instruction into the inlined 614 // landing pad instructions. 615 LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 616 for (LandingPadInst *InlinedLPad : InlinedLPads) { 617 unsigned OuterNum = OuterLPad->getNumClauses(); 618 InlinedLPad->reserveClauses(OuterNum); 619 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 620 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 621 if (OuterLPad->isCleanup()) 622 InlinedLPad->setCleanup(true); 623 } 624 625 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 626 BB != E; ++BB) { 627 if (InlinedCodeInfo.ContainsCalls) 628 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 629 &*BB, Invoke.getOuterResumeDest())) 630 // Update any PHI nodes in the exceptional block to indicate that there 631 // is now a new entry in them. 632 Invoke.addIncomingPHIValuesFor(NewBB); 633 634 // Forward any resumes that are remaining here. 635 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 636 Invoke.forwardResume(RI, InlinedLPads); 637 } 638 639 // Now that everything is happy, we have one final detail. The PHI nodes in 640 // the exception destination block still have entries due to the original 641 // invoke instruction. Eliminate these entries (which might even delete the 642 // PHI node) now. 643 InvokeDest->removePredecessor(II->getParent()); 644 } 645 646 /// If we inlined an invoke site, we need to convert calls 647 /// in the body of the inlined function into invokes. 648 /// 649 /// II is the invoke instruction being inlined. FirstNewBlock is the first 650 /// block of the inlined code (the last block is the end of the function), 651 /// and InlineCodeInfo is information about the code that got inlined. 652 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock, 653 ClonedCodeInfo &InlinedCodeInfo) { 654 BasicBlock *UnwindDest = II->getUnwindDest(); 655 Function *Caller = FirstNewBlock->getParent(); 656 657 assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!"); 658 659 // If there are PHI nodes in the unwind destination block, we need to keep 660 // track of which values came into them from the invoke before removing the 661 // edge from this block. 662 SmallVector<Value *, 8> UnwindDestPHIValues; 663 BasicBlock *InvokeBB = II->getParent(); 664 for (Instruction &I : *UnwindDest) { 665 // Save the value to use for this edge. 666 PHINode *PHI = dyn_cast<PHINode>(&I); 667 if (!PHI) 668 break; 669 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 670 } 671 672 // Add incoming-PHI values to the unwind destination block for the given basic 673 // block, using the values for the original invoke's source block. 674 auto UpdatePHINodes = [&](BasicBlock *Src) { 675 BasicBlock::iterator I = UnwindDest->begin(); 676 for (Value *V : UnwindDestPHIValues) { 677 PHINode *PHI = cast<PHINode>(I); 678 PHI->addIncoming(V, Src); 679 ++I; 680 } 681 }; 682 683 // This connects all the instructions which 'unwind to caller' to the invoke 684 // destination. 685 UnwindDestMemoTy FuncletUnwindMap; 686 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 687 BB != E; ++BB) { 688 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 689 if (CRI->unwindsToCaller()) { 690 auto *CleanupPad = CRI->getCleanupPad(); 691 CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI); 692 CRI->eraseFromParent(); 693 UpdatePHINodes(&*BB); 694 // Finding a cleanupret with an unwind destination would confuse 695 // subsequent calls to getUnwindDestToken, so map the cleanuppad 696 // to short-circuit any such calls and recognize this as an "unwind 697 // to caller" cleanup. 698 assert(!FuncletUnwindMap.count(CleanupPad) || 699 isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad])); 700 FuncletUnwindMap[CleanupPad] = 701 ConstantTokenNone::get(Caller->getContext()); 702 } 703 } 704 705 Instruction *I = BB->getFirstNonPHI(); 706 if (!I->isEHPad()) 707 continue; 708 709 Instruction *Replacement = nullptr; 710 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 711 if (CatchSwitch->unwindsToCaller()) { 712 Value *UnwindDestToken; 713 if (auto *ParentPad = 714 dyn_cast<Instruction>(CatchSwitch->getParentPad())) { 715 // This catchswitch is nested inside another funclet. If that 716 // funclet has an unwind destination within the inlinee, then 717 // unwinding out of this catchswitch would be UB. Rewriting this 718 // catchswitch to unwind to the inlined invoke's unwind dest would 719 // give the parent funclet multiple unwind destinations, which is 720 // something that subsequent EH table generation can't handle and 721 // that the veirifer rejects. So when we see such a call, leave it 722 // as "unwind to caller". 723 UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap); 724 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 725 continue; 726 } else { 727 // This catchswitch has no parent to inherit constraints from, and 728 // none of its descendants can have an unwind edge that exits it and 729 // targets another funclet in the inlinee. It may or may not have a 730 // descendant that definitively has an unwind to caller. In either 731 // case, we'll have to assume that any unwinds out of it may need to 732 // be routed to the caller, so treat it as though it has a definitive 733 // unwind to caller. 734 UnwindDestToken = ConstantTokenNone::get(Caller->getContext()); 735 } 736 auto *NewCatchSwitch = CatchSwitchInst::Create( 737 CatchSwitch->getParentPad(), UnwindDest, 738 CatchSwitch->getNumHandlers(), CatchSwitch->getName(), 739 CatchSwitch); 740 for (BasicBlock *PadBB : CatchSwitch->handlers()) 741 NewCatchSwitch->addHandler(PadBB); 742 // Propagate info for the old catchswitch over to the new one in 743 // the unwind map. This also serves to short-circuit any subsequent 744 // checks for the unwind dest of this catchswitch, which would get 745 // confused if they found the outer handler in the callee. 746 FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken; 747 Replacement = NewCatchSwitch; 748 } 749 } else if (!isa<FuncletPadInst>(I)) { 750 llvm_unreachable("unexpected EHPad!"); 751 } 752 753 if (Replacement) { 754 Replacement->takeName(I); 755 I->replaceAllUsesWith(Replacement); 756 I->eraseFromParent(); 757 UpdatePHINodes(&*BB); 758 } 759 } 760 761 if (InlinedCodeInfo.ContainsCalls) 762 for (Function::iterator BB = FirstNewBlock->getIterator(), 763 E = Caller->end(); 764 BB != E; ++BB) 765 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 766 &*BB, UnwindDest, &FuncletUnwindMap)) 767 // Update any PHI nodes in the exceptional block to indicate that there 768 // is now a new entry in them. 769 UpdatePHINodes(NewBB); 770 771 // Now that everything is happy, we have one final detail. The PHI nodes in 772 // the exception destination block still have entries due to the original 773 // invoke instruction. Eliminate these entries (which might even delete the 774 // PHI node) now. 775 UnwindDest->removePredecessor(InvokeBB); 776 } 777 778 /// When inlining a call site that has !llvm.mem.parallel_loop_access or 779 /// llvm.access.group metadata, that metadata should be propagated to all 780 /// memory-accessing cloned instructions. 781 static void PropagateParallelLoopAccessMetadata(CallSite CS, 782 ValueToValueMapTy &VMap) { 783 MDNode *M = 784 CS.getInstruction()->getMetadata(LLVMContext::MD_mem_parallel_loop_access); 785 MDNode *CallAccessGroup = 786 CS.getInstruction()->getMetadata(LLVMContext::MD_access_group); 787 if (!M && !CallAccessGroup) 788 return; 789 790 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 791 VMI != VMIE; ++VMI) { 792 if (!VMI->second) 793 continue; 794 795 Instruction *NI = dyn_cast<Instruction>(VMI->second); 796 if (!NI) 797 continue; 798 799 if (M) { 800 if (MDNode *PM = 801 NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access)) { 802 M = MDNode::concatenate(PM, M); 803 NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M); 804 } else if (NI->mayReadOrWriteMemory()) { 805 NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M); 806 } 807 } 808 809 if (NI->mayReadOrWriteMemory()) { 810 MDNode *UnitedAccGroups = uniteAccessGroups( 811 NI->getMetadata(LLVMContext::MD_access_group), CallAccessGroup); 812 NI->setMetadata(LLVMContext::MD_access_group, UnitedAccGroups); 813 } 814 } 815 } 816 817 /// When inlining a function that contains noalias scope metadata, 818 /// this metadata needs to be cloned so that the inlined blocks 819 /// have different "unique scopes" at every call site. Were this not done, then 820 /// aliasing scopes from a function inlined into a caller multiple times could 821 /// not be differentiated (and this would lead to miscompiles because the 822 /// non-aliasing property communicated by the metadata could have 823 /// call-site-specific control dependencies). 824 static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) { 825 const Function *CalledFunc = CS.getCalledFunction(); 826 SetVector<const MDNode *> MD; 827 828 // Note: We could only clone the metadata if it is already used in the 829 // caller. I'm omitting that check here because it might confuse 830 // inter-procedural alias analysis passes. We can revisit this if it becomes 831 // an efficiency or overhead problem. 832 833 for (const BasicBlock &I : *CalledFunc) 834 for (const Instruction &J : I) { 835 if (const MDNode *M = J.getMetadata(LLVMContext::MD_alias_scope)) 836 MD.insert(M); 837 if (const MDNode *M = J.getMetadata(LLVMContext::MD_noalias)) 838 MD.insert(M); 839 } 840 841 if (MD.empty()) 842 return; 843 844 // Walk the existing metadata, adding the complete (perhaps cyclic) chain to 845 // the set. 846 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end()); 847 while (!Queue.empty()) { 848 const MDNode *M = cast<MDNode>(Queue.pop_back_val()); 849 for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i) 850 if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i))) 851 if (MD.insert(M1)) 852 Queue.push_back(M1); 853 } 854 855 // Now we have a complete set of all metadata in the chains used to specify 856 // the noalias scopes and the lists of those scopes. 857 SmallVector<TempMDTuple, 16> DummyNodes; 858 DenseMap<const MDNode *, TrackingMDNodeRef> MDMap; 859 for (const MDNode *I : MD) { 860 DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None)); 861 MDMap[I].reset(DummyNodes.back().get()); 862 } 863 864 // Create new metadata nodes to replace the dummy nodes, replacing old 865 // metadata references with either a dummy node or an already-created new 866 // node. 867 for (const MDNode *I : MD) { 868 SmallVector<Metadata *, 4> NewOps; 869 for (unsigned i = 0, ie = I->getNumOperands(); i != ie; ++i) { 870 const Metadata *V = I->getOperand(i); 871 if (const MDNode *M = dyn_cast<MDNode>(V)) 872 NewOps.push_back(MDMap[M]); 873 else 874 NewOps.push_back(const_cast<Metadata *>(V)); 875 } 876 877 MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps); 878 MDTuple *TempM = cast<MDTuple>(MDMap[I]); 879 assert(TempM->isTemporary() && "Expected temporary node"); 880 881 TempM->replaceAllUsesWith(NewM); 882 } 883 884 // Now replace the metadata in the new inlined instructions with the 885 // repacements from the map. 886 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 887 VMI != VMIE; ++VMI) { 888 if (!VMI->second) 889 continue; 890 891 Instruction *NI = dyn_cast<Instruction>(VMI->second); 892 if (!NI) 893 continue; 894 895 if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) { 896 MDNode *NewMD = MDMap[M]; 897 // If the call site also had alias scope metadata (a list of scopes to 898 // which instructions inside it might belong), propagate those scopes to 899 // the inlined instructions. 900 if (MDNode *CSM = 901 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 902 NewMD = MDNode::concatenate(NewMD, CSM); 903 NI->setMetadata(LLVMContext::MD_alias_scope, NewMD); 904 } else if (NI->mayReadOrWriteMemory()) { 905 if (MDNode *M = 906 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 907 NI->setMetadata(LLVMContext::MD_alias_scope, M); 908 } 909 910 if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) { 911 MDNode *NewMD = MDMap[M]; 912 // If the call site also had noalias metadata (a list of scopes with 913 // which instructions inside it don't alias), propagate those scopes to 914 // the inlined instructions. 915 if (MDNode *CSM = 916 CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 917 NewMD = MDNode::concatenate(NewMD, CSM); 918 NI->setMetadata(LLVMContext::MD_noalias, NewMD); 919 } else if (NI->mayReadOrWriteMemory()) { 920 if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 921 NI->setMetadata(LLVMContext::MD_noalias, M); 922 } 923 } 924 } 925 926 /// If the inlined function has noalias arguments, 927 /// then add new alias scopes for each noalias argument, tag the mapped noalias 928 /// parameters with noalias metadata specifying the new scope, and tag all 929 /// non-derived loads, stores and memory intrinsics with the new alias scopes. 930 static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap, 931 const DataLayout &DL, AAResults *CalleeAAR) { 932 if (!EnableNoAliasConversion) 933 return; 934 935 const Function *CalledFunc = CS.getCalledFunction(); 936 SmallVector<const Argument *, 4> NoAliasArgs; 937 938 for (const Argument &Arg : CalledFunc->args()) 939 if (CS.paramHasAttr(Arg.getArgNo(), Attribute::NoAlias) && !Arg.use_empty()) 940 NoAliasArgs.push_back(&Arg); 941 942 if (NoAliasArgs.empty()) 943 return; 944 945 // To do a good job, if a noalias variable is captured, we need to know if 946 // the capture point dominates the particular use we're considering. 947 DominatorTree DT; 948 DT.recalculate(const_cast<Function&>(*CalledFunc)); 949 950 // noalias indicates that pointer values based on the argument do not alias 951 // pointer values which are not based on it. So we add a new "scope" for each 952 // noalias function argument. Accesses using pointers based on that argument 953 // become part of that alias scope, accesses using pointers not based on that 954 // argument are tagged as noalias with that scope. 955 956 DenseMap<const Argument *, MDNode *> NewScopes; 957 MDBuilder MDB(CalledFunc->getContext()); 958 959 // Create a new scope domain for this function. 960 MDNode *NewDomain = 961 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); 962 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { 963 const Argument *A = NoAliasArgs[i]; 964 965 std::string Name = std::string(CalledFunc->getName()); 966 if (A->hasName()) { 967 Name += ": %"; 968 Name += A->getName(); 969 } else { 970 Name += ": argument "; 971 Name += utostr(i); 972 } 973 974 // Note: We always create a new anonymous root here. This is true regardless 975 // of the linkage of the callee because the aliasing "scope" is not just a 976 // property of the callee, but also all control dependencies in the caller. 977 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); 978 NewScopes.insert(std::make_pair(A, NewScope)); 979 } 980 981 // Iterate over all new instructions in the map; for all memory-access 982 // instructions, add the alias scope metadata. 983 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 984 VMI != VMIE; ++VMI) { 985 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { 986 if (!VMI->second) 987 continue; 988 989 Instruction *NI = dyn_cast<Instruction>(VMI->second); 990 if (!NI) 991 continue; 992 993 bool IsArgMemOnlyCall = false, IsFuncCall = false; 994 SmallVector<const Value *, 2> PtrArgs; 995 996 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 997 PtrArgs.push_back(LI->getPointerOperand()); 998 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 999 PtrArgs.push_back(SI->getPointerOperand()); 1000 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) 1001 PtrArgs.push_back(VAAI->getPointerOperand()); 1002 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 1003 PtrArgs.push_back(CXI->getPointerOperand()); 1004 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 1005 PtrArgs.push_back(RMWI->getPointerOperand()); 1006 else if (const auto *Call = dyn_cast<CallBase>(I)) { 1007 // If we know that the call does not access memory, then we'll still 1008 // know that about the inlined clone of this call site, and we don't 1009 // need to add metadata. 1010 if (Call->doesNotAccessMemory()) 1011 continue; 1012 1013 IsFuncCall = true; 1014 if (CalleeAAR) { 1015 FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call); 1016 if (AAResults::onlyAccessesArgPointees(MRB)) 1017 IsArgMemOnlyCall = true; 1018 } 1019 1020 for (Value *Arg : Call->args()) { 1021 // We need to check the underlying objects of all arguments, not just 1022 // the pointer arguments, because we might be passing pointers as 1023 // integers, etc. 1024 // However, if we know that the call only accesses pointer arguments, 1025 // then we only need to check the pointer arguments. 1026 if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy()) 1027 continue; 1028 1029 PtrArgs.push_back(Arg); 1030 } 1031 } 1032 1033 // If we found no pointers, then this instruction is not suitable for 1034 // pairing with an instruction to receive aliasing metadata. 1035 // However, if this is a call, this we might just alias with none of the 1036 // noalias arguments. 1037 if (PtrArgs.empty() && !IsFuncCall) 1038 continue; 1039 1040 // It is possible that there is only one underlying object, but you 1041 // need to go through several PHIs to see it, and thus could be 1042 // repeated in the Objects list. 1043 SmallPtrSet<const Value *, 4> ObjSet; 1044 SmallVector<Metadata *, 4> Scopes, NoAliases; 1045 1046 SmallSetVector<const Argument *, 4> NAPtrArgs; 1047 for (const Value *V : PtrArgs) { 1048 SmallVector<const Value *, 4> Objects; 1049 GetUnderlyingObjects(V, Objects, DL, /* LI = */ nullptr); 1050 1051 for (const Value *O : Objects) 1052 ObjSet.insert(O); 1053 } 1054 1055 // Figure out if we're derived from anything that is not a noalias 1056 // argument. 1057 bool CanDeriveViaCapture = false, UsesAliasingPtr = false; 1058 for (const Value *V : ObjSet) { 1059 // Is this value a constant that cannot be derived from any pointer 1060 // value (we need to exclude constant expressions, for example, that 1061 // are formed from arithmetic on global symbols). 1062 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || 1063 isa<ConstantPointerNull>(V) || 1064 isa<ConstantDataVector>(V) || isa<UndefValue>(V); 1065 if (IsNonPtrConst) 1066 continue; 1067 1068 // If this is anything other than a noalias argument, then we cannot 1069 // completely describe the aliasing properties using alias.scope 1070 // metadata (and, thus, won't add any). 1071 if (const Argument *A = dyn_cast<Argument>(V)) { 1072 if (!CS.paramHasAttr(A->getArgNo(), Attribute::NoAlias)) 1073 UsesAliasingPtr = true; 1074 } else { 1075 UsesAliasingPtr = true; 1076 } 1077 1078 // If this is not some identified function-local object (which cannot 1079 // directly alias a noalias argument), or some other argument (which, 1080 // by definition, also cannot alias a noalias argument), then we could 1081 // alias a noalias argument that has been captured). 1082 if (!isa<Argument>(V) && 1083 !isIdentifiedFunctionLocal(const_cast<Value*>(V))) 1084 CanDeriveViaCapture = true; 1085 } 1086 1087 // A function call can always get captured noalias pointers (via other 1088 // parameters, globals, etc.). 1089 if (IsFuncCall && !IsArgMemOnlyCall) 1090 CanDeriveViaCapture = true; 1091 1092 // First, we want to figure out all of the sets with which we definitely 1093 // don't alias. Iterate over all noalias set, and add those for which: 1094 // 1. The noalias argument is not in the set of objects from which we 1095 // definitely derive. 1096 // 2. The noalias argument has not yet been captured. 1097 // An arbitrary function that might load pointers could see captured 1098 // noalias arguments via other noalias arguments or globals, and so we 1099 // must always check for prior capture. 1100 for (const Argument *A : NoAliasArgs) { 1101 if (!ObjSet.count(A) && (!CanDeriveViaCapture || 1102 // It might be tempting to skip the 1103 // PointerMayBeCapturedBefore check if 1104 // A->hasNoCaptureAttr() is true, but this is 1105 // incorrect because nocapture only guarantees 1106 // that no copies outlive the function, not 1107 // that the value cannot be locally captured. 1108 !PointerMayBeCapturedBefore(A, 1109 /* ReturnCaptures */ false, 1110 /* StoreCaptures */ false, I, &DT))) 1111 NoAliases.push_back(NewScopes[A]); 1112 } 1113 1114 if (!NoAliases.empty()) 1115 NI->setMetadata(LLVMContext::MD_noalias, 1116 MDNode::concatenate( 1117 NI->getMetadata(LLVMContext::MD_noalias), 1118 MDNode::get(CalledFunc->getContext(), NoAliases))); 1119 1120 // Next, we want to figure out all of the sets to which we might belong. 1121 // We might belong to a set if the noalias argument is in the set of 1122 // underlying objects. If there is some non-noalias argument in our list 1123 // of underlying objects, then we cannot add a scope because the fact 1124 // that some access does not alias with any set of our noalias arguments 1125 // cannot itself guarantee that it does not alias with this access 1126 // (because there is some pointer of unknown origin involved and the 1127 // other access might also depend on this pointer). We also cannot add 1128 // scopes to arbitrary functions unless we know they don't access any 1129 // non-parameter pointer-values. 1130 bool CanAddScopes = !UsesAliasingPtr; 1131 if (CanAddScopes && IsFuncCall) 1132 CanAddScopes = IsArgMemOnlyCall; 1133 1134 if (CanAddScopes) 1135 for (const Argument *A : NoAliasArgs) { 1136 if (ObjSet.count(A)) 1137 Scopes.push_back(NewScopes[A]); 1138 } 1139 1140 if (!Scopes.empty()) 1141 NI->setMetadata( 1142 LLVMContext::MD_alias_scope, 1143 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), 1144 MDNode::get(CalledFunc->getContext(), Scopes))); 1145 } 1146 } 1147 } 1148 1149 static bool MayContainThrowingOrExitingCall(Instruction *Begin, 1150 Instruction *End) { 1151 1152 assert(Begin->getParent() == End->getParent() && 1153 "Expected to be in same basic block!"); 1154 unsigned NumInstChecked = 0; 1155 // Check that all instructions in the range [Begin, End) are guaranteed to 1156 // transfer execution to successor. 1157 for (auto &I : make_range(Begin->getIterator(), End->getIterator())) 1158 if (NumInstChecked++ > InlinerAttributeWindow || 1159 !isGuaranteedToTransferExecutionToSuccessor(&I)) 1160 return true; 1161 return false; 1162 } 1163 1164 static AttrBuilder IdentifyValidAttributes(CallSite CS) { 1165 1166 AttrBuilder AB(CS.getAttributes(), AttributeList::ReturnIndex); 1167 if (AB.empty()) 1168 return AB; 1169 AttrBuilder Valid; 1170 // Only allow these white listed attributes to be propagated back to the 1171 // callee. This is because other attributes may only be valid on the call 1172 // itself, i.e. attributes such as signext and zeroext. 1173 if (auto DerefBytes = AB.getDereferenceableBytes()) 1174 Valid.addDereferenceableAttr(DerefBytes); 1175 if (auto DerefOrNullBytes = AB.getDereferenceableOrNullBytes()) 1176 Valid.addDereferenceableOrNullAttr(DerefOrNullBytes); 1177 if (AB.contains(Attribute::NoAlias)) 1178 Valid.addAttribute(Attribute::NoAlias); 1179 if (AB.contains(Attribute::NonNull)) 1180 Valid.addAttribute(Attribute::NonNull); 1181 return Valid; 1182 } 1183 1184 static void AddReturnAttributes(CallSite CS, ValueToValueMapTy &VMap) { 1185 if (!UpdateReturnAttributes) 1186 return; 1187 1188 AttrBuilder Valid = IdentifyValidAttributes(CS); 1189 if (Valid.empty()) 1190 return; 1191 auto *CalledFunction = CS.getCalledFunction(); 1192 auto &Context = CalledFunction->getContext(); 1193 1194 for (auto &BB : *CalledFunction) { 1195 auto *RI = dyn_cast<ReturnInst>(BB.getTerminator()); 1196 if (!RI || !isa<CallBase>(RI->getOperand(0))) 1197 continue; 1198 auto *RetVal = cast<CallBase>(RI->getOperand(0)); 1199 // Sanity check that the cloned RetVal exists and is a call, otherwise we 1200 // cannot add the attributes on the cloned RetVal. 1201 // Simplification during inlining could have transformed the cloned 1202 // instruction. 1203 auto *NewRetVal = dyn_cast_or_null<CallBase>(VMap.lookup(RetVal)); 1204 if (!NewRetVal) 1205 continue; 1206 // Backward propagation of attributes to the returned value may be incorrect 1207 // if it is control flow dependent. 1208 // Consider: 1209 // @callee { 1210 // %rv = call @foo() 1211 // %rv2 = call @bar() 1212 // if (%rv2 != null) 1213 // return %rv2 1214 // if (%rv == null) 1215 // exit() 1216 // return %rv 1217 // } 1218 // caller() { 1219 // %val = call nonnull @callee() 1220 // } 1221 // Here we cannot add the nonnull attribute on either foo or bar. So, we 1222 // limit the check to both RetVal and RI are in the same basic block and 1223 // there are no throwing/exiting instructions between these instructions. 1224 if (RI->getParent() != RetVal->getParent() || 1225 MayContainThrowingOrExitingCall(RetVal, RI)) 1226 continue; 1227 // Add to the existing attributes of NewRetVal, i.e. the cloned call 1228 // instruction. 1229 // NB! When we have the same attribute already existing on NewRetVal, but 1230 // with a differing value, the AttributeList's merge API honours the already 1231 // existing attribute value (i.e. attributes such as dereferenceable, 1232 // dereferenceable_or_null etc). See AttrBuilder::merge for more details. 1233 AttributeList AL = NewRetVal->getAttributes(); 1234 AttributeList NewAL = 1235 AL.addAttributes(Context, AttributeList::ReturnIndex, Valid); 1236 NewRetVal->setAttributes(NewAL); 1237 } 1238 } 1239 1240 /// If the inlined function has non-byval align arguments, then 1241 /// add @llvm.assume-based alignment assumptions to preserve this information. 1242 static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) { 1243 if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache) 1244 return; 1245 1246 AssumptionCache *AC = &(*IFI.GetAssumptionCache)(*CS.getCaller()); 1247 auto &DL = CS.getCaller()->getParent()->getDataLayout(); 1248 1249 // To avoid inserting redundant assumptions, we should check for assumptions 1250 // already in the caller. To do this, we might need a DT of the caller. 1251 DominatorTree DT; 1252 bool DTCalculated = false; 1253 1254 Function *CalledFunc = CS.getCalledFunction(); 1255 for (Argument &Arg : CalledFunc->args()) { 1256 unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0; 1257 if (Align && !Arg.hasByValOrInAllocaAttr() && !Arg.hasNUses(0)) { 1258 if (!DTCalculated) { 1259 DT.recalculate(*CS.getCaller()); 1260 DTCalculated = true; 1261 } 1262 1263 // If we can already prove the asserted alignment in the context of the 1264 // caller, then don't bother inserting the assumption. 1265 Value *ArgVal = CS.getArgument(Arg.getArgNo()); 1266 if (getKnownAlignment(ArgVal, DL, CS.getInstruction(), AC, &DT) >= Align) 1267 continue; 1268 1269 CallInst *NewAsmp = IRBuilder<>(CS.getInstruction()) 1270 .CreateAlignmentAssumption(DL, ArgVal, Align); 1271 AC->registerAssumption(NewAsmp); 1272 } 1273 } 1274 } 1275 1276 /// Once we have cloned code over from a callee into the caller, 1277 /// update the specified callgraph to reflect the changes we made. 1278 /// Note that it's possible that not all code was copied over, so only 1279 /// some edges of the callgraph may remain. 1280 static void UpdateCallGraphAfterInlining(CallSite CS, 1281 Function::iterator FirstNewBlock, 1282 ValueToValueMapTy &VMap, 1283 InlineFunctionInfo &IFI) { 1284 CallGraph &CG = *IFI.CG; 1285 const Function *Caller = CS.getCaller(); 1286 const Function *Callee = CS.getCalledFunction(); 1287 CallGraphNode *CalleeNode = CG[Callee]; 1288 CallGraphNode *CallerNode = CG[Caller]; 1289 1290 // Since we inlined some uninlined call sites in the callee into the caller, 1291 // add edges from the caller to all of the callees of the callee. 1292 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 1293 1294 // Consider the case where CalleeNode == CallerNode. 1295 CallGraphNode::CalledFunctionsVector CallCache; 1296 if (CalleeNode == CallerNode) { 1297 CallCache.assign(I, E); 1298 I = CallCache.begin(); 1299 E = CallCache.end(); 1300 } 1301 1302 for (; I != E; ++I) { 1303 const Value *OrigCall = I->first; 1304 1305 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 1306 // Only copy the edge if the call was inlined! 1307 if (VMI == VMap.end() || VMI->second == nullptr) 1308 continue; 1309 1310 // If the call was inlined, but then constant folded, there is no edge to 1311 // add. Check for this case. 1312 auto *NewCall = dyn_cast<CallBase>(VMI->second); 1313 if (!NewCall) 1314 continue; 1315 1316 // We do not treat intrinsic calls like real function calls because we 1317 // expect them to become inline code; do not add an edge for an intrinsic. 1318 if (NewCall->getCalledFunction() && 1319 NewCall->getCalledFunction()->isIntrinsic()) 1320 continue; 1321 1322 // Remember that this call site got inlined for the client of 1323 // InlineFunction. 1324 IFI.InlinedCalls.push_back(NewCall); 1325 1326 // It's possible that inlining the callsite will cause it to go from an 1327 // indirect to a direct call by resolving a function pointer. If this 1328 // happens, set the callee of the new call site to a more precise 1329 // destination. This can also happen if the call graph node of the caller 1330 // was just unnecessarily imprecise. 1331 if (!I->second->getFunction()) 1332 if (Function *F = NewCall->getCalledFunction()) { 1333 // Indirect call site resolved to direct call. 1334 CallerNode->addCalledFunction(NewCall, CG[F]); 1335 1336 continue; 1337 } 1338 1339 CallerNode->addCalledFunction(NewCall, I->second); 1340 } 1341 1342 // Update the call graph by deleting the edge from Callee to Caller. We must 1343 // do this after the loop above in case Caller and Callee are the same. 1344 CallerNode->removeCallEdgeFor(*cast<CallBase>(CS.getInstruction())); 1345 } 1346 1347 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M, 1348 BasicBlock *InsertBlock, 1349 InlineFunctionInfo &IFI) { 1350 Type *AggTy = cast<PointerType>(Src->getType())->getElementType(); 1351 IRBuilder<> Builder(InsertBlock, InsertBlock->begin()); 1352 1353 Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy)); 1354 1355 // Always generate a memcpy of alignment 1 here because we don't know 1356 // the alignment of the src pointer. Other optimizations can infer 1357 // better alignment. 1358 Builder.CreateMemCpy(Dst, /*DstAlign*/ Align(1), Src, 1359 /*SrcAlign*/ Align(1), Size); 1360 } 1361 1362 /// When inlining a call site that has a byval argument, 1363 /// we have to make the implicit memcpy explicit by adding it. 1364 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 1365 const Function *CalledFunc, 1366 InlineFunctionInfo &IFI, 1367 unsigned ByValAlignment) { 1368 PointerType *ArgTy = cast<PointerType>(Arg->getType()); 1369 Type *AggTy = ArgTy->getElementType(); 1370 1371 Function *Caller = TheCall->getFunction(); 1372 const DataLayout &DL = Caller->getParent()->getDataLayout(); 1373 1374 // If the called function is readonly, then it could not mutate the caller's 1375 // copy of the byval'd memory. In this case, it is safe to elide the copy and 1376 // temporary. 1377 if (CalledFunc->onlyReadsMemory()) { 1378 // If the byval argument has a specified alignment that is greater than the 1379 // passed in pointer, then we either have to round up the input pointer or 1380 // give up on this transformation. 1381 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 1382 return Arg; 1383 1384 AssumptionCache *AC = 1385 IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr; 1386 1387 // If the pointer is already known to be sufficiently aligned, or if we can 1388 // round it up to a larger alignment, then we don't need a temporary. 1389 if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall, AC) >= 1390 ByValAlignment) 1391 return Arg; 1392 1393 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 1394 // for code quality, but rarely happens and is required for correctness. 1395 } 1396 1397 // Create the alloca. If we have DataLayout, use nice alignment. 1398 Align Alignment(DL.getPrefTypeAlignment(AggTy)); 1399 1400 // If the byval had an alignment specified, we *must* use at least that 1401 // alignment, as it is required by the byval argument (and uses of the 1402 // pointer inside the callee). 1403 Alignment = max(Alignment, MaybeAlign(ByValAlignment)); 1404 1405 Value *NewAlloca = 1406 new AllocaInst(AggTy, DL.getAllocaAddrSpace(), nullptr, Alignment, 1407 Arg->getName(), &*Caller->begin()->begin()); 1408 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); 1409 1410 // Uses of the argument in the function should use our new alloca 1411 // instead. 1412 return NewAlloca; 1413 } 1414 1415 // Check whether this Value is used by a lifetime intrinsic. 1416 static bool isUsedByLifetimeMarker(Value *V) { 1417 for (User *U : V->users()) 1418 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) 1419 if (II->isLifetimeStartOrEnd()) 1420 return true; 1421 return false; 1422 } 1423 1424 // Check whether the given alloca already has 1425 // lifetime.start or lifetime.end intrinsics. 1426 static bool hasLifetimeMarkers(AllocaInst *AI) { 1427 Type *Ty = AI->getType(); 1428 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), 1429 Ty->getPointerAddressSpace()); 1430 if (Ty == Int8PtrTy) 1431 return isUsedByLifetimeMarker(AI); 1432 1433 // Do a scan to find all the casts to i8*. 1434 for (User *U : AI->users()) { 1435 if (U->getType() != Int8PtrTy) continue; 1436 if (U->stripPointerCasts() != AI) continue; 1437 if (isUsedByLifetimeMarker(U)) 1438 return true; 1439 } 1440 return false; 1441 } 1442 1443 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry 1444 /// block. Allocas used in inalloca calls and allocas of dynamic array size 1445 /// cannot be static. 1446 static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) { 1447 return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca(); 1448 } 1449 1450 /// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL 1451 /// inlined at \p InlinedAt. \p IANodes is an inlined-at cache. 1452 static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt, 1453 LLVMContext &Ctx, 1454 DenseMap<const MDNode *, MDNode *> &IANodes) { 1455 auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes); 1456 return DebugLoc::get(OrigDL.getLine(), OrigDL.getCol(), OrigDL.getScope(), 1457 IA); 1458 } 1459 1460 /// Update inlined instructions' line numbers to 1461 /// to encode location where these instructions are inlined. 1462 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 1463 Instruction *TheCall, bool CalleeHasDebugInfo) { 1464 const DebugLoc &TheCallDL = TheCall->getDebugLoc(); 1465 if (!TheCallDL) 1466 return; 1467 1468 auto &Ctx = Fn->getContext(); 1469 DILocation *InlinedAtNode = TheCallDL; 1470 1471 // Create a unique call site, not to be confused with any other call from the 1472 // same location. 1473 InlinedAtNode = DILocation::getDistinct( 1474 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(), 1475 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt()); 1476 1477 // Cache the inlined-at nodes as they're built so they are reused, without 1478 // this every instruction's inlined-at chain would become distinct from each 1479 // other. 1480 DenseMap<const MDNode *, MDNode *> IANodes; 1481 1482 // Check if we are not generating inline line tables and want to use 1483 // the call site location instead. 1484 bool NoInlineLineTables = Fn->hasFnAttribute("no-inline-line-tables"); 1485 1486 for (; FI != Fn->end(); ++FI) { 1487 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 1488 BI != BE; ++BI) { 1489 // Loop metadata needs to be updated so that the start and end locs 1490 // reference inlined-at locations. 1491 auto updateLoopInfoLoc = [&Ctx, &InlinedAtNode, &IANodes]( 1492 const DILocation &Loc) -> DILocation * { 1493 return inlineDebugLoc(&Loc, InlinedAtNode, Ctx, IANodes).get(); 1494 }; 1495 updateLoopMetadataDebugLocations(*BI, updateLoopInfoLoc); 1496 1497 if (!NoInlineLineTables) 1498 if (DebugLoc DL = BI->getDebugLoc()) { 1499 DebugLoc IDL = 1500 inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes); 1501 BI->setDebugLoc(IDL); 1502 continue; 1503 } 1504 1505 if (CalleeHasDebugInfo && !NoInlineLineTables) 1506 continue; 1507 1508 // If the inlined instruction has no line number, or if inline info 1509 // is not being generated, make it look as if it originates from the call 1510 // location. This is important for ((__always_inline, __nodebug__)) 1511 // functions which must use caller location for all instructions in their 1512 // function body. 1513 1514 // Don't update static allocas, as they may get moved later. 1515 if (auto *AI = dyn_cast<AllocaInst>(BI)) 1516 if (allocaWouldBeStaticInEntry(AI)) 1517 continue; 1518 1519 BI->setDebugLoc(TheCallDL); 1520 } 1521 1522 // Remove debug info intrinsics if we're not keeping inline info. 1523 if (NoInlineLineTables) { 1524 BasicBlock::iterator BI = FI->begin(); 1525 while (BI != FI->end()) { 1526 if (isa<DbgInfoIntrinsic>(BI)) { 1527 BI = BI->eraseFromParent(); 1528 continue; 1529 } 1530 ++BI; 1531 } 1532 } 1533 1534 } 1535 } 1536 1537 /// Update the block frequencies of the caller after a callee has been inlined. 1538 /// 1539 /// Each block cloned into the caller has its block frequency scaled by the 1540 /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of 1541 /// callee's entry block gets the same frequency as the callsite block and the 1542 /// relative frequencies of all cloned blocks remain the same after cloning. 1543 static void updateCallerBFI(BasicBlock *CallSiteBlock, 1544 const ValueToValueMapTy &VMap, 1545 BlockFrequencyInfo *CallerBFI, 1546 BlockFrequencyInfo *CalleeBFI, 1547 const BasicBlock &CalleeEntryBlock) { 1548 SmallPtrSet<BasicBlock *, 16> ClonedBBs; 1549 for (auto Entry : VMap) { 1550 if (!isa<BasicBlock>(Entry.first) || !Entry.second) 1551 continue; 1552 auto *OrigBB = cast<BasicBlock>(Entry.first); 1553 auto *ClonedBB = cast<BasicBlock>(Entry.second); 1554 uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency(); 1555 if (!ClonedBBs.insert(ClonedBB).second) { 1556 // Multiple blocks in the callee might get mapped to one cloned block in 1557 // the caller since we prune the callee as we clone it. When that happens, 1558 // we want to use the maximum among the original blocks' frequencies. 1559 uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency(); 1560 if (NewFreq > Freq) 1561 Freq = NewFreq; 1562 } 1563 CallerBFI->setBlockFreq(ClonedBB, Freq); 1564 } 1565 BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock)); 1566 CallerBFI->setBlockFreqAndScale( 1567 EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(), 1568 ClonedBBs); 1569 } 1570 1571 /// Update the branch metadata for cloned call instructions. 1572 static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap, 1573 const ProfileCount &CalleeEntryCount, 1574 const Instruction *TheCall, 1575 ProfileSummaryInfo *PSI, 1576 BlockFrequencyInfo *CallerBFI) { 1577 if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() || 1578 CalleeEntryCount.getCount() < 1) 1579 return; 1580 auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None; 1581 int64_t CallCount = 1582 std::min(CallSiteCount.hasValue() ? CallSiteCount.getValue() : 0, 1583 CalleeEntryCount.getCount()); 1584 updateProfileCallee(Callee, -CallCount, &VMap); 1585 } 1586 1587 void llvm::updateProfileCallee( 1588 Function *Callee, int64_t entryDelta, 1589 const ValueMap<const Value *, WeakTrackingVH> *VMap) { 1590 auto CalleeCount = Callee->getEntryCount(); 1591 if (!CalleeCount.hasValue()) 1592 return; 1593 1594 uint64_t priorEntryCount = CalleeCount.getCount(); 1595 uint64_t newEntryCount; 1596 1597 // Since CallSiteCount is an estimate, it could exceed the original callee 1598 // count and has to be set to 0 so guard against underflow. 1599 if (entryDelta < 0 && static_cast<uint64_t>(-entryDelta) > priorEntryCount) 1600 newEntryCount = 0; 1601 else 1602 newEntryCount = priorEntryCount + entryDelta; 1603 1604 // During inlining ? 1605 if (VMap) { 1606 uint64_t cloneEntryCount = priorEntryCount - newEntryCount; 1607 for (auto Entry : *VMap) 1608 if (isa<CallInst>(Entry.first)) 1609 if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second)) 1610 CI->updateProfWeight(cloneEntryCount, priorEntryCount); 1611 } 1612 1613 if (entryDelta) { 1614 Callee->setEntryCount(newEntryCount); 1615 1616 for (BasicBlock &BB : *Callee) 1617 // No need to update the callsite if it is pruned during inlining. 1618 if (!VMap || VMap->count(&BB)) 1619 for (Instruction &I : BB) 1620 if (CallInst *CI = dyn_cast<CallInst>(&I)) 1621 CI->updateProfWeight(newEntryCount, priorEntryCount); 1622 } 1623 } 1624 1625 /// This function inlines the called function into the basic block of the 1626 /// caller. This returns false if it is not possible to inline this call. 1627 /// The program is still in a well defined state if this occurs though. 1628 /// 1629 /// Note that this only does one level of inlining. For example, if the 1630 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 1631 /// exists in the instruction stream. Similarly this will inline a recursive 1632 /// function by one level. 1633 llvm::InlineResult llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI, 1634 AAResults *CalleeAAR, 1635 bool InsertLifetime, 1636 Function *ForwardVarArgsTo) { 1637 Instruction *TheCall = CS.getInstruction(); 1638 assert(TheCall->getParent() && TheCall->getFunction() 1639 && "Instruction not in function!"); 1640 1641 // FIXME: we don't inline callbr yet. 1642 if (isa<CallBrInst>(TheCall)) 1643 return InlineResult::failure("We don't inline callbr yet."); 1644 1645 // If IFI has any state in it, zap it before we fill it in. 1646 IFI.reset(); 1647 1648 Function *CalledFunc = CS.getCalledFunction(); 1649 if (!CalledFunc || // Can't inline external function or indirect 1650 CalledFunc->isDeclaration()) // call! 1651 return InlineResult::failure("external or indirect"); 1652 1653 // The inliner does not know how to inline through calls with operand bundles 1654 // in general ... 1655 if (CS.hasOperandBundles()) { 1656 for (int i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 1657 uint32_t Tag = CS.getOperandBundleAt(i).getTagID(); 1658 // ... but it knows how to inline through "deopt" operand bundles ... 1659 if (Tag == LLVMContext::OB_deopt) 1660 continue; 1661 // ... and "funclet" operand bundles. 1662 if (Tag == LLVMContext::OB_funclet) 1663 continue; 1664 1665 return InlineResult::failure("unsupported operand bundle"); 1666 } 1667 } 1668 1669 // If the call to the callee cannot throw, set the 'nounwind' flag on any 1670 // calls that we inline. 1671 bool MarkNoUnwind = CS.doesNotThrow(); 1672 1673 BasicBlock *OrigBB = TheCall->getParent(); 1674 Function *Caller = OrigBB->getParent(); 1675 1676 // GC poses two hazards to inlining, which only occur when the callee has GC: 1677 // 1. If the caller has no GC, then the callee's GC must be propagated to the 1678 // caller. 1679 // 2. If the caller has a differing GC, it is invalid to inline. 1680 if (CalledFunc->hasGC()) { 1681 if (!Caller->hasGC()) 1682 Caller->setGC(CalledFunc->getGC()); 1683 else if (CalledFunc->getGC() != Caller->getGC()) 1684 return InlineResult::failure("incompatible GC"); 1685 } 1686 1687 // Get the personality function from the callee if it contains a landing pad. 1688 Constant *CalledPersonality = 1689 CalledFunc->hasPersonalityFn() 1690 ? CalledFunc->getPersonalityFn()->stripPointerCasts() 1691 : nullptr; 1692 1693 // Find the personality function used by the landing pads of the caller. If it 1694 // exists, then check to see that it matches the personality function used in 1695 // the callee. 1696 Constant *CallerPersonality = 1697 Caller->hasPersonalityFn() 1698 ? Caller->getPersonalityFn()->stripPointerCasts() 1699 : nullptr; 1700 if (CalledPersonality) { 1701 if (!CallerPersonality) 1702 Caller->setPersonalityFn(CalledPersonality); 1703 // If the personality functions match, then we can perform the 1704 // inlining. Otherwise, we can't inline. 1705 // TODO: This isn't 100% true. Some personality functions are proper 1706 // supersets of others and can be used in place of the other. 1707 else if (CalledPersonality != CallerPersonality) 1708 return InlineResult::failure("incompatible personality"); 1709 } 1710 1711 // We need to figure out which funclet the callsite was in so that we may 1712 // properly nest the callee. 1713 Instruction *CallSiteEHPad = nullptr; 1714 if (CallerPersonality) { 1715 EHPersonality Personality = classifyEHPersonality(CallerPersonality); 1716 if (isScopedEHPersonality(Personality)) { 1717 Optional<OperandBundleUse> ParentFunclet = 1718 CS.getOperandBundle(LLVMContext::OB_funclet); 1719 if (ParentFunclet) 1720 CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front()); 1721 1722 // OK, the inlining site is legal. What about the target function? 1723 1724 if (CallSiteEHPad) { 1725 if (Personality == EHPersonality::MSVC_CXX) { 1726 // The MSVC personality cannot tolerate catches getting inlined into 1727 // cleanup funclets. 1728 if (isa<CleanupPadInst>(CallSiteEHPad)) { 1729 // Ok, the call site is within a cleanuppad. Let's check the callee 1730 // for catchpads. 1731 for (const BasicBlock &CalledBB : *CalledFunc) { 1732 if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI())) 1733 return InlineResult::failure("catch in cleanup funclet"); 1734 } 1735 } 1736 } else if (isAsynchronousEHPersonality(Personality)) { 1737 // SEH is even less tolerant, there may not be any sort of exceptional 1738 // funclet in the callee. 1739 for (const BasicBlock &CalledBB : *CalledFunc) { 1740 if (CalledBB.isEHPad()) 1741 return InlineResult::failure("SEH in cleanup funclet"); 1742 } 1743 } 1744 } 1745 } 1746 } 1747 1748 // Determine if we are dealing with a call in an EHPad which does not unwind 1749 // to caller. 1750 bool EHPadForCallUnwindsLocally = false; 1751 if (CallSiteEHPad && CS.isCall()) { 1752 UnwindDestMemoTy FuncletUnwindMap; 1753 Value *CallSiteUnwindDestToken = 1754 getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap); 1755 1756 EHPadForCallUnwindsLocally = 1757 CallSiteUnwindDestToken && 1758 !isa<ConstantTokenNone>(CallSiteUnwindDestToken); 1759 } 1760 1761 // Get an iterator to the last basic block in the function, which will have 1762 // the new function inlined after it. 1763 Function::iterator LastBlock = --Caller->end(); 1764 1765 // Make sure to capture all of the return instructions from the cloned 1766 // function. 1767 SmallVector<ReturnInst*, 8> Returns; 1768 ClonedCodeInfo InlinedFunctionInfo; 1769 Function::iterator FirstNewBlock; 1770 1771 { // Scope to destroy VMap after cloning. 1772 ValueToValueMapTy VMap; 1773 // Keep a list of pair (dst, src) to emit byval initializations. 1774 SmallVector<std::pair<Value*, Value*>, 4> ByValInit; 1775 1776 auto &DL = Caller->getParent()->getDataLayout(); 1777 1778 // Calculate the vector of arguments to pass into the function cloner, which 1779 // matches up the formal to the actual argument values. 1780 CallSite::arg_iterator AI = CS.arg_begin(); 1781 unsigned ArgNo = 0; 1782 for (Function::arg_iterator I = CalledFunc->arg_begin(), 1783 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 1784 Value *ActualArg = *AI; 1785 1786 // When byval arguments actually inlined, we need to make the copy implied 1787 // by them explicit. However, we don't do this if the callee is readonly 1788 // or readnone, because the copy would be unneeded: the callee doesn't 1789 // modify the struct. 1790 if (CS.isByValArgument(ArgNo)) { 1791 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, 1792 CalledFunc->getParamAlignment(ArgNo)); 1793 if (ActualArg != *AI) 1794 ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI)); 1795 } 1796 1797 VMap[&*I] = ActualArg; 1798 } 1799 1800 // TODO: Remove this when users have been updated to the assume bundles. 1801 // Add alignment assumptions if necessary. We do this before the inlined 1802 // instructions are actually cloned into the caller so that we can easily 1803 // check what will be known at the start of the inlined code. 1804 AddAlignmentAssumptions(CS, IFI); 1805 1806 /// Preserve all attributes on of the call and its parameters. 1807 if (Instruction *Assume = buildAssumeFromInst(CS.getInstruction())) 1808 Assume->insertBefore(CS.getInstruction()); 1809 1810 // We want the inliner to prune the code as it copies. We would LOVE to 1811 // have no dead or constant instructions leftover after inlining occurs 1812 // (which can happen, e.g., because an argument was constant), but we'll be 1813 // happy with whatever the cloner can do. 1814 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 1815 /*ModuleLevelChanges=*/false, Returns, ".i", 1816 &InlinedFunctionInfo, TheCall); 1817 // Remember the first block that is newly cloned over. 1818 FirstNewBlock = LastBlock; ++FirstNewBlock; 1819 1820 if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr) 1821 // Update the BFI of blocks cloned into the caller. 1822 updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI, 1823 CalledFunc->front()); 1824 1825 updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), TheCall, 1826 IFI.PSI, IFI.CallerBFI); 1827 1828 // Inject byval arguments initialization. 1829 for (std::pair<Value*, Value*> &Init : ByValInit) 1830 HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(), 1831 &*FirstNewBlock, IFI); 1832 1833 Optional<OperandBundleUse> ParentDeopt = 1834 CS.getOperandBundle(LLVMContext::OB_deopt); 1835 if (ParentDeopt) { 1836 SmallVector<OperandBundleDef, 2> OpDefs; 1837 1838 for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) { 1839 Instruction *I = dyn_cast_or_null<Instruction>(VH); 1840 if (!I) continue; // instruction was DCE'd or RAUW'ed to undef 1841 1842 OpDefs.clear(); 1843 1844 CallSite ICS(I); 1845 OpDefs.reserve(ICS.getNumOperandBundles()); 1846 1847 for (unsigned i = 0, e = ICS.getNumOperandBundles(); i < e; ++i) { 1848 auto ChildOB = ICS.getOperandBundleAt(i); 1849 if (ChildOB.getTagID() != LLVMContext::OB_deopt) { 1850 // If the inlined call has other operand bundles, let them be 1851 OpDefs.emplace_back(ChildOB); 1852 continue; 1853 } 1854 1855 // It may be useful to separate this logic (of handling operand 1856 // bundles) out to a separate "policy" component if this gets crowded. 1857 // Prepend the parent's deoptimization continuation to the newly 1858 // inlined call's deoptimization continuation. 1859 std::vector<Value *> MergedDeoptArgs; 1860 MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() + 1861 ChildOB.Inputs.size()); 1862 1863 MergedDeoptArgs.insert(MergedDeoptArgs.end(), 1864 ParentDeopt->Inputs.begin(), 1865 ParentDeopt->Inputs.end()); 1866 MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(), 1867 ChildOB.Inputs.end()); 1868 1869 OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs)); 1870 } 1871 1872 Instruction *NewI = nullptr; 1873 if (isa<CallInst>(I)) 1874 NewI = CallInst::Create(cast<CallInst>(I), OpDefs, I); 1875 else if (isa<CallBrInst>(I)) 1876 NewI = CallBrInst::Create(cast<CallBrInst>(I), OpDefs, I); 1877 else 1878 NewI = InvokeInst::Create(cast<InvokeInst>(I), OpDefs, I); 1879 1880 // Note: the RAUW does the appropriate fixup in VMap, so we need to do 1881 // this even if the call returns void. 1882 I->replaceAllUsesWith(NewI); 1883 1884 VH = nullptr; 1885 I->eraseFromParent(); 1886 } 1887 } 1888 1889 // Update the callgraph if requested. 1890 if (IFI.CG) 1891 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); 1892 1893 // For 'nodebug' functions, the associated DISubprogram is always null. 1894 // Conservatively avoid propagating the callsite debug location to 1895 // instructions inlined from a function whose DISubprogram is not null. 1896 fixupLineNumbers(Caller, FirstNewBlock, TheCall, 1897 CalledFunc->getSubprogram() != nullptr); 1898 1899 // Clone existing noalias metadata if necessary. 1900 CloneAliasScopeMetadata(CS, VMap); 1901 1902 // Add noalias metadata if necessary. 1903 AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR); 1904 1905 // Clone return attributes on the callsite into the calls within the inlined 1906 // function which feed into its return value. 1907 AddReturnAttributes(CS, VMap); 1908 1909 // Propagate llvm.mem.parallel_loop_access if necessary. 1910 PropagateParallelLoopAccessMetadata(CS, VMap); 1911 1912 // Register any cloned assumptions. 1913 if (IFI.GetAssumptionCache) 1914 for (BasicBlock &NewBlock : 1915 make_range(FirstNewBlock->getIterator(), Caller->end())) 1916 for (Instruction &I : NewBlock) { 1917 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 1918 if (II->getIntrinsicID() == Intrinsic::assume) 1919 (*IFI.GetAssumptionCache)(*Caller).registerAssumption(II); 1920 } 1921 } 1922 1923 // If there are any alloca instructions in the block that used to be the entry 1924 // block for the callee, move them to the entry block of the caller. First 1925 // calculate which instruction they should be inserted before. We insert the 1926 // instructions at the end of the current alloca list. 1927 { 1928 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 1929 for (BasicBlock::iterator I = FirstNewBlock->begin(), 1930 E = FirstNewBlock->end(); I != E; ) { 1931 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 1932 if (!AI) continue; 1933 1934 // If the alloca is now dead, remove it. This often occurs due to code 1935 // specialization. 1936 if (AI->use_empty()) { 1937 AI->eraseFromParent(); 1938 continue; 1939 } 1940 1941 if (!allocaWouldBeStaticInEntry(AI)) 1942 continue; 1943 1944 // Keep track of the static allocas that we inline into the caller. 1945 IFI.StaticAllocas.push_back(AI); 1946 1947 // Scan for the block of allocas that we can move over, and move them 1948 // all at once. 1949 while (isa<AllocaInst>(I) && 1950 !cast<AllocaInst>(I)->use_empty() && 1951 allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) { 1952 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 1953 ++I; 1954 } 1955 1956 // Transfer all of the allocas over in a block. Using splice means 1957 // that the instructions aren't removed from the symbol table, then 1958 // reinserted. 1959 Caller->getEntryBlock().getInstList().splice( 1960 InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I); 1961 } 1962 } 1963 1964 SmallVector<Value*,4> VarArgsToForward; 1965 SmallVector<AttributeSet, 4> VarArgsAttrs; 1966 for (unsigned i = CalledFunc->getFunctionType()->getNumParams(); 1967 i < CS.getNumArgOperands(); i++) { 1968 VarArgsToForward.push_back(CS.getArgOperand(i)); 1969 VarArgsAttrs.push_back(CS.getAttributes().getParamAttributes(i)); 1970 } 1971 1972 bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false; 1973 if (InlinedFunctionInfo.ContainsCalls) { 1974 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; 1975 if (CallInst *CI = dyn_cast<CallInst>(TheCall)) 1976 CallSiteTailKind = CI->getTailCallKind(); 1977 1978 // For inlining purposes, the "notail" marker is the same as no marker. 1979 if (CallSiteTailKind == CallInst::TCK_NoTail) 1980 CallSiteTailKind = CallInst::TCK_None; 1981 1982 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 1983 ++BB) { 1984 for (auto II = BB->begin(); II != BB->end();) { 1985 Instruction &I = *II++; 1986 CallInst *CI = dyn_cast<CallInst>(&I); 1987 if (!CI) 1988 continue; 1989 1990 // Forward varargs from inlined call site to calls to the 1991 // ForwardVarArgsTo function, if requested, and to musttail calls. 1992 if (!VarArgsToForward.empty() && 1993 ((ForwardVarArgsTo && 1994 CI->getCalledFunction() == ForwardVarArgsTo) || 1995 CI->isMustTailCall())) { 1996 // Collect attributes for non-vararg parameters. 1997 AttributeList Attrs = CI->getAttributes(); 1998 SmallVector<AttributeSet, 8> ArgAttrs; 1999 if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) { 2000 for (unsigned ArgNo = 0; 2001 ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo) 2002 ArgAttrs.push_back(Attrs.getParamAttributes(ArgNo)); 2003 } 2004 2005 // Add VarArg attributes. 2006 ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end()); 2007 Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttributes(), 2008 Attrs.getRetAttributes(), ArgAttrs); 2009 // Add VarArgs to existing parameters. 2010 SmallVector<Value *, 6> Params(CI->arg_operands()); 2011 Params.append(VarArgsToForward.begin(), VarArgsToForward.end()); 2012 CallInst *NewCI = CallInst::Create( 2013 CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI); 2014 NewCI->setDebugLoc(CI->getDebugLoc()); 2015 NewCI->setAttributes(Attrs); 2016 NewCI->setCallingConv(CI->getCallingConv()); 2017 CI->replaceAllUsesWith(NewCI); 2018 CI->eraseFromParent(); 2019 CI = NewCI; 2020 } 2021 2022 if (Function *F = CI->getCalledFunction()) 2023 InlinedDeoptimizeCalls |= 2024 F->getIntrinsicID() == Intrinsic::experimental_deoptimize; 2025 2026 // We need to reduce the strength of any inlined tail calls. For 2027 // musttail, we have to avoid introducing potential unbounded stack 2028 // growth. For example, if functions 'f' and 'g' are mutually recursive 2029 // with musttail, we can inline 'g' into 'f' so long as we preserve 2030 // musttail on the cloned call to 'f'. If either the inlined call site 2031 // or the cloned call site is *not* musttail, the program already has 2032 // one frame of stack growth, so it's safe to remove musttail. Here is 2033 // a table of example transformations: 2034 // 2035 // f -> musttail g -> musttail f ==> f -> musttail f 2036 // f -> musttail g -> tail f ==> f -> tail f 2037 // f -> g -> musttail f ==> f -> f 2038 // f -> g -> tail f ==> f -> f 2039 // 2040 // Inlined notail calls should remain notail calls. 2041 CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); 2042 if (ChildTCK != CallInst::TCK_NoTail) 2043 ChildTCK = std::min(CallSiteTailKind, ChildTCK); 2044 CI->setTailCallKind(ChildTCK); 2045 InlinedMustTailCalls |= CI->isMustTailCall(); 2046 2047 // Calls inlined through a 'nounwind' call site should be marked 2048 // 'nounwind'. 2049 if (MarkNoUnwind) 2050 CI->setDoesNotThrow(); 2051 } 2052 } 2053 } 2054 2055 // Leave lifetime markers for the static alloca's, scoping them to the 2056 // function we just inlined. 2057 if (InsertLifetime && !IFI.StaticAllocas.empty()) { 2058 IRBuilder<> builder(&FirstNewBlock->front()); 2059 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 2060 AllocaInst *AI = IFI.StaticAllocas[ai]; 2061 // Don't mark swifterror allocas. They can't have bitcast uses. 2062 if (AI->isSwiftError()) 2063 continue; 2064 2065 // If the alloca is already scoped to something smaller than the whole 2066 // function then there's no need to add redundant, less accurate markers. 2067 if (hasLifetimeMarkers(AI)) 2068 continue; 2069 2070 // Try to determine the size of the allocation. 2071 ConstantInt *AllocaSize = nullptr; 2072 if (ConstantInt *AIArraySize = 2073 dyn_cast<ConstantInt>(AI->getArraySize())) { 2074 auto &DL = Caller->getParent()->getDataLayout(); 2075 Type *AllocaType = AI->getAllocatedType(); 2076 uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType); 2077 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 2078 2079 // Don't add markers for zero-sized allocas. 2080 if (AllocaArraySize == 0) 2081 continue; 2082 2083 // Check that array size doesn't saturate uint64_t and doesn't 2084 // overflow when it's multiplied by type size. 2085 if (AllocaArraySize != std::numeric_limits<uint64_t>::max() && 2086 std::numeric_limits<uint64_t>::max() / AllocaArraySize >= 2087 AllocaTypeSize) { 2088 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 2089 AllocaArraySize * AllocaTypeSize); 2090 } 2091 } 2092 2093 builder.CreateLifetimeStart(AI, AllocaSize); 2094 for (ReturnInst *RI : Returns) { 2095 // Don't insert llvm.lifetime.end calls between a musttail or deoptimize 2096 // call and a return. The return kills all local allocas. 2097 if (InlinedMustTailCalls && 2098 RI->getParent()->getTerminatingMustTailCall()) 2099 continue; 2100 if (InlinedDeoptimizeCalls && 2101 RI->getParent()->getTerminatingDeoptimizeCall()) 2102 continue; 2103 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); 2104 } 2105 } 2106 } 2107 2108 // If the inlined code contained dynamic alloca instructions, wrap the inlined 2109 // code with llvm.stacksave/llvm.stackrestore intrinsics. 2110 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 2111 Module *M = Caller->getParent(); 2112 // Get the two intrinsics we care about. 2113 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 2114 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 2115 2116 // Insert the llvm.stacksave. 2117 CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin()) 2118 .CreateCall(StackSave, {}, "savedstack"); 2119 2120 // Insert a call to llvm.stackrestore before any return instructions in the 2121 // inlined function. 2122 for (ReturnInst *RI : Returns) { 2123 // Don't insert llvm.stackrestore calls between a musttail or deoptimize 2124 // call and a return. The return will restore the stack pointer. 2125 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) 2126 continue; 2127 if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall()) 2128 continue; 2129 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); 2130 } 2131 } 2132 2133 // If we are inlining for an invoke instruction, we must make sure to rewrite 2134 // any call instructions into invoke instructions. This is sensitive to which 2135 // funclet pads were top-level in the inlinee, so must be done before 2136 // rewriting the "parent pad" links. 2137 if (auto *II = dyn_cast<InvokeInst>(TheCall)) { 2138 BasicBlock *UnwindDest = II->getUnwindDest(); 2139 Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI(); 2140 if (isa<LandingPadInst>(FirstNonPHI)) { 2141 HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo); 2142 } else { 2143 HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo); 2144 } 2145 } 2146 2147 // Update the lexical scopes of the new funclets and callsites. 2148 // Anything that had 'none' as its parent is now nested inside the callsite's 2149 // EHPad. 2150 2151 if (CallSiteEHPad) { 2152 for (Function::iterator BB = FirstNewBlock->getIterator(), 2153 E = Caller->end(); 2154 BB != E; ++BB) { 2155 // Add bundle operands to any top-level call sites. 2156 SmallVector<OperandBundleDef, 1> OpBundles; 2157 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) { 2158 Instruction *I = &*BBI++; 2159 CallSite CS(I); 2160 if (!CS) 2161 continue; 2162 2163 // Skip call sites which are nounwind intrinsics. 2164 auto *CalledFn = 2165 dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts()); 2166 if (CalledFn && CalledFn->isIntrinsic() && CS.doesNotThrow()) 2167 continue; 2168 2169 // Skip call sites which already have a "funclet" bundle. 2170 if (CS.getOperandBundle(LLVMContext::OB_funclet)) 2171 continue; 2172 2173 CS.getOperandBundlesAsDefs(OpBundles); 2174 OpBundles.emplace_back("funclet", CallSiteEHPad); 2175 2176 Instruction *NewInst; 2177 if (CS.isCall()) 2178 NewInst = CallInst::Create(cast<CallInst>(I), OpBundles, I); 2179 else if (CS.isCallBr()) 2180 NewInst = CallBrInst::Create(cast<CallBrInst>(I), OpBundles, I); 2181 else 2182 NewInst = InvokeInst::Create(cast<InvokeInst>(I), OpBundles, I); 2183 NewInst->takeName(I); 2184 I->replaceAllUsesWith(NewInst); 2185 I->eraseFromParent(); 2186 2187 OpBundles.clear(); 2188 } 2189 2190 // It is problematic if the inlinee has a cleanupret which unwinds to 2191 // caller and we inline it into a call site which doesn't unwind but into 2192 // an EH pad that does. Such an edge must be dynamically unreachable. 2193 // As such, we replace the cleanupret with unreachable. 2194 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator())) 2195 if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally) 2196 changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false); 2197 2198 Instruction *I = BB->getFirstNonPHI(); 2199 if (!I->isEHPad()) 2200 continue; 2201 2202 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 2203 if (isa<ConstantTokenNone>(CatchSwitch->getParentPad())) 2204 CatchSwitch->setParentPad(CallSiteEHPad); 2205 } else { 2206 auto *FPI = cast<FuncletPadInst>(I); 2207 if (isa<ConstantTokenNone>(FPI->getParentPad())) 2208 FPI->setParentPad(CallSiteEHPad); 2209 } 2210 } 2211 } 2212 2213 if (InlinedDeoptimizeCalls) { 2214 // We need to at least remove the deoptimizing returns from the Return set, 2215 // so that the control flow from those returns does not get merged into the 2216 // caller (but terminate it instead). If the caller's return type does not 2217 // match the callee's return type, we also need to change the return type of 2218 // the intrinsic. 2219 if (Caller->getReturnType() == TheCall->getType()) { 2220 auto NewEnd = llvm::remove_if(Returns, [](ReturnInst *RI) { 2221 return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr; 2222 }); 2223 Returns.erase(NewEnd, Returns.end()); 2224 } else { 2225 SmallVector<ReturnInst *, 8> NormalReturns; 2226 Function *NewDeoptIntrinsic = Intrinsic::getDeclaration( 2227 Caller->getParent(), Intrinsic::experimental_deoptimize, 2228 {Caller->getReturnType()}); 2229 2230 for (ReturnInst *RI : Returns) { 2231 CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall(); 2232 if (!DeoptCall) { 2233 NormalReturns.push_back(RI); 2234 continue; 2235 } 2236 2237 // The calling convention on the deoptimize call itself may be bogus, 2238 // since the code we're inlining may have undefined behavior (and may 2239 // never actually execute at runtime); but all 2240 // @llvm.experimental.deoptimize declarations have to have the same 2241 // calling convention in a well-formed module. 2242 auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv(); 2243 NewDeoptIntrinsic->setCallingConv(CallingConv); 2244 auto *CurBB = RI->getParent(); 2245 RI->eraseFromParent(); 2246 2247 SmallVector<Value *, 4> CallArgs(DeoptCall->arg_begin(), 2248 DeoptCall->arg_end()); 2249 2250 SmallVector<OperandBundleDef, 1> OpBundles; 2251 DeoptCall->getOperandBundlesAsDefs(OpBundles); 2252 DeoptCall->eraseFromParent(); 2253 assert(!OpBundles.empty() && 2254 "Expected at least the deopt operand bundle"); 2255 2256 IRBuilder<> Builder(CurBB); 2257 CallInst *NewDeoptCall = 2258 Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles); 2259 NewDeoptCall->setCallingConv(CallingConv); 2260 if (NewDeoptCall->getType()->isVoidTy()) 2261 Builder.CreateRetVoid(); 2262 else 2263 Builder.CreateRet(NewDeoptCall); 2264 } 2265 2266 // Leave behind the normal returns so we can merge control flow. 2267 std::swap(Returns, NormalReturns); 2268 } 2269 } 2270 2271 // Handle any inlined musttail call sites. In order for a new call site to be 2272 // musttail, the source of the clone and the inlined call site must have been 2273 // musttail. Therefore it's safe to return without merging control into the 2274 // phi below. 2275 if (InlinedMustTailCalls) { 2276 // Check if we need to bitcast the result of any musttail calls. 2277 Type *NewRetTy = Caller->getReturnType(); 2278 bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy; 2279 2280 // Handle the returns preceded by musttail calls separately. 2281 SmallVector<ReturnInst *, 8> NormalReturns; 2282 for (ReturnInst *RI : Returns) { 2283 CallInst *ReturnedMustTail = 2284 RI->getParent()->getTerminatingMustTailCall(); 2285 if (!ReturnedMustTail) { 2286 NormalReturns.push_back(RI); 2287 continue; 2288 } 2289 if (!NeedBitCast) 2290 continue; 2291 2292 // Delete the old return and any preceding bitcast. 2293 BasicBlock *CurBB = RI->getParent(); 2294 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); 2295 RI->eraseFromParent(); 2296 if (OldCast) 2297 OldCast->eraseFromParent(); 2298 2299 // Insert a new bitcast and return with the right type. 2300 IRBuilder<> Builder(CurBB); 2301 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); 2302 } 2303 2304 // Leave behind the normal returns so we can merge control flow. 2305 std::swap(Returns, NormalReturns); 2306 } 2307 2308 // Now that all of the transforms on the inlined code have taken place but 2309 // before we splice the inlined code into the CFG and lose track of which 2310 // blocks were actually inlined, collect the call sites. We only do this if 2311 // call graph updates weren't requested, as those provide value handle based 2312 // tracking of inlined call sites instead. 2313 if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) { 2314 // Otherwise just collect the raw call sites that were inlined. 2315 for (BasicBlock &NewBB : 2316 make_range(FirstNewBlock->getIterator(), Caller->end())) 2317 for (Instruction &I : NewBB) 2318 if (auto CS = CallSite(&I)) 2319 IFI.InlinedCallSites.push_back(CS); 2320 } 2321 2322 // If we cloned in _exactly one_ basic block, and if that block ends in a 2323 // return instruction, we splice the body of the inlined callee directly into 2324 // the calling basic block. 2325 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 2326 // Move all of the instructions right before the call. 2327 OrigBB->getInstList().splice(TheCall->getIterator(), 2328 FirstNewBlock->getInstList(), 2329 FirstNewBlock->begin(), FirstNewBlock->end()); 2330 // Remove the cloned basic block. 2331 Caller->getBasicBlockList().pop_back(); 2332 2333 // If the call site was an invoke instruction, add a branch to the normal 2334 // destination. 2335 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 2336 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); 2337 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 2338 } 2339 2340 // If the return instruction returned a value, replace uses of the call with 2341 // uses of the returned value. 2342 if (!TheCall->use_empty()) { 2343 ReturnInst *R = Returns[0]; 2344 if (TheCall == R->getReturnValue()) 2345 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 2346 else 2347 TheCall->replaceAllUsesWith(R->getReturnValue()); 2348 } 2349 // Since we are now done with the Call/Invoke, we can delete it. 2350 TheCall->eraseFromParent(); 2351 2352 // Since we are now done with the return instruction, delete it also. 2353 Returns[0]->eraseFromParent(); 2354 2355 // We are now done with the inlining. 2356 return InlineResult::success(); 2357 } 2358 2359 // Otherwise, we have the normal case, of more than one block to inline or 2360 // multiple return sites. 2361 2362 // We want to clone the entire callee function into the hole between the 2363 // "starter" and "ender" blocks. How we accomplish this depends on whether 2364 // this is an invoke instruction or a call instruction. 2365 BasicBlock *AfterCallBB; 2366 BranchInst *CreatedBranchToNormalDest = nullptr; 2367 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 2368 2369 // Add an unconditional branch to make this look like the CallInst case... 2370 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall); 2371 2372 // Split the basic block. This guarantees that no PHI nodes will have to be 2373 // updated due to new incoming edges, and make the invoke case more 2374 // symmetric to the call case. 2375 AfterCallBB = 2376 OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(), 2377 CalledFunc->getName() + ".exit"); 2378 2379 } else { // It's a call 2380 // If this is a call instruction, we need to split the basic block that 2381 // the call lives in. 2382 // 2383 AfterCallBB = OrigBB->splitBasicBlock(TheCall->getIterator(), 2384 CalledFunc->getName() + ".exit"); 2385 } 2386 2387 if (IFI.CallerBFI) { 2388 // Copy original BB's block frequency to AfterCallBB 2389 IFI.CallerBFI->setBlockFreq( 2390 AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency()); 2391 } 2392 2393 // Change the branch that used to go to AfterCallBB to branch to the first 2394 // basic block of the inlined function. 2395 // 2396 Instruction *Br = OrigBB->getTerminator(); 2397 assert(Br && Br->getOpcode() == Instruction::Br && 2398 "splitBasicBlock broken!"); 2399 Br->setOperand(0, &*FirstNewBlock); 2400 2401 // Now that the function is correct, make it a little bit nicer. In 2402 // particular, move the basic blocks inserted from the end of the function 2403 // into the space made by splitting the source basic block. 2404 Caller->getBasicBlockList().splice(AfterCallBB->getIterator(), 2405 Caller->getBasicBlockList(), FirstNewBlock, 2406 Caller->end()); 2407 2408 // Handle all of the return instructions that we just cloned in, and eliminate 2409 // any users of the original call/invoke instruction. 2410 Type *RTy = CalledFunc->getReturnType(); 2411 2412 PHINode *PHI = nullptr; 2413 if (Returns.size() > 1) { 2414 // The PHI node should go at the front of the new basic block to merge all 2415 // possible incoming values. 2416 if (!TheCall->use_empty()) { 2417 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), 2418 &AfterCallBB->front()); 2419 // Anything that used the result of the function call should now use the 2420 // PHI node as their operand. 2421 TheCall->replaceAllUsesWith(PHI); 2422 } 2423 2424 // Loop over all of the return instructions adding entries to the PHI node 2425 // as appropriate. 2426 if (PHI) { 2427 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2428 ReturnInst *RI = Returns[i]; 2429 assert(RI->getReturnValue()->getType() == PHI->getType() && 2430 "Ret value not consistent in function!"); 2431 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 2432 } 2433 } 2434 2435 // Add a branch to the merge points and remove return instructions. 2436 DebugLoc Loc; 2437 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2438 ReturnInst *RI = Returns[i]; 2439 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 2440 Loc = RI->getDebugLoc(); 2441 BI->setDebugLoc(Loc); 2442 RI->eraseFromParent(); 2443 } 2444 // We need to set the debug location to *somewhere* inside the 2445 // inlined function. The line number may be nonsensical, but the 2446 // instruction will at least be associated with the right 2447 // function. 2448 if (CreatedBranchToNormalDest) 2449 CreatedBranchToNormalDest->setDebugLoc(Loc); 2450 } else if (!Returns.empty()) { 2451 // Otherwise, if there is exactly one return value, just replace anything 2452 // using the return value of the call with the computed value. 2453 if (!TheCall->use_empty()) { 2454 if (TheCall == Returns[0]->getReturnValue()) 2455 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 2456 else 2457 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); 2458 } 2459 2460 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 2461 BasicBlock *ReturnBB = Returns[0]->getParent(); 2462 ReturnBB->replaceAllUsesWith(AfterCallBB); 2463 2464 // Splice the code from the return block into the block that it will return 2465 // to, which contains the code that was after the call. 2466 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 2467 ReturnBB->getInstList()); 2468 2469 if (CreatedBranchToNormalDest) 2470 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 2471 2472 // Delete the return instruction now and empty ReturnBB now. 2473 Returns[0]->eraseFromParent(); 2474 ReturnBB->eraseFromParent(); 2475 } else if (!TheCall->use_empty()) { 2476 // No returns, but something is using the return value of the call. Just 2477 // nuke the result. 2478 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 2479 } 2480 2481 // Since we are now done with the Call/Invoke, we can delete it. 2482 TheCall->eraseFromParent(); 2483 2484 // If we inlined any musttail calls and the original return is now 2485 // unreachable, delete it. It can only contain a bitcast and ret. 2486 if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB)) 2487 AfterCallBB->eraseFromParent(); 2488 2489 // We should always be able to fold the entry block of the function into the 2490 // single predecessor of the block... 2491 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 2492 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 2493 2494 // Splice the code entry block into calling block, right before the 2495 // unconditional branch. 2496 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 2497 OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList()); 2498 2499 // Remove the unconditional branch. 2500 OrigBB->getInstList().erase(Br); 2501 2502 // Now we can remove the CalleeEntry block, which is now empty. 2503 Caller->getBasicBlockList().erase(CalleeEntry); 2504 2505 // If we inserted a phi node, check to see if it has a single value (e.g. all 2506 // the entries are the same or undef). If so, remove the PHI so it doesn't 2507 // block other optimizations. 2508 if (PHI) { 2509 AssumptionCache *AC = 2510 IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr; 2511 auto &DL = Caller->getParent()->getDataLayout(); 2512 if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) { 2513 PHI->replaceAllUsesWith(V); 2514 PHI->eraseFromParent(); 2515 } 2516 } 2517 2518 return InlineResult::success(); 2519 } 2520