1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements inlining of a function into a call site, resolving 11 // parameters and the return value as appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Cloning.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/CallGraph.h" 23 #include "llvm/Analysis/CaptureTracking.h" 24 #include "llvm/Analysis/EHPersonalities.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/CallSite.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/DIBuilder.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/MDBuilder.h" 41 #include "llvm/IR/Module.h" 42 #include "llvm/Transforms/Utils/Local.h" 43 #include "llvm/Support/CommandLine.h" 44 #include <algorithm> 45 46 using namespace llvm; 47 48 static cl::opt<bool> 49 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), 50 cl::Hidden, 51 cl::desc("Convert noalias attributes to metadata during inlining.")); 52 53 static cl::opt<bool> 54 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", 55 cl::init(true), cl::Hidden, 56 cl::desc("Convert align attributes to assumptions during inlining.")); 57 58 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI, 59 AAResults *CalleeAAR, bool InsertLifetime) { 60 return InlineFunction(CallSite(CI), IFI, CalleeAAR, InsertLifetime); 61 } 62 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI, 63 AAResults *CalleeAAR, bool InsertLifetime) { 64 return InlineFunction(CallSite(II), IFI, CalleeAAR, InsertLifetime); 65 } 66 67 namespace { 68 /// A class for recording information about inlining a landing pad. 69 class LandingPadInliningInfo { 70 BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind. 71 BasicBlock *InnerResumeDest; ///< Destination for the callee's resume. 72 LandingPadInst *CallerLPad; ///< LandingPadInst associated with the invoke. 73 PHINode *InnerEHValuesPHI; ///< PHI for EH values from landingpad insts. 74 SmallVector<Value*, 8> UnwindDestPHIValues; 75 76 public: 77 LandingPadInliningInfo(InvokeInst *II) 78 : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr), 79 CallerLPad(nullptr), InnerEHValuesPHI(nullptr) { 80 // If there are PHI nodes in the unwind destination block, we need to keep 81 // track of which values came into them from the invoke before removing 82 // the edge from this block. 83 llvm::BasicBlock *InvokeBB = II->getParent(); 84 BasicBlock::iterator I = OuterResumeDest->begin(); 85 for (; isa<PHINode>(I); ++I) { 86 // Save the value to use for this edge. 87 PHINode *PHI = cast<PHINode>(I); 88 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 89 } 90 91 CallerLPad = cast<LandingPadInst>(I); 92 } 93 94 /// The outer unwind destination is the target of 95 /// unwind edges introduced for calls within the inlined function. 96 BasicBlock *getOuterResumeDest() const { 97 return OuterResumeDest; 98 } 99 100 BasicBlock *getInnerResumeDest(); 101 102 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 103 104 /// Forward the 'resume' instruction to the caller's landing pad block. 105 /// When the landing pad block has only one predecessor, this is 106 /// a simple branch. When there is more than one predecessor, we need to 107 /// split the landing pad block after the landingpad instruction and jump 108 /// to there. 109 void forwardResume(ResumeInst *RI, 110 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); 111 112 /// Add incoming-PHI values to the unwind destination block for the given 113 /// basic block, using the values for the original invoke's source block. 114 void addIncomingPHIValuesFor(BasicBlock *BB) const { 115 addIncomingPHIValuesForInto(BB, OuterResumeDest); 116 } 117 118 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 119 BasicBlock::iterator I = dest->begin(); 120 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 121 PHINode *phi = cast<PHINode>(I); 122 phi->addIncoming(UnwindDestPHIValues[i], src); 123 } 124 } 125 }; 126 } // anonymous namespace 127 128 /// Get or create a target for the branch from ResumeInsts. 129 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() { 130 if (InnerResumeDest) return InnerResumeDest; 131 132 // Split the landing pad. 133 BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator(); 134 InnerResumeDest = 135 OuterResumeDest->splitBasicBlock(SplitPoint, 136 OuterResumeDest->getName() + ".body"); 137 138 // The number of incoming edges we expect to the inner landing pad. 139 const unsigned PHICapacity = 2; 140 141 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 142 Instruction *InsertPoint = &InnerResumeDest->front(); 143 BasicBlock::iterator I = OuterResumeDest->begin(); 144 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 145 PHINode *OuterPHI = cast<PHINode>(I); 146 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 147 OuterPHI->getName() + ".lpad-body", 148 InsertPoint); 149 OuterPHI->replaceAllUsesWith(InnerPHI); 150 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 151 } 152 153 // Create a PHI for the exception values. 154 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 155 "eh.lpad-body", InsertPoint); 156 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 157 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 158 159 // All done. 160 return InnerResumeDest; 161 } 162 163 /// Forward the 'resume' instruction to the caller's landing pad block. 164 /// When the landing pad block has only one predecessor, this is a simple 165 /// branch. When there is more than one predecessor, we need to split the 166 /// landing pad block after the landingpad instruction and jump to there. 167 void LandingPadInliningInfo::forwardResume( 168 ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) { 169 BasicBlock *Dest = getInnerResumeDest(); 170 BasicBlock *Src = RI->getParent(); 171 172 BranchInst::Create(Dest, Src); 173 174 // Update the PHIs in the destination. They were inserted in an order which 175 // makes this work. 176 addIncomingPHIValuesForInto(Src, Dest); 177 178 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 179 RI->eraseFromParent(); 180 } 181 182 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper. 183 static Value *getParentPad(Value *EHPad) { 184 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 185 return FPI->getParentPad(); 186 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 187 } 188 189 typedef DenseMap<Instruction *, Value *> UnwindDestMemoTy; 190 191 /// Helper for getUnwindDestToken that does the descendant-ward part of 192 /// the search. 193 static Value *getUnwindDestTokenHelper(Instruction *EHPad, 194 UnwindDestMemoTy &MemoMap) { 195 SmallVector<Instruction *, 8> Worklist(1, EHPad); 196 197 while (!Worklist.empty()) { 198 Instruction *CurrentPad = Worklist.pop_back_val(); 199 // We only put pads on the worklist that aren't in the MemoMap. When 200 // we find an unwind dest for a pad we may update its ancestors, but 201 // the queue only ever contains uncles/great-uncles/etc. of CurrentPad, 202 // so they should never get updated while queued on the worklist. 203 assert(!MemoMap.count(CurrentPad)); 204 Value *UnwindDestToken = nullptr; 205 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) { 206 if (CatchSwitch->hasUnwindDest()) { 207 UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI(); 208 } else { 209 // Catchswitch doesn't have a 'nounwind' variant, and one might be 210 // annotated as "unwinds to caller" when really it's nounwind (see 211 // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the 212 // parent's unwind dest from this. We can check its catchpads' 213 // descendants, since they might include a cleanuppad with an 214 // "unwinds to caller" cleanupret, which can be trusted. 215 for (auto HI = CatchSwitch->handler_begin(), 216 HE = CatchSwitch->handler_end(); 217 HI != HE && !UnwindDestToken; ++HI) { 218 BasicBlock *HandlerBlock = *HI; 219 auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI()); 220 for (User *Child : CatchPad->users()) { 221 // Intentionally ignore invokes here -- since the catchswitch is 222 // marked "unwind to caller", it would be a verifier error if it 223 // contained an invoke which unwinds out of it, so any invoke we'd 224 // encounter must unwind to some child of the catch. 225 if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child)) 226 continue; 227 228 Instruction *ChildPad = cast<Instruction>(Child); 229 auto Memo = MemoMap.find(ChildPad); 230 if (Memo == MemoMap.end()) { 231 // Haven't figure out this child pad yet; queue it. 232 Worklist.push_back(ChildPad); 233 continue; 234 } 235 // We've already checked this child, but might have found that 236 // it offers no proof either way. 237 Value *ChildUnwindDestToken = Memo->second; 238 if (!ChildUnwindDestToken) 239 continue; 240 // We already know the child's unwind dest, which can either 241 // be ConstantTokenNone to indicate unwind to caller, or can 242 // be another child of the catchpad. Only the former indicates 243 // the unwind dest of the catchswitch. 244 if (isa<ConstantTokenNone>(ChildUnwindDestToken)) { 245 UnwindDestToken = ChildUnwindDestToken; 246 break; 247 } 248 assert(getParentPad(ChildUnwindDestToken) == CatchPad); 249 } 250 } 251 } 252 } else { 253 auto *CleanupPad = cast<CleanupPadInst>(CurrentPad); 254 for (User *U : CleanupPad->users()) { 255 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) { 256 if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest()) 257 UnwindDestToken = RetUnwindDest->getFirstNonPHI(); 258 else 259 UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext()); 260 break; 261 } 262 Value *ChildUnwindDestToken; 263 if (auto *Invoke = dyn_cast<InvokeInst>(U)) { 264 ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI(); 265 } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) { 266 Instruction *ChildPad = cast<Instruction>(U); 267 auto Memo = MemoMap.find(ChildPad); 268 if (Memo == MemoMap.end()) { 269 // Haven't resolved this child yet; queue it and keep searching. 270 Worklist.push_back(ChildPad); 271 continue; 272 } 273 // We've checked this child, but still need to ignore it if it 274 // had no proof either way. 275 ChildUnwindDestToken = Memo->second; 276 if (!ChildUnwindDestToken) 277 continue; 278 } else { 279 // Not a relevant user of the cleanuppad 280 continue; 281 } 282 // In a well-formed program, the child/invoke must either unwind to 283 // an(other) child of the cleanup, or exit the cleanup. In the 284 // first case, continue searching. 285 if (isa<Instruction>(ChildUnwindDestToken) && 286 getParentPad(ChildUnwindDestToken) == CleanupPad) 287 continue; 288 UnwindDestToken = ChildUnwindDestToken; 289 break; 290 } 291 } 292 // If we haven't found an unwind dest for CurrentPad, we may have queued its 293 // children, so move on to the next in the worklist. 294 if (!UnwindDestToken) 295 continue; 296 297 // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits 298 // any ancestors of CurrentPad up to but not including UnwindDestToken's 299 // parent pad. Record this in the memo map, and check to see if the 300 // original EHPad being queried is one of the ones exited. 301 Value *UnwindParent; 302 if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken)) 303 UnwindParent = getParentPad(UnwindPad); 304 else 305 UnwindParent = nullptr; 306 bool ExitedOriginalPad = false; 307 for (Instruction *ExitedPad = CurrentPad; 308 ExitedPad && ExitedPad != UnwindParent; 309 ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) { 310 // Skip over catchpads since they just follow their catchswitches. 311 if (isa<CatchPadInst>(ExitedPad)) 312 continue; 313 MemoMap[ExitedPad] = UnwindDestToken; 314 ExitedOriginalPad |= (ExitedPad == EHPad); 315 } 316 317 if (ExitedOriginalPad) 318 return UnwindDestToken; 319 320 // Continue the search. 321 } 322 323 // No definitive information is contained within this funclet. 324 return nullptr; 325 } 326 327 /// Given an EH pad, find where it unwinds. If it unwinds to an EH pad, 328 /// return that pad instruction. If it unwinds to caller, return 329 /// ConstantTokenNone. If it does not have a definitive unwind destination, 330 /// return nullptr. 331 /// 332 /// This routine gets invoked for calls in funclets in inlinees when inlining 333 /// an invoke. Since many funclets don't have calls inside them, it's queried 334 /// on-demand rather than building a map of pads to unwind dests up front. 335 /// Determining a funclet's unwind dest may require recursively searching its 336 /// descendants, and also ancestors and cousins if the descendants don't provide 337 /// an answer. Since most funclets will have their unwind dest immediately 338 /// available as the unwind dest of a catchswitch or cleanupret, this routine 339 /// searches top-down from the given pad and then up. To avoid worst-case 340 /// quadratic run-time given that approach, it uses a memo map to avoid 341 /// re-processing funclet trees. The callers that rewrite the IR as they go 342 /// take advantage of this, for correctness, by checking/forcing rewritten 343 /// pads' entries to match the original callee view. 344 static Value *getUnwindDestToken(Instruction *EHPad, 345 UnwindDestMemoTy &MemoMap) { 346 // Catchpads unwind to the same place as their catchswitch; 347 // redirct any queries on catchpads so the code below can 348 // deal with just catchswitches and cleanuppads. 349 if (auto *CPI = dyn_cast<CatchPadInst>(EHPad)) 350 EHPad = CPI->getCatchSwitch(); 351 352 // Check if we've already determined the unwind dest for this pad. 353 auto Memo = MemoMap.find(EHPad); 354 if (Memo != MemoMap.end()) 355 return Memo->second; 356 357 // Search EHPad and, if necessary, its descendants. 358 Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap); 359 assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0)); 360 if (UnwindDestToken) 361 return UnwindDestToken; 362 363 // No information is available for this EHPad from itself or any of its 364 // descendants. An unwind all the way out to a pad in the caller would 365 // need also to agree with the unwind dest of the parent funclet, so 366 // search up the chain to try to find a funclet with information. Put 367 // null entries in the memo map to avoid re-processing as we go up. 368 MemoMap[EHPad] = nullptr; 369 Instruction *LastUselessPad = EHPad; 370 Value *AncestorToken; 371 for (AncestorToken = getParentPad(EHPad); 372 auto *AncestorPad = dyn_cast<Instruction>(AncestorToken); 373 AncestorToken = getParentPad(AncestorToken)) { 374 // Skip over catchpads since they just follow their catchswitches. 375 if (isa<CatchPadInst>(AncestorPad)) 376 continue; 377 assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]); 378 auto AncestorMemo = MemoMap.find(AncestorPad); 379 if (AncestorMemo == MemoMap.end()) { 380 UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap); 381 } else { 382 UnwindDestToken = AncestorMemo->second; 383 } 384 if (UnwindDestToken) 385 break; 386 LastUselessPad = AncestorPad; 387 } 388 389 // Since the whole tree under LastUselessPad has no information, it all must 390 // match UnwindDestToken; record that to avoid repeating the search. 391 SmallVector<Instruction *, 8> Worklist(1, LastUselessPad); 392 while (!Worklist.empty()) { 393 Instruction *UselessPad = Worklist.pop_back_val(); 394 assert(!MemoMap.count(UselessPad) || MemoMap[UselessPad] == nullptr); 395 MemoMap[UselessPad] = UnwindDestToken; 396 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) { 397 for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) 398 for (User *U : HandlerBlock->getFirstNonPHI()->users()) 399 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 400 Worklist.push_back(cast<Instruction>(U)); 401 } else { 402 assert(isa<CleanupPadInst>(UselessPad)); 403 for (User *U : UselessPad->users()) 404 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 405 Worklist.push_back(cast<Instruction>(U)); 406 } 407 } 408 409 return UnwindDestToken; 410 } 411 412 /// When we inline a basic block into an invoke, 413 /// we have to turn all of the calls that can throw into invokes. 414 /// This function analyze BB to see if there are any calls, and if so, 415 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 416 /// nodes in that block with the values specified in InvokeDestPHIValues. 417 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke( 418 BasicBlock *BB, BasicBlock *UnwindEdge, 419 UnwindDestMemoTy *FuncletUnwindMap = nullptr) { 420 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 421 Instruction *I = &*BBI++; 422 423 // We only need to check for function calls: inlined invoke 424 // instructions require no special handling. 425 CallInst *CI = dyn_cast<CallInst>(I); 426 427 if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue())) 428 continue; 429 430 // We do not need to (and in fact, cannot) convert possibly throwing calls 431 // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into 432 // invokes. The caller's "segment" of the deoptimization continuation 433 // attached to the newly inlined @llvm.experimental_deoptimize 434 // (resp. @llvm.experimental.guard) call should contain the exception 435 // handling logic, if any. 436 if (auto *F = CI->getCalledFunction()) 437 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize || 438 F->getIntrinsicID() == Intrinsic::experimental_guard) 439 continue; 440 441 if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) { 442 // This call is nested inside a funclet. If that funclet has an unwind 443 // destination within the inlinee, then unwinding out of this call would 444 // be UB. Rewriting this call to an invoke which targets the inlined 445 // invoke's unwind dest would give the call's parent funclet multiple 446 // unwind destinations, which is something that subsequent EH table 447 // generation can't handle and that the veirifer rejects. So when we 448 // see such a call, leave it as a call. 449 auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]); 450 Value *UnwindDestToken = 451 getUnwindDestToken(FuncletPad, *FuncletUnwindMap); 452 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 453 continue; 454 #ifndef NDEBUG 455 Instruction *MemoKey; 456 if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad)) 457 MemoKey = CatchPad->getCatchSwitch(); 458 else 459 MemoKey = FuncletPad; 460 assert(FuncletUnwindMap->count(MemoKey) && 461 (*FuncletUnwindMap)[MemoKey] == UnwindDestToken && 462 "must get memoized to avoid confusing later searches"); 463 #endif // NDEBUG 464 } 465 466 // Convert this function call into an invoke instruction. First, split the 467 // basic block. 468 BasicBlock *Split = 469 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 470 471 // Delete the unconditional branch inserted by splitBasicBlock 472 BB->getInstList().pop_back(); 473 474 // Create the new invoke instruction. 475 SmallVector<Value*, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 476 SmallVector<OperandBundleDef, 1> OpBundles; 477 478 CI->getOperandBundlesAsDefs(OpBundles); 479 480 // Note: we're round tripping operand bundles through memory here, and that 481 // can potentially be avoided with a cleverer API design that we do not have 482 // as of this time. 483 484 InvokeInst *II = 485 InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, InvokeArgs, 486 OpBundles, CI->getName(), BB); 487 II->setDebugLoc(CI->getDebugLoc()); 488 II->setCallingConv(CI->getCallingConv()); 489 II->setAttributes(CI->getAttributes()); 490 491 // Make sure that anything using the call now uses the invoke! This also 492 // updates the CallGraph if present, because it uses a WeakVH. 493 CI->replaceAllUsesWith(II); 494 495 // Delete the original call 496 Split->getInstList().pop_front(); 497 return BB; 498 } 499 return nullptr; 500 } 501 502 /// If we inlined an invoke site, we need to convert calls 503 /// in the body of the inlined function into invokes. 504 /// 505 /// II is the invoke instruction being inlined. FirstNewBlock is the first 506 /// block of the inlined code (the last block is the end of the function), 507 /// and InlineCodeInfo is information about the code that got inlined. 508 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock, 509 ClonedCodeInfo &InlinedCodeInfo) { 510 BasicBlock *InvokeDest = II->getUnwindDest(); 511 512 Function *Caller = FirstNewBlock->getParent(); 513 514 // The inlined code is currently at the end of the function, scan from the 515 // start of the inlined code to its end, checking for stuff we need to 516 // rewrite. 517 LandingPadInliningInfo Invoke(II); 518 519 // Get all of the inlined landing pad instructions. 520 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 521 for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end(); 522 I != E; ++I) 523 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 524 InlinedLPads.insert(II->getLandingPadInst()); 525 526 // Append the clauses from the outer landing pad instruction into the inlined 527 // landing pad instructions. 528 LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 529 for (LandingPadInst *InlinedLPad : InlinedLPads) { 530 unsigned OuterNum = OuterLPad->getNumClauses(); 531 InlinedLPad->reserveClauses(OuterNum); 532 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 533 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 534 if (OuterLPad->isCleanup()) 535 InlinedLPad->setCleanup(true); 536 } 537 538 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 539 BB != E; ++BB) { 540 if (InlinedCodeInfo.ContainsCalls) 541 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 542 &*BB, Invoke.getOuterResumeDest())) 543 // Update any PHI nodes in the exceptional block to indicate that there 544 // is now a new entry in them. 545 Invoke.addIncomingPHIValuesFor(NewBB); 546 547 // Forward any resumes that are remaining here. 548 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 549 Invoke.forwardResume(RI, InlinedLPads); 550 } 551 552 // Now that everything is happy, we have one final detail. The PHI nodes in 553 // the exception destination block still have entries due to the original 554 // invoke instruction. Eliminate these entries (which might even delete the 555 // PHI node) now. 556 InvokeDest->removePredecessor(II->getParent()); 557 } 558 559 /// If we inlined an invoke site, we need to convert calls 560 /// in the body of the inlined function into invokes. 561 /// 562 /// II is the invoke instruction being inlined. FirstNewBlock is the first 563 /// block of the inlined code (the last block is the end of the function), 564 /// and InlineCodeInfo is information about the code that got inlined. 565 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock, 566 ClonedCodeInfo &InlinedCodeInfo) { 567 BasicBlock *UnwindDest = II->getUnwindDest(); 568 Function *Caller = FirstNewBlock->getParent(); 569 570 assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!"); 571 572 // If there are PHI nodes in the unwind destination block, we need to keep 573 // track of which values came into them from the invoke before removing the 574 // edge from this block. 575 SmallVector<Value *, 8> UnwindDestPHIValues; 576 llvm::BasicBlock *InvokeBB = II->getParent(); 577 for (Instruction &I : *UnwindDest) { 578 // Save the value to use for this edge. 579 PHINode *PHI = dyn_cast<PHINode>(&I); 580 if (!PHI) 581 break; 582 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 583 } 584 585 // Add incoming-PHI values to the unwind destination block for the given basic 586 // block, using the values for the original invoke's source block. 587 auto UpdatePHINodes = [&](BasicBlock *Src) { 588 BasicBlock::iterator I = UnwindDest->begin(); 589 for (Value *V : UnwindDestPHIValues) { 590 PHINode *PHI = cast<PHINode>(I); 591 PHI->addIncoming(V, Src); 592 ++I; 593 } 594 }; 595 596 // This connects all the instructions which 'unwind to caller' to the invoke 597 // destination. 598 UnwindDestMemoTy FuncletUnwindMap; 599 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 600 BB != E; ++BB) { 601 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 602 if (CRI->unwindsToCaller()) { 603 auto *CleanupPad = CRI->getCleanupPad(); 604 CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI); 605 CRI->eraseFromParent(); 606 UpdatePHINodes(&*BB); 607 // Finding a cleanupret with an unwind destination would confuse 608 // subsequent calls to getUnwindDestToken, so map the cleanuppad 609 // to short-circuit any such calls and recognize this as an "unwind 610 // to caller" cleanup. 611 assert(!FuncletUnwindMap.count(CleanupPad) || 612 isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad])); 613 FuncletUnwindMap[CleanupPad] = 614 ConstantTokenNone::get(Caller->getContext()); 615 } 616 } 617 618 Instruction *I = BB->getFirstNonPHI(); 619 if (!I->isEHPad()) 620 continue; 621 622 Instruction *Replacement = nullptr; 623 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 624 if (CatchSwitch->unwindsToCaller()) { 625 Value *UnwindDestToken; 626 if (auto *ParentPad = 627 dyn_cast<Instruction>(CatchSwitch->getParentPad())) { 628 // This catchswitch is nested inside another funclet. If that 629 // funclet has an unwind destination within the inlinee, then 630 // unwinding out of this catchswitch would be UB. Rewriting this 631 // catchswitch to unwind to the inlined invoke's unwind dest would 632 // give the parent funclet multiple unwind destinations, which is 633 // something that subsequent EH table generation can't handle and 634 // that the veirifer rejects. So when we see such a call, leave it 635 // as "unwind to caller". 636 UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap); 637 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 638 continue; 639 } else { 640 // This catchswitch has no parent to inherit constraints from, and 641 // none of its descendants can have an unwind edge that exits it and 642 // targets another funclet in the inlinee. It may or may not have a 643 // descendant that definitively has an unwind to caller. In either 644 // case, we'll have to assume that any unwinds out of it may need to 645 // be routed to the caller, so treat it as though it has a definitive 646 // unwind to caller. 647 UnwindDestToken = ConstantTokenNone::get(Caller->getContext()); 648 } 649 auto *NewCatchSwitch = CatchSwitchInst::Create( 650 CatchSwitch->getParentPad(), UnwindDest, 651 CatchSwitch->getNumHandlers(), CatchSwitch->getName(), 652 CatchSwitch); 653 for (BasicBlock *PadBB : CatchSwitch->handlers()) 654 NewCatchSwitch->addHandler(PadBB); 655 // Propagate info for the old catchswitch over to the new one in 656 // the unwind map. This also serves to short-circuit any subsequent 657 // checks for the unwind dest of this catchswitch, which would get 658 // confused if they found the outer handler in the callee. 659 FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken; 660 Replacement = NewCatchSwitch; 661 } 662 } else if (!isa<FuncletPadInst>(I)) { 663 llvm_unreachable("unexpected EHPad!"); 664 } 665 666 if (Replacement) { 667 Replacement->takeName(I); 668 I->replaceAllUsesWith(Replacement); 669 I->eraseFromParent(); 670 UpdatePHINodes(&*BB); 671 } 672 } 673 674 if (InlinedCodeInfo.ContainsCalls) 675 for (Function::iterator BB = FirstNewBlock->getIterator(), 676 E = Caller->end(); 677 BB != E; ++BB) 678 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 679 &*BB, UnwindDest, &FuncletUnwindMap)) 680 // Update any PHI nodes in the exceptional block to indicate that there 681 // is now a new entry in them. 682 UpdatePHINodes(NewBB); 683 684 // Now that everything is happy, we have one final detail. The PHI nodes in 685 // the exception destination block still have entries due to the original 686 // invoke instruction. Eliminate these entries (which might even delete the 687 // PHI node) now. 688 UnwindDest->removePredecessor(InvokeBB); 689 } 690 691 /// When inlining a call site that has !llvm.mem.parallel_loop_access metadata, 692 /// that metadata should be propagated to all memory-accessing cloned 693 /// instructions. 694 static void PropagateParallelLoopAccessMetadata(CallSite CS, 695 ValueToValueMapTy &VMap) { 696 MDNode *M = 697 CS.getInstruction()->getMetadata(LLVMContext::MD_mem_parallel_loop_access); 698 if (!M) 699 return; 700 701 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 702 VMI != VMIE; ++VMI) { 703 if (!VMI->second) 704 continue; 705 706 Instruction *NI = dyn_cast<Instruction>(VMI->second); 707 if (!NI) 708 continue; 709 710 if (MDNode *PM = NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access)) { 711 M = MDNode::concatenate(PM, M); 712 NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M); 713 } else if (NI->mayReadOrWriteMemory()) { 714 NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M); 715 } 716 } 717 } 718 719 /// When inlining a function that contains noalias scope metadata, 720 /// this metadata needs to be cloned so that the inlined blocks 721 /// have different "unqiue scopes" at every call site. Were this not done, then 722 /// aliasing scopes from a function inlined into a caller multiple times could 723 /// not be differentiated (and this would lead to miscompiles because the 724 /// non-aliasing property communicated by the metadata could have 725 /// call-site-specific control dependencies). 726 static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) { 727 const Function *CalledFunc = CS.getCalledFunction(); 728 SetVector<const MDNode *> MD; 729 730 // Note: We could only clone the metadata if it is already used in the 731 // caller. I'm omitting that check here because it might confuse 732 // inter-procedural alias analysis passes. We can revisit this if it becomes 733 // an efficiency or overhead problem. 734 735 for (Function::const_iterator I = CalledFunc->begin(), IE = CalledFunc->end(); 736 I != IE; ++I) 737 for (BasicBlock::const_iterator J = I->begin(), JE = I->end(); J != JE; ++J) { 738 if (const MDNode *M = J->getMetadata(LLVMContext::MD_alias_scope)) 739 MD.insert(M); 740 if (const MDNode *M = J->getMetadata(LLVMContext::MD_noalias)) 741 MD.insert(M); 742 } 743 744 if (MD.empty()) 745 return; 746 747 // Walk the existing metadata, adding the complete (perhaps cyclic) chain to 748 // the set. 749 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end()); 750 while (!Queue.empty()) { 751 const MDNode *M = cast<MDNode>(Queue.pop_back_val()); 752 for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i) 753 if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i))) 754 if (MD.insert(M1)) 755 Queue.push_back(M1); 756 } 757 758 // Now we have a complete set of all metadata in the chains used to specify 759 // the noalias scopes and the lists of those scopes. 760 SmallVector<TempMDTuple, 16> DummyNodes; 761 DenseMap<const MDNode *, TrackingMDNodeRef> MDMap; 762 for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); 763 I != IE; ++I) { 764 DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None)); 765 MDMap[*I].reset(DummyNodes.back().get()); 766 } 767 768 // Create new metadata nodes to replace the dummy nodes, replacing old 769 // metadata references with either a dummy node or an already-created new 770 // node. 771 for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); 772 I != IE; ++I) { 773 SmallVector<Metadata *, 4> NewOps; 774 for (unsigned i = 0, ie = (*I)->getNumOperands(); i != ie; ++i) { 775 const Metadata *V = (*I)->getOperand(i); 776 if (const MDNode *M = dyn_cast<MDNode>(V)) 777 NewOps.push_back(MDMap[M]); 778 else 779 NewOps.push_back(const_cast<Metadata *>(V)); 780 } 781 782 MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps); 783 MDTuple *TempM = cast<MDTuple>(MDMap[*I]); 784 assert(TempM->isTemporary() && "Expected temporary node"); 785 786 TempM->replaceAllUsesWith(NewM); 787 } 788 789 // Now replace the metadata in the new inlined instructions with the 790 // repacements from the map. 791 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 792 VMI != VMIE; ++VMI) { 793 if (!VMI->second) 794 continue; 795 796 Instruction *NI = dyn_cast<Instruction>(VMI->second); 797 if (!NI) 798 continue; 799 800 if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) { 801 MDNode *NewMD = MDMap[M]; 802 // If the call site also had alias scope metadata (a list of scopes to 803 // which instructions inside it might belong), propagate those scopes to 804 // the inlined instructions. 805 if (MDNode *CSM = 806 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 807 NewMD = MDNode::concatenate(NewMD, CSM); 808 NI->setMetadata(LLVMContext::MD_alias_scope, NewMD); 809 } else if (NI->mayReadOrWriteMemory()) { 810 if (MDNode *M = 811 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 812 NI->setMetadata(LLVMContext::MD_alias_scope, M); 813 } 814 815 if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) { 816 MDNode *NewMD = MDMap[M]; 817 // If the call site also had noalias metadata (a list of scopes with 818 // which instructions inside it don't alias), propagate those scopes to 819 // the inlined instructions. 820 if (MDNode *CSM = 821 CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 822 NewMD = MDNode::concatenate(NewMD, CSM); 823 NI->setMetadata(LLVMContext::MD_noalias, NewMD); 824 } else if (NI->mayReadOrWriteMemory()) { 825 if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 826 NI->setMetadata(LLVMContext::MD_noalias, M); 827 } 828 } 829 } 830 831 /// If the inlined function has noalias arguments, 832 /// then add new alias scopes for each noalias argument, tag the mapped noalias 833 /// parameters with noalias metadata specifying the new scope, and tag all 834 /// non-derived loads, stores and memory intrinsics with the new alias scopes. 835 static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap, 836 const DataLayout &DL, AAResults *CalleeAAR) { 837 if (!EnableNoAliasConversion) 838 return; 839 840 const Function *CalledFunc = CS.getCalledFunction(); 841 SmallVector<const Argument *, 4> NoAliasArgs; 842 843 for (const Argument &Arg : CalledFunc->args()) 844 if (Arg.hasNoAliasAttr() && !Arg.use_empty()) 845 NoAliasArgs.push_back(&Arg); 846 847 if (NoAliasArgs.empty()) 848 return; 849 850 // To do a good job, if a noalias variable is captured, we need to know if 851 // the capture point dominates the particular use we're considering. 852 DominatorTree DT; 853 DT.recalculate(const_cast<Function&>(*CalledFunc)); 854 855 // noalias indicates that pointer values based on the argument do not alias 856 // pointer values which are not based on it. So we add a new "scope" for each 857 // noalias function argument. Accesses using pointers based on that argument 858 // become part of that alias scope, accesses using pointers not based on that 859 // argument are tagged as noalias with that scope. 860 861 DenseMap<const Argument *, MDNode *> NewScopes; 862 MDBuilder MDB(CalledFunc->getContext()); 863 864 // Create a new scope domain for this function. 865 MDNode *NewDomain = 866 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); 867 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { 868 const Argument *A = NoAliasArgs[i]; 869 870 std::string Name = CalledFunc->getName(); 871 if (A->hasName()) { 872 Name += ": %"; 873 Name += A->getName(); 874 } else { 875 Name += ": argument "; 876 Name += utostr(i); 877 } 878 879 // Note: We always create a new anonymous root here. This is true regardless 880 // of the linkage of the callee because the aliasing "scope" is not just a 881 // property of the callee, but also all control dependencies in the caller. 882 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); 883 NewScopes.insert(std::make_pair(A, NewScope)); 884 } 885 886 // Iterate over all new instructions in the map; for all memory-access 887 // instructions, add the alias scope metadata. 888 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 889 VMI != VMIE; ++VMI) { 890 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { 891 if (!VMI->second) 892 continue; 893 894 Instruction *NI = dyn_cast<Instruction>(VMI->second); 895 if (!NI) 896 continue; 897 898 bool IsArgMemOnlyCall = false, IsFuncCall = false; 899 SmallVector<const Value *, 2> PtrArgs; 900 901 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 902 PtrArgs.push_back(LI->getPointerOperand()); 903 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 904 PtrArgs.push_back(SI->getPointerOperand()); 905 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) 906 PtrArgs.push_back(VAAI->getPointerOperand()); 907 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 908 PtrArgs.push_back(CXI->getPointerOperand()); 909 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 910 PtrArgs.push_back(RMWI->getPointerOperand()); 911 else if (ImmutableCallSite ICS = ImmutableCallSite(I)) { 912 // If we know that the call does not access memory, then we'll still 913 // know that about the inlined clone of this call site, and we don't 914 // need to add metadata. 915 if (ICS.doesNotAccessMemory()) 916 continue; 917 918 IsFuncCall = true; 919 if (CalleeAAR) { 920 FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(ICS); 921 if (MRB == FMRB_OnlyAccessesArgumentPointees || 922 MRB == FMRB_OnlyReadsArgumentPointees) 923 IsArgMemOnlyCall = true; 924 } 925 926 for (Value *Arg : ICS.args()) { 927 // We need to check the underlying objects of all arguments, not just 928 // the pointer arguments, because we might be passing pointers as 929 // integers, etc. 930 // However, if we know that the call only accesses pointer arguments, 931 // then we only need to check the pointer arguments. 932 if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy()) 933 continue; 934 935 PtrArgs.push_back(Arg); 936 } 937 } 938 939 // If we found no pointers, then this instruction is not suitable for 940 // pairing with an instruction to receive aliasing metadata. 941 // However, if this is a call, this we might just alias with none of the 942 // noalias arguments. 943 if (PtrArgs.empty() && !IsFuncCall) 944 continue; 945 946 // It is possible that there is only one underlying object, but you 947 // need to go through several PHIs to see it, and thus could be 948 // repeated in the Objects list. 949 SmallPtrSet<const Value *, 4> ObjSet; 950 SmallVector<Metadata *, 4> Scopes, NoAliases; 951 952 SmallSetVector<const Argument *, 4> NAPtrArgs; 953 for (const Value *V : PtrArgs) { 954 SmallVector<Value *, 4> Objects; 955 GetUnderlyingObjects(const_cast<Value*>(V), 956 Objects, DL, /* LI = */ nullptr); 957 958 for (Value *O : Objects) 959 ObjSet.insert(O); 960 } 961 962 // Figure out if we're derived from anything that is not a noalias 963 // argument. 964 bool CanDeriveViaCapture = false, UsesAliasingPtr = false; 965 for (const Value *V : ObjSet) { 966 // Is this value a constant that cannot be derived from any pointer 967 // value (we need to exclude constant expressions, for example, that 968 // are formed from arithmetic on global symbols). 969 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || 970 isa<ConstantPointerNull>(V) || 971 isa<ConstantDataVector>(V) || isa<UndefValue>(V); 972 if (IsNonPtrConst) 973 continue; 974 975 // If this is anything other than a noalias argument, then we cannot 976 // completely describe the aliasing properties using alias.scope 977 // metadata (and, thus, won't add any). 978 if (const Argument *A = dyn_cast<Argument>(V)) { 979 if (!A->hasNoAliasAttr()) 980 UsesAliasingPtr = true; 981 } else { 982 UsesAliasingPtr = true; 983 } 984 985 // If this is not some identified function-local object (which cannot 986 // directly alias a noalias argument), or some other argument (which, 987 // by definition, also cannot alias a noalias argument), then we could 988 // alias a noalias argument that has been captured). 989 if (!isa<Argument>(V) && 990 !isIdentifiedFunctionLocal(const_cast<Value*>(V))) 991 CanDeriveViaCapture = true; 992 } 993 994 // A function call can always get captured noalias pointers (via other 995 // parameters, globals, etc.). 996 if (IsFuncCall && !IsArgMemOnlyCall) 997 CanDeriveViaCapture = true; 998 999 // First, we want to figure out all of the sets with which we definitely 1000 // don't alias. Iterate over all noalias set, and add those for which: 1001 // 1. The noalias argument is not in the set of objects from which we 1002 // definitely derive. 1003 // 2. The noalias argument has not yet been captured. 1004 // An arbitrary function that might load pointers could see captured 1005 // noalias arguments via other noalias arguments or globals, and so we 1006 // must always check for prior capture. 1007 for (const Argument *A : NoAliasArgs) { 1008 if (!ObjSet.count(A) && (!CanDeriveViaCapture || 1009 // It might be tempting to skip the 1010 // PointerMayBeCapturedBefore check if 1011 // A->hasNoCaptureAttr() is true, but this is 1012 // incorrect because nocapture only guarantees 1013 // that no copies outlive the function, not 1014 // that the value cannot be locally captured. 1015 !PointerMayBeCapturedBefore(A, 1016 /* ReturnCaptures */ false, 1017 /* StoreCaptures */ false, I, &DT))) 1018 NoAliases.push_back(NewScopes[A]); 1019 } 1020 1021 if (!NoAliases.empty()) 1022 NI->setMetadata(LLVMContext::MD_noalias, 1023 MDNode::concatenate( 1024 NI->getMetadata(LLVMContext::MD_noalias), 1025 MDNode::get(CalledFunc->getContext(), NoAliases))); 1026 1027 // Next, we want to figure out all of the sets to which we might belong. 1028 // We might belong to a set if the noalias argument is in the set of 1029 // underlying objects. If there is some non-noalias argument in our list 1030 // of underlying objects, then we cannot add a scope because the fact 1031 // that some access does not alias with any set of our noalias arguments 1032 // cannot itself guarantee that it does not alias with this access 1033 // (because there is some pointer of unknown origin involved and the 1034 // other access might also depend on this pointer). We also cannot add 1035 // scopes to arbitrary functions unless we know they don't access any 1036 // non-parameter pointer-values. 1037 bool CanAddScopes = !UsesAliasingPtr; 1038 if (CanAddScopes && IsFuncCall) 1039 CanAddScopes = IsArgMemOnlyCall; 1040 1041 if (CanAddScopes) 1042 for (const Argument *A : NoAliasArgs) { 1043 if (ObjSet.count(A)) 1044 Scopes.push_back(NewScopes[A]); 1045 } 1046 1047 if (!Scopes.empty()) 1048 NI->setMetadata( 1049 LLVMContext::MD_alias_scope, 1050 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), 1051 MDNode::get(CalledFunc->getContext(), Scopes))); 1052 } 1053 } 1054 } 1055 1056 /// If the inlined function has non-byval align arguments, then 1057 /// add @llvm.assume-based alignment assumptions to preserve this information. 1058 static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) { 1059 if (!PreserveAlignmentAssumptions) 1060 return; 1061 auto &DL = CS.getCaller()->getParent()->getDataLayout(); 1062 1063 // To avoid inserting redundant assumptions, we should check for assumptions 1064 // already in the caller. To do this, we might need a DT of the caller. 1065 DominatorTree DT; 1066 bool DTCalculated = false; 1067 1068 Function *CalledFunc = CS.getCalledFunction(); 1069 for (Function::arg_iterator I = CalledFunc->arg_begin(), 1070 E = CalledFunc->arg_end(); 1071 I != E; ++I) { 1072 unsigned Align = I->getType()->isPointerTy() ? I->getParamAlignment() : 0; 1073 if (Align && !I->hasByValOrInAllocaAttr() && !I->hasNUses(0)) { 1074 if (!DTCalculated) { 1075 DT.recalculate(const_cast<Function&>(*CS.getInstruction()->getParent() 1076 ->getParent())); 1077 DTCalculated = true; 1078 } 1079 1080 // If we can already prove the asserted alignment in the context of the 1081 // caller, then don't bother inserting the assumption. 1082 Value *Arg = CS.getArgument(I->getArgNo()); 1083 if (getKnownAlignment(Arg, DL, CS.getInstruction(), 1084 &IFI.ACT->getAssumptionCache(*CS.getCaller()), 1085 &DT) >= Align) 1086 continue; 1087 1088 IRBuilder<>(CS.getInstruction()) 1089 .CreateAlignmentAssumption(DL, Arg, Align); 1090 } 1091 } 1092 } 1093 1094 /// Once we have cloned code over from a callee into the caller, 1095 /// update the specified callgraph to reflect the changes we made. 1096 /// Note that it's possible that not all code was copied over, so only 1097 /// some edges of the callgraph may remain. 1098 static void UpdateCallGraphAfterInlining(CallSite CS, 1099 Function::iterator FirstNewBlock, 1100 ValueToValueMapTy &VMap, 1101 InlineFunctionInfo &IFI) { 1102 CallGraph &CG = *IFI.CG; 1103 const Function *Caller = CS.getInstruction()->getParent()->getParent(); 1104 const Function *Callee = CS.getCalledFunction(); 1105 CallGraphNode *CalleeNode = CG[Callee]; 1106 CallGraphNode *CallerNode = CG[Caller]; 1107 1108 // Since we inlined some uninlined call sites in the callee into the caller, 1109 // add edges from the caller to all of the callees of the callee. 1110 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 1111 1112 // Consider the case where CalleeNode == CallerNode. 1113 CallGraphNode::CalledFunctionsVector CallCache; 1114 if (CalleeNode == CallerNode) { 1115 CallCache.assign(I, E); 1116 I = CallCache.begin(); 1117 E = CallCache.end(); 1118 } 1119 1120 for (; I != E; ++I) { 1121 const Value *OrigCall = I->first; 1122 1123 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 1124 // Only copy the edge if the call was inlined! 1125 if (VMI == VMap.end() || VMI->second == nullptr) 1126 continue; 1127 1128 // If the call was inlined, but then constant folded, there is no edge to 1129 // add. Check for this case. 1130 Instruction *NewCall = dyn_cast<Instruction>(VMI->second); 1131 if (!NewCall) 1132 continue; 1133 1134 // We do not treat intrinsic calls like real function calls because we 1135 // expect them to become inline code; do not add an edge for an intrinsic. 1136 CallSite CS = CallSite(NewCall); 1137 if (CS && CS.getCalledFunction() && CS.getCalledFunction()->isIntrinsic()) 1138 continue; 1139 1140 // Remember that this call site got inlined for the client of 1141 // InlineFunction. 1142 IFI.InlinedCalls.push_back(NewCall); 1143 1144 // It's possible that inlining the callsite will cause it to go from an 1145 // indirect to a direct call by resolving a function pointer. If this 1146 // happens, set the callee of the new call site to a more precise 1147 // destination. This can also happen if the call graph node of the caller 1148 // was just unnecessarily imprecise. 1149 if (!I->second->getFunction()) 1150 if (Function *F = CallSite(NewCall).getCalledFunction()) { 1151 // Indirect call site resolved to direct call. 1152 CallerNode->addCalledFunction(CallSite(NewCall), CG[F]); 1153 1154 continue; 1155 } 1156 1157 CallerNode->addCalledFunction(CallSite(NewCall), I->second); 1158 } 1159 1160 // Update the call graph by deleting the edge from Callee to Caller. We must 1161 // do this after the loop above in case Caller and Callee are the same. 1162 CallerNode->removeCallEdgeFor(CS); 1163 } 1164 1165 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M, 1166 BasicBlock *InsertBlock, 1167 InlineFunctionInfo &IFI) { 1168 Type *AggTy = cast<PointerType>(Src->getType())->getElementType(); 1169 IRBuilder<> Builder(InsertBlock, InsertBlock->begin()); 1170 1171 Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy)); 1172 1173 // Always generate a memcpy of alignment 1 here because we don't know 1174 // the alignment of the src pointer. Other optimizations can infer 1175 // better alignment. 1176 Builder.CreateMemCpy(Dst, Src, Size, /*Align=*/1); 1177 } 1178 1179 /// When inlining a call site that has a byval argument, 1180 /// we have to make the implicit memcpy explicit by adding it. 1181 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 1182 const Function *CalledFunc, 1183 InlineFunctionInfo &IFI, 1184 unsigned ByValAlignment) { 1185 PointerType *ArgTy = cast<PointerType>(Arg->getType()); 1186 Type *AggTy = ArgTy->getElementType(); 1187 1188 Function *Caller = TheCall->getParent()->getParent(); 1189 1190 // If the called function is readonly, then it could not mutate the caller's 1191 // copy of the byval'd memory. In this case, it is safe to elide the copy and 1192 // temporary. 1193 if (CalledFunc->onlyReadsMemory()) { 1194 // If the byval argument has a specified alignment that is greater than the 1195 // passed in pointer, then we either have to round up the input pointer or 1196 // give up on this transformation. 1197 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 1198 return Arg; 1199 1200 const DataLayout &DL = Caller->getParent()->getDataLayout(); 1201 1202 // If the pointer is already known to be sufficiently aligned, or if we can 1203 // round it up to a larger alignment, then we don't need a temporary. 1204 if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall, 1205 &IFI.ACT->getAssumptionCache(*Caller)) >= 1206 ByValAlignment) 1207 return Arg; 1208 1209 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 1210 // for code quality, but rarely happens and is required for correctness. 1211 } 1212 1213 // Create the alloca. If we have DataLayout, use nice alignment. 1214 unsigned Align = 1215 Caller->getParent()->getDataLayout().getPrefTypeAlignment(AggTy); 1216 1217 // If the byval had an alignment specified, we *must* use at least that 1218 // alignment, as it is required by the byval argument (and uses of the 1219 // pointer inside the callee). 1220 Align = std::max(Align, ByValAlignment); 1221 1222 Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(), 1223 &*Caller->begin()->begin()); 1224 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); 1225 1226 // Uses of the argument in the function should use our new alloca 1227 // instead. 1228 return NewAlloca; 1229 } 1230 1231 // Check whether this Value is used by a lifetime intrinsic. 1232 static bool isUsedByLifetimeMarker(Value *V) { 1233 for (User *U : V->users()) { 1234 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 1235 switch (II->getIntrinsicID()) { 1236 default: break; 1237 case Intrinsic::lifetime_start: 1238 case Intrinsic::lifetime_end: 1239 return true; 1240 } 1241 } 1242 } 1243 return false; 1244 } 1245 1246 // Check whether the given alloca already has 1247 // lifetime.start or lifetime.end intrinsics. 1248 static bool hasLifetimeMarkers(AllocaInst *AI) { 1249 Type *Ty = AI->getType(); 1250 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), 1251 Ty->getPointerAddressSpace()); 1252 if (Ty == Int8PtrTy) 1253 return isUsedByLifetimeMarker(AI); 1254 1255 // Do a scan to find all the casts to i8*. 1256 for (User *U : AI->users()) { 1257 if (U->getType() != Int8PtrTy) continue; 1258 if (U->stripPointerCasts() != AI) continue; 1259 if (isUsedByLifetimeMarker(U)) 1260 return true; 1261 } 1262 return false; 1263 } 1264 1265 /// Rebuild the entire inlined-at chain for this instruction so that the top of 1266 /// the chain now is inlined-at the new call site. 1267 static DebugLoc 1268 updateInlinedAtInfo(const DebugLoc &DL, DILocation *InlinedAtNode, 1269 LLVMContext &Ctx, 1270 DenseMap<const DILocation *, DILocation *> &IANodes) { 1271 SmallVector<DILocation *, 3> InlinedAtLocations; 1272 DILocation *Last = InlinedAtNode; 1273 DILocation *CurInlinedAt = DL; 1274 1275 // Gather all the inlined-at nodes 1276 while (DILocation *IA = CurInlinedAt->getInlinedAt()) { 1277 // Skip any we've already built nodes for 1278 if (DILocation *Found = IANodes[IA]) { 1279 Last = Found; 1280 break; 1281 } 1282 1283 InlinedAtLocations.push_back(IA); 1284 CurInlinedAt = IA; 1285 } 1286 1287 // Starting from the top, rebuild the nodes to point to the new inlined-at 1288 // location (then rebuilding the rest of the chain behind it) and update the 1289 // map of already-constructed inlined-at nodes. 1290 for (const DILocation *MD : make_range(InlinedAtLocations.rbegin(), 1291 InlinedAtLocations.rend())) { 1292 Last = IANodes[MD] = DILocation::getDistinct( 1293 Ctx, MD->getLine(), MD->getColumn(), MD->getScope(), Last); 1294 } 1295 1296 // And finally create the normal location for this instruction, referring to 1297 // the new inlined-at chain. 1298 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(), Last); 1299 } 1300 1301 /// Update inlined instructions' line numbers to 1302 /// to encode location where these instructions are inlined. 1303 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 1304 Instruction *TheCall) { 1305 const DebugLoc &TheCallDL = TheCall->getDebugLoc(); 1306 if (!TheCallDL) 1307 return; 1308 1309 auto &Ctx = Fn->getContext(); 1310 DILocation *InlinedAtNode = TheCallDL; 1311 1312 // Create a unique call site, not to be confused with any other call from the 1313 // same location. 1314 InlinedAtNode = DILocation::getDistinct( 1315 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(), 1316 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt()); 1317 1318 // Cache the inlined-at nodes as they're built so they are reused, without 1319 // this every instruction's inlined-at chain would become distinct from each 1320 // other. 1321 DenseMap<const DILocation *, DILocation *> IANodes; 1322 1323 for (; FI != Fn->end(); ++FI) { 1324 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 1325 BI != BE; ++BI) { 1326 DebugLoc DL = BI->getDebugLoc(); 1327 if (!DL) { 1328 // If the inlined instruction has no line number, make it look as if it 1329 // originates from the call location. This is important for 1330 // ((__always_inline__, __nodebug__)) functions which must use caller 1331 // location for all instructions in their function body. 1332 1333 // Don't update static allocas, as they may get moved later. 1334 if (auto *AI = dyn_cast<AllocaInst>(BI)) 1335 if (isa<Constant>(AI->getArraySize())) 1336 continue; 1337 1338 BI->setDebugLoc(TheCallDL); 1339 } else { 1340 BI->setDebugLoc(updateInlinedAtInfo(DL, InlinedAtNode, BI->getContext(), IANodes)); 1341 } 1342 } 1343 } 1344 } 1345 1346 /// This function inlines the called function into the basic block of the 1347 /// caller. This returns false if it is not possible to inline this call. 1348 /// The program is still in a well defined state if this occurs though. 1349 /// 1350 /// Note that this only does one level of inlining. For example, if the 1351 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 1352 /// exists in the instruction stream. Similarly this will inline a recursive 1353 /// function by one level. 1354 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI, 1355 AAResults *CalleeAAR, bool InsertLifetime) { 1356 Instruction *TheCall = CS.getInstruction(); 1357 assert(TheCall->getParent() && TheCall->getParent()->getParent() && 1358 "Instruction not in function!"); 1359 1360 // If IFI has any state in it, zap it before we fill it in. 1361 IFI.reset(); 1362 1363 const Function *CalledFunc = CS.getCalledFunction(); 1364 if (!CalledFunc || // Can't inline external function or indirect 1365 CalledFunc->isDeclaration() || // call, or call to a vararg function! 1366 CalledFunc->getFunctionType()->isVarArg()) return false; 1367 1368 // The inliner does not know how to inline through calls with operand bundles 1369 // in general ... 1370 if (CS.hasOperandBundles()) { 1371 for (int i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 1372 uint32_t Tag = CS.getOperandBundleAt(i).getTagID(); 1373 // ... but it knows how to inline through "deopt" operand bundles ... 1374 if (Tag == LLVMContext::OB_deopt) 1375 continue; 1376 // ... and "funclet" operand bundles. 1377 if (Tag == LLVMContext::OB_funclet) 1378 continue; 1379 1380 return false; 1381 } 1382 } 1383 1384 // If the call to the callee cannot throw, set the 'nounwind' flag on any 1385 // calls that we inline. 1386 bool MarkNoUnwind = CS.doesNotThrow(); 1387 1388 BasicBlock *OrigBB = TheCall->getParent(); 1389 Function *Caller = OrigBB->getParent(); 1390 1391 // GC poses two hazards to inlining, which only occur when the callee has GC: 1392 // 1. If the caller has no GC, then the callee's GC must be propagated to the 1393 // caller. 1394 // 2. If the caller has a differing GC, it is invalid to inline. 1395 if (CalledFunc->hasGC()) { 1396 if (!Caller->hasGC()) 1397 Caller->setGC(CalledFunc->getGC()); 1398 else if (CalledFunc->getGC() != Caller->getGC()) 1399 return false; 1400 } 1401 1402 // Get the personality function from the callee if it contains a landing pad. 1403 Constant *CalledPersonality = 1404 CalledFunc->hasPersonalityFn() 1405 ? CalledFunc->getPersonalityFn()->stripPointerCasts() 1406 : nullptr; 1407 1408 // Find the personality function used by the landing pads of the caller. If it 1409 // exists, then check to see that it matches the personality function used in 1410 // the callee. 1411 Constant *CallerPersonality = 1412 Caller->hasPersonalityFn() 1413 ? Caller->getPersonalityFn()->stripPointerCasts() 1414 : nullptr; 1415 if (CalledPersonality) { 1416 if (!CallerPersonality) 1417 Caller->setPersonalityFn(CalledPersonality); 1418 // If the personality functions match, then we can perform the 1419 // inlining. Otherwise, we can't inline. 1420 // TODO: This isn't 100% true. Some personality functions are proper 1421 // supersets of others and can be used in place of the other. 1422 else if (CalledPersonality != CallerPersonality) 1423 return false; 1424 } 1425 1426 // We need to figure out which funclet the callsite was in so that we may 1427 // properly nest the callee. 1428 Instruction *CallSiteEHPad = nullptr; 1429 if (CallerPersonality) { 1430 EHPersonality Personality = classifyEHPersonality(CallerPersonality); 1431 if (isFuncletEHPersonality(Personality)) { 1432 Optional<OperandBundleUse> ParentFunclet = 1433 CS.getOperandBundle(LLVMContext::OB_funclet); 1434 if (ParentFunclet) 1435 CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front()); 1436 1437 // OK, the inlining site is legal. What about the target function? 1438 1439 if (CallSiteEHPad) { 1440 if (Personality == EHPersonality::MSVC_CXX) { 1441 // The MSVC personality cannot tolerate catches getting inlined into 1442 // cleanup funclets. 1443 if (isa<CleanupPadInst>(CallSiteEHPad)) { 1444 // Ok, the call site is within a cleanuppad. Let's check the callee 1445 // for catchpads. 1446 for (const BasicBlock &CalledBB : *CalledFunc) { 1447 if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI())) 1448 return false; 1449 } 1450 } 1451 } else if (isAsynchronousEHPersonality(Personality)) { 1452 // SEH is even less tolerant, there may not be any sort of exceptional 1453 // funclet in the callee. 1454 for (const BasicBlock &CalledBB : *CalledFunc) { 1455 if (CalledBB.isEHPad()) 1456 return false; 1457 } 1458 } 1459 } 1460 } 1461 } 1462 1463 // Determine if we are dealing with a call in an EHPad which does not unwind 1464 // to caller. 1465 bool EHPadForCallUnwindsLocally = false; 1466 if (CallSiteEHPad && CS.isCall()) { 1467 UnwindDestMemoTy FuncletUnwindMap; 1468 Value *CallSiteUnwindDestToken = 1469 getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap); 1470 1471 EHPadForCallUnwindsLocally = 1472 CallSiteUnwindDestToken && 1473 !isa<ConstantTokenNone>(CallSiteUnwindDestToken); 1474 } 1475 1476 // Get an iterator to the last basic block in the function, which will have 1477 // the new function inlined after it. 1478 Function::iterator LastBlock = --Caller->end(); 1479 1480 // Make sure to capture all of the return instructions from the cloned 1481 // function. 1482 SmallVector<ReturnInst*, 8> Returns; 1483 ClonedCodeInfo InlinedFunctionInfo; 1484 Function::iterator FirstNewBlock; 1485 1486 { // Scope to destroy VMap after cloning. 1487 ValueToValueMapTy VMap; 1488 // Keep a list of pair (dst, src) to emit byval initializations. 1489 SmallVector<std::pair<Value*, Value*>, 4> ByValInit; 1490 1491 auto &DL = Caller->getParent()->getDataLayout(); 1492 1493 assert(CalledFunc->arg_size() == CS.arg_size() && 1494 "No varargs calls can be inlined!"); 1495 1496 // Calculate the vector of arguments to pass into the function cloner, which 1497 // matches up the formal to the actual argument values. 1498 CallSite::arg_iterator AI = CS.arg_begin(); 1499 unsigned ArgNo = 0; 1500 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 1501 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 1502 Value *ActualArg = *AI; 1503 1504 // When byval arguments actually inlined, we need to make the copy implied 1505 // by them explicit. However, we don't do this if the callee is readonly 1506 // or readnone, because the copy would be unneeded: the callee doesn't 1507 // modify the struct. 1508 if (CS.isByValArgument(ArgNo)) { 1509 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, 1510 CalledFunc->getParamAlignment(ArgNo+1)); 1511 if (ActualArg != *AI) 1512 ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI)); 1513 } 1514 1515 VMap[&*I] = ActualArg; 1516 } 1517 1518 // Add alignment assumptions if necessary. We do this before the inlined 1519 // instructions are actually cloned into the caller so that we can easily 1520 // check what will be known at the start of the inlined code. 1521 AddAlignmentAssumptions(CS, IFI); 1522 1523 // We want the inliner to prune the code as it copies. We would LOVE to 1524 // have no dead or constant instructions leftover after inlining occurs 1525 // (which can happen, e.g., because an argument was constant), but we'll be 1526 // happy with whatever the cloner can do. 1527 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 1528 /*ModuleLevelChanges=*/false, Returns, ".i", 1529 &InlinedFunctionInfo, TheCall); 1530 1531 // Remember the first block that is newly cloned over. 1532 FirstNewBlock = LastBlock; ++FirstNewBlock; 1533 1534 // Inject byval arguments initialization. 1535 for (std::pair<Value*, Value*> &Init : ByValInit) 1536 HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(), 1537 &*FirstNewBlock, IFI); 1538 1539 Optional<OperandBundleUse> ParentDeopt = 1540 CS.getOperandBundle(LLVMContext::OB_deopt); 1541 if (ParentDeopt) { 1542 SmallVector<OperandBundleDef, 2> OpDefs; 1543 1544 for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) { 1545 Instruction *I = dyn_cast_or_null<Instruction>(VH); 1546 if (!I) continue; // instruction was DCE'd or RAUW'ed to undef 1547 1548 OpDefs.clear(); 1549 1550 CallSite ICS(I); 1551 OpDefs.reserve(ICS.getNumOperandBundles()); 1552 1553 for (unsigned i = 0, e = ICS.getNumOperandBundles(); i < e; ++i) { 1554 auto ChildOB = ICS.getOperandBundleAt(i); 1555 if (ChildOB.getTagID() != LLVMContext::OB_deopt) { 1556 // If the inlined call has other operand bundles, let them be 1557 OpDefs.emplace_back(ChildOB); 1558 continue; 1559 } 1560 1561 // It may be useful to separate this logic (of handling operand 1562 // bundles) out to a separate "policy" component if this gets crowded. 1563 // Prepend the parent's deoptimization continuation to the newly 1564 // inlined call's deoptimization continuation. 1565 std::vector<Value *> MergedDeoptArgs; 1566 MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() + 1567 ChildOB.Inputs.size()); 1568 1569 MergedDeoptArgs.insert(MergedDeoptArgs.end(), 1570 ParentDeopt->Inputs.begin(), 1571 ParentDeopt->Inputs.end()); 1572 MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(), 1573 ChildOB.Inputs.end()); 1574 1575 OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs)); 1576 } 1577 1578 Instruction *NewI = nullptr; 1579 if (isa<CallInst>(I)) 1580 NewI = CallInst::Create(cast<CallInst>(I), OpDefs, I); 1581 else 1582 NewI = InvokeInst::Create(cast<InvokeInst>(I), OpDefs, I); 1583 1584 // Note: the RAUW does the appropriate fixup in VMap, so we need to do 1585 // this even if the call returns void. 1586 I->replaceAllUsesWith(NewI); 1587 1588 VH = nullptr; 1589 I->eraseFromParent(); 1590 } 1591 } 1592 1593 // Update the callgraph if requested. 1594 if (IFI.CG) 1595 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); 1596 1597 // Update inlined instructions' line number information. 1598 fixupLineNumbers(Caller, FirstNewBlock, TheCall); 1599 1600 // Clone existing noalias metadata if necessary. 1601 CloneAliasScopeMetadata(CS, VMap); 1602 1603 // Add noalias metadata if necessary. 1604 AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR); 1605 1606 // Propagate llvm.mem.parallel_loop_access if necessary. 1607 PropagateParallelLoopAccessMetadata(CS, VMap); 1608 1609 // FIXME: We could register any cloned assumptions instead of clearing the 1610 // whole function's cache. 1611 if (IFI.ACT) 1612 IFI.ACT->getAssumptionCache(*Caller).clear(); 1613 } 1614 1615 // If there are any alloca instructions in the block that used to be the entry 1616 // block for the callee, move them to the entry block of the caller. First 1617 // calculate which instruction they should be inserted before. We insert the 1618 // instructions at the end of the current alloca list. 1619 { 1620 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 1621 for (BasicBlock::iterator I = FirstNewBlock->begin(), 1622 E = FirstNewBlock->end(); I != E; ) { 1623 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 1624 if (!AI) continue; 1625 1626 // If the alloca is now dead, remove it. This often occurs due to code 1627 // specialization. 1628 if (AI->use_empty()) { 1629 AI->eraseFromParent(); 1630 continue; 1631 } 1632 1633 if (!isa<Constant>(AI->getArraySize())) 1634 continue; 1635 1636 // Keep track of the static allocas that we inline into the caller. 1637 IFI.StaticAllocas.push_back(AI); 1638 1639 // Scan for the block of allocas that we can move over, and move them 1640 // all at once. 1641 while (isa<AllocaInst>(I) && 1642 isa<Constant>(cast<AllocaInst>(I)->getArraySize())) { 1643 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 1644 ++I; 1645 } 1646 1647 // Transfer all of the allocas over in a block. Using splice means 1648 // that the instructions aren't removed from the symbol table, then 1649 // reinserted. 1650 Caller->getEntryBlock().getInstList().splice( 1651 InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I); 1652 } 1653 // Move any dbg.declares describing the allocas into the entry basic block. 1654 DIBuilder DIB(*Caller->getParent()); 1655 for (auto &AI : IFI.StaticAllocas) 1656 replaceDbgDeclareForAlloca(AI, AI, DIB, /*Deref=*/false); 1657 } 1658 1659 bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false; 1660 if (InlinedFunctionInfo.ContainsCalls) { 1661 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; 1662 if (CallInst *CI = dyn_cast<CallInst>(TheCall)) 1663 CallSiteTailKind = CI->getTailCallKind(); 1664 1665 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 1666 ++BB) { 1667 for (Instruction &I : *BB) { 1668 CallInst *CI = dyn_cast<CallInst>(&I); 1669 if (!CI) 1670 continue; 1671 1672 if (Function *F = CI->getCalledFunction()) 1673 InlinedDeoptimizeCalls |= 1674 F->getIntrinsicID() == Intrinsic::experimental_deoptimize; 1675 1676 // We need to reduce the strength of any inlined tail calls. For 1677 // musttail, we have to avoid introducing potential unbounded stack 1678 // growth. For example, if functions 'f' and 'g' are mutually recursive 1679 // with musttail, we can inline 'g' into 'f' so long as we preserve 1680 // musttail on the cloned call to 'f'. If either the inlined call site 1681 // or the cloned call site is *not* musttail, the program already has 1682 // one frame of stack growth, so it's safe to remove musttail. Here is 1683 // a table of example transformations: 1684 // 1685 // f -> musttail g -> musttail f ==> f -> musttail f 1686 // f -> musttail g -> tail f ==> f -> tail f 1687 // f -> g -> musttail f ==> f -> f 1688 // f -> g -> tail f ==> f -> f 1689 CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); 1690 ChildTCK = std::min(CallSiteTailKind, ChildTCK); 1691 CI->setTailCallKind(ChildTCK); 1692 InlinedMustTailCalls |= CI->isMustTailCall(); 1693 1694 // Calls inlined through a 'nounwind' call site should be marked 1695 // 'nounwind'. 1696 if (MarkNoUnwind) 1697 CI->setDoesNotThrow(); 1698 } 1699 } 1700 } 1701 1702 // Leave lifetime markers for the static alloca's, scoping them to the 1703 // function we just inlined. 1704 if (InsertLifetime && !IFI.StaticAllocas.empty()) { 1705 IRBuilder<> builder(&FirstNewBlock->front()); 1706 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 1707 AllocaInst *AI = IFI.StaticAllocas[ai]; 1708 1709 // If the alloca is already scoped to something smaller than the whole 1710 // function then there's no need to add redundant, less accurate markers. 1711 if (hasLifetimeMarkers(AI)) 1712 continue; 1713 1714 // Try to determine the size of the allocation. 1715 ConstantInt *AllocaSize = nullptr; 1716 if (ConstantInt *AIArraySize = 1717 dyn_cast<ConstantInt>(AI->getArraySize())) { 1718 auto &DL = Caller->getParent()->getDataLayout(); 1719 Type *AllocaType = AI->getAllocatedType(); 1720 uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType); 1721 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 1722 1723 // Don't add markers for zero-sized allocas. 1724 if (AllocaArraySize == 0) 1725 continue; 1726 1727 // Check that array size doesn't saturate uint64_t and doesn't 1728 // overflow when it's multiplied by type size. 1729 if (AllocaArraySize != ~0ULL && 1730 UINT64_MAX / AllocaArraySize >= AllocaTypeSize) { 1731 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 1732 AllocaArraySize * AllocaTypeSize); 1733 } 1734 } 1735 1736 builder.CreateLifetimeStart(AI, AllocaSize); 1737 for (ReturnInst *RI : Returns) { 1738 // Don't insert llvm.lifetime.end calls between a musttail or deoptimize 1739 // call and a return. The return kills all local allocas. 1740 if (InlinedMustTailCalls && 1741 RI->getParent()->getTerminatingMustTailCall()) 1742 continue; 1743 if (InlinedDeoptimizeCalls && 1744 RI->getParent()->getTerminatingDeoptimizeCall()) 1745 continue; 1746 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); 1747 } 1748 } 1749 } 1750 1751 // If the inlined code contained dynamic alloca instructions, wrap the inlined 1752 // code with llvm.stacksave/llvm.stackrestore intrinsics. 1753 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 1754 Module *M = Caller->getParent(); 1755 // Get the two intrinsics we care about. 1756 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 1757 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 1758 1759 // Insert the llvm.stacksave. 1760 CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin()) 1761 .CreateCall(StackSave, {}, "savedstack"); 1762 1763 // Insert a call to llvm.stackrestore before any return instructions in the 1764 // inlined function. 1765 for (ReturnInst *RI : Returns) { 1766 // Don't insert llvm.stackrestore calls between a musttail or deoptimize 1767 // call and a return. The return will restore the stack pointer. 1768 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) 1769 continue; 1770 if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall()) 1771 continue; 1772 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); 1773 } 1774 } 1775 1776 // If we are inlining for an invoke instruction, we must make sure to rewrite 1777 // any call instructions into invoke instructions. This is sensitive to which 1778 // funclet pads were top-level in the inlinee, so must be done before 1779 // rewriting the "parent pad" links. 1780 if (auto *II = dyn_cast<InvokeInst>(TheCall)) { 1781 BasicBlock *UnwindDest = II->getUnwindDest(); 1782 Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI(); 1783 if (isa<LandingPadInst>(FirstNonPHI)) { 1784 HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo); 1785 } else { 1786 HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo); 1787 } 1788 } 1789 1790 // Update the lexical scopes of the new funclets and callsites. 1791 // Anything that had 'none' as its parent is now nested inside the callsite's 1792 // EHPad. 1793 1794 if (CallSiteEHPad) { 1795 for (Function::iterator BB = FirstNewBlock->getIterator(), 1796 E = Caller->end(); 1797 BB != E; ++BB) { 1798 // Add bundle operands to any top-level call sites. 1799 SmallVector<OperandBundleDef, 1> OpBundles; 1800 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) { 1801 Instruction *I = &*BBI++; 1802 CallSite CS(I); 1803 if (!CS) 1804 continue; 1805 1806 // Skip call sites which are nounwind intrinsics. 1807 auto *CalledFn = 1808 dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts()); 1809 if (CalledFn && CalledFn->isIntrinsic() && CS.doesNotThrow()) 1810 continue; 1811 1812 // Skip call sites which already have a "funclet" bundle. 1813 if (CS.getOperandBundle(LLVMContext::OB_funclet)) 1814 continue; 1815 1816 CS.getOperandBundlesAsDefs(OpBundles); 1817 OpBundles.emplace_back("funclet", CallSiteEHPad); 1818 1819 Instruction *NewInst; 1820 if (CS.isCall()) 1821 NewInst = CallInst::Create(cast<CallInst>(I), OpBundles, I); 1822 else 1823 NewInst = InvokeInst::Create(cast<InvokeInst>(I), OpBundles, I); 1824 NewInst->takeName(I); 1825 I->replaceAllUsesWith(NewInst); 1826 I->eraseFromParent(); 1827 1828 OpBundles.clear(); 1829 } 1830 1831 // It is problematic if the inlinee has a cleanupret which unwinds to 1832 // caller and we inline it into a call site which doesn't unwind but into 1833 // an EH pad that does. Such an edge must be dynamically unreachable. 1834 // As such, we replace the cleanupret with unreachable. 1835 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator())) 1836 if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally) 1837 changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false); 1838 1839 Instruction *I = BB->getFirstNonPHI(); 1840 if (!I->isEHPad()) 1841 continue; 1842 1843 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 1844 if (isa<ConstantTokenNone>(CatchSwitch->getParentPad())) 1845 CatchSwitch->setParentPad(CallSiteEHPad); 1846 } else { 1847 auto *FPI = cast<FuncletPadInst>(I); 1848 if (isa<ConstantTokenNone>(FPI->getParentPad())) 1849 FPI->setParentPad(CallSiteEHPad); 1850 } 1851 } 1852 } 1853 1854 if (InlinedDeoptimizeCalls) { 1855 // We need to at least remove the deoptimizing returns from the Return set, 1856 // so that the control flow from those returns does not get merged into the 1857 // caller (but terminate it instead). If the caller's return type does not 1858 // match the callee's return type, we also need to change the return type of 1859 // the intrinsic. 1860 if (Caller->getReturnType() == TheCall->getType()) { 1861 auto NewEnd = remove_if(Returns, [](ReturnInst *RI) { 1862 return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr; 1863 }); 1864 Returns.erase(NewEnd, Returns.end()); 1865 } else { 1866 SmallVector<ReturnInst *, 8> NormalReturns; 1867 Function *NewDeoptIntrinsic = Intrinsic::getDeclaration( 1868 Caller->getParent(), Intrinsic::experimental_deoptimize, 1869 {Caller->getReturnType()}); 1870 1871 for (ReturnInst *RI : Returns) { 1872 CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall(); 1873 if (!DeoptCall) { 1874 NormalReturns.push_back(RI); 1875 continue; 1876 } 1877 1878 // The calling convention on the deoptimize call itself may be bogus, 1879 // since the code we're inlining may have undefined behavior (and may 1880 // never actually execute at runtime); but all 1881 // @llvm.experimental.deoptimize declarations have to have the same 1882 // calling convention in a well-formed module. 1883 auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv(); 1884 NewDeoptIntrinsic->setCallingConv(CallingConv); 1885 auto *CurBB = RI->getParent(); 1886 RI->eraseFromParent(); 1887 1888 SmallVector<Value *, 4> CallArgs(DeoptCall->arg_begin(), 1889 DeoptCall->arg_end()); 1890 1891 SmallVector<OperandBundleDef, 1> OpBundles; 1892 DeoptCall->getOperandBundlesAsDefs(OpBundles); 1893 DeoptCall->eraseFromParent(); 1894 assert(!OpBundles.empty() && 1895 "Expected at least the deopt operand bundle"); 1896 1897 IRBuilder<> Builder(CurBB); 1898 CallInst *NewDeoptCall = 1899 Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles); 1900 NewDeoptCall->setCallingConv(CallingConv); 1901 if (NewDeoptCall->getType()->isVoidTy()) 1902 Builder.CreateRetVoid(); 1903 else 1904 Builder.CreateRet(NewDeoptCall); 1905 } 1906 1907 // Leave behind the normal returns so we can merge control flow. 1908 std::swap(Returns, NormalReturns); 1909 } 1910 } 1911 1912 // Handle any inlined musttail call sites. In order for a new call site to be 1913 // musttail, the source of the clone and the inlined call site must have been 1914 // musttail. Therefore it's safe to return without merging control into the 1915 // phi below. 1916 if (InlinedMustTailCalls) { 1917 // Check if we need to bitcast the result of any musttail calls. 1918 Type *NewRetTy = Caller->getReturnType(); 1919 bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy; 1920 1921 // Handle the returns preceded by musttail calls separately. 1922 SmallVector<ReturnInst *, 8> NormalReturns; 1923 for (ReturnInst *RI : Returns) { 1924 CallInst *ReturnedMustTail = 1925 RI->getParent()->getTerminatingMustTailCall(); 1926 if (!ReturnedMustTail) { 1927 NormalReturns.push_back(RI); 1928 continue; 1929 } 1930 if (!NeedBitCast) 1931 continue; 1932 1933 // Delete the old return and any preceding bitcast. 1934 BasicBlock *CurBB = RI->getParent(); 1935 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); 1936 RI->eraseFromParent(); 1937 if (OldCast) 1938 OldCast->eraseFromParent(); 1939 1940 // Insert a new bitcast and return with the right type. 1941 IRBuilder<> Builder(CurBB); 1942 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); 1943 } 1944 1945 // Leave behind the normal returns so we can merge control flow. 1946 std::swap(Returns, NormalReturns); 1947 } 1948 1949 // If we cloned in _exactly one_ basic block, and if that block ends in a 1950 // return instruction, we splice the body of the inlined callee directly into 1951 // the calling basic block. 1952 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 1953 // Move all of the instructions right before the call. 1954 OrigBB->getInstList().splice(TheCall->getIterator(), 1955 FirstNewBlock->getInstList(), 1956 FirstNewBlock->begin(), FirstNewBlock->end()); 1957 // Remove the cloned basic block. 1958 Caller->getBasicBlockList().pop_back(); 1959 1960 // If the call site was an invoke instruction, add a branch to the normal 1961 // destination. 1962 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 1963 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); 1964 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 1965 } 1966 1967 // If the return instruction returned a value, replace uses of the call with 1968 // uses of the returned value. 1969 if (!TheCall->use_empty()) { 1970 ReturnInst *R = Returns[0]; 1971 if (TheCall == R->getReturnValue()) 1972 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1973 else 1974 TheCall->replaceAllUsesWith(R->getReturnValue()); 1975 } 1976 // Since we are now done with the Call/Invoke, we can delete it. 1977 TheCall->eraseFromParent(); 1978 1979 // Since we are now done with the return instruction, delete it also. 1980 Returns[0]->eraseFromParent(); 1981 1982 // We are now done with the inlining. 1983 return true; 1984 } 1985 1986 // Otherwise, we have the normal case, of more than one block to inline or 1987 // multiple return sites. 1988 1989 // We want to clone the entire callee function into the hole between the 1990 // "starter" and "ender" blocks. How we accomplish this depends on whether 1991 // this is an invoke instruction or a call instruction. 1992 BasicBlock *AfterCallBB; 1993 BranchInst *CreatedBranchToNormalDest = nullptr; 1994 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 1995 1996 // Add an unconditional branch to make this look like the CallInst case... 1997 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall); 1998 1999 // Split the basic block. This guarantees that no PHI nodes will have to be 2000 // updated due to new incoming edges, and make the invoke case more 2001 // symmetric to the call case. 2002 AfterCallBB = 2003 OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(), 2004 CalledFunc->getName() + ".exit"); 2005 2006 } else { // It's a call 2007 // If this is a call instruction, we need to split the basic block that 2008 // the call lives in. 2009 // 2010 AfterCallBB = OrigBB->splitBasicBlock(TheCall->getIterator(), 2011 CalledFunc->getName() + ".exit"); 2012 } 2013 2014 // Change the branch that used to go to AfterCallBB to branch to the first 2015 // basic block of the inlined function. 2016 // 2017 TerminatorInst *Br = OrigBB->getTerminator(); 2018 assert(Br && Br->getOpcode() == Instruction::Br && 2019 "splitBasicBlock broken!"); 2020 Br->setOperand(0, &*FirstNewBlock); 2021 2022 // Now that the function is correct, make it a little bit nicer. In 2023 // particular, move the basic blocks inserted from the end of the function 2024 // into the space made by splitting the source basic block. 2025 Caller->getBasicBlockList().splice(AfterCallBB->getIterator(), 2026 Caller->getBasicBlockList(), FirstNewBlock, 2027 Caller->end()); 2028 2029 // Handle all of the return instructions that we just cloned in, and eliminate 2030 // any users of the original call/invoke instruction. 2031 Type *RTy = CalledFunc->getReturnType(); 2032 2033 PHINode *PHI = nullptr; 2034 if (Returns.size() > 1) { 2035 // The PHI node should go at the front of the new basic block to merge all 2036 // possible incoming values. 2037 if (!TheCall->use_empty()) { 2038 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), 2039 &AfterCallBB->front()); 2040 // Anything that used the result of the function call should now use the 2041 // PHI node as their operand. 2042 TheCall->replaceAllUsesWith(PHI); 2043 } 2044 2045 // Loop over all of the return instructions adding entries to the PHI node 2046 // as appropriate. 2047 if (PHI) { 2048 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2049 ReturnInst *RI = Returns[i]; 2050 assert(RI->getReturnValue()->getType() == PHI->getType() && 2051 "Ret value not consistent in function!"); 2052 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 2053 } 2054 } 2055 2056 // Add a branch to the merge points and remove return instructions. 2057 DebugLoc Loc; 2058 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2059 ReturnInst *RI = Returns[i]; 2060 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 2061 Loc = RI->getDebugLoc(); 2062 BI->setDebugLoc(Loc); 2063 RI->eraseFromParent(); 2064 } 2065 // We need to set the debug location to *somewhere* inside the 2066 // inlined function. The line number may be nonsensical, but the 2067 // instruction will at least be associated with the right 2068 // function. 2069 if (CreatedBranchToNormalDest) 2070 CreatedBranchToNormalDest->setDebugLoc(Loc); 2071 } else if (!Returns.empty()) { 2072 // Otherwise, if there is exactly one return value, just replace anything 2073 // using the return value of the call with the computed value. 2074 if (!TheCall->use_empty()) { 2075 if (TheCall == Returns[0]->getReturnValue()) 2076 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 2077 else 2078 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); 2079 } 2080 2081 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 2082 BasicBlock *ReturnBB = Returns[0]->getParent(); 2083 ReturnBB->replaceAllUsesWith(AfterCallBB); 2084 2085 // Splice the code from the return block into the block that it will return 2086 // to, which contains the code that was after the call. 2087 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 2088 ReturnBB->getInstList()); 2089 2090 if (CreatedBranchToNormalDest) 2091 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 2092 2093 // Delete the return instruction now and empty ReturnBB now. 2094 Returns[0]->eraseFromParent(); 2095 ReturnBB->eraseFromParent(); 2096 } else if (!TheCall->use_empty()) { 2097 // No returns, but something is using the return value of the call. Just 2098 // nuke the result. 2099 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 2100 } 2101 2102 // Since we are now done with the Call/Invoke, we can delete it. 2103 TheCall->eraseFromParent(); 2104 2105 // If we inlined any musttail calls and the original return is now 2106 // unreachable, delete it. It can only contain a bitcast and ret. 2107 if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB)) 2108 AfterCallBB->eraseFromParent(); 2109 2110 // We should always be able to fold the entry block of the function into the 2111 // single predecessor of the block... 2112 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 2113 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 2114 2115 // Splice the code entry block into calling block, right before the 2116 // unconditional branch. 2117 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 2118 OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList()); 2119 2120 // Remove the unconditional branch. 2121 OrigBB->getInstList().erase(Br); 2122 2123 // Now we can remove the CalleeEntry block, which is now empty. 2124 Caller->getBasicBlockList().erase(CalleeEntry); 2125 2126 // If we inserted a phi node, check to see if it has a single value (e.g. all 2127 // the entries are the same or undef). If so, remove the PHI so it doesn't 2128 // block other optimizations. 2129 if (PHI) { 2130 auto &DL = Caller->getParent()->getDataLayout(); 2131 if (Value *V = SimplifyInstruction(PHI, DL, nullptr, nullptr, 2132 &IFI.ACT->getAssumptionCache(*Caller))) { 2133 PHI->replaceAllUsesWith(V); 2134 PHI->eraseFromParent(); 2135 } 2136 } 2137 2138 return true; 2139 } 2140