1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements inlining of a function into a call site, resolving 10 // parameters and the return value as appropriate. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/BlockFrequencyInfo.h" 26 #include "llvm/Analysis/CallGraph.h" 27 #include "llvm/Analysis/CaptureTracking.h" 28 #include "llvm/Analysis/EHPersonalities.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/Analysis/VectorUtils.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/CFG.h" 37 #include "llvm/IR/CallSite.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DIBuilder.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfoMetadata.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Dominators.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/User.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Transforms/Utils/Cloning.h" 64 #include "llvm/Transforms/Utils/ValueMapper.h" 65 #include <algorithm> 66 #include <cassert> 67 #include <cstdint> 68 #include <iterator> 69 #include <limits> 70 #include <string> 71 #include <utility> 72 #include <vector> 73 74 using namespace llvm; 75 using ProfileCount = Function::ProfileCount; 76 77 static cl::opt<bool> 78 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), 79 cl::Hidden, 80 cl::desc("Convert noalias attributes to metadata during inlining.")); 81 82 static cl::opt<bool> 83 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", 84 cl::init(true), cl::Hidden, 85 cl::desc("Convert align attributes to assumptions during inlining.")); 86 87 llvm::InlineResult llvm::InlineFunction(CallBase *CB, InlineFunctionInfo &IFI, 88 AAResults *CalleeAAR, 89 bool InsertLifetime) { 90 return InlineFunction(CallSite(CB), IFI, CalleeAAR, InsertLifetime); 91 } 92 93 namespace { 94 95 /// A class for recording information about inlining a landing pad. 96 class LandingPadInliningInfo { 97 /// Destination of the invoke's unwind. 98 BasicBlock *OuterResumeDest; 99 100 /// Destination for the callee's resume. 101 BasicBlock *InnerResumeDest = nullptr; 102 103 /// LandingPadInst associated with the invoke. 104 LandingPadInst *CallerLPad = nullptr; 105 106 /// PHI for EH values from landingpad insts. 107 PHINode *InnerEHValuesPHI = nullptr; 108 109 SmallVector<Value*, 8> UnwindDestPHIValues; 110 111 public: 112 LandingPadInliningInfo(InvokeInst *II) 113 : OuterResumeDest(II->getUnwindDest()) { 114 // If there are PHI nodes in the unwind destination block, we need to keep 115 // track of which values came into them from the invoke before removing 116 // the edge from this block. 117 BasicBlock *InvokeBB = II->getParent(); 118 BasicBlock::iterator I = OuterResumeDest->begin(); 119 for (; isa<PHINode>(I); ++I) { 120 // Save the value to use for this edge. 121 PHINode *PHI = cast<PHINode>(I); 122 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 123 } 124 125 CallerLPad = cast<LandingPadInst>(I); 126 } 127 128 /// The outer unwind destination is the target of 129 /// unwind edges introduced for calls within the inlined function. 130 BasicBlock *getOuterResumeDest() const { 131 return OuterResumeDest; 132 } 133 134 BasicBlock *getInnerResumeDest(); 135 136 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 137 138 /// Forward the 'resume' instruction to the caller's landing pad block. 139 /// When the landing pad block has only one predecessor, this is 140 /// a simple branch. When there is more than one predecessor, we need to 141 /// split the landing pad block after the landingpad instruction and jump 142 /// to there. 143 void forwardResume(ResumeInst *RI, 144 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); 145 146 /// Add incoming-PHI values to the unwind destination block for the given 147 /// basic block, using the values for the original invoke's source block. 148 void addIncomingPHIValuesFor(BasicBlock *BB) const { 149 addIncomingPHIValuesForInto(BB, OuterResumeDest); 150 } 151 152 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 153 BasicBlock::iterator I = dest->begin(); 154 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 155 PHINode *phi = cast<PHINode>(I); 156 phi->addIncoming(UnwindDestPHIValues[i], src); 157 } 158 } 159 }; 160 161 } // end anonymous namespace 162 163 /// Get or create a target for the branch from ResumeInsts. 164 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() { 165 if (InnerResumeDest) return InnerResumeDest; 166 167 // Split the landing pad. 168 BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator(); 169 InnerResumeDest = 170 OuterResumeDest->splitBasicBlock(SplitPoint, 171 OuterResumeDest->getName() + ".body"); 172 173 // The number of incoming edges we expect to the inner landing pad. 174 const unsigned PHICapacity = 2; 175 176 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 177 Instruction *InsertPoint = &InnerResumeDest->front(); 178 BasicBlock::iterator I = OuterResumeDest->begin(); 179 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 180 PHINode *OuterPHI = cast<PHINode>(I); 181 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 182 OuterPHI->getName() + ".lpad-body", 183 InsertPoint); 184 OuterPHI->replaceAllUsesWith(InnerPHI); 185 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 186 } 187 188 // Create a PHI for the exception values. 189 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 190 "eh.lpad-body", InsertPoint); 191 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 192 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 193 194 // All done. 195 return InnerResumeDest; 196 } 197 198 /// Forward the 'resume' instruction to the caller's landing pad block. 199 /// When the landing pad block has only one predecessor, this is a simple 200 /// branch. When there is more than one predecessor, we need to split the 201 /// landing pad block after the landingpad instruction and jump to there. 202 void LandingPadInliningInfo::forwardResume( 203 ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) { 204 BasicBlock *Dest = getInnerResumeDest(); 205 BasicBlock *Src = RI->getParent(); 206 207 BranchInst::Create(Dest, Src); 208 209 // Update the PHIs in the destination. They were inserted in an order which 210 // makes this work. 211 addIncomingPHIValuesForInto(Src, Dest); 212 213 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 214 RI->eraseFromParent(); 215 } 216 217 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper. 218 static Value *getParentPad(Value *EHPad) { 219 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 220 return FPI->getParentPad(); 221 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 222 } 223 224 using UnwindDestMemoTy = DenseMap<Instruction *, Value *>; 225 226 /// Helper for getUnwindDestToken that does the descendant-ward part of 227 /// the search. 228 static Value *getUnwindDestTokenHelper(Instruction *EHPad, 229 UnwindDestMemoTy &MemoMap) { 230 SmallVector<Instruction *, 8> Worklist(1, EHPad); 231 232 while (!Worklist.empty()) { 233 Instruction *CurrentPad = Worklist.pop_back_val(); 234 // We only put pads on the worklist that aren't in the MemoMap. When 235 // we find an unwind dest for a pad we may update its ancestors, but 236 // the queue only ever contains uncles/great-uncles/etc. of CurrentPad, 237 // so they should never get updated while queued on the worklist. 238 assert(!MemoMap.count(CurrentPad)); 239 Value *UnwindDestToken = nullptr; 240 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) { 241 if (CatchSwitch->hasUnwindDest()) { 242 UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI(); 243 } else { 244 // Catchswitch doesn't have a 'nounwind' variant, and one might be 245 // annotated as "unwinds to caller" when really it's nounwind (see 246 // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the 247 // parent's unwind dest from this. We can check its catchpads' 248 // descendants, since they might include a cleanuppad with an 249 // "unwinds to caller" cleanupret, which can be trusted. 250 for (auto HI = CatchSwitch->handler_begin(), 251 HE = CatchSwitch->handler_end(); 252 HI != HE && !UnwindDestToken; ++HI) { 253 BasicBlock *HandlerBlock = *HI; 254 auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI()); 255 for (User *Child : CatchPad->users()) { 256 // Intentionally ignore invokes here -- since the catchswitch is 257 // marked "unwind to caller", it would be a verifier error if it 258 // contained an invoke which unwinds out of it, so any invoke we'd 259 // encounter must unwind to some child of the catch. 260 if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child)) 261 continue; 262 263 Instruction *ChildPad = cast<Instruction>(Child); 264 auto Memo = MemoMap.find(ChildPad); 265 if (Memo == MemoMap.end()) { 266 // Haven't figured out this child pad yet; queue it. 267 Worklist.push_back(ChildPad); 268 continue; 269 } 270 // We've already checked this child, but might have found that 271 // it offers no proof either way. 272 Value *ChildUnwindDestToken = Memo->second; 273 if (!ChildUnwindDestToken) 274 continue; 275 // We already know the child's unwind dest, which can either 276 // be ConstantTokenNone to indicate unwind to caller, or can 277 // be another child of the catchpad. Only the former indicates 278 // the unwind dest of the catchswitch. 279 if (isa<ConstantTokenNone>(ChildUnwindDestToken)) { 280 UnwindDestToken = ChildUnwindDestToken; 281 break; 282 } 283 assert(getParentPad(ChildUnwindDestToken) == CatchPad); 284 } 285 } 286 } 287 } else { 288 auto *CleanupPad = cast<CleanupPadInst>(CurrentPad); 289 for (User *U : CleanupPad->users()) { 290 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) { 291 if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest()) 292 UnwindDestToken = RetUnwindDest->getFirstNonPHI(); 293 else 294 UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext()); 295 break; 296 } 297 Value *ChildUnwindDestToken; 298 if (auto *Invoke = dyn_cast<InvokeInst>(U)) { 299 ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI(); 300 } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) { 301 Instruction *ChildPad = cast<Instruction>(U); 302 auto Memo = MemoMap.find(ChildPad); 303 if (Memo == MemoMap.end()) { 304 // Haven't resolved this child yet; queue it and keep searching. 305 Worklist.push_back(ChildPad); 306 continue; 307 } 308 // We've checked this child, but still need to ignore it if it 309 // had no proof either way. 310 ChildUnwindDestToken = Memo->second; 311 if (!ChildUnwindDestToken) 312 continue; 313 } else { 314 // Not a relevant user of the cleanuppad 315 continue; 316 } 317 // In a well-formed program, the child/invoke must either unwind to 318 // an(other) child of the cleanup, or exit the cleanup. In the 319 // first case, continue searching. 320 if (isa<Instruction>(ChildUnwindDestToken) && 321 getParentPad(ChildUnwindDestToken) == CleanupPad) 322 continue; 323 UnwindDestToken = ChildUnwindDestToken; 324 break; 325 } 326 } 327 // If we haven't found an unwind dest for CurrentPad, we may have queued its 328 // children, so move on to the next in the worklist. 329 if (!UnwindDestToken) 330 continue; 331 332 // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits 333 // any ancestors of CurrentPad up to but not including UnwindDestToken's 334 // parent pad. Record this in the memo map, and check to see if the 335 // original EHPad being queried is one of the ones exited. 336 Value *UnwindParent; 337 if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken)) 338 UnwindParent = getParentPad(UnwindPad); 339 else 340 UnwindParent = nullptr; 341 bool ExitedOriginalPad = false; 342 for (Instruction *ExitedPad = CurrentPad; 343 ExitedPad && ExitedPad != UnwindParent; 344 ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) { 345 // Skip over catchpads since they just follow their catchswitches. 346 if (isa<CatchPadInst>(ExitedPad)) 347 continue; 348 MemoMap[ExitedPad] = UnwindDestToken; 349 ExitedOriginalPad |= (ExitedPad == EHPad); 350 } 351 352 if (ExitedOriginalPad) 353 return UnwindDestToken; 354 355 // Continue the search. 356 } 357 358 // No definitive information is contained within this funclet. 359 return nullptr; 360 } 361 362 /// Given an EH pad, find where it unwinds. If it unwinds to an EH pad, 363 /// return that pad instruction. If it unwinds to caller, return 364 /// ConstantTokenNone. If it does not have a definitive unwind destination, 365 /// return nullptr. 366 /// 367 /// This routine gets invoked for calls in funclets in inlinees when inlining 368 /// an invoke. Since many funclets don't have calls inside them, it's queried 369 /// on-demand rather than building a map of pads to unwind dests up front. 370 /// Determining a funclet's unwind dest may require recursively searching its 371 /// descendants, and also ancestors and cousins if the descendants don't provide 372 /// an answer. Since most funclets will have their unwind dest immediately 373 /// available as the unwind dest of a catchswitch or cleanupret, this routine 374 /// searches top-down from the given pad and then up. To avoid worst-case 375 /// quadratic run-time given that approach, it uses a memo map to avoid 376 /// re-processing funclet trees. The callers that rewrite the IR as they go 377 /// take advantage of this, for correctness, by checking/forcing rewritten 378 /// pads' entries to match the original callee view. 379 static Value *getUnwindDestToken(Instruction *EHPad, 380 UnwindDestMemoTy &MemoMap) { 381 // Catchpads unwind to the same place as their catchswitch; 382 // redirct any queries on catchpads so the code below can 383 // deal with just catchswitches and cleanuppads. 384 if (auto *CPI = dyn_cast<CatchPadInst>(EHPad)) 385 EHPad = CPI->getCatchSwitch(); 386 387 // Check if we've already determined the unwind dest for this pad. 388 auto Memo = MemoMap.find(EHPad); 389 if (Memo != MemoMap.end()) 390 return Memo->second; 391 392 // Search EHPad and, if necessary, its descendants. 393 Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap); 394 assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0)); 395 if (UnwindDestToken) 396 return UnwindDestToken; 397 398 // No information is available for this EHPad from itself or any of its 399 // descendants. An unwind all the way out to a pad in the caller would 400 // need also to agree with the unwind dest of the parent funclet, so 401 // search up the chain to try to find a funclet with information. Put 402 // null entries in the memo map to avoid re-processing as we go up. 403 MemoMap[EHPad] = nullptr; 404 #ifndef NDEBUG 405 SmallPtrSet<Instruction *, 4> TempMemos; 406 TempMemos.insert(EHPad); 407 #endif 408 Instruction *LastUselessPad = EHPad; 409 Value *AncestorToken; 410 for (AncestorToken = getParentPad(EHPad); 411 auto *AncestorPad = dyn_cast<Instruction>(AncestorToken); 412 AncestorToken = getParentPad(AncestorToken)) { 413 // Skip over catchpads since they just follow their catchswitches. 414 if (isa<CatchPadInst>(AncestorPad)) 415 continue; 416 // If the MemoMap had an entry mapping AncestorPad to nullptr, since we 417 // haven't yet called getUnwindDestTokenHelper for AncestorPad in this 418 // call to getUnwindDestToken, that would mean that AncestorPad had no 419 // information in itself, its descendants, or its ancestors. If that 420 // were the case, then we should also have recorded the lack of information 421 // for the descendant that we're coming from. So assert that we don't 422 // find a null entry in the MemoMap for AncestorPad. 423 assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]); 424 auto AncestorMemo = MemoMap.find(AncestorPad); 425 if (AncestorMemo == MemoMap.end()) { 426 UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap); 427 } else { 428 UnwindDestToken = AncestorMemo->second; 429 } 430 if (UnwindDestToken) 431 break; 432 LastUselessPad = AncestorPad; 433 MemoMap[LastUselessPad] = nullptr; 434 #ifndef NDEBUG 435 TempMemos.insert(LastUselessPad); 436 #endif 437 } 438 439 // We know that getUnwindDestTokenHelper was called on LastUselessPad and 440 // returned nullptr (and likewise for EHPad and any of its ancestors up to 441 // LastUselessPad), so LastUselessPad has no information from below. Since 442 // getUnwindDestTokenHelper must investigate all downward paths through 443 // no-information nodes to prove that a node has no information like this, 444 // and since any time it finds information it records it in the MemoMap for 445 // not just the immediately-containing funclet but also any ancestors also 446 // exited, it must be the case that, walking downward from LastUselessPad, 447 // visiting just those nodes which have not been mapped to an unwind dest 448 // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since 449 // they are just used to keep getUnwindDestTokenHelper from repeating work), 450 // any node visited must have been exhaustively searched with no information 451 // for it found. 452 SmallVector<Instruction *, 8> Worklist(1, LastUselessPad); 453 while (!Worklist.empty()) { 454 Instruction *UselessPad = Worklist.pop_back_val(); 455 auto Memo = MemoMap.find(UselessPad); 456 if (Memo != MemoMap.end() && Memo->second) { 457 // Here the name 'UselessPad' is a bit of a misnomer, because we've found 458 // that it is a funclet that does have information about unwinding to 459 // a particular destination; its parent was a useless pad. 460 // Since its parent has no information, the unwind edge must not escape 461 // the parent, and must target a sibling of this pad. This local unwind 462 // gives us no information about EHPad. Leave it and the subtree rooted 463 // at it alone. 464 assert(getParentPad(Memo->second) == getParentPad(UselessPad)); 465 continue; 466 } 467 // We know we don't have information for UselesPad. If it has an entry in 468 // the MemoMap (mapping it to nullptr), it must be one of the TempMemos 469 // added on this invocation of getUnwindDestToken; if a previous invocation 470 // recorded nullptr, it would have had to prove that the ancestors of 471 // UselessPad, which include LastUselessPad, had no information, and that 472 // in turn would have required proving that the descendants of 473 // LastUselesPad, which include EHPad, have no information about 474 // LastUselessPad, which would imply that EHPad was mapped to nullptr in 475 // the MemoMap on that invocation, which isn't the case if we got here. 476 assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad)); 477 // Assert as we enumerate users that 'UselessPad' doesn't have any unwind 478 // information that we'd be contradicting by making a map entry for it 479 // (which is something that getUnwindDestTokenHelper must have proved for 480 // us to get here). Just assert on is direct users here; the checks in 481 // this downward walk at its descendants will verify that they don't have 482 // any unwind edges that exit 'UselessPad' either (i.e. they either have no 483 // unwind edges or unwind to a sibling). 484 MemoMap[UselessPad] = UnwindDestToken; 485 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) { 486 assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad"); 487 for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) { 488 auto *CatchPad = HandlerBlock->getFirstNonPHI(); 489 for (User *U : CatchPad->users()) { 490 assert( 491 (!isa<InvokeInst>(U) || 492 (getParentPad( 493 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 494 CatchPad)) && 495 "Expected useless pad"); 496 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 497 Worklist.push_back(cast<Instruction>(U)); 498 } 499 } 500 } else { 501 assert(isa<CleanupPadInst>(UselessPad)); 502 for (User *U : UselessPad->users()) { 503 assert(!isa<CleanupReturnInst>(U) && "Expected useless pad"); 504 assert((!isa<InvokeInst>(U) || 505 (getParentPad( 506 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 507 UselessPad)) && 508 "Expected useless pad"); 509 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 510 Worklist.push_back(cast<Instruction>(U)); 511 } 512 } 513 } 514 515 return UnwindDestToken; 516 } 517 518 /// When we inline a basic block into an invoke, 519 /// we have to turn all of the calls that can throw into invokes. 520 /// This function analyze BB to see if there are any calls, and if so, 521 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 522 /// nodes in that block with the values specified in InvokeDestPHIValues. 523 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke( 524 BasicBlock *BB, BasicBlock *UnwindEdge, 525 UnwindDestMemoTy *FuncletUnwindMap = nullptr) { 526 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 527 Instruction *I = &*BBI++; 528 529 // We only need to check for function calls: inlined invoke 530 // instructions require no special handling. 531 CallInst *CI = dyn_cast<CallInst>(I); 532 533 if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue())) 534 continue; 535 536 // We do not need to (and in fact, cannot) convert possibly throwing calls 537 // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into 538 // invokes. The caller's "segment" of the deoptimization continuation 539 // attached to the newly inlined @llvm.experimental_deoptimize 540 // (resp. @llvm.experimental.guard) call should contain the exception 541 // handling logic, if any. 542 if (auto *F = CI->getCalledFunction()) 543 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize || 544 F->getIntrinsicID() == Intrinsic::experimental_guard) 545 continue; 546 547 if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) { 548 // This call is nested inside a funclet. If that funclet has an unwind 549 // destination within the inlinee, then unwinding out of this call would 550 // be UB. Rewriting this call to an invoke which targets the inlined 551 // invoke's unwind dest would give the call's parent funclet multiple 552 // unwind destinations, which is something that subsequent EH table 553 // generation can't handle and that the veirifer rejects. So when we 554 // see such a call, leave it as a call. 555 auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]); 556 Value *UnwindDestToken = 557 getUnwindDestToken(FuncletPad, *FuncletUnwindMap); 558 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 559 continue; 560 #ifndef NDEBUG 561 Instruction *MemoKey; 562 if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad)) 563 MemoKey = CatchPad->getCatchSwitch(); 564 else 565 MemoKey = FuncletPad; 566 assert(FuncletUnwindMap->count(MemoKey) && 567 (*FuncletUnwindMap)[MemoKey] == UnwindDestToken && 568 "must get memoized to avoid confusing later searches"); 569 #endif // NDEBUG 570 } 571 572 changeToInvokeAndSplitBasicBlock(CI, UnwindEdge); 573 return BB; 574 } 575 return nullptr; 576 } 577 578 /// If we inlined an invoke site, we need to convert calls 579 /// in the body of the inlined function into invokes. 580 /// 581 /// II is the invoke instruction being inlined. FirstNewBlock is the first 582 /// block of the inlined code (the last block is the end of the function), 583 /// and InlineCodeInfo is information about the code that got inlined. 584 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock, 585 ClonedCodeInfo &InlinedCodeInfo) { 586 BasicBlock *InvokeDest = II->getUnwindDest(); 587 588 Function *Caller = FirstNewBlock->getParent(); 589 590 // The inlined code is currently at the end of the function, scan from the 591 // start of the inlined code to its end, checking for stuff we need to 592 // rewrite. 593 LandingPadInliningInfo Invoke(II); 594 595 // Get all of the inlined landing pad instructions. 596 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 597 for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end(); 598 I != E; ++I) 599 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 600 InlinedLPads.insert(II->getLandingPadInst()); 601 602 // Append the clauses from the outer landing pad instruction into the inlined 603 // landing pad instructions. 604 LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 605 for (LandingPadInst *InlinedLPad : InlinedLPads) { 606 unsigned OuterNum = OuterLPad->getNumClauses(); 607 InlinedLPad->reserveClauses(OuterNum); 608 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 609 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 610 if (OuterLPad->isCleanup()) 611 InlinedLPad->setCleanup(true); 612 } 613 614 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 615 BB != E; ++BB) { 616 if (InlinedCodeInfo.ContainsCalls) 617 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 618 &*BB, Invoke.getOuterResumeDest())) 619 // Update any PHI nodes in the exceptional block to indicate that there 620 // is now a new entry in them. 621 Invoke.addIncomingPHIValuesFor(NewBB); 622 623 // Forward any resumes that are remaining here. 624 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 625 Invoke.forwardResume(RI, InlinedLPads); 626 } 627 628 // Now that everything is happy, we have one final detail. The PHI nodes in 629 // the exception destination block still have entries due to the original 630 // invoke instruction. Eliminate these entries (which might even delete the 631 // PHI node) now. 632 InvokeDest->removePredecessor(II->getParent()); 633 } 634 635 /// If we inlined an invoke site, we need to convert calls 636 /// in the body of the inlined function into invokes. 637 /// 638 /// II is the invoke instruction being inlined. FirstNewBlock is the first 639 /// block of the inlined code (the last block is the end of the function), 640 /// and InlineCodeInfo is information about the code that got inlined. 641 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock, 642 ClonedCodeInfo &InlinedCodeInfo) { 643 BasicBlock *UnwindDest = II->getUnwindDest(); 644 Function *Caller = FirstNewBlock->getParent(); 645 646 assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!"); 647 648 // If there are PHI nodes in the unwind destination block, we need to keep 649 // track of which values came into them from the invoke before removing the 650 // edge from this block. 651 SmallVector<Value *, 8> UnwindDestPHIValues; 652 BasicBlock *InvokeBB = II->getParent(); 653 for (Instruction &I : *UnwindDest) { 654 // Save the value to use for this edge. 655 PHINode *PHI = dyn_cast<PHINode>(&I); 656 if (!PHI) 657 break; 658 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 659 } 660 661 // Add incoming-PHI values to the unwind destination block for the given basic 662 // block, using the values for the original invoke's source block. 663 auto UpdatePHINodes = [&](BasicBlock *Src) { 664 BasicBlock::iterator I = UnwindDest->begin(); 665 for (Value *V : UnwindDestPHIValues) { 666 PHINode *PHI = cast<PHINode>(I); 667 PHI->addIncoming(V, Src); 668 ++I; 669 } 670 }; 671 672 // This connects all the instructions which 'unwind to caller' to the invoke 673 // destination. 674 UnwindDestMemoTy FuncletUnwindMap; 675 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 676 BB != E; ++BB) { 677 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 678 if (CRI->unwindsToCaller()) { 679 auto *CleanupPad = CRI->getCleanupPad(); 680 CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI); 681 CRI->eraseFromParent(); 682 UpdatePHINodes(&*BB); 683 // Finding a cleanupret with an unwind destination would confuse 684 // subsequent calls to getUnwindDestToken, so map the cleanuppad 685 // to short-circuit any such calls and recognize this as an "unwind 686 // to caller" cleanup. 687 assert(!FuncletUnwindMap.count(CleanupPad) || 688 isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad])); 689 FuncletUnwindMap[CleanupPad] = 690 ConstantTokenNone::get(Caller->getContext()); 691 } 692 } 693 694 Instruction *I = BB->getFirstNonPHI(); 695 if (!I->isEHPad()) 696 continue; 697 698 Instruction *Replacement = nullptr; 699 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 700 if (CatchSwitch->unwindsToCaller()) { 701 Value *UnwindDestToken; 702 if (auto *ParentPad = 703 dyn_cast<Instruction>(CatchSwitch->getParentPad())) { 704 // This catchswitch is nested inside another funclet. If that 705 // funclet has an unwind destination within the inlinee, then 706 // unwinding out of this catchswitch would be UB. Rewriting this 707 // catchswitch to unwind to the inlined invoke's unwind dest would 708 // give the parent funclet multiple unwind destinations, which is 709 // something that subsequent EH table generation can't handle and 710 // that the veirifer rejects. So when we see such a call, leave it 711 // as "unwind to caller". 712 UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap); 713 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 714 continue; 715 } else { 716 // This catchswitch has no parent to inherit constraints from, and 717 // none of its descendants can have an unwind edge that exits it and 718 // targets another funclet in the inlinee. It may or may not have a 719 // descendant that definitively has an unwind to caller. In either 720 // case, we'll have to assume that any unwinds out of it may need to 721 // be routed to the caller, so treat it as though it has a definitive 722 // unwind to caller. 723 UnwindDestToken = ConstantTokenNone::get(Caller->getContext()); 724 } 725 auto *NewCatchSwitch = CatchSwitchInst::Create( 726 CatchSwitch->getParentPad(), UnwindDest, 727 CatchSwitch->getNumHandlers(), CatchSwitch->getName(), 728 CatchSwitch); 729 for (BasicBlock *PadBB : CatchSwitch->handlers()) 730 NewCatchSwitch->addHandler(PadBB); 731 // Propagate info for the old catchswitch over to the new one in 732 // the unwind map. This also serves to short-circuit any subsequent 733 // checks for the unwind dest of this catchswitch, which would get 734 // confused if they found the outer handler in the callee. 735 FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken; 736 Replacement = NewCatchSwitch; 737 } 738 } else if (!isa<FuncletPadInst>(I)) { 739 llvm_unreachable("unexpected EHPad!"); 740 } 741 742 if (Replacement) { 743 Replacement->takeName(I); 744 I->replaceAllUsesWith(Replacement); 745 I->eraseFromParent(); 746 UpdatePHINodes(&*BB); 747 } 748 } 749 750 if (InlinedCodeInfo.ContainsCalls) 751 for (Function::iterator BB = FirstNewBlock->getIterator(), 752 E = Caller->end(); 753 BB != E; ++BB) 754 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 755 &*BB, UnwindDest, &FuncletUnwindMap)) 756 // Update any PHI nodes in the exceptional block to indicate that there 757 // is now a new entry in them. 758 UpdatePHINodes(NewBB); 759 760 // Now that everything is happy, we have one final detail. The PHI nodes in 761 // the exception destination block still have entries due to the original 762 // invoke instruction. Eliminate these entries (which might even delete the 763 // PHI node) now. 764 UnwindDest->removePredecessor(InvokeBB); 765 } 766 767 /// When inlining a call site that has !llvm.mem.parallel_loop_access or 768 /// llvm.access.group metadata, that metadata should be propagated to all 769 /// memory-accessing cloned instructions. 770 static void PropagateParallelLoopAccessMetadata(CallSite CS, 771 ValueToValueMapTy &VMap) { 772 MDNode *M = 773 CS.getInstruction()->getMetadata(LLVMContext::MD_mem_parallel_loop_access); 774 MDNode *CallAccessGroup = 775 CS.getInstruction()->getMetadata(LLVMContext::MD_access_group); 776 if (!M && !CallAccessGroup) 777 return; 778 779 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 780 VMI != VMIE; ++VMI) { 781 if (!VMI->second) 782 continue; 783 784 Instruction *NI = dyn_cast<Instruction>(VMI->second); 785 if (!NI) 786 continue; 787 788 if (M) { 789 if (MDNode *PM = 790 NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access)) { 791 M = MDNode::concatenate(PM, M); 792 NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M); 793 } else if (NI->mayReadOrWriteMemory()) { 794 NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M); 795 } 796 } 797 798 if (NI->mayReadOrWriteMemory()) { 799 MDNode *UnitedAccGroups = uniteAccessGroups( 800 NI->getMetadata(LLVMContext::MD_access_group), CallAccessGroup); 801 NI->setMetadata(LLVMContext::MD_access_group, UnitedAccGroups); 802 } 803 } 804 } 805 806 /// When inlining a function that contains noalias scope metadata, 807 /// this metadata needs to be cloned so that the inlined blocks 808 /// have different "unique scopes" at every call site. Were this not done, then 809 /// aliasing scopes from a function inlined into a caller multiple times could 810 /// not be differentiated (and this would lead to miscompiles because the 811 /// non-aliasing property communicated by the metadata could have 812 /// call-site-specific control dependencies). 813 static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) { 814 const Function *CalledFunc = CS.getCalledFunction(); 815 SetVector<const MDNode *> MD; 816 817 // Note: We could only clone the metadata if it is already used in the 818 // caller. I'm omitting that check here because it might confuse 819 // inter-procedural alias analysis passes. We can revisit this if it becomes 820 // an efficiency or overhead problem. 821 822 for (const BasicBlock &I : *CalledFunc) 823 for (const Instruction &J : I) { 824 if (const MDNode *M = J.getMetadata(LLVMContext::MD_alias_scope)) 825 MD.insert(M); 826 if (const MDNode *M = J.getMetadata(LLVMContext::MD_noalias)) 827 MD.insert(M); 828 } 829 830 if (MD.empty()) 831 return; 832 833 // Walk the existing metadata, adding the complete (perhaps cyclic) chain to 834 // the set. 835 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end()); 836 while (!Queue.empty()) { 837 const MDNode *M = cast<MDNode>(Queue.pop_back_val()); 838 for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i) 839 if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i))) 840 if (MD.insert(M1)) 841 Queue.push_back(M1); 842 } 843 844 // Now we have a complete set of all metadata in the chains used to specify 845 // the noalias scopes and the lists of those scopes. 846 SmallVector<TempMDTuple, 16> DummyNodes; 847 DenseMap<const MDNode *, TrackingMDNodeRef> MDMap; 848 for (const MDNode *I : MD) { 849 DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None)); 850 MDMap[I].reset(DummyNodes.back().get()); 851 } 852 853 // Create new metadata nodes to replace the dummy nodes, replacing old 854 // metadata references with either a dummy node or an already-created new 855 // node. 856 for (const MDNode *I : MD) { 857 SmallVector<Metadata *, 4> NewOps; 858 for (unsigned i = 0, ie = I->getNumOperands(); i != ie; ++i) { 859 const Metadata *V = I->getOperand(i); 860 if (const MDNode *M = dyn_cast<MDNode>(V)) 861 NewOps.push_back(MDMap[M]); 862 else 863 NewOps.push_back(const_cast<Metadata *>(V)); 864 } 865 866 MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps); 867 MDTuple *TempM = cast<MDTuple>(MDMap[I]); 868 assert(TempM->isTemporary() && "Expected temporary node"); 869 870 TempM->replaceAllUsesWith(NewM); 871 } 872 873 // Now replace the metadata in the new inlined instructions with the 874 // repacements from the map. 875 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 876 VMI != VMIE; ++VMI) { 877 if (!VMI->second) 878 continue; 879 880 Instruction *NI = dyn_cast<Instruction>(VMI->second); 881 if (!NI) 882 continue; 883 884 if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) { 885 MDNode *NewMD = MDMap[M]; 886 // If the call site also had alias scope metadata (a list of scopes to 887 // which instructions inside it might belong), propagate those scopes to 888 // the inlined instructions. 889 if (MDNode *CSM = 890 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 891 NewMD = MDNode::concatenate(NewMD, CSM); 892 NI->setMetadata(LLVMContext::MD_alias_scope, NewMD); 893 } else if (NI->mayReadOrWriteMemory()) { 894 if (MDNode *M = 895 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 896 NI->setMetadata(LLVMContext::MD_alias_scope, M); 897 } 898 899 if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) { 900 MDNode *NewMD = MDMap[M]; 901 // If the call site also had noalias metadata (a list of scopes with 902 // which instructions inside it don't alias), propagate those scopes to 903 // the inlined instructions. 904 if (MDNode *CSM = 905 CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 906 NewMD = MDNode::concatenate(NewMD, CSM); 907 NI->setMetadata(LLVMContext::MD_noalias, NewMD); 908 } else if (NI->mayReadOrWriteMemory()) { 909 if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 910 NI->setMetadata(LLVMContext::MD_noalias, M); 911 } 912 } 913 } 914 915 /// If the inlined function has noalias arguments, 916 /// then add new alias scopes for each noalias argument, tag the mapped noalias 917 /// parameters with noalias metadata specifying the new scope, and tag all 918 /// non-derived loads, stores and memory intrinsics with the new alias scopes. 919 static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap, 920 const DataLayout &DL, AAResults *CalleeAAR) { 921 if (!EnableNoAliasConversion) 922 return; 923 924 const Function *CalledFunc = CS.getCalledFunction(); 925 SmallVector<const Argument *, 4> NoAliasArgs; 926 927 for (const Argument &Arg : CalledFunc->args()) 928 if (CS.paramHasAttr(Arg.getArgNo(), Attribute::NoAlias) && !Arg.use_empty()) 929 NoAliasArgs.push_back(&Arg); 930 931 if (NoAliasArgs.empty()) 932 return; 933 934 // To do a good job, if a noalias variable is captured, we need to know if 935 // the capture point dominates the particular use we're considering. 936 DominatorTree DT; 937 DT.recalculate(const_cast<Function&>(*CalledFunc)); 938 939 // noalias indicates that pointer values based on the argument do not alias 940 // pointer values which are not based on it. So we add a new "scope" for each 941 // noalias function argument. Accesses using pointers based on that argument 942 // become part of that alias scope, accesses using pointers not based on that 943 // argument are tagged as noalias with that scope. 944 945 DenseMap<const Argument *, MDNode *> NewScopes; 946 MDBuilder MDB(CalledFunc->getContext()); 947 948 // Create a new scope domain for this function. 949 MDNode *NewDomain = 950 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); 951 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { 952 const Argument *A = NoAliasArgs[i]; 953 954 std::string Name = std::string(CalledFunc->getName()); 955 if (A->hasName()) { 956 Name += ": %"; 957 Name += A->getName(); 958 } else { 959 Name += ": argument "; 960 Name += utostr(i); 961 } 962 963 // Note: We always create a new anonymous root here. This is true regardless 964 // of the linkage of the callee because the aliasing "scope" is not just a 965 // property of the callee, but also all control dependencies in the caller. 966 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); 967 NewScopes.insert(std::make_pair(A, NewScope)); 968 } 969 970 // Iterate over all new instructions in the map; for all memory-access 971 // instructions, add the alias scope metadata. 972 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 973 VMI != VMIE; ++VMI) { 974 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { 975 if (!VMI->second) 976 continue; 977 978 Instruction *NI = dyn_cast<Instruction>(VMI->second); 979 if (!NI) 980 continue; 981 982 bool IsArgMemOnlyCall = false, IsFuncCall = false; 983 SmallVector<const Value *, 2> PtrArgs; 984 985 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 986 PtrArgs.push_back(LI->getPointerOperand()); 987 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 988 PtrArgs.push_back(SI->getPointerOperand()); 989 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) 990 PtrArgs.push_back(VAAI->getPointerOperand()); 991 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 992 PtrArgs.push_back(CXI->getPointerOperand()); 993 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 994 PtrArgs.push_back(RMWI->getPointerOperand()); 995 else if (const auto *Call = dyn_cast<CallBase>(I)) { 996 // If we know that the call does not access memory, then we'll still 997 // know that about the inlined clone of this call site, and we don't 998 // need to add metadata. 999 if (Call->doesNotAccessMemory()) 1000 continue; 1001 1002 IsFuncCall = true; 1003 if (CalleeAAR) { 1004 FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call); 1005 if (AAResults::onlyAccessesArgPointees(MRB)) 1006 IsArgMemOnlyCall = true; 1007 } 1008 1009 for (Value *Arg : Call->args()) { 1010 // We need to check the underlying objects of all arguments, not just 1011 // the pointer arguments, because we might be passing pointers as 1012 // integers, etc. 1013 // However, if we know that the call only accesses pointer arguments, 1014 // then we only need to check the pointer arguments. 1015 if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy()) 1016 continue; 1017 1018 PtrArgs.push_back(Arg); 1019 } 1020 } 1021 1022 // If we found no pointers, then this instruction is not suitable for 1023 // pairing with an instruction to receive aliasing metadata. 1024 // However, if this is a call, this we might just alias with none of the 1025 // noalias arguments. 1026 if (PtrArgs.empty() && !IsFuncCall) 1027 continue; 1028 1029 // It is possible that there is only one underlying object, but you 1030 // need to go through several PHIs to see it, and thus could be 1031 // repeated in the Objects list. 1032 SmallPtrSet<const Value *, 4> ObjSet; 1033 SmallVector<Metadata *, 4> Scopes, NoAliases; 1034 1035 SmallSetVector<const Argument *, 4> NAPtrArgs; 1036 for (const Value *V : PtrArgs) { 1037 SmallVector<const Value *, 4> Objects; 1038 GetUnderlyingObjects(V, Objects, DL, /* LI = */ nullptr); 1039 1040 for (const Value *O : Objects) 1041 ObjSet.insert(O); 1042 } 1043 1044 // Figure out if we're derived from anything that is not a noalias 1045 // argument. 1046 bool CanDeriveViaCapture = false, UsesAliasingPtr = false; 1047 for (const Value *V : ObjSet) { 1048 // Is this value a constant that cannot be derived from any pointer 1049 // value (we need to exclude constant expressions, for example, that 1050 // are formed from arithmetic on global symbols). 1051 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || 1052 isa<ConstantPointerNull>(V) || 1053 isa<ConstantDataVector>(V) || isa<UndefValue>(V); 1054 if (IsNonPtrConst) 1055 continue; 1056 1057 // If this is anything other than a noalias argument, then we cannot 1058 // completely describe the aliasing properties using alias.scope 1059 // metadata (and, thus, won't add any). 1060 if (const Argument *A = dyn_cast<Argument>(V)) { 1061 if (!CS.paramHasAttr(A->getArgNo(), Attribute::NoAlias)) 1062 UsesAliasingPtr = true; 1063 } else { 1064 UsesAliasingPtr = true; 1065 } 1066 1067 // If this is not some identified function-local object (which cannot 1068 // directly alias a noalias argument), or some other argument (which, 1069 // by definition, also cannot alias a noalias argument), then we could 1070 // alias a noalias argument that has been captured). 1071 if (!isa<Argument>(V) && 1072 !isIdentifiedFunctionLocal(const_cast<Value*>(V))) 1073 CanDeriveViaCapture = true; 1074 } 1075 1076 // A function call can always get captured noalias pointers (via other 1077 // parameters, globals, etc.). 1078 if (IsFuncCall && !IsArgMemOnlyCall) 1079 CanDeriveViaCapture = true; 1080 1081 // First, we want to figure out all of the sets with which we definitely 1082 // don't alias. Iterate over all noalias set, and add those for which: 1083 // 1. The noalias argument is not in the set of objects from which we 1084 // definitely derive. 1085 // 2. The noalias argument has not yet been captured. 1086 // An arbitrary function that might load pointers could see captured 1087 // noalias arguments via other noalias arguments or globals, and so we 1088 // must always check for prior capture. 1089 for (const Argument *A : NoAliasArgs) { 1090 if (!ObjSet.count(A) && (!CanDeriveViaCapture || 1091 // It might be tempting to skip the 1092 // PointerMayBeCapturedBefore check if 1093 // A->hasNoCaptureAttr() is true, but this is 1094 // incorrect because nocapture only guarantees 1095 // that no copies outlive the function, not 1096 // that the value cannot be locally captured. 1097 !PointerMayBeCapturedBefore(A, 1098 /* ReturnCaptures */ false, 1099 /* StoreCaptures */ false, I, &DT))) 1100 NoAliases.push_back(NewScopes[A]); 1101 } 1102 1103 if (!NoAliases.empty()) 1104 NI->setMetadata(LLVMContext::MD_noalias, 1105 MDNode::concatenate( 1106 NI->getMetadata(LLVMContext::MD_noalias), 1107 MDNode::get(CalledFunc->getContext(), NoAliases))); 1108 1109 // Next, we want to figure out all of the sets to which we might belong. 1110 // We might belong to a set if the noalias argument is in the set of 1111 // underlying objects. If there is some non-noalias argument in our list 1112 // of underlying objects, then we cannot add a scope because the fact 1113 // that some access does not alias with any set of our noalias arguments 1114 // cannot itself guarantee that it does not alias with this access 1115 // (because there is some pointer of unknown origin involved and the 1116 // other access might also depend on this pointer). We also cannot add 1117 // scopes to arbitrary functions unless we know they don't access any 1118 // non-parameter pointer-values. 1119 bool CanAddScopes = !UsesAliasingPtr; 1120 if (CanAddScopes && IsFuncCall) 1121 CanAddScopes = IsArgMemOnlyCall; 1122 1123 if (CanAddScopes) 1124 for (const Argument *A : NoAliasArgs) { 1125 if (ObjSet.count(A)) 1126 Scopes.push_back(NewScopes[A]); 1127 } 1128 1129 if (!Scopes.empty()) 1130 NI->setMetadata( 1131 LLVMContext::MD_alias_scope, 1132 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), 1133 MDNode::get(CalledFunc->getContext(), Scopes))); 1134 } 1135 } 1136 } 1137 1138 /// If the inlined function has non-byval align arguments, then 1139 /// add @llvm.assume-based alignment assumptions to preserve this information. 1140 static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) { 1141 if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache) 1142 return; 1143 1144 AssumptionCache *AC = &(*IFI.GetAssumptionCache)(*CS.getCaller()); 1145 auto &DL = CS.getCaller()->getParent()->getDataLayout(); 1146 1147 // To avoid inserting redundant assumptions, we should check for assumptions 1148 // already in the caller. To do this, we might need a DT of the caller. 1149 DominatorTree DT; 1150 bool DTCalculated = false; 1151 1152 Function *CalledFunc = CS.getCalledFunction(); 1153 for (Argument &Arg : CalledFunc->args()) { 1154 unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0; 1155 if (Align && !Arg.hasByValOrInAllocaAttr() && !Arg.hasNUses(0)) { 1156 if (!DTCalculated) { 1157 DT.recalculate(*CS.getCaller()); 1158 DTCalculated = true; 1159 } 1160 1161 // If we can already prove the asserted alignment in the context of the 1162 // caller, then don't bother inserting the assumption. 1163 Value *ArgVal = CS.getArgument(Arg.getArgNo()); 1164 if (getKnownAlignment(ArgVal, DL, CS.getInstruction(), AC, &DT) >= Align) 1165 continue; 1166 1167 CallInst *NewAsmp = IRBuilder<>(CS.getInstruction()) 1168 .CreateAlignmentAssumption(DL, ArgVal, Align); 1169 AC->registerAssumption(NewAsmp); 1170 } 1171 } 1172 } 1173 1174 /// Once we have cloned code over from a callee into the caller, 1175 /// update the specified callgraph to reflect the changes we made. 1176 /// Note that it's possible that not all code was copied over, so only 1177 /// some edges of the callgraph may remain. 1178 static void UpdateCallGraphAfterInlining(CallSite CS, 1179 Function::iterator FirstNewBlock, 1180 ValueToValueMapTy &VMap, 1181 InlineFunctionInfo &IFI) { 1182 CallGraph &CG = *IFI.CG; 1183 const Function *Caller = CS.getCaller(); 1184 const Function *Callee = CS.getCalledFunction(); 1185 CallGraphNode *CalleeNode = CG[Callee]; 1186 CallGraphNode *CallerNode = CG[Caller]; 1187 1188 // Since we inlined some uninlined call sites in the callee into the caller, 1189 // add edges from the caller to all of the callees of the callee. 1190 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 1191 1192 // Consider the case where CalleeNode == CallerNode. 1193 CallGraphNode::CalledFunctionsVector CallCache; 1194 if (CalleeNode == CallerNode) { 1195 CallCache.assign(I, E); 1196 I = CallCache.begin(); 1197 E = CallCache.end(); 1198 } 1199 1200 for (; I != E; ++I) { 1201 const Value *OrigCall = I->first; 1202 1203 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 1204 // Only copy the edge if the call was inlined! 1205 if (VMI == VMap.end() || VMI->second == nullptr) 1206 continue; 1207 1208 // If the call was inlined, but then constant folded, there is no edge to 1209 // add. Check for this case. 1210 auto *NewCall = dyn_cast<CallBase>(VMI->second); 1211 if (!NewCall) 1212 continue; 1213 1214 // We do not treat intrinsic calls like real function calls because we 1215 // expect them to become inline code; do not add an edge for an intrinsic. 1216 if (NewCall->getCalledFunction() && 1217 NewCall->getCalledFunction()->isIntrinsic()) 1218 continue; 1219 1220 // Remember that this call site got inlined for the client of 1221 // InlineFunction. 1222 IFI.InlinedCalls.push_back(NewCall); 1223 1224 // It's possible that inlining the callsite will cause it to go from an 1225 // indirect to a direct call by resolving a function pointer. If this 1226 // happens, set the callee of the new call site to a more precise 1227 // destination. This can also happen if the call graph node of the caller 1228 // was just unnecessarily imprecise. 1229 if (!I->second->getFunction()) 1230 if (Function *F = NewCall->getCalledFunction()) { 1231 // Indirect call site resolved to direct call. 1232 CallerNode->addCalledFunction(NewCall, CG[F]); 1233 1234 continue; 1235 } 1236 1237 CallerNode->addCalledFunction(NewCall, I->second); 1238 } 1239 1240 // Update the call graph by deleting the edge from Callee to Caller. We must 1241 // do this after the loop above in case Caller and Callee are the same. 1242 CallerNode->removeCallEdgeFor(*cast<CallBase>(CS.getInstruction())); 1243 } 1244 1245 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M, 1246 BasicBlock *InsertBlock, 1247 InlineFunctionInfo &IFI) { 1248 Type *AggTy = cast<PointerType>(Src->getType())->getElementType(); 1249 IRBuilder<> Builder(InsertBlock, InsertBlock->begin()); 1250 1251 Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy)); 1252 1253 // Always generate a memcpy of alignment 1 here because we don't know 1254 // the alignment of the src pointer. Other optimizations can infer 1255 // better alignment. 1256 Builder.CreateMemCpy(Dst, /*DstAlign*/ Align(1), Src, 1257 /*SrcAlign*/ Align(1), Size); 1258 } 1259 1260 /// When inlining a call site that has a byval argument, 1261 /// we have to make the implicit memcpy explicit by adding it. 1262 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 1263 const Function *CalledFunc, 1264 InlineFunctionInfo &IFI, 1265 unsigned ByValAlignment) { 1266 PointerType *ArgTy = cast<PointerType>(Arg->getType()); 1267 Type *AggTy = ArgTy->getElementType(); 1268 1269 Function *Caller = TheCall->getFunction(); 1270 const DataLayout &DL = Caller->getParent()->getDataLayout(); 1271 1272 // If the called function is readonly, then it could not mutate the caller's 1273 // copy of the byval'd memory. In this case, it is safe to elide the copy and 1274 // temporary. 1275 if (CalledFunc->onlyReadsMemory()) { 1276 // If the byval argument has a specified alignment that is greater than the 1277 // passed in pointer, then we either have to round up the input pointer or 1278 // give up on this transformation. 1279 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 1280 return Arg; 1281 1282 AssumptionCache *AC = 1283 IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr; 1284 1285 // If the pointer is already known to be sufficiently aligned, or if we can 1286 // round it up to a larger alignment, then we don't need a temporary. 1287 if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall, AC) >= 1288 ByValAlignment) 1289 return Arg; 1290 1291 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 1292 // for code quality, but rarely happens and is required for correctness. 1293 } 1294 1295 // Create the alloca. If we have DataLayout, use nice alignment. 1296 Align Alignment(DL.getPrefTypeAlignment(AggTy)); 1297 1298 // If the byval had an alignment specified, we *must* use at least that 1299 // alignment, as it is required by the byval argument (and uses of the 1300 // pointer inside the callee). 1301 Alignment = max(Alignment, MaybeAlign(ByValAlignment)); 1302 1303 Value *NewAlloca = 1304 new AllocaInst(AggTy, DL.getAllocaAddrSpace(), nullptr, Alignment, 1305 Arg->getName(), &*Caller->begin()->begin()); 1306 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); 1307 1308 // Uses of the argument in the function should use our new alloca 1309 // instead. 1310 return NewAlloca; 1311 } 1312 1313 // Check whether this Value is used by a lifetime intrinsic. 1314 static bool isUsedByLifetimeMarker(Value *V) { 1315 for (User *U : V->users()) 1316 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) 1317 if (II->isLifetimeStartOrEnd()) 1318 return true; 1319 return false; 1320 } 1321 1322 // Check whether the given alloca already has 1323 // lifetime.start or lifetime.end intrinsics. 1324 static bool hasLifetimeMarkers(AllocaInst *AI) { 1325 Type *Ty = AI->getType(); 1326 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), 1327 Ty->getPointerAddressSpace()); 1328 if (Ty == Int8PtrTy) 1329 return isUsedByLifetimeMarker(AI); 1330 1331 // Do a scan to find all the casts to i8*. 1332 for (User *U : AI->users()) { 1333 if (U->getType() != Int8PtrTy) continue; 1334 if (U->stripPointerCasts() != AI) continue; 1335 if (isUsedByLifetimeMarker(U)) 1336 return true; 1337 } 1338 return false; 1339 } 1340 1341 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry 1342 /// block. Allocas used in inalloca calls and allocas of dynamic array size 1343 /// cannot be static. 1344 static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) { 1345 return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca(); 1346 } 1347 1348 /// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL 1349 /// inlined at \p InlinedAt. \p IANodes is an inlined-at cache. 1350 static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt, 1351 LLVMContext &Ctx, 1352 DenseMap<const MDNode *, MDNode *> &IANodes) { 1353 auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes); 1354 return DebugLoc::get(OrigDL.getLine(), OrigDL.getCol(), OrigDL.getScope(), 1355 IA); 1356 } 1357 1358 /// Update inlined instructions' line numbers to 1359 /// to encode location where these instructions are inlined. 1360 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 1361 Instruction *TheCall, bool CalleeHasDebugInfo) { 1362 const DebugLoc &TheCallDL = TheCall->getDebugLoc(); 1363 if (!TheCallDL) 1364 return; 1365 1366 auto &Ctx = Fn->getContext(); 1367 DILocation *InlinedAtNode = TheCallDL; 1368 1369 // Create a unique call site, not to be confused with any other call from the 1370 // same location. 1371 InlinedAtNode = DILocation::getDistinct( 1372 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(), 1373 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt()); 1374 1375 // Cache the inlined-at nodes as they're built so they are reused, without 1376 // this every instruction's inlined-at chain would become distinct from each 1377 // other. 1378 DenseMap<const MDNode *, MDNode *> IANodes; 1379 1380 // Check if we are not generating inline line tables and want to use 1381 // the call site location instead. 1382 bool NoInlineLineTables = Fn->hasFnAttribute("no-inline-line-tables"); 1383 1384 for (; FI != Fn->end(); ++FI) { 1385 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 1386 BI != BE; ++BI) { 1387 // Loop metadata needs to be updated so that the start and end locs 1388 // reference inlined-at locations. 1389 auto updateLoopInfoLoc = [&Ctx, &InlinedAtNode, &IANodes]( 1390 const DILocation &Loc) -> DILocation * { 1391 return inlineDebugLoc(&Loc, InlinedAtNode, Ctx, IANodes).get(); 1392 }; 1393 updateLoopMetadataDebugLocations(*BI, updateLoopInfoLoc); 1394 1395 if (!NoInlineLineTables) 1396 if (DebugLoc DL = BI->getDebugLoc()) { 1397 DebugLoc IDL = 1398 inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes); 1399 BI->setDebugLoc(IDL); 1400 continue; 1401 } 1402 1403 if (CalleeHasDebugInfo && !NoInlineLineTables) 1404 continue; 1405 1406 // If the inlined instruction has no line number, or if inline info 1407 // is not being generated, make it look as if it originates from the call 1408 // location. This is important for ((__always_inline, __nodebug__)) 1409 // functions which must use caller location for all instructions in their 1410 // function body. 1411 1412 // Don't update static allocas, as they may get moved later. 1413 if (auto *AI = dyn_cast<AllocaInst>(BI)) 1414 if (allocaWouldBeStaticInEntry(AI)) 1415 continue; 1416 1417 BI->setDebugLoc(TheCallDL); 1418 } 1419 1420 // Remove debug info intrinsics if we're not keeping inline info. 1421 if (NoInlineLineTables) { 1422 BasicBlock::iterator BI = FI->begin(); 1423 while (BI != FI->end()) { 1424 if (isa<DbgInfoIntrinsic>(BI)) { 1425 BI = BI->eraseFromParent(); 1426 continue; 1427 } 1428 ++BI; 1429 } 1430 } 1431 1432 } 1433 } 1434 1435 /// Update the block frequencies of the caller after a callee has been inlined. 1436 /// 1437 /// Each block cloned into the caller has its block frequency scaled by the 1438 /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of 1439 /// callee's entry block gets the same frequency as the callsite block and the 1440 /// relative frequencies of all cloned blocks remain the same after cloning. 1441 static void updateCallerBFI(BasicBlock *CallSiteBlock, 1442 const ValueToValueMapTy &VMap, 1443 BlockFrequencyInfo *CallerBFI, 1444 BlockFrequencyInfo *CalleeBFI, 1445 const BasicBlock &CalleeEntryBlock) { 1446 SmallPtrSet<BasicBlock *, 16> ClonedBBs; 1447 for (auto Entry : VMap) { 1448 if (!isa<BasicBlock>(Entry.first) || !Entry.second) 1449 continue; 1450 auto *OrigBB = cast<BasicBlock>(Entry.first); 1451 auto *ClonedBB = cast<BasicBlock>(Entry.second); 1452 uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency(); 1453 if (!ClonedBBs.insert(ClonedBB).second) { 1454 // Multiple blocks in the callee might get mapped to one cloned block in 1455 // the caller since we prune the callee as we clone it. When that happens, 1456 // we want to use the maximum among the original blocks' frequencies. 1457 uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency(); 1458 if (NewFreq > Freq) 1459 Freq = NewFreq; 1460 } 1461 CallerBFI->setBlockFreq(ClonedBB, Freq); 1462 } 1463 BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock)); 1464 CallerBFI->setBlockFreqAndScale( 1465 EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(), 1466 ClonedBBs); 1467 } 1468 1469 /// Update the branch metadata for cloned call instructions. 1470 static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap, 1471 const ProfileCount &CalleeEntryCount, 1472 const Instruction *TheCall, 1473 ProfileSummaryInfo *PSI, 1474 BlockFrequencyInfo *CallerBFI) { 1475 if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() || 1476 CalleeEntryCount.getCount() < 1) 1477 return; 1478 auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None; 1479 int64_t CallCount = 1480 std::min(CallSiteCount.hasValue() ? CallSiteCount.getValue() : 0, 1481 CalleeEntryCount.getCount()); 1482 updateProfileCallee(Callee, -CallCount, &VMap); 1483 } 1484 1485 void llvm::updateProfileCallee( 1486 Function *Callee, int64_t entryDelta, 1487 const ValueMap<const Value *, WeakTrackingVH> *VMap) { 1488 auto CalleeCount = Callee->getEntryCount(); 1489 if (!CalleeCount.hasValue()) 1490 return; 1491 1492 uint64_t priorEntryCount = CalleeCount.getCount(); 1493 uint64_t newEntryCount; 1494 1495 // Since CallSiteCount is an estimate, it could exceed the original callee 1496 // count and has to be set to 0 so guard against underflow. 1497 if (entryDelta < 0 && static_cast<uint64_t>(-entryDelta) > priorEntryCount) 1498 newEntryCount = 0; 1499 else 1500 newEntryCount = priorEntryCount + entryDelta; 1501 1502 // During inlining ? 1503 if (VMap) { 1504 uint64_t cloneEntryCount = priorEntryCount - newEntryCount; 1505 for (auto Entry : *VMap) 1506 if (isa<CallInst>(Entry.first)) 1507 if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second)) 1508 CI->updateProfWeight(cloneEntryCount, priorEntryCount); 1509 } 1510 1511 if (entryDelta) { 1512 Callee->setEntryCount(newEntryCount); 1513 1514 for (BasicBlock &BB : *Callee) 1515 // No need to update the callsite if it is pruned during inlining. 1516 if (!VMap || VMap->count(&BB)) 1517 for (Instruction &I : BB) 1518 if (CallInst *CI = dyn_cast<CallInst>(&I)) 1519 CI->updateProfWeight(newEntryCount, priorEntryCount); 1520 } 1521 } 1522 1523 /// This function inlines the called function into the basic block of the 1524 /// caller. This returns false if it is not possible to inline this call. 1525 /// The program is still in a well defined state if this occurs though. 1526 /// 1527 /// Note that this only does one level of inlining. For example, if the 1528 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 1529 /// exists in the instruction stream. Similarly this will inline a recursive 1530 /// function by one level. 1531 llvm::InlineResult llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI, 1532 AAResults *CalleeAAR, 1533 bool InsertLifetime, 1534 Function *ForwardVarArgsTo) { 1535 Instruction *TheCall = CS.getInstruction(); 1536 assert(TheCall->getParent() && TheCall->getFunction() 1537 && "Instruction not in function!"); 1538 1539 // FIXME: we don't inline callbr yet. 1540 if (isa<CallBrInst>(TheCall)) 1541 return InlineResult::failure("We don't inline callbr yet."); 1542 1543 // If IFI has any state in it, zap it before we fill it in. 1544 IFI.reset(); 1545 1546 Function *CalledFunc = CS.getCalledFunction(); 1547 if (!CalledFunc || // Can't inline external function or indirect 1548 CalledFunc->isDeclaration()) // call! 1549 return InlineResult::failure("external or indirect"); 1550 1551 // The inliner does not know how to inline through calls with operand bundles 1552 // in general ... 1553 if (CS.hasOperandBundles()) { 1554 for (int i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 1555 uint32_t Tag = CS.getOperandBundleAt(i).getTagID(); 1556 // ... but it knows how to inline through "deopt" operand bundles ... 1557 if (Tag == LLVMContext::OB_deopt) 1558 continue; 1559 // ... and "funclet" operand bundles. 1560 if (Tag == LLVMContext::OB_funclet) 1561 continue; 1562 1563 return InlineResult::failure("unsupported operand bundle"); 1564 } 1565 } 1566 1567 // If the call to the callee cannot throw, set the 'nounwind' flag on any 1568 // calls that we inline. 1569 bool MarkNoUnwind = CS.doesNotThrow(); 1570 1571 BasicBlock *OrigBB = TheCall->getParent(); 1572 Function *Caller = OrigBB->getParent(); 1573 1574 // GC poses two hazards to inlining, which only occur when the callee has GC: 1575 // 1. If the caller has no GC, then the callee's GC must be propagated to the 1576 // caller. 1577 // 2. If the caller has a differing GC, it is invalid to inline. 1578 if (CalledFunc->hasGC()) { 1579 if (!Caller->hasGC()) 1580 Caller->setGC(CalledFunc->getGC()); 1581 else if (CalledFunc->getGC() != Caller->getGC()) 1582 return InlineResult::failure("incompatible GC"); 1583 } 1584 1585 // Get the personality function from the callee if it contains a landing pad. 1586 Constant *CalledPersonality = 1587 CalledFunc->hasPersonalityFn() 1588 ? CalledFunc->getPersonalityFn()->stripPointerCasts() 1589 : nullptr; 1590 1591 // Find the personality function used by the landing pads of the caller. If it 1592 // exists, then check to see that it matches the personality function used in 1593 // the callee. 1594 Constant *CallerPersonality = 1595 Caller->hasPersonalityFn() 1596 ? Caller->getPersonalityFn()->stripPointerCasts() 1597 : nullptr; 1598 if (CalledPersonality) { 1599 if (!CallerPersonality) 1600 Caller->setPersonalityFn(CalledPersonality); 1601 // If the personality functions match, then we can perform the 1602 // inlining. Otherwise, we can't inline. 1603 // TODO: This isn't 100% true. Some personality functions are proper 1604 // supersets of others and can be used in place of the other. 1605 else if (CalledPersonality != CallerPersonality) 1606 return InlineResult::failure("incompatible personality"); 1607 } 1608 1609 // We need to figure out which funclet the callsite was in so that we may 1610 // properly nest the callee. 1611 Instruction *CallSiteEHPad = nullptr; 1612 if (CallerPersonality) { 1613 EHPersonality Personality = classifyEHPersonality(CallerPersonality); 1614 if (isScopedEHPersonality(Personality)) { 1615 Optional<OperandBundleUse> ParentFunclet = 1616 CS.getOperandBundle(LLVMContext::OB_funclet); 1617 if (ParentFunclet) 1618 CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front()); 1619 1620 // OK, the inlining site is legal. What about the target function? 1621 1622 if (CallSiteEHPad) { 1623 if (Personality == EHPersonality::MSVC_CXX) { 1624 // The MSVC personality cannot tolerate catches getting inlined into 1625 // cleanup funclets. 1626 if (isa<CleanupPadInst>(CallSiteEHPad)) { 1627 // Ok, the call site is within a cleanuppad. Let's check the callee 1628 // for catchpads. 1629 for (const BasicBlock &CalledBB : *CalledFunc) { 1630 if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI())) 1631 return InlineResult::failure("catch in cleanup funclet"); 1632 } 1633 } 1634 } else if (isAsynchronousEHPersonality(Personality)) { 1635 // SEH is even less tolerant, there may not be any sort of exceptional 1636 // funclet in the callee. 1637 for (const BasicBlock &CalledBB : *CalledFunc) { 1638 if (CalledBB.isEHPad()) 1639 return InlineResult::failure("SEH in cleanup funclet"); 1640 } 1641 } 1642 } 1643 } 1644 } 1645 1646 // Determine if we are dealing with a call in an EHPad which does not unwind 1647 // to caller. 1648 bool EHPadForCallUnwindsLocally = false; 1649 if (CallSiteEHPad && CS.isCall()) { 1650 UnwindDestMemoTy FuncletUnwindMap; 1651 Value *CallSiteUnwindDestToken = 1652 getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap); 1653 1654 EHPadForCallUnwindsLocally = 1655 CallSiteUnwindDestToken && 1656 !isa<ConstantTokenNone>(CallSiteUnwindDestToken); 1657 } 1658 1659 // Get an iterator to the last basic block in the function, which will have 1660 // the new function inlined after it. 1661 Function::iterator LastBlock = --Caller->end(); 1662 1663 // Make sure to capture all of the return instructions from the cloned 1664 // function. 1665 SmallVector<ReturnInst*, 8> Returns; 1666 ClonedCodeInfo InlinedFunctionInfo; 1667 Function::iterator FirstNewBlock; 1668 1669 { // Scope to destroy VMap after cloning. 1670 ValueToValueMapTy VMap; 1671 // Keep a list of pair (dst, src) to emit byval initializations. 1672 SmallVector<std::pair<Value*, Value*>, 4> ByValInit; 1673 1674 auto &DL = Caller->getParent()->getDataLayout(); 1675 1676 // Calculate the vector of arguments to pass into the function cloner, which 1677 // matches up the formal to the actual argument values. 1678 CallSite::arg_iterator AI = CS.arg_begin(); 1679 unsigned ArgNo = 0; 1680 for (Function::arg_iterator I = CalledFunc->arg_begin(), 1681 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 1682 Value *ActualArg = *AI; 1683 1684 // When byval arguments actually inlined, we need to make the copy implied 1685 // by them explicit. However, we don't do this if the callee is readonly 1686 // or readnone, because the copy would be unneeded: the callee doesn't 1687 // modify the struct. 1688 if (CS.isByValArgument(ArgNo)) { 1689 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, 1690 CalledFunc->getParamAlignment(ArgNo)); 1691 if (ActualArg != *AI) 1692 ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI)); 1693 } 1694 1695 VMap[&*I] = ActualArg; 1696 } 1697 1698 // Add alignment assumptions if necessary. We do this before the inlined 1699 // instructions are actually cloned into the caller so that we can easily 1700 // check what will be known at the start of the inlined code. 1701 AddAlignmentAssumptions(CS, IFI); 1702 1703 // We want the inliner to prune the code as it copies. We would LOVE to 1704 // have no dead or constant instructions leftover after inlining occurs 1705 // (which can happen, e.g., because an argument was constant), but we'll be 1706 // happy with whatever the cloner can do. 1707 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 1708 /*ModuleLevelChanges=*/false, Returns, ".i", 1709 &InlinedFunctionInfo, TheCall); 1710 // Remember the first block that is newly cloned over. 1711 FirstNewBlock = LastBlock; ++FirstNewBlock; 1712 1713 if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr) 1714 // Update the BFI of blocks cloned into the caller. 1715 updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI, 1716 CalledFunc->front()); 1717 1718 updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), TheCall, 1719 IFI.PSI, IFI.CallerBFI); 1720 1721 // Inject byval arguments initialization. 1722 for (std::pair<Value*, Value*> &Init : ByValInit) 1723 HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(), 1724 &*FirstNewBlock, IFI); 1725 1726 Optional<OperandBundleUse> ParentDeopt = 1727 CS.getOperandBundle(LLVMContext::OB_deopt); 1728 if (ParentDeopt) { 1729 SmallVector<OperandBundleDef, 2> OpDefs; 1730 1731 for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) { 1732 Instruction *I = dyn_cast_or_null<Instruction>(VH); 1733 if (!I) continue; // instruction was DCE'd or RAUW'ed to undef 1734 1735 OpDefs.clear(); 1736 1737 CallSite ICS(I); 1738 OpDefs.reserve(ICS.getNumOperandBundles()); 1739 1740 for (unsigned i = 0, e = ICS.getNumOperandBundles(); i < e; ++i) { 1741 auto ChildOB = ICS.getOperandBundleAt(i); 1742 if (ChildOB.getTagID() != LLVMContext::OB_deopt) { 1743 // If the inlined call has other operand bundles, let them be 1744 OpDefs.emplace_back(ChildOB); 1745 continue; 1746 } 1747 1748 // It may be useful to separate this logic (of handling operand 1749 // bundles) out to a separate "policy" component if this gets crowded. 1750 // Prepend the parent's deoptimization continuation to the newly 1751 // inlined call's deoptimization continuation. 1752 std::vector<Value *> MergedDeoptArgs; 1753 MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() + 1754 ChildOB.Inputs.size()); 1755 1756 MergedDeoptArgs.insert(MergedDeoptArgs.end(), 1757 ParentDeopt->Inputs.begin(), 1758 ParentDeopt->Inputs.end()); 1759 MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(), 1760 ChildOB.Inputs.end()); 1761 1762 OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs)); 1763 } 1764 1765 Instruction *NewI = nullptr; 1766 if (isa<CallInst>(I)) 1767 NewI = CallInst::Create(cast<CallInst>(I), OpDefs, I); 1768 else if (isa<CallBrInst>(I)) 1769 NewI = CallBrInst::Create(cast<CallBrInst>(I), OpDefs, I); 1770 else 1771 NewI = InvokeInst::Create(cast<InvokeInst>(I), OpDefs, I); 1772 1773 // Note: the RAUW does the appropriate fixup in VMap, so we need to do 1774 // this even if the call returns void. 1775 I->replaceAllUsesWith(NewI); 1776 1777 VH = nullptr; 1778 I->eraseFromParent(); 1779 } 1780 } 1781 1782 // Update the callgraph if requested. 1783 if (IFI.CG) 1784 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); 1785 1786 // For 'nodebug' functions, the associated DISubprogram is always null. 1787 // Conservatively avoid propagating the callsite debug location to 1788 // instructions inlined from a function whose DISubprogram is not null. 1789 fixupLineNumbers(Caller, FirstNewBlock, TheCall, 1790 CalledFunc->getSubprogram() != nullptr); 1791 1792 // Clone existing noalias metadata if necessary. 1793 CloneAliasScopeMetadata(CS, VMap); 1794 1795 // Add noalias metadata if necessary. 1796 AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR); 1797 1798 // Propagate llvm.mem.parallel_loop_access if necessary. 1799 PropagateParallelLoopAccessMetadata(CS, VMap); 1800 1801 // Register any cloned assumptions. 1802 if (IFI.GetAssumptionCache) 1803 for (BasicBlock &NewBlock : 1804 make_range(FirstNewBlock->getIterator(), Caller->end())) 1805 for (Instruction &I : NewBlock) { 1806 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 1807 if (II->getIntrinsicID() == Intrinsic::assume) 1808 (*IFI.GetAssumptionCache)(*Caller).registerAssumption(II); 1809 } 1810 } 1811 1812 // If there are any alloca instructions in the block that used to be the entry 1813 // block for the callee, move them to the entry block of the caller. First 1814 // calculate which instruction they should be inserted before. We insert the 1815 // instructions at the end of the current alloca list. 1816 { 1817 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 1818 for (BasicBlock::iterator I = FirstNewBlock->begin(), 1819 E = FirstNewBlock->end(); I != E; ) { 1820 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 1821 if (!AI) continue; 1822 1823 // If the alloca is now dead, remove it. This often occurs due to code 1824 // specialization. 1825 if (AI->use_empty()) { 1826 AI->eraseFromParent(); 1827 continue; 1828 } 1829 1830 if (!allocaWouldBeStaticInEntry(AI)) 1831 continue; 1832 1833 // Keep track of the static allocas that we inline into the caller. 1834 IFI.StaticAllocas.push_back(AI); 1835 1836 // Scan for the block of allocas that we can move over, and move them 1837 // all at once. 1838 while (isa<AllocaInst>(I) && 1839 !cast<AllocaInst>(I)->use_empty() && 1840 allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) { 1841 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 1842 ++I; 1843 } 1844 1845 // Transfer all of the allocas over in a block. Using splice means 1846 // that the instructions aren't removed from the symbol table, then 1847 // reinserted. 1848 Caller->getEntryBlock().getInstList().splice( 1849 InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I); 1850 } 1851 } 1852 1853 SmallVector<Value*,4> VarArgsToForward; 1854 SmallVector<AttributeSet, 4> VarArgsAttrs; 1855 for (unsigned i = CalledFunc->getFunctionType()->getNumParams(); 1856 i < CS.getNumArgOperands(); i++) { 1857 VarArgsToForward.push_back(CS.getArgOperand(i)); 1858 VarArgsAttrs.push_back(CS.getAttributes().getParamAttributes(i)); 1859 } 1860 1861 bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false; 1862 if (InlinedFunctionInfo.ContainsCalls) { 1863 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; 1864 if (CallInst *CI = dyn_cast<CallInst>(TheCall)) 1865 CallSiteTailKind = CI->getTailCallKind(); 1866 1867 // For inlining purposes, the "notail" marker is the same as no marker. 1868 if (CallSiteTailKind == CallInst::TCK_NoTail) 1869 CallSiteTailKind = CallInst::TCK_None; 1870 1871 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 1872 ++BB) { 1873 for (auto II = BB->begin(); II != BB->end();) { 1874 Instruction &I = *II++; 1875 CallInst *CI = dyn_cast<CallInst>(&I); 1876 if (!CI) 1877 continue; 1878 1879 // Forward varargs from inlined call site to calls to the 1880 // ForwardVarArgsTo function, if requested, and to musttail calls. 1881 if (!VarArgsToForward.empty() && 1882 ((ForwardVarArgsTo && 1883 CI->getCalledFunction() == ForwardVarArgsTo) || 1884 CI->isMustTailCall())) { 1885 // Collect attributes for non-vararg parameters. 1886 AttributeList Attrs = CI->getAttributes(); 1887 SmallVector<AttributeSet, 8> ArgAttrs; 1888 if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) { 1889 for (unsigned ArgNo = 0; 1890 ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo) 1891 ArgAttrs.push_back(Attrs.getParamAttributes(ArgNo)); 1892 } 1893 1894 // Add VarArg attributes. 1895 ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end()); 1896 Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttributes(), 1897 Attrs.getRetAttributes(), ArgAttrs); 1898 // Add VarArgs to existing parameters. 1899 SmallVector<Value *, 6> Params(CI->arg_operands()); 1900 Params.append(VarArgsToForward.begin(), VarArgsToForward.end()); 1901 CallInst *NewCI = CallInst::Create( 1902 CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI); 1903 NewCI->setDebugLoc(CI->getDebugLoc()); 1904 NewCI->setAttributes(Attrs); 1905 NewCI->setCallingConv(CI->getCallingConv()); 1906 CI->replaceAllUsesWith(NewCI); 1907 CI->eraseFromParent(); 1908 CI = NewCI; 1909 } 1910 1911 if (Function *F = CI->getCalledFunction()) 1912 InlinedDeoptimizeCalls |= 1913 F->getIntrinsicID() == Intrinsic::experimental_deoptimize; 1914 1915 // We need to reduce the strength of any inlined tail calls. For 1916 // musttail, we have to avoid introducing potential unbounded stack 1917 // growth. For example, if functions 'f' and 'g' are mutually recursive 1918 // with musttail, we can inline 'g' into 'f' so long as we preserve 1919 // musttail on the cloned call to 'f'. If either the inlined call site 1920 // or the cloned call site is *not* musttail, the program already has 1921 // one frame of stack growth, so it's safe to remove musttail. Here is 1922 // a table of example transformations: 1923 // 1924 // f -> musttail g -> musttail f ==> f -> musttail f 1925 // f -> musttail g -> tail f ==> f -> tail f 1926 // f -> g -> musttail f ==> f -> f 1927 // f -> g -> tail f ==> f -> f 1928 // 1929 // Inlined notail calls should remain notail calls. 1930 CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); 1931 if (ChildTCK != CallInst::TCK_NoTail) 1932 ChildTCK = std::min(CallSiteTailKind, ChildTCK); 1933 CI->setTailCallKind(ChildTCK); 1934 InlinedMustTailCalls |= CI->isMustTailCall(); 1935 1936 // Calls inlined through a 'nounwind' call site should be marked 1937 // 'nounwind'. 1938 if (MarkNoUnwind) 1939 CI->setDoesNotThrow(); 1940 } 1941 } 1942 } 1943 1944 // Leave lifetime markers for the static alloca's, scoping them to the 1945 // function we just inlined. 1946 if (InsertLifetime && !IFI.StaticAllocas.empty()) { 1947 IRBuilder<> builder(&FirstNewBlock->front()); 1948 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 1949 AllocaInst *AI = IFI.StaticAllocas[ai]; 1950 // Don't mark swifterror allocas. They can't have bitcast uses. 1951 if (AI->isSwiftError()) 1952 continue; 1953 1954 // If the alloca is already scoped to something smaller than the whole 1955 // function then there's no need to add redundant, less accurate markers. 1956 if (hasLifetimeMarkers(AI)) 1957 continue; 1958 1959 // Try to determine the size of the allocation. 1960 ConstantInt *AllocaSize = nullptr; 1961 if (ConstantInt *AIArraySize = 1962 dyn_cast<ConstantInt>(AI->getArraySize())) { 1963 auto &DL = Caller->getParent()->getDataLayout(); 1964 Type *AllocaType = AI->getAllocatedType(); 1965 uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType); 1966 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 1967 1968 // Don't add markers for zero-sized allocas. 1969 if (AllocaArraySize == 0) 1970 continue; 1971 1972 // Check that array size doesn't saturate uint64_t and doesn't 1973 // overflow when it's multiplied by type size. 1974 if (AllocaArraySize != std::numeric_limits<uint64_t>::max() && 1975 std::numeric_limits<uint64_t>::max() / AllocaArraySize >= 1976 AllocaTypeSize) { 1977 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 1978 AllocaArraySize * AllocaTypeSize); 1979 } 1980 } 1981 1982 builder.CreateLifetimeStart(AI, AllocaSize); 1983 for (ReturnInst *RI : Returns) { 1984 // Don't insert llvm.lifetime.end calls between a musttail or deoptimize 1985 // call and a return. The return kills all local allocas. 1986 if (InlinedMustTailCalls && 1987 RI->getParent()->getTerminatingMustTailCall()) 1988 continue; 1989 if (InlinedDeoptimizeCalls && 1990 RI->getParent()->getTerminatingDeoptimizeCall()) 1991 continue; 1992 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); 1993 } 1994 } 1995 } 1996 1997 // If the inlined code contained dynamic alloca instructions, wrap the inlined 1998 // code with llvm.stacksave/llvm.stackrestore intrinsics. 1999 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 2000 Module *M = Caller->getParent(); 2001 // Get the two intrinsics we care about. 2002 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 2003 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 2004 2005 // Insert the llvm.stacksave. 2006 CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin()) 2007 .CreateCall(StackSave, {}, "savedstack"); 2008 2009 // Insert a call to llvm.stackrestore before any return instructions in the 2010 // inlined function. 2011 for (ReturnInst *RI : Returns) { 2012 // Don't insert llvm.stackrestore calls between a musttail or deoptimize 2013 // call and a return. The return will restore the stack pointer. 2014 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) 2015 continue; 2016 if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall()) 2017 continue; 2018 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); 2019 } 2020 } 2021 2022 // If we are inlining for an invoke instruction, we must make sure to rewrite 2023 // any call instructions into invoke instructions. This is sensitive to which 2024 // funclet pads were top-level in the inlinee, so must be done before 2025 // rewriting the "parent pad" links. 2026 if (auto *II = dyn_cast<InvokeInst>(TheCall)) { 2027 BasicBlock *UnwindDest = II->getUnwindDest(); 2028 Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI(); 2029 if (isa<LandingPadInst>(FirstNonPHI)) { 2030 HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo); 2031 } else { 2032 HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo); 2033 } 2034 } 2035 2036 // Update the lexical scopes of the new funclets and callsites. 2037 // Anything that had 'none' as its parent is now nested inside the callsite's 2038 // EHPad. 2039 2040 if (CallSiteEHPad) { 2041 for (Function::iterator BB = FirstNewBlock->getIterator(), 2042 E = Caller->end(); 2043 BB != E; ++BB) { 2044 // Add bundle operands to any top-level call sites. 2045 SmallVector<OperandBundleDef, 1> OpBundles; 2046 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) { 2047 Instruction *I = &*BBI++; 2048 CallSite CS(I); 2049 if (!CS) 2050 continue; 2051 2052 // Skip call sites which are nounwind intrinsics. 2053 auto *CalledFn = 2054 dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts()); 2055 if (CalledFn && CalledFn->isIntrinsic() && CS.doesNotThrow()) 2056 continue; 2057 2058 // Skip call sites which already have a "funclet" bundle. 2059 if (CS.getOperandBundle(LLVMContext::OB_funclet)) 2060 continue; 2061 2062 CS.getOperandBundlesAsDefs(OpBundles); 2063 OpBundles.emplace_back("funclet", CallSiteEHPad); 2064 2065 Instruction *NewInst; 2066 if (CS.isCall()) 2067 NewInst = CallInst::Create(cast<CallInst>(I), OpBundles, I); 2068 else if (CS.isCallBr()) 2069 NewInst = CallBrInst::Create(cast<CallBrInst>(I), OpBundles, I); 2070 else 2071 NewInst = InvokeInst::Create(cast<InvokeInst>(I), OpBundles, I); 2072 NewInst->takeName(I); 2073 I->replaceAllUsesWith(NewInst); 2074 I->eraseFromParent(); 2075 2076 OpBundles.clear(); 2077 } 2078 2079 // It is problematic if the inlinee has a cleanupret which unwinds to 2080 // caller and we inline it into a call site which doesn't unwind but into 2081 // an EH pad that does. Such an edge must be dynamically unreachable. 2082 // As such, we replace the cleanupret with unreachable. 2083 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator())) 2084 if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally) 2085 changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false); 2086 2087 Instruction *I = BB->getFirstNonPHI(); 2088 if (!I->isEHPad()) 2089 continue; 2090 2091 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 2092 if (isa<ConstantTokenNone>(CatchSwitch->getParentPad())) 2093 CatchSwitch->setParentPad(CallSiteEHPad); 2094 } else { 2095 auto *FPI = cast<FuncletPadInst>(I); 2096 if (isa<ConstantTokenNone>(FPI->getParentPad())) 2097 FPI->setParentPad(CallSiteEHPad); 2098 } 2099 } 2100 } 2101 2102 if (InlinedDeoptimizeCalls) { 2103 // We need to at least remove the deoptimizing returns from the Return set, 2104 // so that the control flow from those returns does not get merged into the 2105 // caller (but terminate it instead). If the caller's return type does not 2106 // match the callee's return type, we also need to change the return type of 2107 // the intrinsic. 2108 if (Caller->getReturnType() == TheCall->getType()) { 2109 auto NewEnd = llvm::remove_if(Returns, [](ReturnInst *RI) { 2110 return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr; 2111 }); 2112 Returns.erase(NewEnd, Returns.end()); 2113 } else { 2114 SmallVector<ReturnInst *, 8> NormalReturns; 2115 Function *NewDeoptIntrinsic = Intrinsic::getDeclaration( 2116 Caller->getParent(), Intrinsic::experimental_deoptimize, 2117 {Caller->getReturnType()}); 2118 2119 for (ReturnInst *RI : Returns) { 2120 CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall(); 2121 if (!DeoptCall) { 2122 NormalReturns.push_back(RI); 2123 continue; 2124 } 2125 2126 // The calling convention on the deoptimize call itself may be bogus, 2127 // since the code we're inlining may have undefined behavior (and may 2128 // never actually execute at runtime); but all 2129 // @llvm.experimental.deoptimize declarations have to have the same 2130 // calling convention in a well-formed module. 2131 auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv(); 2132 NewDeoptIntrinsic->setCallingConv(CallingConv); 2133 auto *CurBB = RI->getParent(); 2134 RI->eraseFromParent(); 2135 2136 SmallVector<Value *, 4> CallArgs(DeoptCall->arg_begin(), 2137 DeoptCall->arg_end()); 2138 2139 SmallVector<OperandBundleDef, 1> OpBundles; 2140 DeoptCall->getOperandBundlesAsDefs(OpBundles); 2141 DeoptCall->eraseFromParent(); 2142 assert(!OpBundles.empty() && 2143 "Expected at least the deopt operand bundle"); 2144 2145 IRBuilder<> Builder(CurBB); 2146 CallInst *NewDeoptCall = 2147 Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles); 2148 NewDeoptCall->setCallingConv(CallingConv); 2149 if (NewDeoptCall->getType()->isVoidTy()) 2150 Builder.CreateRetVoid(); 2151 else 2152 Builder.CreateRet(NewDeoptCall); 2153 } 2154 2155 // Leave behind the normal returns so we can merge control flow. 2156 std::swap(Returns, NormalReturns); 2157 } 2158 } 2159 2160 // Handle any inlined musttail call sites. In order for a new call site to be 2161 // musttail, the source of the clone and the inlined call site must have been 2162 // musttail. Therefore it's safe to return without merging control into the 2163 // phi below. 2164 if (InlinedMustTailCalls) { 2165 // Check if we need to bitcast the result of any musttail calls. 2166 Type *NewRetTy = Caller->getReturnType(); 2167 bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy; 2168 2169 // Handle the returns preceded by musttail calls separately. 2170 SmallVector<ReturnInst *, 8> NormalReturns; 2171 for (ReturnInst *RI : Returns) { 2172 CallInst *ReturnedMustTail = 2173 RI->getParent()->getTerminatingMustTailCall(); 2174 if (!ReturnedMustTail) { 2175 NormalReturns.push_back(RI); 2176 continue; 2177 } 2178 if (!NeedBitCast) 2179 continue; 2180 2181 // Delete the old return and any preceding bitcast. 2182 BasicBlock *CurBB = RI->getParent(); 2183 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); 2184 RI->eraseFromParent(); 2185 if (OldCast) 2186 OldCast->eraseFromParent(); 2187 2188 // Insert a new bitcast and return with the right type. 2189 IRBuilder<> Builder(CurBB); 2190 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); 2191 } 2192 2193 // Leave behind the normal returns so we can merge control flow. 2194 std::swap(Returns, NormalReturns); 2195 } 2196 2197 // Now that all of the transforms on the inlined code have taken place but 2198 // before we splice the inlined code into the CFG and lose track of which 2199 // blocks were actually inlined, collect the call sites. We only do this if 2200 // call graph updates weren't requested, as those provide value handle based 2201 // tracking of inlined call sites instead. 2202 if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) { 2203 // Otherwise just collect the raw call sites that were inlined. 2204 for (BasicBlock &NewBB : 2205 make_range(FirstNewBlock->getIterator(), Caller->end())) 2206 for (Instruction &I : NewBB) 2207 if (auto CS = CallSite(&I)) 2208 IFI.InlinedCallSites.push_back(CS); 2209 } 2210 2211 // If we cloned in _exactly one_ basic block, and if that block ends in a 2212 // return instruction, we splice the body of the inlined callee directly into 2213 // the calling basic block. 2214 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 2215 // Move all of the instructions right before the call. 2216 OrigBB->getInstList().splice(TheCall->getIterator(), 2217 FirstNewBlock->getInstList(), 2218 FirstNewBlock->begin(), FirstNewBlock->end()); 2219 // Remove the cloned basic block. 2220 Caller->getBasicBlockList().pop_back(); 2221 2222 // If the call site was an invoke instruction, add a branch to the normal 2223 // destination. 2224 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 2225 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); 2226 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 2227 } 2228 2229 // If the return instruction returned a value, replace uses of the call with 2230 // uses of the returned value. 2231 if (!TheCall->use_empty()) { 2232 ReturnInst *R = Returns[0]; 2233 if (TheCall == R->getReturnValue()) 2234 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 2235 else 2236 TheCall->replaceAllUsesWith(R->getReturnValue()); 2237 } 2238 // Since we are now done with the Call/Invoke, we can delete it. 2239 TheCall->eraseFromParent(); 2240 2241 // Since we are now done with the return instruction, delete it also. 2242 Returns[0]->eraseFromParent(); 2243 2244 // We are now done with the inlining. 2245 return InlineResult::success(); 2246 } 2247 2248 // Otherwise, we have the normal case, of more than one block to inline or 2249 // multiple return sites. 2250 2251 // We want to clone the entire callee function into the hole between the 2252 // "starter" and "ender" blocks. How we accomplish this depends on whether 2253 // this is an invoke instruction or a call instruction. 2254 BasicBlock *AfterCallBB; 2255 BranchInst *CreatedBranchToNormalDest = nullptr; 2256 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 2257 2258 // Add an unconditional branch to make this look like the CallInst case... 2259 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall); 2260 2261 // Split the basic block. This guarantees that no PHI nodes will have to be 2262 // updated due to new incoming edges, and make the invoke case more 2263 // symmetric to the call case. 2264 AfterCallBB = 2265 OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(), 2266 CalledFunc->getName() + ".exit"); 2267 2268 } else { // It's a call 2269 // If this is a call instruction, we need to split the basic block that 2270 // the call lives in. 2271 // 2272 AfterCallBB = OrigBB->splitBasicBlock(TheCall->getIterator(), 2273 CalledFunc->getName() + ".exit"); 2274 } 2275 2276 if (IFI.CallerBFI) { 2277 // Copy original BB's block frequency to AfterCallBB 2278 IFI.CallerBFI->setBlockFreq( 2279 AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency()); 2280 } 2281 2282 // Change the branch that used to go to AfterCallBB to branch to the first 2283 // basic block of the inlined function. 2284 // 2285 Instruction *Br = OrigBB->getTerminator(); 2286 assert(Br && Br->getOpcode() == Instruction::Br && 2287 "splitBasicBlock broken!"); 2288 Br->setOperand(0, &*FirstNewBlock); 2289 2290 // Now that the function is correct, make it a little bit nicer. In 2291 // particular, move the basic blocks inserted from the end of the function 2292 // into the space made by splitting the source basic block. 2293 Caller->getBasicBlockList().splice(AfterCallBB->getIterator(), 2294 Caller->getBasicBlockList(), FirstNewBlock, 2295 Caller->end()); 2296 2297 // Handle all of the return instructions that we just cloned in, and eliminate 2298 // any users of the original call/invoke instruction. 2299 Type *RTy = CalledFunc->getReturnType(); 2300 2301 PHINode *PHI = nullptr; 2302 if (Returns.size() > 1) { 2303 // The PHI node should go at the front of the new basic block to merge all 2304 // possible incoming values. 2305 if (!TheCall->use_empty()) { 2306 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), 2307 &AfterCallBB->front()); 2308 // Anything that used the result of the function call should now use the 2309 // PHI node as their operand. 2310 TheCall->replaceAllUsesWith(PHI); 2311 } 2312 2313 // Loop over all of the return instructions adding entries to the PHI node 2314 // as appropriate. 2315 if (PHI) { 2316 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2317 ReturnInst *RI = Returns[i]; 2318 assert(RI->getReturnValue()->getType() == PHI->getType() && 2319 "Ret value not consistent in function!"); 2320 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 2321 } 2322 } 2323 2324 // Add a branch to the merge points and remove return instructions. 2325 DebugLoc Loc; 2326 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2327 ReturnInst *RI = Returns[i]; 2328 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 2329 Loc = RI->getDebugLoc(); 2330 BI->setDebugLoc(Loc); 2331 RI->eraseFromParent(); 2332 } 2333 // We need to set the debug location to *somewhere* inside the 2334 // inlined function. The line number may be nonsensical, but the 2335 // instruction will at least be associated with the right 2336 // function. 2337 if (CreatedBranchToNormalDest) 2338 CreatedBranchToNormalDest->setDebugLoc(Loc); 2339 } else if (!Returns.empty()) { 2340 // Otherwise, if there is exactly one return value, just replace anything 2341 // using the return value of the call with the computed value. 2342 if (!TheCall->use_empty()) { 2343 if (TheCall == Returns[0]->getReturnValue()) 2344 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 2345 else 2346 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); 2347 } 2348 2349 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 2350 BasicBlock *ReturnBB = Returns[0]->getParent(); 2351 ReturnBB->replaceAllUsesWith(AfterCallBB); 2352 2353 // Splice the code from the return block into the block that it will return 2354 // to, which contains the code that was after the call. 2355 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 2356 ReturnBB->getInstList()); 2357 2358 if (CreatedBranchToNormalDest) 2359 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 2360 2361 // Delete the return instruction now and empty ReturnBB now. 2362 Returns[0]->eraseFromParent(); 2363 ReturnBB->eraseFromParent(); 2364 } else if (!TheCall->use_empty()) { 2365 // No returns, but something is using the return value of the call. Just 2366 // nuke the result. 2367 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 2368 } 2369 2370 // Since we are now done with the Call/Invoke, we can delete it. 2371 TheCall->eraseFromParent(); 2372 2373 // If we inlined any musttail calls and the original return is now 2374 // unreachable, delete it. It can only contain a bitcast and ret. 2375 if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB)) 2376 AfterCallBB->eraseFromParent(); 2377 2378 // We should always be able to fold the entry block of the function into the 2379 // single predecessor of the block... 2380 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 2381 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 2382 2383 // Splice the code entry block into calling block, right before the 2384 // unconditional branch. 2385 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 2386 OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList()); 2387 2388 // Remove the unconditional branch. 2389 OrigBB->getInstList().erase(Br); 2390 2391 // Now we can remove the CalleeEntry block, which is now empty. 2392 Caller->getBasicBlockList().erase(CalleeEntry); 2393 2394 // If we inserted a phi node, check to see if it has a single value (e.g. all 2395 // the entries are the same or undef). If so, remove the PHI so it doesn't 2396 // block other optimizations. 2397 if (PHI) { 2398 AssumptionCache *AC = 2399 IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr; 2400 auto &DL = Caller->getParent()->getDataLayout(); 2401 if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) { 2402 PHI->replaceAllUsesWith(V); 2403 PHI->eraseFromParent(); 2404 } 2405 } 2406 2407 return InlineResult::success(); 2408 } 2409