1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements inlining of a function into a call site, resolving 11 // parameters and the return value as appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Cloning.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/CallGraph.h" 23 #include "llvm/Analysis/CaptureTracking.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/CallSite.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/DIBuilder.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/MDBuilder.h" 40 #include "llvm/IR/Module.h" 41 #include "llvm/Transforms/Utils/Local.h" 42 #include "llvm/Support/CommandLine.h" 43 #include <algorithm> 44 45 using namespace llvm; 46 47 static cl::opt<bool> 48 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), 49 cl::Hidden, 50 cl::desc("Convert noalias attributes to metadata during inlining.")); 51 52 static cl::opt<bool> 53 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", 54 cl::init(true), cl::Hidden, 55 cl::desc("Convert align attributes to assumptions during inlining.")); 56 57 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI, 58 AAResults *CalleeAAR, bool InsertLifetime) { 59 return InlineFunction(CallSite(CI), IFI, CalleeAAR, InsertLifetime); 60 } 61 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI, 62 AAResults *CalleeAAR, bool InsertLifetime) { 63 return InlineFunction(CallSite(II), IFI, CalleeAAR, InsertLifetime); 64 } 65 66 namespace { 67 /// A class for recording information about inlining a landing pad. 68 class LandingPadInliningInfo { 69 BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind. 70 BasicBlock *InnerResumeDest; ///< Destination for the callee's resume. 71 LandingPadInst *CallerLPad; ///< LandingPadInst associated with the invoke. 72 PHINode *InnerEHValuesPHI; ///< PHI for EH values from landingpad insts. 73 SmallVector<Value*, 8> UnwindDestPHIValues; 74 75 public: 76 LandingPadInliningInfo(InvokeInst *II) 77 : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr), 78 CallerLPad(nullptr), InnerEHValuesPHI(nullptr) { 79 // If there are PHI nodes in the unwind destination block, we need to keep 80 // track of which values came into them from the invoke before removing 81 // the edge from this block. 82 llvm::BasicBlock *InvokeBB = II->getParent(); 83 BasicBlock::iterator I = OuterResumeDest->begin(); 84 for (; isa<PHINode>(I); ++I) { 85 // Save the value to use for this edge. 86 PHINode *PHI = cast<PHINode>(I); 87 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 88 } 89 90 CallerLPad = cast<LandingPadInst>(I); 91 } 92 93 /// The outer unwind destination is the target of 94 /// unwind edges introduced for calls within the inlined function. 95 BasicBlock *getOuterResumeDest() const { 96 return OuterResumeDest; 97 } 98 99 BasicBlock *getInnerResumeDest(); 100 101 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 102 103 /// Forward the 'resume' instruction to the caller's landing pad block. 104 /// When the landing pad block has only one predecessor, this is 105 /// a simple branch. When there is more than one predecessor, we need to 106 /// split the landing pad block after the landingpad instruction and jump 107 /// to there. 108 void forwardResume(ResumeInst *RI, 109 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); 110 111 /// Add incoming-PHI values to the unwind destination block for the given 112 /// basic block, using the values for the original invoke's source block. 113 void addIncomingPHIValuesFor(BasicBlock *BB) const { 114 addIncomingPHIValuesForInto(BB, OuterResumeDest); 115 } 116 117 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 118 BasicBlock::iterator I = dest->begin(); 119 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 120 PHINode *phi = cast<PHINode>(I); 121 phi->addIncoming(UnwindDestPHIValues[i], src); 122 } 123 } 124 }; 125 } // anonymous namespace 126 127 /// Get or create a target for the branch from ResumeInsts. 128 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() { 129 if (InnerResumeDest) return InnerResumeDest; 130 131 // Split the landing pad. 132 BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator(); 133 InnerResumeDest = 134 OuterResumeDest->splitBasicBlock(SplitPoint, 135 OuterResumeDest->getName() + ".body"); 136 137 // The number of incoming edges we expect to the inner landing pad. 138 const unsigned PHICapacity = 2; 139 140 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 141 Instruction *InsertPoint = &InnerResumeDest->front(); 142 BasicBlock::iterator I = OuterResumeDest->begin(); 143 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 144 PHINode *OuterPHI = cast<PHINode>(I); 145 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 146 OuterPHI->getName() + ".lpad-body", 147 InsertPoint); 148 OuterPHI->replaceAllUsesWith(InnerPHI); 149 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 150 } 151 152 // Create a PHI for the exception values. 153 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 154 "eh.lpad-body", InsertPoint); 155 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 156 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 157 158 // All done. 159 return InnerResumeDest; 160 } 161 162 /// Forward the 'resume' instruction to the caller's landing pad block. 163 /// When the landing pad block has only one predecessor, this is a simple 164 /// branch. When there is more than one predecessor, we need to split the 165 /// landing pad block after the landingpad instruction and jump to there. 166 void LandingPadInliningInfo::forwardResume( 167 ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) { 168 BasicBlock *Dest = getInnerResumeDest(); 169 BasicBlock *Src = RI->getParent(); 170 171 BranchInst::Create(Dest, Src); 172 173 // Update the PHIs in the destination. They were inserted in an order which 174 // makes this work. 175 addIncomingPHIValuesForInto(Src, Dest); 176 177 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 178 RI->eraseFromParent(); 179 } 180 181 /// When we inline a basic block into an invoke, 182 /// we have to turn all of the calls that can throw into invokes. 183 /// This function analyze BB to see if there are any calls, and if so, 184 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 185 /// nodes in that block with the values specified in InvokeDestPHIValues. 186 static BasicBlock * 187 HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, BasicBlock *UnwindEdge) { 188 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 189 Instruction *I = &*BBI++; 190 191 // We only need to check for function calls: inlined invoke 192 // instructions require no special handling. 193 CallInst *CI = dyn_cast<CallInst>(I); 194 195 // If this call cannot unwind, don't convert it to an invoke. 196 // Inline asm calls cannot throw. 197 if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue())) 198 continue; 199 200 // Convert this function call into an invoke instruction. First, split the 201 // basic block. 202 BasicBlock *Split = 203 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 204 205 // Delete the unconditional branch inserted by splitBasicBlock 206 BB->getInstList().pop_back(); 207 208 // Create the new invoke instruction. 209 ImmutableCallSite CS(CI); 210 SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end()); 211 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, 212 InvokeArgs, CI->getName(), BB); 213 II->setDebugLoc(CI->getDebugLoc()); 214 II->setCallingConv(CI->getCallingConv()); 215 II->setAttributes(CI->getAttributes()); 216 217 // Make sure that anything using the call now uses the invoke! This also 218 // updates the CallGraph if present, because it uses a WeakVH. 219 CI->replaceAllUsesWith(II); 220 221 // Delete the original call 222 Split->getInstList().pop_front(); 223 return BB; 224 } 225 return nullptr; 226 } 227 228 /// If we inlined an invoke site, we need to convert calls 229 /// in the body of the inlined function into invokes. 230 /// 231 /// II is the invoke instruction being inlined. FirstNewBlock is the first 232 /// block of the inlined code (the last block is the end of the function), 233 /// and InlineCodeInfo is information about the code that got inlined. 234 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock, 235 ClonedCodeInfo &InlinedCodeInfo) { 236 BasicBlock *InvokeDest = II->getUnwindDest(); 237 238 Function *Caller = FirstNewBlock->getParent(); 239 240 // The inlined code is currently at the end of the function, scan from the 241 // start of the inlined code to its end, checking for stuff we need to 242 // rewrite. 243 LandingPadInliningInfo Invoke(II); 244 245 // Get all of the inlined landing pad instructions. 246 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 247 for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end(); 248 I != E; ++I) 249 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 250 InlinedLPads.insert(II->getLandingPadInst()); 251 252 // Append the clauses from the outer landing pad instruction into the inlined 253 // landing pad instructions. 254 LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 255 for (LandingPadInst *InlinedLPad : InlinedLPads) { 256 unsigned OuterNum = OuterLPad->getNumClauses(); 257 InlinedLPad->reserveClauses(OuterNum); 258 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 259 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 260 if (OuterLPad->isCleanup()) 261 InlinedLPad->setCleanup(true); 262 } 263 264 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 265 BB != E; ++BB) { 266 if (InlinedCodeInfo.ContainsCalls) 267 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 268 &*BB, Invoke.getOuterResumeDest())) 269 // Update any PHI nodes in the exceptional block to indicate that there 270 // is now a new entry in them. 271 Invoke.addIncomingPHIValuesFor(NewBB); 272 273 // Forward any resumes that are remaining here. 274 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 275 Invoke.forwardResume(RI, InlinedLPads); 276 } 277 278 // Now that everything is happy, we have one final detail. The PHI nodes in 279 // the exception destination block still have entries due to the original 280 // invoke instruction. Eliminate these entries (which might even delete the 281 // PHI node) now. 282 InvokeDest->removePredecessor(II->getParent()); 283 } 284 285 /// If we inlined an invoke site, we need to convert calls 286 /// in the body of the inlined function into invokes. 287 /// 288 /// II is the invoke instruction being inlined. FirstNewBlock is the first 289 /// block of the inlined code (the last block is the end of the function), 290 /// and InlineCodeInfo is information about the code that got inlined. 291 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock, 292 ClonedCodeInfo &InlinedCodeInfo) { 293 BasicBlock *UnwindDest = II->getUnwindDest(); 294 Function *Caller = FirstNewBlock->getParent(); 295 296 assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!"); 297 298 // If there are PHI nodes in the unwind destination block, we need to keep 299 // track of which values came into them from the invoke before removing the 300 // edge from this block. 301 SmallVector<Value *, 8> UnwindDestPHIValues; 302 llvm::BasicBlock *InvokeBB = II->getParent(); 303 for (Instruction &I : *UnwindDest) { 304 // Save the value to use for this edge. 305 PHINode *PHI = dyn_cast<PHINode>(&I); 306 if (!PHI) 307 break; 308 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 309 } 310 311 // Add incoming-PHI values to the unwind destination block for the given basic 312 // block, using the values for the original invoke's source block. 313 auto UpdatePHINodes = [&](BasicBlock *Src) { 314 BasicBlock::iterator I = UnwindDest->begin(); 315 for (Value *V : UnwindDestPHIValues) { 316 PHINode *PHI = cast<PHINode>(I); 317 PHI->addIncoming(V, Src); 318 ++I; 319 } 320 }; 321 322 // Forward EH terminator instructions to the caller's invoke destination. 323 // This is as simple as connect all the instructions which 'unwind to caller' 324 // to the invoke destination. 325 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 326 BB != E; ++BB) { 327 Instruction *I = BB->getFirstNonPHI(); 328 if (I->isEHPad()) { 329 if (auto *CEPI = dyn_cast<CatchEndPadInst>(I)) { 330 if (CEPI->unwindsToCaller()) { 331 CatchEndPadInst::Create(CEPI->getContext(), UnwindDest, CEPI); 332 CEPI->eraseFromParent(); 333 UpdatePHINodes(&*BB); 334 } 335 } else if (auto *CEPI = dyn_cast<CleanupEndPadInst>(I)) { 336 if (CEPI->unwindsToCaller()) { 337 CleanupEndPadInst::Create(CEPI->getCleanupPad(), UnwindDest, CEPI); 338 CEPI->eraseFromParent(); 339 UpdatePHINodes(&*BB); 340 } 341 } else if (auto *TPI = dyn_cast<TerminatePadInst>(I)) { 342 if (TPI->unwindsToCaller()) { 343 SmallVector<Value *, 3> TerminatePadArgs; 344 for (Value *ArgOperand : TPI->arg_operands()) 345 TerminatePadArgs.push_back(ArgOperand); 346 TerminatePadInst::Create(TPI->getContext(), UnwindDest, 347 TerminatePadArgs, TPI); 348 TPI->eraseFromParent(); 349 UpdatePHINodes(&*BB); 350 } 351 } else { 352 assert(isa<CatchPadInst>(I) || isa<CleanupPadInst>(I)); 353 } 354 } 355 356 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 357 if (CRI->unwindsToCaller()) { 358 CleanupReturnInst::Create(CRI->getCleanupPad(), UnwindDest, CRI); 359 CRI->eraseFromParent(); 360 UpdatePHINodes(&*BB); 361 } 362 } 363 } 364 365 if (InlinedCodeInfo.ContainsCalls) 366 for (Function::iterator BB = FirstNewBlock->getIterator(), 367 E = Caller->end(); 368 BB != E; ++BB) 369 if (BasicBlock *NewBB = 370 HandleCallsInBlockInlinedThroughInvoke(&*BB, UnwindDest)) 371 // Update any PHI nodes in the exceptional block to indicate that there 372 // is now a new entry in them. 373 UpdatePHINodes(NewBB); 374 375 // Now that everything is happy, we have one final detail. The PHI nodes in 376 // the exception destination block still have entries due to the original 377 // invoke instruction. Eliminate these entries (which might even delete the 378 // PHI node) now. 379 UnwindDest->removePredecessor(InvokeBB); 380 } 381 382 /// When inlining a function that contains noalias scope metadata, 383 /// this metadata needs to be cloned so that the inlined blocks 384 /// have different "unqiue scopes" at every call site. Were this not done, then 385 /// aliasing scopes from a function inlined into a caller multiple times could 386 /// not be differentiated (and this would lead to miscompiles because the 387 /// non-aliasing property communicated by the metadata could have 388 /// call-site-specific control dependencies). 389 static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) { 390 const Function *CalledFunc = CS.getCalledFunction(); 391 SetVector<const MDNode *> MD; 392 393 // Note: We could only clone the metadata if it is already used in the 394 // caller. I'm omitting that check here because it might confuse 395 // inter-procedural alias analysis passes. We can revisit this if it becomes 396 // an efficiency or overhead problem. 397 398 for (Function::const_iterator I = CalledFunc->begin(), IE = CalledFunc->end(); 399 I != IE; ++I) 400 for (BasicBlock::const_iterator J = I->begin(), JE = I->end(); J != JE; ++J) { 401 if (const MDNode *M = J->getMetadata(LLVMContext::MD_alias_scope)) 402 MD.insert(M); 403 if (const MDNode *M = J->getMetadata(LLVMContext::MD_noalias)) 404 MD.insert(M); 405 } 406 407 if (MD.empty()) 408 return; 409 410 // Walk the existing metadata, adding the complete (perhaps cyclic) chain to 411 // the set. 412 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end()); 413 while (!Queue.empty()) { 414 const MDNode *M = cast<MDNode>(Queue.pop_back_val()); 415 for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i) 416 if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i))) 417 if (MD.insert(M1)) 418 Queue.push_back(M1); 419 } 420 421 // Now we have a complete set of all metadata in the chains used to specify 422 // the noalias scopes and the lists of those scopes. 423 SmallVector<TempMDTuple, 16> DummyNodes; 424 DenseMap<const MDNode *, TrackingMDNodeRef> MDMap; 425 for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); 426 I != IE; ++I) { 427 DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None)); 428 MDMap[*I].reset(DummyNodes.back().get()); 429 } 430 431 // Create new metadata nodes to replace the dummy nodes, replacing old 432 // metadata references with either a dummy node or an already-created new 433 // node. 434 for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); 435 I != IE; ++I) { 436 SmallVector<Metadata *, 4> NewOps; 437 for (unsigned i = 0, ie = (*I)->getNumOperands(); i != ie; ++i) { 438 const Metadata *V = (*I)->getOperand(i); 439 if (const MDNode *M = dyn_cast<MDNode>(V)) 440 NewOps.push_back(MDMap[M]); 441 else 442 NewOps.push_back(const_cast<Metadata *>(V)); 443 } 444 445 MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps); 446 MDTuple *TempM = cast<MDTuple>(MDMap[*I]); 447 assert(TempM->isTemporary() && "Expected temporary node"); 448 449 TempM->replaceAllUsesWith(NewM); 450 } 451 452 // Now replace the metadata in the new inlined instructions with the 453 // repacements from the map. 454 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 455 VMI != VMIE; ++VMI) { 456 if (!VMI->second) 457 continue; 458 459 Instruction *NI = dyn_cast<Instruction>(VMI->second); 460 if (!NI) 461 continue; 462 463 if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) { 464 MDNode *NewMD = MDMap[M]; 465 // If the call site also had alias scope metadata (a list of scopes to 466 // which instructions inside it might belong), propagate those scopes to 467 // the inlined instructions. 468 if (MDNode *CSM = 469 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 470 NewMD = MDNode::concatenate(NewMD, CSM); 471 NI->setMetadata(LLVMContext::MD_alias_scope, NewMD); 472 } else if (NI->mayReadOrWriteMemory()) { 473 if (MDNode *M = 474 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 475 NI->setMetadata(LLVMContext::MD_alias_scope, M); 476 } 477 478 if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) { 479 MDNode *NewMD = MDMap[M]; 480 // If the call site also had noalias metadata (a list of scopes with 481 // which instructions inside it don't alias), propagate those scopes to 482 // the inlined instructions. 483 if (MDNode *CSM = 484 CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 485 NewMD = MDNode::concatenate(NewMD, CSM); 486 NI->setMetadata(LLVMContext::MD_noalias, NewMD); 487 } else if (NI->mayReadOrWriteMemory()) { 488 if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 489 NI->setMetadata(LLVMContext::MD_noalias, M); 490 } 491 } 492 } 493 494 /// If the inlined function has noalias arguments, 495 /// then add new alias scopes for each noalias argument, tag the mapped noalias 496 /// parameters with noalias metadata specifying the new scope, and tag all 497 /// non-derived loads, stores and memory intrinsics with the new alias scopes. 498 static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap, 499 const DataLayout &DL, AAResults *CalleeAAR) { 500 if (!EnableNoAliasConversion) 501 return; 502 503 const Function *CalledFunc = CS.getCalledFunction(); 504 SmallVector<const Argument *, 4> NoAliasArgs; 505 506 for (const Argument &I : CalledFunc->args()) { 507 if (I.hasNoAliasAttr() && !I.hasNUses(0)) 508 NoAliasArgs.push_back(&I); 509 } 510 511 if (NoAliasArgs.empty()) 512 return; 513 514 // To do a good job, if a noalias variable is captured, we need to know if 515 // the capture point dominates the particular use we're considering. 516 DominatorTree DT; 517 DT.recalculate(const_cast<Function&>(*CalledFunc)); 518 519 // noalias indicates that pointer values based on the argument do not alias 520 // pointer values which are not based on it. So we add a new "scope" for each 521 // noalias function argument. Accesses using pointers based on that argument 522 // become part of that alias scope, accesses using pointers not based on that 523 // argument are tagged as noalias with that scope. 524 525 DenseMap<const Argument *, MDNode *> NewScopes; 526 MDBuilder MDB(CalledFunc->getContext()); 527 528 // Create a new scope domain for this function. 529 MDNode *NewDomain = 530 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); 531 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { 532 const Argument *A = NoAliasArgs[i]; 533 534 std::string Name = CalledFunc->getName(); 535 if (A->hasName()) { 536 Name += ": %"; 537 Name += A->getName(); 538 } else { 539 Name += ": argument "; 540 Name += utostr(i); 541 } 542 543 // Note: We always create a new anonymous root here. This is true regardless 544 // of the linkage of the callee because the aliasing "scope" is not just a 545 // property of the callee, but also all control dependencies in the caller. 546 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); 547 NewScopes.insert(std::make_pair(A, NewScope)); 548 } 549 550 // Iterate over all new instructions in the map; for all memory-access 551 // instructions, add the alias scope metadata. 552 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 553 VMI != VMIE; ++VMI) { 554 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { 555 if (!VMI->second) 556 continue; 557 558 Instruction *NI = dyn_cast<Instruction>(VMI->second); 559 if (!NI) 560 continue; 561 562 bool IsArgMemOnlyCall = false, IsFuncCall = false; 563 SmallVector<const Value *, 2> PtrArgs; 564 565 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 566 PtrArgs.push_back(LI->getPointerOperand()); 567 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 568 PtrArgs.push_back(SI->getPointerOperand()); 569 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) 570 PtrArgs.push_back(VAAI->getPointerOperand()); 571 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 572 PtrArgs.push_back(CXI->getPointerOperand()); 573 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 574 PtrArgs.push_back(RMWI->getPointerOperand()); 575 else if (ImmutableCallSite ICS = ImmutableCallSite(I)) { 576 // If we know that the call does not access memory, then we'll still 577 // know that about the inlined clone of this call site, and we don't 578 // need to add metadata. 579 if (ICS.doesNotAccessMemory()) 580 continue; 581 582 IsFuncCall = true; 583 if (CalleeAAR) { 584 FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(ICS); 585 if (MRB == FMRB_OnlyAccessesArgumentPointees || 586 MRB == FMRB_OnlyReadsArgumentPointees) 587 IsArgMemOnlyCall = true; 588 } 589 590 for (ImmutableCallSite::arg_iterator AI = ICS.arg_begin(), 591 AE = ICS.arg_end(); AI != AE; ++AI) { 592 // We need to check the underlying objects of all arguments, not just 593 // the pointer arguments, because we might be passing pointers as 594 // integers, etc. 595 // However, if we know that the call only accesses pointer arguments, 596 // then we only need to check the pointer arguments. 597 if (IsArgMemOnlyCall && !(*AI)->getType()->isPointerTy()) 598 continue; 599 600 PtrArgs.push_back(*AI); 601 } 602 } 603 604 // If we found no pointers, then this instruction is not suitable for 605 // pairing with an instruction to receive aliasing metadata. 606 // However, if this is a call, this we might just alias with none of the 607 // noalias arguments. 608 if (PtrArgs.empty() && !IsFuncCall) 609 continue; 610 611 // It is possible that there is only one underlying object, but you 612 // need to go through several PHIs to see it, and thus could be 613 // repeated in the Objects list. 614 SmallPtrSet<const Value *, 4> ObjSet; 615 SmallVector<Metadata *, 4> Scopes, NoAliases; 616 617 SmallSetVector<const Argument *, 4> NAPtrArgs; 618 for (unsigned i = 0, ie = PtrArgs.size(); i != ie; ++i) { 619 SmallVector<Value *, 4> Objects; 620 GetUnderlyingObjects(const_cast<Value*>(PtrArgs[i]), 621 Objects, DL, /* LI = */ nullptr); 622 623 for (Value *O : Objects) 624 ObjSet.insert(O); 625 } 626 627 // Figure out if we're derived from anything that is not a noalias 628 // argument. 629 bool CanDeriveViaCapture = false, UsesAliasingPtr = false; 630 for (const Value *V : ObjSet) { 631 // Is this value a constant that cannot be derived from any pointer 632 // value (we need to exclude constant expressions, for example, that 633 // are formed from arithmetic on global symbols). 634 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || 635 isa<ConstantPointerNull>(V) || 636 isa<ConstantDataVector>(V) || isa<UndefValue>(V); 637 if (IsNonPtrConst) 638 continue; 639 640 // If this is anything other than a noalias argument, then we cannot 641 // completely describe the aliasing properties using alias.scope 642 // metadata (and, thus, won't add any). 643 if (const Argument *A = dyn_cast<Argument>(V)) { 644 if (!A->hasNoAliasAttr()) 645 UsesAliasingPtr = true; 646 } else { 647 UsesAliasingPtr = true; 648 } 649 650 // If this is not some identified function-local object (which cannot 651 // directly alias a noalias argument), or some other argument (which, 652 // by definition, also cannot alias a noalias argument), then we could 653 // alias a noalias argument that has been captured). 654 if (!isa<Argument>(V) && 655 !isIdentifiedFunctionLocal(const_cast<Value*>(V))) 656 CanDeriveViaCapture = true; 657 } 658 659 // A function call can always get captured noalias pointers (via other 660 // parameters, globals, etc.). 661 if (IsFuncCall && !IsArgMemOnlyCall) 662 CanDeriveViaCapture = true; 663 664 // First, we want to figure out all of the sets with which we definitely 665 // don't alias. Iterate over all noalias set, and add those for which: 666 // 1. The noalias argument is not in the set of objects from which we 667 // definitely derive. 668 // 2. The noalias argument has not yet been captured. 669 // An arbitrary function that might load pointers could see captured 670 // noalias arguments via other noalias arguments or globals, and so we 671 // must always check for prior capture. 672 for (const Argument *A : NoAliasArgs) { 673 if (!ObjSet.count(A) && (!CanDeriveViaCapture || 674 // It might be tempting to skip the 675 // PointerMayBeCapturedBefore check if 676 // A->hasNoCaptureAttr() is true, but this is 677 // incorrect because nocapture only guarantees 678 // that no copies outlive the function, not 679 // that the value cannot be locally captured. 680 !PointerMayBeCapturedBefore(A, 681 /* ReturnCaptures */ false, 682 /* StoreCaptures */ false, I, &DT))) 683 NoAliases.push_back(NewScopes[A]); 684 } 685 686 if (!NoAliases.empty()) 687 NI->setMetadata(LLVMContext::MD_noalias, 688 MDNode::concatenate( 689 NI->getMetadata(LLVMContext::MD_noalias), 690 MDNode::get(CalledFunc->getContext(), NoAliases))); 691 692 // Next, we want to figure out all of the sets to which we might belong. 693 // We might belong to a set if the noalias argument is in the set of 694 // underlying objects. If there is some non-noalias argument in our list 695 // of underlying objects, then we cannot add a scope because the fact 696 // that some access does not alias with any set of our noalias arguments 697 // cannot itself guarantee that it does not alias with this access 698 // (because there is some pointer of unknown origin involved and the 699 // other access might also depend on this pointer). We also cannot add 700 // scopes to arbitrary functions unless we know they don't access any 701 // non-parameter pointer-values. 702 bool CanAddScopes = !UsesAliasingPtr; 703 if (CanAddScopes && IsFuncCall) 704 CanAddScopes = IsArgMemOnlyCall; 705 706 if (CanAddScopes) 707 for (const Argument *A : NoAliasArgs) { 708 if (ObjSet.count(A)) 709 Scopes.push_back(NewScopes[A]); 710 } 711 712 if (!Scopes.empty()) 713 NI->setMetadata( 714 LLVMContext::MD_alias_scope, 715 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), 716 MDNode::get(CalledFunc->getContext(), Scopes))); 717 } 718 } 719 } 720 721 /// If the inlined function has non-byval align arguments, then 722 /// add @llvm.assume-based alignment assumptions to preserve this information. 723 static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) { 724 if (!PreserveAlignmentAssumptions) 725 return; 726 auto &DL = CS.getCaller()->getParent()->getDataLayout(); 727 728 // To avoid inserting redundant assumptions, we should check for assumptions 729 // already in the caller. To do this, we might need a DT of the caller. 730 DominatorTree DT; 731 bool DTCalculated = false; 732 733 Function *CalledFunc = CS.getCalledFunction(); 734 for (Function::arg_iterator I = CalledFunc->arg_begin(), 735 E = CalledFunc->arg_end(); 736 I != E; ++I) { 737 unsigned Align = I->getType()->isPointerTy() ? I->getParamAlignment() : 0; 738 if (Align && !I->hasByValOrInAllocaAttr() && !I->hasNUses(0)) { 739 if (!DTCalculated) { 740 DT.recalculate(const_cast<Function&>(*CS.getInstruction()->getParent() 741 ->getParent())); 742 DTCalculated = true; 743 } 744 745 // If we can already prove the asserted alignment in the context of the 746 // caller, then don't bother inserting the assumption. 747 Value *Arg = CS.getArgument(I->getArgNo()); 748 if (getKnownAlignment(Arg, DL, CS.getInstruction(), 749 &IFI.ACT->getAssumptionCache(*CS.getCaller()), 750 &DT) >= Align) 751 continue; 752 753 IRBuilder<>(CS.getInstruction()) 754 .CreateAlignmentAssumption(DL, Arg, Align); 755 } 756 } 757 } 758 759 /// Once we have cloned code over from a callee into the caller, 760 /// update the specified callgraph to reflect the changes we made. 761 /// Note that it's possible that not all code was copied over, so only 762 /// some edges of the callgraph may remain. 763 static void UpdateCallGraphAfterInlining(CallSite CS, 764 Function::iterator FirstNewBlock, 765 ValueToValueMapTy &VMap, 766 InlineFunctionInfo &IFI) { 767 CallGraph &CG = *IFI.CG; 768 const Function *Caller = CS.getInstruction()->getParent()->getParent(); 769 const Function *Callee = CS.getCalledFunction(); 770 CallGraphNode *CalleeNode = CG[Callee]; 771 CallGraphNode *CallerNode = CG[Caller]; 772 773 // Since we inlined some uninlined call sites in the callee into the caller, 774 // add edges from the caller to all of the callees of the callee. 775 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 776 777 // Consider the case where CalleeNode == CallerNode. 778 CallGraphNode::CalledFunctionsVector CallCache; 779 if (CalleeNode == CallerNode) { 780 CallCache.assign(I, E); 781 I = CallCache.begin(); 782 E = CallCache.end(); 783 } 784 785 for (; I != E; ++I) { 786 const Value *OrigCall = I->first; 787 788 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 789 // Only copy the edge if the call was inlined! 790 if (VMI == VMap.end() || VMI->second == nullptr) 791 continue; 792 793 // If the call was inlined, but then constant folded, there is no edge to 794 // add. Check for this case. 795 Instruction *NewCall = dyn_cast<Instruction>(VMI->second); 796 if (!NewCall) 797 continue; 798 799 // We do not treat intrinsic calls like real function calls because we 800 // expect them to become inline code; do not add an edge for an intrinsic. 801 CallSite CS = CallSite(NewCall); 802 if (CS && CS.getCalledFunction() && CS.getCalledFunction()->isIntrinsic()) 803 continue; 804 805 // Remember that this call site got inlined for the client of 806 // InlineFunction. 807 IFI.InlinedCalls.push_back(NewCall); 808 809 // It's possible that inlining the callsite will cause it to go from an 810 // indirect to a direct call by resolving a function pointer. If this 811 // happens, set the callee of the new call site to a more precise 812 // destination. This can also happen if the call graph node of the caller 813 // was just unnecessarily imprecise. 814 if (!I->second->getFunction()) 815 if (Function *F = CallSite(NewCall).getCalledFunction()) { 816 // Indirect call site resolved to direct call. 817 CallerNode->addCalledFunction(CallSite(NewCall), CG[F]); 818 819 continue; 820 } 821 822 CallerNode->addCalledFunction(CallSite(NewCall), I->second); 823 } 824 825 // Update the call graph by deleting the edge from Callee to Caller. We must 826 // do this after the loop above in case Caller and Callee are the same. 827 CallerNode->removeCallEdgeFor(CS); 828 } 829 830 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M, 831 BasicBlock *InsertBlock, 832 InlineFunctionInfo &IFI) { 833 Type *AggTy = cast<PointerType>(Src->getType())->getElementType(); 834 IRBuilder<> Builder(InsertBlock, InsertBlock->begin()); 835 836 Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy)); 837 838 // Always generate a memcpy of alignment 1 here because we don't know 839 // the alignment of the src pointer. Other optimizations can infer 840 // better alignment. 841 Builder.CreateMemCpy(Dst, Src, Size, /*Align=*/1); 842 } 843 844 /// When inlining a call site that has a byval argument, 845 /// we have to make the implicit memcpy explicit by adding it. 846 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 847 const Function *CalledFunc, 848 InlineFunctionInfo &IFI, 849 unsigned ByValAlignment) { 850 PointerType *ArgTy = cast<PointerType>(Arg->getType()); 851 Type *AggTy = ArgTy->getElementType(); 852 853 Function *Caller = TheCall->getParent()->getParent(); 854 855 // If the called function is readonly, then it could not mutate the caller's 856 // copy of the byval'd memory. In this case, it is safe to elide the copy and 857 // temporary. 858 if (CalledFunc->onlyReadsMemory()) { 859 // If the byval argument has a specified alignment that is greater than the 860 // passed in pointer, then we either have to round up the input pointer or 861 // give up on this transformation. 862 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 863 return Arg; 864 865 const DataLayout &DL = Caller->getParent()->getDataLayout(); 866 867 // If the pointer is already known to be sufficiently aligned, or if we can 868 // round it up to a larger alignment, then we don't need a temporary. 869 if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall, 870 &IFI.ACT->getAssumptionCache(*Caller)) >= 871 ByValAlignment) 872 return Arg; 873 874 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 875 // for code quality, but rarely happens and is required for correctness. 876 } 877 878 // Create the alloca. If we have DataLayout, use nice alignment. 879 unsigned Align = 880 Caller->getParent()->getDataLayout().getPrefTypeAlignment(AggTy); 881 882 // If the byval had an alignment specified, we *must* use at least that 883 // alignment, as it is required by the byval argument (and uses of the 884 // pointer inside the callee). 885 Align = std::max(Align, ByValAlignment); 886 887 Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(), 888 &*Caller->begin()->begin()); 889 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); 890 891 // Uses of the argument in the function should use our new alloca 892 // instead. 893 return NewAlloca; 894 } 895 896 // Check whether this Value is used by a lifetime intrinsic. 897 static bool isUsedByLifetimeMarker(Value *V) { 898 for (User *U : V->users()) { 899 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 900 switch (II->getIntrinsicID()) { 901 default: break; 902 case Intrinsic::lifetime_start: 903 case Intrinsic::lifetime_end: 904 return true; 905 } 906 } 907 } 908 return false; 909 } 910 911 // Check whether the given alloca already has 912 // lifetime.start or lifetime.end intrinsics. 913 static bool hasLifetimeMarkers(AllocaInst *AI) { 914 Type *Ty = AI->getType(); 915 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), 916 Ty->getPointerAddressSpace()); 917 if (Ty == Int8PtrTy) 918 return isUsedByLifetimeMarker(AI); 919 920 // Do a scan to find all the casts to i8*. 921 for (User *U : AI->users()) { 922 if (U->getType() != Int8PtrTy) continue; 923 if (U->stripPointerCasts() != AI) continue; 924 if (isUsedByLifetimeMarker(U)) 925 return true; 926 } 927 return false; 928 } 929 930 /// Rebuild the entire inlined-at chain for this instruction so that the top of 931 /// the chain now is inlined-at the new call site. 932 static DebugLoc 933 updateInlinedAtInfo(DebugLoc DL, DILocation *InlinedAtNode, LLVMContext &Ctx, 934 DenseMap<const DILocation *, DILocation *> &IANodes) { 935 SmallVector<DILocation *, 3> InlinedAtLocations; 936 DILocation *Last = InlinedAtNode; 937 DILocation *CurInlinedAt = DL; 938 939 // Gather all the inlined-at nodes 940 while (DILocation *IA = CurInlinedAt->getInlinedAt()) { 941 // Skip any we've already built nodes for 942 if (DILocation *Found = IANodes[IA]) { 943 Last = Found; 944 break; 945 } 946 947 InlinedAtLocations.push_back(IA); 948 CurInlinedAt = IA; 949 } 950 951 // Starting from the top, rebuild the nodes to point to the new inlined-at 952 // location (then rebuilding the rest of the chain behind it) and update the 953 // map of already-constructed inlined-at nodes. 954 for (const DILocation *MD : make_range(InlinedAtLocations.rbegin(), 955 InlinedAtLocations.rend())) { 956 Last = IANodes[MD] = DILocation::getDistinct( 957 Ctx, MD->getLine(), MD->getColumn(), MD->getScope(), Last); 958 } 959 960 // And finally create the normal location for this instruction, referring to 961 // the new inlined-at chain. 962 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(), Last); 963 } 964 965 /// Update inlined instructions' line numbers to 966 /// to encode location where these instructions are inlined. 967 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 968 Instruction *TheCall) { 969 DebugLoc TheCallDL = TheCall->getDebugLoc(); 970 if (!TheCallDL) 971 return; 972 973 auto &Ctx = Fn->getContext(); 974 DILocation *InlinedAtNode = TheCallDL; 975 976 // Create a unique call site, not to be confused with any other call from the 977 // same location. 978 InlinedAtNode = DILocation::getDistinct( 979 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(), 980 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt()); 981 982 // Cache the inlined-at nodes as they're built so they are reused, without 983 // this every instruction's inlined-at chain would become distinct from each 984 // other. 985 DenseMap<const DILocation *, DILocation *> IANodes; 986 987 for (; FI != Fn->end(); ++FI) { 988 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 989 BI != BE; ++BI) { 990 DebugLoc DL = BI->getDebugLoc(); 991 if (!DL) { 992 // If the inlined instruction has no line number, make it look as if it 993 // originates from the call location. This is important for 994 // ((__always_inline__, __nodebug__)) functions which must use caller 995 // location for all instructions in their function body. 996 997 // Don't update static allocas, as they may get moved later. 998 if (auto *AI = dyn_cast<AllocaInst>(BI)) 999 if (isa<Constant>(AI->getArraySize())) 1000 continue; 1001 1002 BI->setDebugLoc(TheCallDL); 1003 } else { 1004 BI->setDebugLoc(updateInlinedAtInfo(DL, InlinedAtNode, BI->getContext(), IANodes)); 1005 } 1006 } 1007 } 1008 } 1009 1010 /// This function inlines the called function into the basic block of the 1011 /// caller. This returns false if it is not possible to inline this call. 1012 /// The program is still in a well defined state if this occurs though. 1013 /// 1014 /// Note that this only does one level of inlining. For example, if the 1015 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 1016 /// exists in the instruction stream. Similarly this will inline a recursive 1017 /// function by one level. 1018 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI, 1019 AAResults *CalleeAAR, bool InsertLifetime) { 1020 Instruction *TheCall = CS.getInstruction(); 1021 assert(TheCall->getParent() && TheCall->getParent()->getParent() && 1022 "Instruction not in function!"); 1023 1024 // If IFI has any state in it, zap it before we fill it in. 1025 IFI.reset(); 1026 1027 const Function *CalledFunc = CS.getCalledFunction(); 1028 if (!CalledFunc || // Can't inline external function or indirect 1029 CalledFunc->isDeclaration() || // call, or call to a vararg function! 1030 CalledFunc->getFunctionType()->isVarArg()) return false; 1031 1032 // The inliner does not know how to inline through calls with operand bundles. 1033 if (CS.hasOperandBundles()) 1034 return false; 1035 1036 // If the call to the callee cannot throw, set the 'nounwind' flag on any 1037 // calls that we inline. 1038 bool MarkNoUnwind = CS.doesNotThrow(); 1039 1040 BasicBlock *OrigBB = TheCall->getParent(); 1041 Function *Caller = OrigBB->getParent(); 1042 1043 // GC poses two hazards to inlining, which only occur when the callee has GC: 1044 // 1. If the caller has no GC, then the callee's GC must be propagated to the 1045 // caller. 1046 // 2. If the caller has a differing GC, it is invalid to inline. 1047 if (CalledFunc->hasGC()) { 1048 if (!Caller->hasGC()) 1049 Caller->setGC(CalledFunc->getGC()); 1050 else if (CalledFunc->getGC() != Caller->getGC()) 1051 return false; 1052 } 1053 1054 // Get the personality function from the callee if it contains a landing pad. 1055 Constant *CalledPersonality = 1056 CalledFunc->hasPersonalityFn() 1057 ? CalledFunc->getPersonalityFn()->stripPointerCasts() 1058 : nullptr; 1059 1060 // Find the personality function used by the landing pads of the caller. If it 1061 // exists, then check to see that it matches the personality function used in 1062 // the callee. 1063 Constant *CallerPersonality = 1064 Caller->hasPersonalityFn() 1065 ? Caller->getPersonalityFn()->stripPointerCasts() 1066 : nullptr; 1067 if (CalledPersonality) { 1068 if (!CallerPersonality) 1069 Caller->setPersonalityFn(CalledPersonality); 1070 // If the personality functions match, then we can perform the 1071 // inlining. Otherwise, we can't inline. 1072 // TODO: This isn't 100% true. Some personality functions are proper 1073 // supersets of others and can be used in place of the other. 1074 else if (CalledPersonality != CallerPersonality) 1075 return false; 1076 } 1077 1078 // Get an iterator to the last basic block in the function, which will have 1079 // the new function inlined after it. 1080 Function::iterator LastBlock = --Caller->end(); 1081 1082 // Make sure to capture all of the return instructions from the cloned 1083 // function. 1084 SmallVector<ReturnInst*, 8> Returns; 1085 ClonedCodeInfo InlinedFunctionInfo; 1086 Function::iterator FirstNewBlock; 1087 1088 { // Scope to destroy VMap after cloning. 1089 ValueToValueMapTy VMap; 1090 // Keep a list of pair (dst, src) to emit byval initializations. 1091 SmallVector<std::pair<Value*, Value*>, 4> ByValInit; 1092 1093 auto &DL = Caller->getParent()->getDataLayout(); 1094 1095 assert(CalledFunc->arg_size() == CS.arg_size() && 1096 "No varargs calls can be inlined!"); 1097 1098 // Calculate the vector of arguments to pass into the function cloner, which 1099 // matches up the formal to the actual argument values. 1100 CallSite::arg_iterator AI = CS.arg_begin(); 1101 unsigned ArgNo = 0; 1102 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 1103 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 1104 Value *ActualArg = *AI; 1105 1106 // When byval arguments actually inlined, we need to make the copy implied 1107 // by them explicit. However, we don't do this if the callee is readonly 1108 // or readnone, because the copy would be unneeded: the callee doesn't 1109 // modify the struct. 1110 if (CS.isByValArgument(ArgNo)) { 1111 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, 1112 CalledFunc->getParamAlignment(ArgNo+1)); 1113 if (ActualArg != *AI) 1114 ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI)); 1115 } 1116 1117 VMap[&*I] = ActualArg; 1118 } 1119 1120 // Add alignment assumptions if necessary. We do this before the inlined 1121 // instructions are actually cloned into the caller so that we can easily 1122 // check what will be known at the start of the inlined code. 1123 AddAlignmentAssumptions(CS, IFI); 1124 1125 // We want the inliner to prune the code as it copies. We would LOVE to 1126 // have no dead or constant instructions leftover after inlining occurs 1127 // (which can happen, e.g., because an argument was constant), but we'll be 1128 // happy with whatever the cloner can do. 1129 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 1130 /*ModuleLevelChanges=*/false, Returns, ".i", 1131 &InlinedFunctionInfo, TheCall); 1132 1133 // Remember the first block that is newly cloned over. 1134 FirstNewBlock = LastBlock; ++FirstNewBlock; 1135 1136 // Inject byval arguments initialization. 1137 for (std::pair<Value*, Value*> &Init : ByValInit) 1138 HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(), 1139 &*FirstNewBlock, IFI); 1140 1141 // Update the callgraph if requested. 1142 if (IFI.CG) 1143 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); 1144 1145 // Update inlined instructions' line number information. 1146 fixupLineNumbers(Caller, FirstNewBlock, TheCall); 1147 1148 // Clone existing noalias metadata if necessary. 1149 CloneAliasScopeMetadata(CS, VMap); 1150 1151 // Add noalias metadata if necessary. 1152 AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR); 1153 1154 // FIXME: We could register any cloned assumptions instead of clearing the 1155 // whole function's cache. 1156 if (IFI.ACT) 1157 IFI.ACT->getAssumptionCache(*Caller).clear(); 1158 } 1159 1160 // If there are any alloca instructions in the block that used to be the entry 1161 // block for the callee, move them to the entry block of the caller. First 1162 // calculate which instruction they should be inserted before. We insert the 1163 // instructions at the end of the current alloca list. 1164 { 1165 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 1166 for (BasicBlock::iterator I = FirstNewBlock->begin(), 1167 E = FirstNewBlock->end(); I != E; ) { 1168 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 1169 if (!AI) continue; 1170 1171 // If the alloca is now dead, remove it. This often occurs due to code 1172 // specialization. 1173 if (AI->use_empty()) { 1174 AI->eraseFromParent(); 1175 continue; 1176 } 1177 1178 if (!isa<Constant>(AI->getArraySize())) 1179 continue; 1180 1181 // Keep track of the static allocas that we inline into the caller. 1182 IFI.StaticAllocas.push_back(AI); 1183 1184 // Scan for the block of allocas that we can move over, and move them 1185 // all at once. 1186 while (isa<AllocaInst>(I) && 1187 isa<Constant>(cast<AllocaInst>(I)->getArraySize())) { 1188 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 1189 ++I; 1190 } 1191 1192 // Transfer all of the allocas over in a block. Using splice means 1193 // that the instructions aren't removed from the symbol table, then 1194 // reinserted. 1195 Caller->getEntryBlock().getInstList().splice( 1196 InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I); 1197 } 1198 // Move any dbg.declares describing the allocas into the entry basic block. 1199 DIBuilder DIB(*Caller->getParent()); 1200 for (auto &AI : IFI.StaticAllocas) 1201 replaceDbgDeclareForAlloca(AI, AI, DIB, /*Deref=*/false); 1202 } 1203 1204 bool InlinedMustTailCalls = false; 1205 if (InlinedFunctionInfo.ContainsCalls) { 1206 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; 1207 if (CallInst *CI = dyn_cast<CallInst>(TheCall)) 1208 CallSiteTailKind = CI->getTailCallKind(); 1209 1210 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 1211 ++BB) { 1212 for (Instruction &I : *BB) { 1213 CallInst *CI = dyn_cast<CallInst>(&I); 1214 if (!CI) 1215 continue; 1216 1217 // We need to reduce the strength of any inlined tail calls. For 1218 // musttail, we have to avoid introducing potential unbounded stack 1219 // growth. For example, if functions 'f' and 'g' are mutually recursive 1220 // with musttail, we can inline 'g' into 'f' so long as we preserve 1221 // musttail on the cloned call to 'f'. If either the inlined call site 1222 // or the cloned call site is *not* musttail, the program already has 1223 // one frame of stack growth, so it's safe to remove musttail. Here is 1224 // a table of example transformations: 1225 // 1226 // f -> musttail g -> musttail f ==> f -> musttail f 1227 // f -> musttail g -> tail f ==> f -> tail f 1228 // f -> g -> musttail f ==> f -> f 1229 // f -> g -> tail f ==> f -> f 1230 CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); 1231 ChildTCK = std::min(CallSiteTailKind, ChildTCK); 1232 CI->setTailCallKind(ChildTCK); 1233 InlinedMustTailCalls |= CI->isMustTailCall(); 1234 1235 // Calls inlined through a 'nounwind' call site should be marked 1236 // 'nounwind'. 1237 if (MarkNoUnwind) 1238 CI->setDoesNotThrow(); 1239 } 1240 } 1241 } 1242 1243 // Leave lifetime markers for the static alloca's, scoping them to the 1244 // function we just inlined. 1245 if (InsertLifetime && !IFI.StaticAllocas.empty()) { 1246 IRBuilder<> builder(&FirstNewBlock->front()); 1247 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 1248 AllocaInst *AI = IFI.StaticAllocas[ai]; 1249 1250 // If the alloca is already scoped to something smaller than the whole 1251 // function then there's no need to add redundant, less accurate markers. 1252 if (hasLifetimeMarkers(AI)) 1253 continue; 1254 1255 // Try to determine the size of the allocation. 1256 ConstantInt *AllocaSize = nullptr; 1257 if (ConstantInt *AIArraySize = 1258 dyn_cast<ConstantInt>(AI->getArraySize())) { 1259 auto &DL = Caller->getParent()->getDataLayout(); 1260 Type *AllocaType = AI->getAllocatedType(); 1261 uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType); 1262 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 1263 1264 // Don't add markers for zero-sized allocas. 1265 if (AllocaArraySize == 0) 1266 continue; 1267 1268 // Check that array size doesn't saturate uint64_t and doesn't 1269 // overflow when it's multiplied by type size. 1270 if (AllocaArraySize != ~0ULL && 1271 UINT64_MAX / AllocaArraySize >= AllocaTypeSize) { 1272 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 1273 AllocaArraySize * AllocaTypeSize); 1274 } 1275 } 1276 1277 builder.CreateLifetimeStart(AI, AllocaSize); 1278 for (ReturnInst *RI : Returns) { 1279 // Don't insert llvm.lifetime.end calls between a musttail call and a 1280 // return. The return kills all local allocas. 1281 if (InlinedMustTailCalls && 1282 RI->getParent()->getTerminatingMustTailCall()) 1283 continue; 1284 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); 1285 } 1286 } 1287 } 1288 1289 // If the inlined code contained dynamic alloca instructions, wrap the inlined 1290 // code with llvm.stacksave/llvm.stackrestore intrinsics. 1291 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 1292 Module *M = Caller->getParent(); 1293 // Get the two intrinsics we care about. 1294 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 1295 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 1296 1297 // Insert the llvm.stacksave. 1298 CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin()) 1299 .CreateCall(StackSave, {}, "savedstack"); 1300 1301 // Insert a call to llvm.stackrestore before any return instructions in the 1302 // inlined function. 1303 for (ReturnInst *RI : Returns) { 1304 // Don't insert llvm.stackrestore calls between a musttail call and a 1305 // return. The return will restore the stack pointer. 1306 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) 1307 continue; 1308 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); 1309 } 1310 } 1311 1312 // If we are inlining for an invoke instruction, we must make sure to rewrite 1313 // any call instructions into invoke instructions. 1314 if (auto *II = dyn_cast<InvokeInst>(TheCall)) { 1315 BasicBlock *UnwindDest = II->getUnwindDest(); 1316 Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI(); 1317 if (isa<LandingPadInst>(FirstNonPHI)) { 1318 HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo); 1319 } else { 1320 HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo); 1321 } 1322 } 1323 1324 // Handle any inlined musttail call sites. In order for a new call site to be 1325 // musttail, the source of the clone and the inlined call site must have been 1326 // musttail. Therefore it's safe to return without merging control into the 1327 // phi below. 1328 if (InlinedMustTailCalls) { 1329 // Check if we need to bitcast the result of any musttail calls. 1330 Type *NewRetTy = Caller->getReturnType(); 1331 bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy; 1332 1333 // Handle the returns preceded by musttail calls separately. 1334 SmallVector<ReturnInst *, 8> NormalReturns; 1335 for (ReturnInst *RI : Returns) { 1336 CallInst *ReturnedMustTail = 1337 RI->getParent()->getTerminatingMustTailCall(); 1338 if (!ReturnedMustTail) { 1339 NormalReturns.push_back(RI); 1340 continue; 1341 } 1342 if (!NeedBitCast) 1343 continue; 1344 1345 // Delete the old return and any preceding bitcast. 1346 BasicBlock *CurBB = RI->getParent(); 1347 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); 1348 RI->eraseFromParent(); 1349 if (OldCast) 1350 OldCast->eraseFromParent(); 1351 1352 // Insert a new bitcast and return with the right type. 1353 IRBuilder<> Builder(CurBB); 1354 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); 1355 } 1356 1357 // Leave behind the normal returns so we can merge control flow. 1358 std::swap(Returns, NormalReturns); 1359 } 1360 1361 // If we cloned in _exactly one_ basic block, and if that block ends in a 1362 // return instruction, we splice the body of the inlined callee directly into 1363 // the calling basic block. 1364 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 1365 // Move all of the instructions right before the call. 1366 OrigBB->getInstList().splice(TheCall->getIterator(), 1367 FirstNewBlock->getInstList(), 1368 FirstNewBlock->begin(), FirstNewBlock->end()); 1369 // Remove the cloned basic block. 1370 Caller->getBasicBlockList().pop_back(); 1371 1372 // If the call site was an invoke instruction, add a branch to the normal 1373 // destination. 1374 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 1375 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); 1376 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 1377 } 1378 1379 // If the return instruction returned a value, replace uses of the call with 1380 // uses of the returned value. 1381 if (!TheCall->use_empty()) { 1382 ReturnInst *R = Returns[0]; 1383 if (TheCall == R->getReturnValue()) 1384 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1385 else 1386 TheCall->replaceAllUsesWith(R->getReturnValue()); 1387 } 1388 // Since we are now done with the Call/Invoke, we can delete it. 1389 TheCall->eraseFromParent(); 1390 1391 // Since we are now done with the return instruction, delete it also. 1392 Returns[0]->eraseFromParent(); 1393 1394 // We are now done with the inlining. 1395 return true; 1396 } 1397 1398 // Otherwise, we have the normal case, of more than one block to inline or 1399 // multiple return sites. 1400 1401 // We want to clone the entire callee function into the hole between the 1402 // "starter" and "ender" blocks. How we accomplish this depends on whether 1403 // this is an invoke instruction or a call instruction. 1404 BasicBlock *AfterCallBB; 1405 BranchInst *CreatedBranchToNormalDest = nullptr; 1406 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 1407 1408 // Add an unconditional branch to make this look like the CallInst case... 1409 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall); 1410 1411 // Split the basic block. This guarantees that no PHI nodes will have to be 1412 // updated due to new incoming edges, and make the invoke case more 1413 // symmetric to the call case. 1414 AfterCallBB = 1415 OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(), 1416 CalledFunc->getName() + ".exit"); 1417 1418 } else { // It's a call 1419 // If this is a call instruction, we need to split the basic block that 1420 // the call lives in. 1421 // 1422 AfterCallBB = OrigBB->splitBasicBlock(TheCall->getIterator(), 1423 CalledFunc->getName() + ".exit"); 1424 } 1425 1426 // Change the branch that used to go to AfterCallBB to branch to the first 1427 // basic block of the inlined function. 1428 // 1429 TerminatorInst *Br = OrigBB->getTerminator(); 1430 assert(Br && Br->getOpcode() == Instruction::Br && 1431 "splitBasicBlock broken!"); 1432 Br->setOperand(0, &*FirstNewBlock); 1433 1434 // Now that the function is correct, make it a little bit nicer. In 1435 // particular, move the basic blocks inserted from the end of the function 1436 // into the space made by splitting the source basic block. 1437 Caller->getBasicBlockList().splice(AfterCallBB->getIterator(), 1438 Caller->getBasicBlockList(), FirstNewBlock, 1439 Caller->end()); 1440 1441 // Handle all of the return instructions that we just cloned in, and eliminate 1442 // any users of the original call/invoke instruction. 1443 Type *RTy = CalledFunc->getReturnType(); 1444 1445 PHINode *PHI = nullptr; 1446 if (Returns.size() > 1) { 1447 // The PHI node should go at the front of the new basic block to merge all 1448 // possible incoming values. 1449 if (!TheCall->use_empty()) { 1450 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), 1451 &AfterCallBB->front()); 1452 // Anything that used the result of the function call should now use the 1453 // PHI node as their operand. 1454 TheCall->replaceAllUsesWith(PHI); 1455 } 1456 1457 // Loop over all of the return instructions adding entries to the PHI node 1458 // as appropriate. 1459 if (PHI) { 1460 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1461 ReturnInst *RI = Returns[i]; 1462 assert(RI->getReturnValue()->getType() == PHI->getType() && 1463 "Ret value not consistent in function!"); 1464 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 1465 } 1466 } 1467 1468 // Add a branch to the merge points and remove return instructions. 1469 DebugLoc Loc; 1470 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1471 ReturnInst *RI = Returns[i]; 1472 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 1473 Loc = RI->getDebugLoc(); 1474 BI->setDebugLoc(Loc); 1475 RI->eraseFromParent(); 1476 } 1477 // We need to set the debug location to *somewhere* inside the 1478 // inlined function. The line number may be nonsensical, but the 1479 // instruction will at least be associated with the right 1480 // function. 1481 if (CreatedBranchToNormalDest) 1482 CreatedBranchToNormalDest->setDebugLoc(Loc); 1483 } else if (!Returns.empty()) { 1484 // Otherwise, if there is exactly one return value, just replace anything 1485 // using the return value of the call with the computed value. 1486 if (!TheCall->use_empty()) { 1487 if (TheCall == Returns[0]->getReturnValue()) 1488 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1489 else 1490 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); 1491 } 1492 1493 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 1494 BasicBlock *ReturnBB = Returns[0]->getParent(); 1495 ReturnBB->replaceAllUsesWith(AfterCallBB); 1496 1497 // Splice the code from the return block into the block that it will return 1498 // to, which contains the code that was after the call. 1499 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 1500 ReturnBB->getInstList()); 1501 1502 if (CreatedBranchToNormalDest) 1503 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 1504 1505 // Delete the return instruction now and empty ReturnBB now. 1506 Returns[0]->eraseFromParent(); 1507 ReturnBB->eraseFromParent(); 1508 } else if (!TheCall->use_empty()) { 1509 // No returns, but something is using the return value of the call. Just 1510 // nuke the result. 1511 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1512 } 1513 1514 // Since we are now done with the Call/Invoke, we can delete it. 1515 TheCall->eraseFromParent(); 1516 1517 // If we inlined any musttail calls and the original return is now 1518 // unreachable, delete it. It can only contain a bitcast and ret. 1519 if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB)) 1520 AfterCallBB->eraseFromParent(); 1521 1522 // We should always be able to fold the entry block of the function into the 1523 // single predecessor of the block... 1524 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 1525 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 1526 1527 // Splice the code entry block into calling block, right before the 1528 // unconditional branch. 1529 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 1530 OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList()); 1531 1532 // Remove the unconditional branch. 1533 OrigBB->getInstList().erase(Br); 1534 1535 // Now we can remove the CalleeEntry block, which is now empty. 1536 Caller->getBasicBlockList().erase(CalleeEntry); 1537 1538 // If we inserted a phi node, check to see if it has a single value (e.g. all 1539 // the entries are the same or undef). If so, remove the PHI so it doesn't 1540 // block other optimizations. 1541 if (PHI) { 1542 auto &DL = Caller->getParent()->getDataLayout(); 1543 if (Value *V = SimplifyInstruction(PHI, DL, nullptr, nullptr, 1544 &IFI.ACT->getAssumptionCache(*Caller))) { 1545 PHI->replaceAllUsesWith(V); 1546 PHI->eraseFromParent(); 1547 } 1548 } 1549 1550 return true; 1551 } 1552