1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements inlining of a function into a call site, resolving 11 // parameters and the return value as appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Cloning.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/CallGraph.h" 23 #include "llvm/Analysis/CaptureTracking.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/CallSite.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/DIBuilder.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/MDBuilder.h" 40 #include "llvm/IR/Module.h" 41 #include "llvm/Transforms/Utils/Local.h" 42 #include "llvm/Support/CommandLine.h" 43 #include <algorithm> 44 45 using namespace llvm; 46 47 static cl::opt<bool> 48 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), 49 cl::Hidden, 50 cl::desc("Convert noalias attributes to metadata during inlining.")); 51 52 static cl::opt<bool> 53 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", 54 cl::init(true), cl::Hidden, 55 cl::desc("Convert align attributes to assumptions during inlining.")); 56 57 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI, 58 AAResults *CalleeAAR, bool InsertLifetime) { 59 return InlineFunction(CallSite(CI), IFI, CalleeAAR, InsertLifetime); 60 } 61 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI, 62 AAResults *CalleeAAR, bool InsertLifetime) { 63 return InlineFunction(CallSite(II), IFI, CalleeAAR, InsertLifetime); 64 } 65 66 namespace { 67 /// A class for recording information about inlining a landing pad. 68 class LandingPadInliningInfo { 69 BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind. 70 BasicBlock *InnerResumeDest; ///< Destination for the callee's resume. 71 LandingPadInst *CallerLPad; ///< LandingPadInst associated with the invoke. 72 PHINode *InnerEHValuesPHI; ///< PHI for EH values from landingpad insts. 73 SmallVector<Value*, 8> UnwindDestPHIValues; 74 75 public: 76 LandingPadInliningInfo(InvokeInst *II) 77 : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr), 78 CallerLPad(nullptr), InnerEHValuesPHI(nullptr) { 79 // If there are PHI nodes in the unwind destination block, we need to keep 80 // track of which values came into them from the invoke before removing 81 // the edge from this block. 82 llvm::BasicBlock *InvokeBB = II->getParent(); 83 BasicBlock::iterator I = OuterResumeDest->begin(); 84 for (; isa<PHINode>(I); ++I) { 85 // Save the value to use for this edge. 86 PHINode *PHI = cast<PHINode>(I); 87 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 88 } 89 90 CallerLPad = cast<LandingPadInst>(I); 91 } 92 93 /// The outer unwind destination is the target of 94 /// unwind edges introduced for calls within the inlined function. 95 BasicBlock *getOuterResumeDest() const { 96 return OuterResumeDest; 97 } 98 99 BasicBlock *getInnerResumeDest(); 100 101 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 102 103 /// Forward the 'resume' instruction to the caller's landing pad block. 104 /// When the landing pad block has only one predecessor, this is 105 /// a simple branch. When there is more than one predecessor, we need to 106 /// split the landing pad block after the landingpad instruction and jump 107 /// to there. 108 void forwardResume(ResumeInst *RI, 109 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); 110 111 /// Add incoming-PHI values to the unwind destination block for the given 112 /// basic block, using the values for the original invoke's source block. 113 void addIncomingPHIValuesFor(BasicBlock *BB) const { 114 addIncomingPHIValuesForInto(BB, OuterResumeDest); 115 } 116 117 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 118 BasicBlock::iterator I = dest->begin(); 119 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 120 PHINode *phi = cast<PHINode>(I); 121 phi->addIncoming(UnwindDestPHIValues[i], src); 122 } 123 } 124 }; 125 } // anonymous namespace 126 127 /// Get or create a target for the branch from ResumeInsts. 128 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() { 129 if (InnerResumeDest) return InnerResumeDest; 130 131 // Split the landing pad. 132 BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator(); 133 InnerResumeDest = 134 OuterResumeDest->splitBasicBlock(SplitPoint, 135 OuterResumeDest->getName() + ".body"); 136 137 // The number of incoming edges we expect to the inner landing pad. 138 const unsigned PHICapacity = 2; 139 140 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 141 Instruction *InsertPoint = &InnerResumeDest->front(); 142 BasicBlock::iterator I = OuterResumeDest->begin(); 143 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 144 PHINode *OuterPHI = cast<PHINode>(I); 145 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 146 OuterPHI->getName() + ".lpad-body", 147 InsertPoint); 148 OuterPHI->replaceAllUsesWith(InnerPHI); 149 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 150 } 151 152 // Create a PHI for the exception values. 153 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 154 "eh.lpad-body", InsertPoint); 155 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 156 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 157 158 // All done. 159 return InnerResumeDest; 160 } 161 162 /// Forward the 'resume' instruction to the caller's landing pad block. 163 /// When the landing pad block has only one predecessor, this is a simple 164 /// branch. When there is more than one predecessor, we need to split the 165 /// landing pad block after the landingpad instruction and jump to there. 166 void LandingPadInliningInfo::forwardResume( 167 ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) { 168 BasicBlock *Dest = getInnerResumeDest(); 169 BasicBlock *Src = RI->getParent(); 170 171 BranchInst::Create(Dest, Src); 172 173 // Update the PHIs in the destination. They were inserted in an order which 174 // makes this work. 175 addIncomingPHIValuesForInto(Src, Dest); 176 177 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 178 RI->eraseFromParent(); 179 } 180 181 /// When we inline a basic block into an invoke, 182 /// we have to turn all of the calls that can throw into invokes. 183 /// This function analyze BB to see if there are any calls, and if so, 184 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 185 /// nodes in that block with the values specified in InvokeDestPHIValues. 186 static BasicBlock * 187 HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, BasicBlock *UnwindEdge) { 188 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 189 Instruction *I = &*BBI++; 190 191 // We only need to check for function calls: inlined invoke 192 // instructions require no special handling. 193 CallInst *CI = dyn_cast<CallInst>(I); 194 195 // If this call cannot unwind, don't convert it to an invoke. 196 // Inline asm calls cannot throw. 197 if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue())) 198 continue; 199 200 // Convert this function call into an invoke instruction. First, split the 201 // basic block. 202 BasicBlock *Split = 203 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 204 205 // Delete the unconditional branch inserted by splitBasicBlock 206 BB->getInstList().pop_back(); 207 208 // Create the new invoke instruction. 209 ImmutableCallSite CS(CI); 210 SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end()); 211 SmallVector<OperandBundleDef, 1> OpBundles; 212 213 CS.getOperandBundlesAsDefs(OpBundles); 214 215 // Note: we're round tripping operand bundles through memory here, and that 216 // can potentially be avoided with a cleverer API design that we do not have 217 // as of this time. 218 219 InvokeInst *II = 220 InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, InvokeArgs, 221 OpBundles, CI->getName(), BB); 222 II->setDebugLoc(CI->getDebugLoc()); 223 II->setCallingConv(CI->getCallingConv()); 224 II->setAttributes(CI->getAttributes()); 225 226 // Make sure that anything using the call now uses the invoke! This also 227 // updates the CallGraph if present, because it uses a WeakVH. 228 CI->replaceAllUsesWith(II); 229 230 // Delete the original call 231 Split->getInstList().pop_front(); 232 return BB; 233 } 234 return nullptr; 235 } 236 237 /// If we inlined an invoke site, we need to convert calls 238 /// in the body of the inlined function into invokes. 239 /// 240 /// II is the invoke instruction being inlined. FirstNewBlock is the first 241 /// block of the inlined code (the last block is the end of the function), 242 /// and InlineCodeInfo is information about the code that got inlined. 243 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock, 244 ClonedCodeInfo &InlinedCodeInfo) { 245 BasicBlock *InvokeDest = II->getUnwindDest(); 246 247 Function *Caller = FirstNewBlock->getParent(); 248 249 // The inlined code is currently at the end of the function, scan from the 250 // start of the inlined code to its end, checking for stuff we need to 251 // rewrite. 252 LandingPadInliningInfo Invoke(II); 253 254 // Get all of the inlined landing pad instructions. 255 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 256 for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end(); 257 I != E; ++I) 258 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 259 InlinedLPads.insert(II->getLandingPadInst()); 260 261 // Append the clauses from the outer landing pad instruction into the inlined 262 // landing pad instructions. 263 LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 264 for (LandingPadInst *InlinedLPad : InlinedLPads) { 265 unsigned OuterNum = OuterLPad->getNumClauses(); 266 InlinedLPad->reserveClauses(OuterNum); 267 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 268 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 269 if (OuterLPad->isCleanup()) 270 InlinedLPad->setCleanup(true); 271 } 272 273 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 274 BB != E; ++BB) { 275 if (InlinedCodeInfo.ContainsCalls) 276 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 277 &*BB, Invoke.getOuterResumeDest())) 278 // Update any PHI nodes in the exceptional block to indicate that there 279 // is now a new entry in them. 280 Invoke.addIncomingPHIValuesFor(NewBB); 281 282 // Forward any resumes that are remaining here. 283 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 284 Invoke.forwardResume(RI, InlinedLPads); 285 } 286 287 // Now that everything is happy, we have one final detail. The PHI nodes in 288 // the exception destination block still have entries due to the original 289 // invoke instruction. Eliminate these entries (which might even delete the 290 // PHI node) now. 291 InvokeDest->removePredecessor(II->getParent()); 292 } 293 294 /// If we inlined an invoke site, we need to convert calls 295 /// in the body of the inlined function into invokes. 296 /// 297 /// II is the invoke instruction being inlined. FirstNewBlock is the first 298 /// block of the inlined code (the last block is the end of the function), 299 /// and InlineCodeInfo is information about the code that got inlined. 300 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock, 301 ClonedCodeInfo &InlinedCodeInfo) { 302 BasicBlock *UnwindDest = II->getUnwindDest(); 303 Function *Caller = FirstNewBlock->getParent(); 304 305 assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!"); 306 307 // If there are PHI nodes in the unwind destination block, we need to keep 308 // track of which values came into them from the invoke before removing the 309 // edge from this block. 310 SmallVector<Value *, 8> UnwindDestPHIValues; 311 llvm::BasicBlock *InvokeBB = II->getParent(); 312 for (Instruction &I : *UnwindDest) { 313 // Save the value to use for this edge. 314 PHINode *PHI = dyn_cast<PHINode>(&I); 315 if (!PHI) 316 break; 317 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 318 } 319 320 // Add incoming-PHI values to the unwind destination block for the given basic 321 // block, using the values for the original invoke's source block. 322 auto UpdatePHINodes = [&](BasicBlock *Src) { 323 BasicBlock::iterator I = UnwindDest->begin(); 324 for (Value *V : UnwindDestPHIValues) { 325 PHINode *PHI = cast<PHINode>(I); 326 PHI->addIncoming(V, Src); 327 ++I; 328 } 329 }; 330 331 // Forward EH terminator instructions to the caller's invoke destination. 332 // This is as simple as connect all the instructions which 'unwind to caller' 333 // to the invoke destination. 334 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 335 BB != E; ++BB) { 336 Instruction *I = BB->getFirstNonPHI(); 337 if (I->isEHPad()) { 338 if (auto *CEPI = dyn_cast<CatchEndPadInst>(I)) { 339 if (CEPI->unwindsToCaller()) { 340 CatchEndPadInst::Create(CEPI->getContext(), UnwindDest, CEPI); 341 CEPI->eraseFromParent(); 342 UpdatePHINodes(&*BB); 343 } 344 } else if (auto *CEPI = dyn_cast<CleanupEndPadInst>(I)) { 345 if (CEPI->unwindsToCaller()) { 346 CleanupEndPadInst::Create(CEPI->getCleanupPad(), UnwindDest, CEPI); 347 CEPI->eraseFromParent(); 348 UpdatePHINodes(&*BB); 349 } 350 } else if (auto *TPI = dyn_cast<TerminatePadInst>(I)) { 351 if (TPI->unwindsToCaller()) { 352 SmallVector<Value *, 3> TerminatePadArgs; 353 for (Value *ArgOperand : TPI->arg_operands()) 354 TerminatePadArgs.push_back(ArgOperand); 355 TerminatePadInst::Create(TPI->getContext(), UnwindDest, 356 TerminatePadArgs, TPI); 357 TPI->eraseFromParent(); 358 UpdatePHINodes(&*BB); 359 } 360 } else { 361 assert(isa<CatchPadInst>(I) || isa<CleanupPadInst>(I)); 362 } 363 } 364 365 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 366 if (CRI->unwindsToCaller()) { 367 CleanupReturnInst::Create(CRI->getCleanupPad(), UnwindDest, CRI); 368 CRI->eraseFromParent(); 369 UpdatePHINodes(&*BB); 370 } 371 } 372 } 373 374 if (InlinedCodeInfo.ContainsCalls) 375 for (Function::iterator BB = FirstNewBlock->getIterator(), 376 E = Caller->end(); 377 BB != E; ++BB) 378 if (BasicBlock *NewBB = 379 HandleCallsInBlockInlinedThroughInvoke(&*BB, UnwindDest)) 380 // Update any PHI nodes in the exceptional block to indicate that there 381 // is now a new entry in them. 382 UpdatePHINodes(NewBB); 383 384 // Now that everything is happy, we have one final detail. The PHI nodes in 385 // the exception destination block still have entries due to the original 386 // invoke instruction. Eliminate these entries (which might even delete the 387 // PHI node) now. 388 UnwindDest->removePredecessor(InvokeBB); 389 } 390 391 /// When inlining a function that contains noalias scope metadata, 392 /// this metadata needs to be cloned so that the inlined blocks 393 /// have different "unqiue scopes" at every call site. Were this not done, then 394 /// aliasing scopes from a function inlined into a caller multiple times could 395 /// not be differentiated (and this would lead to miscompiles because the 396 /// non-aliasing property communicated by the metadata could have 397 /// call-site-specific control dependencies). 398 static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) { 399 const Function *CalledFunc = CS.getCalledFunction(); 400 SetVector<const MDNode *> MD; 401 402 // Note: We could only clone the metadata if it is already used in the 403 // caller. I'm omitting that check here because it might confuse 404 // inter-procedural alias analysis passes. We can revisit this if it becomes 405 // an efficiency or overhead problem. 406 407 for (Function::const_iterator I = CalledFunc->begin(), IE = CalledFunc->end(); 408 I != IE; ++I) 409 for (BasicBlock::const_iterator J = I->begin(), JE = I->end(); J != JE; ++J) { 410 if (const MDNode *M = J->getMetadata(LLVMContext::MD_alias_scope)) 411 MD.insert(M); 412 if (const MDNode *M = J->getMetadata(LLVMContext::MD_noalias)) 413 MD.insert(M); 414 } 415 416 if (MD.empty()) 417 return; 418 419 // Walk the existing metadata, adding the complete (perhaps cyclic) chain to 420 // the set. 421 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end()); 422 while (!Queue.empty()) { 423 const MDNode *M = cast<MDNode>(Queue.pop_back_val()); 424 for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i) 425 if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i))) 426 if (MD.insert(M1)) 427 Queue.push_back(M1); 428 } 429 430 // Now we have a complete set of all metadata in the chains used to specify 431 // the noalias scopes and the lists of those scopes. 432 SmallVector<TempMDTuple, 16> DummyNodes; 433 DenseMap<const MDNode *, TrackingMDNodeRef> MDMap; 434 for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); 435 I != IE; ++I) { 436 DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None)); 437 MDMap[*I].reset(DummyNodes.back().get()); 438 } 439 440 // Create new metadata nodes to replace the dummy nodes, replacing old 441 // metadata references with either a dummy node or an already-created new 442 // node. 443 for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); 444 I != IE; ++I) { 445 SmallVector<Metadata *, 4> NewOps; 446 for (unsigned i = 0, ie = (*I)->getNumOperands(); i != ie; ++i) { 447 const Metadata *V = (*I)->getOperand(i); 448 if (const MDNode *M = dyn_cast<MDNode>(V)) 449 NewOps.push_back(MDMap[M]); 450 else 451 NewOps.push_back(const_cast<Metadata *>(V)); 452 } 453 454 MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps); 455 MDTuple *TempM = cast<MDTuple>(MDMap[*I]); 456 assert(TempM->isTemporary() && "Expected temporary node"); 457 458 TempM->replaceAllUsesWith(NewM); 459 } 460 461 // Now replace the metadata in the new inlined instructions with the 462 // repacements from the map. 463 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 464 VMI != VMIE; ++VMI) { 465 if (!VMI->second) 466 continue; 467 468 Instruction *NI = dyn_cast<Instruction>(VMI->second); 469 if (!NI) 470 continue; 471 472 if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) { 473 MDNode *NewMD = MDMap[M]; 474 // If the call site also had alias scope metadata (a list of scopes to 475 // which instructions inside it might belong), propagate those scopes to 476 // the inlined instructions. 477 if (MDNode *CSM = 478 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 479 NewMD = MDNode::concatenate(NewMD, CSM); 480 NI->setMetadata(LLVMContext::MD_alias_scope, NewMD); 481 } else if (NI->mayReadOrWriteMemory()) { 482 if (MDNode *M = 483 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 484 NI->setMetadata(LLVMContext::MD_alias_scope, M); 485 } 486 487 if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) { 488 MDNode *NewMD = MDMap[M]; 489 // If the call site also had noalias metadata (a list of scopes with 490 // which instructions inside it don't alias), propagate those scopes to 491 // the inlined instructions. 492 if (MDNode *CSM = 493 CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 494 NewMD = MDNode::concatenate(NewMD, CSM); 495 NI->setMetadata(LLVMContext::MD_noalias, NewMD); 496 } else if (NI->mayReadOrWriteMemory()) { 497 if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 498 NI->setMetadata(LLVMContext::MD_noalias, M); 499 } 500 } 501 } 502 503 /// If the inlined function has noalias arguments, 504 /// then add new alias scopes for each noalias argument, tag the mapped noalias 505 /// parameters with noalias metadata specifying the new scope, and tag all 506 /// non-derived loads, stores and memory intrinsics with the new alias scopes. 507 static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap, 508 const DataLayout &DL, AAResults *CalleeAAR) { 509 if (!EnableNoAliasConversion) 510 return; 511 512 const Function *CalledFunc = CS.getCalledFunction(); 513 SmallVector<const Argument *, 4> NoAliasArgs; 514 515 for (const Argument &I : CalledFunc->args()) { 516 if (I.hasNoAliasAttr() && !I.hasNUses(0)) 517 NoAliasArgs.push_back(&I); 518 } 519 520 if (NoAliasArgs.empty()) 521 return; 522 523 // To do a good job, if a noalias variable is captured, we need to know if 524 // the capture point dominates the particular use we're considering. 525 DominatorTree DT; 526 DT.recalculate(const_cast<Function&>(*CalledFunc)); 527 528 // noalias indicates that pointer values based on the argument do not alias 529 // pointer values which are not based on it. So we add a new "scope" for each 530 // noalias function argument. Accesses using pointers based on that argument 531 // become part of that alias scope, accesses using pointers not based on that 532 // argument are tagged as noalias with that scope. 533 534 DenseMap<const Argument *, MDNode *> NewScopes; 535 MDBuilder MDB(CalledFunc->getContext()); 536 537 // Create a new scope domain for this function. 538 MDNode *NewDomain = 539 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); 540 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { 541 const Argument *A = NoAliasArgs[i]; 542 543 std::string Name = CalledFunc->getName(); 544 if (A->hasName()) { 545 Name += ": %"; 546 Name += A->getName(); 547 } else { 548 Name += ": argument "; 549 Name += utostr(i); 550 } 551 552 // Note: We always create a new anonymous root here. This is true regardless 553 // of the linkage of the callee because the aliasing "scope" is not just a 554 // property of the callee, but also all control dependencies in the caller. 555 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); 556 NewScopes.insert(std::make_pair(A, NewScope)); 557 } 558 559 // Iterate over all new instructions in the map; for all memory-access 560 // instructions, add the alias scope metadata. 561 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 562 VMI != VMIE; ++VMI) { 563 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { 564 if (!VMI->second) 565 continue; 566 567 Instruction *NI = dyn_cast<Instruction>(VMI->second); 568 if (!NI) 569 continue; 570 571 bool IsArgMemOnlyCall = false, IsFuncCall = false; 572 SmallVector<const Value *, 2> PtrArgs; 573 574 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 575 PtrArgs.push_back(LI->getPointerOperand()); 576 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 577 PtrArgs.push_back(SI->getPointerOperand()); 578 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) 579 PtrArgs.push_back(VAAI->getPointerOperand()); 580 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 581 PtrArgs.push_back(CXI->getPointerOperand()); 582 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 583 PtrArgs.push_back(RMWI->getPointerOperand()); 584 else if (ImmutableCallSite ICS = ImmutableCallSite(I)) { 585 // If we know that the call does not access memory, then we'll still 586 // know that about the inlined clone of this call site, and we don't 587 // need to add metadata. 588 if (ICS.doesNotAccessMemory()) 589 continue; 590 591 IsFuncCall = true; 592 if (CalleeAAR) { 593 FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(ICS); 594 if (MRB == FMRB_OnlyAccessesArgumentPointees || 595 MRB == FMRB_OnlyReadsArgumentPointees) 596 IsArgMemOnlyCall = true; 597 } 598 599 for (ImmutableCallSite::arg_iterator AI = ICS.arg_begin(), 600 AE = ICS.arg_end(); AI != AE; ++AI) { 601 // We need to check the underlying objects of all arguments, not just 602 // the pointer arguments, because we might be passing pointers as 603 // integers, etc. 604 // However, if we know that the call only accesses pointer arguments, 605 // then we only need to check the pointer arguments. 606 if (IsArgMemOnlyCall && !(*AI)->getType()->isPointerTy()) 607 continue; 608 609 PtrArgs.push_back(*AI); 610 } 611 } 612 613 // If we found no pointers, then this instruction is not suitable for 614 // pairing with an instruction to receive aliasing metadata. 615 // However, if this is a call, this we might just alias with none of the 616 // noalias arguments. 617 if (PtrArgs.empty() && !IsFuncCall) 618 continue; 619 620 // It is possible that there is only one underlying object, but you 621 // need to go through several PHIs to see it, and thus could be 622 // repeated in the Objects list. 623 SmallPtrSet<const Value *, 4> ObjSet; 624 SmallVector<Metadata *, 4> Scopes, NoAliases; 625 626 SmallSetVector<const Argument *, 4> NAPtrArgs; 627 for (unsigned i = 0, ie = PtrArgs.size(); i != ie; ++i) { 628 SmallVector<Value *, 4> Objects; 629 GetUnderlyingObjects(const_cast<Value*>(PtrArgs[i]), 630 Objects, DL, /* LI = */ nullptr); 631 632 for (Value *O : Objects) 633 ObjSet.insert(O); 634 } 635 636 // Figure out if we're derived from anything that is not a noalias 637 // argument. 638 bool CanDeriveViaCapture = false, UsesAliasingPtr = false; 639 for (const Value *V : ObjSet) { 640 // Is this value a constant that cannot be derived from any pointer 641 // value (we need to exclude constant expressions, for example, that 642 // are formed from arithmetic on global symbols). 643 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || 644 isa<ConstantPointerNull>(V) || 645 isa<ConstantDataVector>(V) || isa<UndefValue>(V); 646 if (IsNonPtrConst) 647 continue; 648 649 // If this is anything other than a noalias argument, then we cannot 650 // completely describe the aliasing properties using alias.scope 651 // metadata (and, thus, won't add any). 652 if (const Argument *A = dyn_cast<Argument>(V)) { 653 if (!A->hasNoAliasAttr()) 654 UsesAliasingPtr = true; 655 } else { 656 UsesAliasingPtr = true; 657 } 658 659 // If this is not some identified function-local object (which cannot 660 // directly alias a noalias argument), or some other argument (which, 661 // by definition, also cannot alias a noalias argument), then we could 662 // alias a noalias argument that has been captured). 663 if (!isa<Argument>(V) && 664 !isIdentifiedFunctionLocal(const_cast<Value*>(V))) 665 CanDeriveViaCapture = true; 666 } 667 668 // A function call can always get captured noalias pointers (via other 669 // parameters, globals, etc.). 670 if (IsFuncCall && !IsArgMemOnlyCall) 671 CanDeriveViaCapture = true; 672 673 // First, we want to figure out all of the sets with which we definitely 674 // don't alias. Iterate over all noalias set, and add those for which: 675 // 1. The noalias argument is not in the set of objects from which we 676 // definitely derive. 677 // 2. The noalias argument has not yet been captured. 678 // An arbitrary function that might load pointers could see captured 679 // noalias arguments via other noalias arguments or globals, and so we 680 // must always check for prior capture. 681 for (const Argument *A : NoAliasArgs) { 682 if (!ObjSet.count(A) && (!CanDeriveViaCapture || 683 // It might be tempting to skip the 684 // PointerMayBeCapturedBefore check if 685 // A->hasNoCaptureAttr() is true, but this is 686 // incorrect because nocapture only guarantees 687 // that no copies outlive the function, not 688 // that the value cannot be locally captured. 689 !PointerMayBeCapturedBefore(A, 690 /* ReturnCaptures */ false, 691 /* StoreCaptures */ false, I, &DT))) 692 NoAliases.push_back(NewScopes[A]); 693 } 694 695 if (!NoAliases.empty()) 696 NI->setMetadata(LLVMContext::MD_noalias, 697 MDNode::concatenate( 698 NI->getMetadata(LLVMContext::MD_noalias), 699 MDNode::get(CalledFunc->getContext(), NoAliases))); 700 701 // Next, we want to figure out all of the sets to which we might belong. 702 // We might belong to a set if the noalias argument is in the set of 703 // underlying objects. If there is some non-noalias argument in our list 704 // of underlying objects, then we cannot add a scope because the fact 705 // that some access does not alias with any set of our noalias arguments 706 // cannot itself guarantee that it does not alias with this access 707 // (because there is some pointer of unknown origin involved and the 708 // other access might also depend on this pointer). We also cannot add 709 // scopes to arbitrary functions unless we know they don't access any 710 // non-parameter pointer-values. 711 bool CanAddScopes = !UsesAliasingPtr; 712 if (CanAddScopes && IsFuncCall) 713 CanAddScopes = IsArgMemOnlyCall; 714 715 if (CanAddScopes) 716 for (const Argument *A : NoAliasArgs) { 717 if (ObjSet.count(A)) 718 Scopes.push_back(NewScopes[A]); 719 } 720 721 if (!Scopes.empty()) 722 NI->setMetadata( 723 LLVMContext::MD_alias_scope, 724 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), 725 MDNode::get(CalledFunc->getContext(), Scopes))); 726 } 727 } 728 } 729 730 /// If the inlined function has non-byval align arguments, then 731 /// add @llvm.assume-based alignment assumptions to preserve this information. 732 static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) { 733 if (!PreserveAlignmentAssumptions) 734 return; 735 auto &DL = CS.getCaller()->getParent()->getDataLayout(); 736 737 // To avoid inserting redundant assumptions, we should check for assumptions 738 // already in the caller. To do this, we might need a DT of the caller. 739 DominatorTree DT; 740 bool DTCalculated = false; 741 742 Function *CalledFunc = CS.getCalledFunction(); 743 for (Function::arg_iterator I = CalledFunc->arg_begin(), 744 E = CalledFunc->arg_end(); 745 I != E; ++I) { 746 unsigned Align = I->getType()->isPointerTy() ? I->getParamAlignment() : 0; 747 if (Align && !I->hasByValOrInAllocaAttr() && !I->hasNUses(0)) { 748 if (!DTCalculated) { 749 DT.recalculate(const_cast<Function&>(*CS.getInstruction()->getParent() 750 ->getParent())); 751 DTCalculated = true; 752 } 753 754 // If we can already prove the asserted alignment in the context of the 755 // caller, then don't bother inserting the assumption. 756 Value *Arg = CS.getArgument(I->getArgNo()); 757 if (getKnownAlignment(Arg, DL, CS.getInstruction(), 758 &IFI.ACT->getAssumptionCache(*CS.getCaller()), 759 &DT) >= Align) 760 continue; 761 762 IRBuilder<>(CS.getInstruction()) 763 .CreateAlignmentAssumption(DL, Arg, Align); 764 } 765 } 766 } 767 768 /// Once we have cloned code over from a callee into the caller, 769 /// update the specified callgraph to reflect the changes we made. 770 /// Note that it's possible that not all code was copied over, so only 771 /// some edges of the callgraph may remain. 772 static void UpdateCallGraphAfterInlining(CallSite CS, 773 Function::iterator FirstNewBlock, 774 ValueToValueMapTy &VMap, 775 InlineFunctionInfo &IFI) { 776 CallGraph &CG = *IFI.CG; 777 const Function *Caller = CS.getInstruction()->getParent()->getParent(); 778 const Function *Callee = CS.getCalledFunction(); 779 CallGraphNode *CalleeNode = CG[Callee]; 780 CallGraphNode *CallerNode = CG[Caller]; 781 782 // Since we inlined some uninlined call sites in the callee into the caller, 783 // add edges from the caller to all of the callees of the callee. 784 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 785 786 // Consider the case where CalleeNode == CallerNode. 787 CallGraphNode::CalledFunctionsVector CallCache; 788 if (CalleeNode == CallerNode) { 789 CallCache.assign(I, E); 790 I = CallCache.begin(); 791 E = CallCache.end(); 792 } 793 794 for (; I != E; ++I) { 795 const Value *OrigCall = I->first; 796 797 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 798 // Only copy the edge if the call was inlined! 799 if (VMI == VMap.end() || VMI->second == nullptr) 800 continue; 801 802 // If the call was inlined, but then constant folded, there is no edge to 803 // add. Check for this case. 804 Instruction *NewCall = dyn_cast<Instruction>(VMI->second); 805 if (!NewCall) 806 continue; 807 808 // We do not treat intrinsic calls like real function calls because we 809 // expect them to become inline code; do not add an edge for an intrinsic. 810 CallSite CS = CallSite(NewCall); 811 if (CS && CS.getCalledFunction() && CS.getCalledFunction()->isIntrinsic()) 812 continue; 813 814 // Remember that this call site got inlined for the client of 815 // InlineFunction. 816 IFI.InlinedCalls.push_back(NewCall); 817 818 // It's possible that inlining the callsite will cause it to go from an 819 // indirect to a direct call by resolving a function pointer. If this 820 // happens, set the callee of the new call site to a more precise 821 // destination. This can also happen if the call graph node of the caller 822 // was just unnecessarily imprecise. 823 if (!I->second->getFunction()) 824 if (Function *F = CallSite(NewCall).getCalledFunction()) { 825 // Indirect call site resolved to direct call. 826 CallerNode->addCalledFunction(CallSite(NewCall), CG[F]); 827 828 continue; 829 } 830 831 CallerNode->addCalledFunction(CallSite(NewCall), I->second); 832 } 833 834 // Update the call graph by deleting the edge from Callee to Caller. We must 835 // do this after the loop above in case Caller and Callee are the same. 836 CallerNode->removeCallEdgeFor(CS); 837 } 838 839 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M, 840 BasicBlock *InsertBlock, 841 InlineFunctionInfo &IFI) { 842 Type *AggTy = cast<PointerType>(Src->getType())->getElementType(); 843 IRBuilder<> Builder(InsertBlock, InsertBlock->begin()); 844 845 Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy)); 846 847 // Always generate a memcpy of alignment 1 here because we don't know 848 // the alignment of the src pointer. Other optimizations can infer 849 // better alignment. 850 Builder.CreateMemCpy(Dst, Src, Size, /*Align=*/1); 851 } 852 853 /// When inlining a call site that has a byval argument, 854 /// we have to make the implicit memcpy explicit by adding it. 855 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 856 const Function *CalledFunc, 857 InlineFunctionInfo &IFI, 858 unsigned ByValAlignment) { 859 PointerType *ArgTy = cast<PointerType>(Arg->getType()); 860 Type *AggTy = ArgTy->getElementType(); 861 862 Function *Caller = TheCall->getParent()->getParent(); 863 864 // If the called function is readonly, then it could not mutate the caller's 865 // copy of the byval'd memory. In this case, it is safe to elide the copy and 866 // temporary. 867 if (CalledFunc->onlyReadsMemory()) { 868 // If the byval argument has a specified alignment that is greater than the 869 // passed in pointer, then we either have to round up the input pointer or 870 // give up on this transformation. 871 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 872 return Arg; 873 874 const DataLayout &DL = Caller->getParent()->getDataLayout(); 875 876 // If the pointer is already known to be sufficiently aligned, or if we can 877 // round it up to a larger alignment, then we don't need a temporary. 878 if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall, 879 &IFI.ACT->getAssumptionCache(*Caller)) >= 880 ByValAlignment) 881 return Arg; 882 883 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 884 // for code quality, but rarely happens and is required for correctness. 885 } 886 887 // Create the alloca. If we have DataLayout, use nice alignment. 888 unsigned Align = 889 Caller->getParent()->getDataLayout().getPrefTypeAlignment(AggTy); 890 891 // If the byval had an alignment specified, we *must* use at least that 892 // alignment, as it is required by the byval argument (and uses of the 893 // pointer inside the callee). 894 Align = std::max(Align, ByValAlignment); 895 896 Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(), 897 &*Caller->begin()->begin()); 898 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); 899 900 // Uses of the argument in the function should use our new alloca 901 // instead. 902 return NewAlloca; 903 } 904 905 // Check whether this Value is used by a lifetime intrinsic. 906 static bool isUsedByLifetimeMarker(Value *V) { 907 for (User *U : V->users()) { 908 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 909 switch (II->getIntrinsicID()) { 910 default: break; 911 case Intrinsic::lifetime_start: 912 case Intrinsic::lifetime_end: 913 return true; 914 } 915 } 916 } 917 return false; 918 } 919 920 // Check whether the given alloca already has 921 // lifetime.start or lifetime.end intrinsics. 922 static bool hasLifetimeMarkers(AllocaInst *AI) { 923 Type *Ty = AI->getType(); 924 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), 925 Ty->getPointerAddressSpace()); 926 if (Ty == Int8PtrTy) 927 return isUsedByLifetimeMarker(AI); 928 929 // Do a scan to find all the casts to i8*. 930 for (User *U : AI->users()) { 931 if (U->getType() != Int8PtrTy) continue; 932 if (U->stripPointerCasts() != AI) continue; 933 if (isUsedByLifetimeMarker(U)) 934 return true; 935 } 936 return false; 937 } 938 939 /// Rebuild the entire inlined-at chain for this instruction so that the top of 940 /// the chain now is inlined-at the new call site. 941 static DebugLoc 942 updateInlinedAtInfo(DebugLoc DL, DILocation *InlinedAtNode, LLVMContext &Ctx, 943 DenseMap<const DILocation *, DILocation *> &IANodes) { 944 SmallVector<DILocation *, 3> InlinedAtLocations; 945 DILocation *Last = InlinedAtNode; 946 DILocation *CurInlinedAt = DL; 947 948 // Gather all the inlined-at nodes 949 while (DILocation *IA = CurInlinedAt->getInlinedAt()) { 950 // Skip any we've already built nodes for 951 if (DILocation *Found = IANodes[IA]) { 952 Last = Found; 953 break; 954 } 955 956 InlinedAtLocations.push_back(IA); 957 CurInlinedAt = IA; 958 } 959 960 // Starting from the top, rebuild the nodes to point to the new inlined-at 961 // location (then rebuilding the rest of the chain behind it) and update the 962 // map of already-constructed inlined-at nodes. 963 for (const DILocation *MD : make_range(InlinedAtLocations.rbegin(), 964 InlinedAtLocations.rend())) { 965 Last = IANodes[MD] = DILocation::getDistinct( 966 Ctx, MD->getLine(), MD->getColumn(), MD->getScope(), Last); 967 } 968 969 // And finally create the normal location for this instruction, referring to 970 // the new inlined-at chain. 971 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(), Last); 972 } 973 974 /// Update inlined instructions' line numbers to 975 /// to encode location where these instructions are inlined. 976 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 977 Instruction *TheCall) { 978 DebugLoc TheCallDL = TheCall->getDebugLoc(); 979 if (!TheCallDL) 980 return; 981 982 auto &Ctx = Fn->getContext(); 983 DILocation *InlinedAtNode = TheCallDL; 984 985 // Create a unique call site, not to be confused with any other call from the 986 // same location. 987 InlinedAtNode = DILocation::getDistinct( 988 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(), 989 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt()); 990 991 // Cache the inlined-at nodes as they're built so they are reused, without 992 // this every instruction's inlined-at chain would become distinct from each 993 // other. 994 DenseMap<const DILocation *, DILocation *> IANodes; 995 996 for (; FI != Fn->end(); ++FI) { 997 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 998 BI != BE; ++BI) { 999 DebugLoc DL = BI->getDebugLoc(); 1000 if (!DL) { 1001 // If the inlined instruction has no line number, make it look as if it 1002 // originates from the call location. This is important for 1003 // ((__always_inline__, __nodebug__)) functions which must use caller 1004 // location for all instructions in their function body. 1005 1006 // Don't update static allocas, as they may get moved later. 1007 if (auto *AI = dyn_cast<AllocaInst>(BI)) 1008 if (isa<Constant>(AI->getArraySize())) 1009 continue; 1010 1011 BI->setDebugLoc(TheCallDL); 1012 } else { 1013 BI->setDebugLoc(updateInlinedAtInfo(DL, InlinedAtNode, BI->getContext(), IANodes)); 1014 } 1015 } 1016 } 1017 } 1018 1019 /// This function inlines the called function into the basic block of the 1020 /// caller. This returns false if it is not possible to inline this call. 1021 /// The program is still in a well defined state if this occurs though. 1022 /// 1023 /// Note that this only does one level of inlining. For example, if the 1024 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 1025 /// exists in the instruction stream. Similarly this will inline a recursive 1026 /// function by one level. 1027 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI, 1028 AAResults *CalleeAAR, bool InsertLifetime) { 1029 Instruction *TheCall = CS.getInstruction(); 1030 assert(TheCall->getParent() && TheCall->getParent()->getParent() && 1031 "Instruction not in function!"); 1032 1033 // If IFI has any state in it, zap it before we fill it in. 1034 IFI.reset(); 1035 1036 const Function *CalledFunc = CS.getCalledFunction(); 1037 if (!CalledFunc || // Can't inline external function or indirect 1038 CalledFunc->isDeclaration() || // call, or call to a vararg function! 1039 CalledFunc->getFunctionType()->isVarArg()) return false; 1040 1041 // The inliner does not know how to inline through calls with operand bundles 1042 // in general ... 1043 if (CS.hasOperandBundles()) { 1044 // ... but it knows how to inline through "deopt" operand bundles. 1045 bool CanInline = 1046 CS.getNumOperandBundles() == 1 && 1047 CS.getOperandBundleAt(0).getTagID() == LLVMContext::OB_deopt; 1048 if (!CanInline) 1049 return false; 1050 } 1051 1052 // If the call to the callee cannot throw, set the 'nounwind' flag on any 1053 // calls that we inline. 1054 bool MarkNoUnwind = CS.doesNotThrow(); 1055 1056 BasicBlock *OrigBB = TheCall->getParent(); 1057 Function *Caller = OrigBB->getParent(); 1058 1059 // GC poses two hazards to inlining, which only occur when the callee has GC: 1060 // 1. If the caller has no GC, then the callee's GC must be propagated to the 1061 // caller. 1062 // 2. If the caller has a differing GC, it is invalid to inline. 1063 if (CalledFunc->hasGC()) { 1064 if (!Caller->hasGC()) 1065 Caller->setGC(CalledFunc->getGC()); 1066 else if (CalledFunc->getGC() != Caller->getGC()) 1067 return false; 1068 } 1069 1070 // Get the personality function from the callee if it contains a landing pad. 1071 Constant *CalledPersonality = 1072 CalledFunc->hasPersonalityFn() 1073 ? CalledFunc->getPersonalityFn()->stripPointerCasts() 1074 : nullptr; 1075 1076 // Find the personality function used by the landing pads of the caller. If it 1077 // exists, then check to see that it matches the personality function used in 1078 // the callee. 1079 Constant *CallerPersonality = 1080 Caller->hasPersonalityFn() 1081 ? Caller->getPersonalityFn()->stripPointerCasts() 1082 : nullptr; 1083 if (CalledPersonality) { 1084 if (!CallerPersonality) 1085 Caller->setPersonalityFn(CalledPersonality); 1086 // If the personality functions match, then we can perform the 1087 // inlining. Otherwise, we can't inline. 1088 // TODO: This isn't 100% true. Some personality functions are proper 1089 // supersets of others and can be used in place of the other. 1090 else if (CalledPersonality != CallerPersonality) 1091 return false; 1092 } 1093 1094 // Get an iterator to the last basic block in the function, which will have 1095 // the new function inlined after it. 1096 Function::iterator LastBlock = --Caller->end(); 1097 1098 // Make sure to capture all of the return instructions from the cloned 1099 // function. 1100 SmallVector<ReturnInst*, 8> Returns; 1101 ClonedCodeInfo InlinedFunctionInfo; 1102 Function::iterator FirstNewBlock; 1103 1104 { // Scope to destroy VMap after cloning. 1105 ValueToValueMapTy VMap; 1106 // Keep a list of pair (dst, src) to emit byval initializations. 1107 SmallVector<std::pair<Value*, Value*>, 4> ByValInit; 1108 1109 auto &DL = Caller->getParent()->getDataLayout(); 1110 1111 assert(CalledFunc->arg_size() == CS.arg_size() && 1112 "No varargs calls can be inlined!"); 1113 1114 // Calculate the vector of arguments to pass into the function cloner, which 1115 // matches up the formal to the actual argument values. 1116 CallSite::arg_iterator AI = CS.arg_begin(); 1117 unsigned ArgNo = 0; 1118 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 1119 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 1120 Value *ActualArg = *AI; 1121 1122 // When byval arguments actually inlined, we need to make the copy implied 1123 // by them explicit. However, we don't do this if the callee is readonly 1124 // or readnone, because the copy would be unneeded: the callee doesn't 1125 // modify the struct. 1126 if (CS.isByValArgument(ArgNo)) { 1127 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, 1128 CalledFunc->getParamAlignment(ArgNo+1)); 1129 if (ActualArg != *AI) 1130 ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI)); 1131 } 1132 1133 VMap[&*I] = ActualArg; 1134 } 1135 1136 // Add alignment assumptions if necessary. We do this before the inlined 1137 // instructions are actually cloned into the caller so that we can easily 1138 // check what will be known at the start of the inlined code. 1139 AddAlignmentAssumptions(CS, IFI); 1140 1141 // We want the inliner to prune the code as it copies. We would LOVE to 1142 // have no dead or constant instructions leftover after inlining occurs 1143 // (which can happen, e.g., because an argument was constant), but we'll be 1144 // happy with whatever the cloner can do. 1145 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 1146 /*ModuleLevelChanges=*/false, Returns, ".i", 1147 &InlinedFunctionInfo, TheCall); 1148 1149 // Remember the first block that is newly cloned over. 1150 FirstNewBlock = LastBlock; ++FirstNewBlock; 1151 1152 // Inject byval arguments initialization. 1153 for (std::pair<Value*, Value*> &Init : ByValInit) 1154 HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(), 1155 &*FirstNewBlock, IFI); 1156 1157 if (CS.hasOperandBundles()) { 1158 auto ParentDeopt = CS.getOperandBundleAt(0); 1159 assert(ParentDeopt.getTagID() == LLVMContext::OB_deopt && 1160 "Checked on entry!"); 1161 1162 SmallVector<OperandBundleDef, 2> OpDefs; 1163 1164 for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) { 1165 Instruction *I = VH; 1166 1167 OpDefs.clear(); 1168 1169 CallSite ICS(I); 1170 OpDefs.reserve(ICS.getNumOperandBundles()); 1171 1172 for (unsigned i = 0, e = ICS.getNumOperandBundles(); i < e; ++i) { 1173 auto ChildOB = ICS.getOperandBundleAt(i); 1174 if (ChildOB.getTagID() != LLVMContext::OB_deopt) { 1175 // If the inlined call has other operand bundles, let them be 1176 OpDefs.emplace_back(ChildOB); 1177 continue; 1178 } 1179 1180 // It may be useful to separate this logic (of handling operand 1181 // bundles) out to a separate "policy" component if this gets crowded. 1182 // Prepend the parent's deoptimization continuation to the newly 1183 // inlined call's deoptimization continuation. 1184 std::vector<Value *> MergedDeoptArgs; 1185 MergedDeoptArgs.reserve(ParentDeopt.Inputs.size() + 1186 ChildOB.Inputs.size()); 1187 1188 MergedDeoptArgs.insert(MergedDeoptArgs.end(), 1189 ParentDeopt.Inputs.begin(), 1190 ParentDeopt.Inputs.end()); 1191 MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(), 1192 ChildOB.Inputs.end()); 1193 1194 OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs)); 1195 } 1196 1197 Instruction *NewI = nullptr; 1198 if (isa<CallInst>(I)) 1199 NewI = CallInst::Create(cast<CallInst>(I), OpDefs, I); 1200 else 1201 NewI = InvokeInst::Create(cast<InvokeInst>(I), OpDefs, I); 1202 1203 // Note: the RAUW does the appropriate fixup in VMap, so we need to do 1204 // this even if the call returns void. 1205 I->replaceAllUsesWith(NewI); 1206 1207 VH = nullptr; 1208 I->eraseFromParent(); 1209 } 1210 } 1211 1212 // Update the callgraph if requested. 1213 if (IFI.CG) 1214 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); 1215 1216 // Update inlined instructions' line number information. 1217 fixupLineNumbers(Caller, FirstNewBlock, TheCall); 1218 1219 // Clone existing noalias metadata if necessary. 1220 CloneAliasScopeMetadata(CS, VMap); 1221 1222 // Add noalias metadata if necessary. 1223 AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR); 1224 1225 // FIXME: We could register any cloned assumptions instead of clearing the 1226 // whole function's cache. 1227 if (IFI.ACT) 1228 IFI.ACT->getAssumptionCache(*Caller).clear(); 1229 } 1230 1231 // If there are any alloca instructions in the block that used to be the entry 1232 // block for the callee, move them to the entry block of the caller. First 1233 // calculate which instruction they should be inserted before. We insert the 1234 // instructions at the end of the current alloca list. 1235 { 1236 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 1237 for (BasicBlock::iterator I = FirstNewBlock->begin(), 1238 E = FirstNewBlock->end(); I != E; ) { 1239 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 1240 if (!AI) continue; 1241 1242 // If the alloca is now dead, remove it. This often occurs due to code 1243 // specialization. 1244 if (AI->use_empty()) { 1245 AI->eraseFromParent(); 1246 continue; 1247 } 1248 1249 if (!isa<Constant>(AI->getArraySize())) 1250 continue; 1251 1252 // Keep track of the static allocas that we inline into the caller. 1253 IFI.StaticAllocas.push_back(AI); 1254 1255 // Scan for the block of allocas that we can move over, and move them 1256 // all at once. 1257 while (isa<AllocaInst>(I) && 1258 isa<Constant>(cast<AllocaInst>(I)->getArraySize())) { 1259 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 1260 ++I; 1261 } 1262 1263 // Transfer all of the allocas over in a block. Using splice means 1264 // that the instructions aren't removed from the symbol table, then 1265 // reinserted. 1266 Caller->getEntryBlock().getInstList().splice( 1267 InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I); 1268 } 1269 // Move any dbg.declares describing the allocas into the entry basic block. 1270 DIBuilder DIB(*Caller->getParent()); 1271 for (auto &AI : IFI.StaticAllocas) 1272 replaceDbgDeclareForAlloca(AI, AI, DIB, /*Deref=*/false); 1273 } 1274 1275 bool InlinedMustTailCalls = false; 1276 if (InlinedFunctionInfo.ContainsCalls) { 1277 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; 1278 if (CallInst *CI = dyn_cast<CallInst>(TheCall)) 1279 CallSiteTailKind = CI->getTailCallKind(); 1280 1281 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 1282 ++BB) { 1283 for (Instruction &I : *BB) { 1284 CallInst *CI = dyn_cast<CallInst>(&I); 1285 if (!CI) 1286 continue; 1287 1288 // We need to reduce the strength of any inlined tail calls. For 1289 // musttail, we have to avoid introducing potential unbounded stack 1290 // growth. For example, if functions 'f' and 'g' are mutually recursive 1291 // with musttail, we can inline 'g' into 'f' so long as we preserve 1292 // musttail on the cloned call to 'f'. If either the inlined call site 1293 // or the cloned call site is *not* musttail, the program already has 1294 // one frame of stack growth, so it's safe to remove musttail. Here is 1295 // a table of example transformations: 1296 // 1297 // f -> musttail g -> musttail f ==> f -> musttail f 1298 // f -> musttail g -> tail f ==> f -> tail f 1299 // f -> g -> musttail f ==> f -> f 1300 // f -> g -> tail f ==> f -> f 1301 CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); 1302 ChildTCK = std::min(CallSiteTailKind, ChildTCK); 1303 CI->setTailCallKind(ChildTCK); 1304 InlinedMustTailCalls |= CI->isMustTailCall(); 1305 1306 // Calls inlined through a 'nounwind' call site should be marked 1307 // 'nounwind'. 1308 if (MarkNoUnwind) 1309 CI->setDoesNotThrow(); 1310 } 1311 } 1312 } 1313 1314 // Leave lifetime markers for the static alloca's, scoping them to the 1315 // function we just inlined. 1316 if (InsertLifetime && !IFI.StaticAllocas.empty()) { 1317 IRBuilder<> builder(&FirstNewBlock->front()); 1318 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 1319 AllocaInst *AI = IFI.StaticAllocas[ai]; 1320 1321 // If the alloca is already scoped to something smaller than the whole 1322 // function then there's no need to add redundant, less accurate markers. 1323 if (hasLifetimeMarkers(AI)) 1324 continue; 1325 1326 // Try to determine the size of the allocation. 1327 ConstantInt *AllocaSize = nullptr; 1328 if (ConstantInt *AIArraySize = 1329 dyn_cast<ConstantInt>(AI->getArraySize())) { 1330 auto &DL = Caller->getParent()->getDataLayout(); 1331 Type *AllocaType = AI->getAllocatedType(); 1332 uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType); 1333 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 1334 1335 // Don't add markers for zero-sized allocas. 1336 if (AllocaArraySize == 0) 1337 continue; 1338 1339 // Check that array size doesn't saturate uint64_t and doesn't 1340 // overflow when it's multiplied by type size. 1341 if (AllocaArraySize != ~0ULL && 1342 UINT64_MAX / AllocaArraySize >= AllocaTypeSize) { 1343 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 1344 AllocaArraySize * AllocaTypeSize); 1345 } 1346 } 1347 1348 builder.CreateLifetimeStart(AI, AllocaSize); 1349 for (ReturnInst *RI : Returns) { 1350 // Don't insert llvm.lifetime.end calls between a musttail call and a 1351 // return. The return kills all local allocas. 1352 if (InlinedMustTailCalls && 1353 RI->getParent()->getTerminatingMustTailCall()) 1354 continue; 1355 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); 1356 } 1357 } 1358 } 1359 1360 // If the inlined code contained dynamic alloca instructions, wrap the inlined 1361 // code with llvm.stacksave/llvm.stackrestore intrinsics. 1362 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 1363 Module *M = Caller->getParent(); 1364 // Get the two intrinsics we care about. 1365 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 1366 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 1367 1368 // Insert the llvm.stacksave. 1369 CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin()) 1370 .CreateCall(StackSave, {}, "savedstack"); 1371 1372 // Insert a call to llvm.stackrestore before any return instructions in the 1373 // inlined function. 1374 for (ReturnInst *RI : Returns) { 1375 // Don't insert llvm.stackrestore calls between a musttail call and a 1376 // return. The return will restore the stack pointer. 1377 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) 1378 continue; 1379 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); 1380 } 1381 } 1382 1383 // If we are inlining for an invoke instruction, we must make sure to rewrite 1384 // any call instructions into invoke instructions. 1385 if (auto *II = dyn_cast<InvokeInst>(TheCall)) { 1386 BasicBlock *UnwindDest = II->getUnwindDest(); 1387 Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI(); 1388 if (isa<LandingPadInst>(FirstNonPHI)) { 1389 HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo); 1390 } else { 1391 HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo); 1392 } 1393 } 1394 1395 // Handle any inlined musttail call sites. In order for a new call site to be 1396 // musttail, the source of the clone and the inlined call site must have been 1397 // musttail. Therefore it's safe to return without merging control into the 1398 // phi below. 1399 if (InlinedMustTailCalls) { 1400 // Check if we need to bitcast the result of any musttail calls. 1401 Type *NewRetTy = Caller->getReturnType(); 1402 bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy; 1403 1404 // Handle the returns preceded by musttail calls separately. 1405 SmallVector<ReturnInst *, 8> NormalReturns; 1406 for (ReturnInst *RI : Returns) { 1407 CallInst *ReturnedMustTail = 1408 RI->getParent()->getTerminatingMustTailCall(); 1409 if (!ReturnedMustTail) { 1410 NormalReturns.push_back(RI); 1411 continue; 1412 } 1413 if (!NeedBitCast) 1414 continue; 1415 1416 // Delete the old return and any preceding bitcast. 1417 BasicBlock *CurBB = RI->getParent(); 1418 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); 1419 RI->eraseFromParent(); 1420 if (OldCast) 1421 OldCast->eraseFromParent(); 1422 1423 // Insert a new bitcast and return with the right type. 1424 IRBuilder<> Builder(CurBB); 1425 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); 1426 } 1427 1428 // Leave behind the normal returns so we can merge control flow. 1429 std::swap(Returns, NormalReturns); 1430 } 1431 1432 // If we cloned in _exactly one_ basic block, and if that block ends in a 1433 // return instruction, we splice the body of the inlined callee directly into 1434 // the calling basic block. 1435 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 1436 // Move all of the instructions right before the call. 1437 OrigBB->getInstList().splice(TheCall->getIterator(), 1438 FirstNewBlock->getInstList(), 1439 FirstNewBlock->begin(), FirstNewBlock->end()); 1440 // Remove the cloned basic block. 1441 Caller->getBasicBlockList().pop_back(); 1442 1443 // If the call site was an invoke instruction, add a branch to the normal 1444 // destination. 1445 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 1446 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); 1447 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 1448 } 1449 1450 // If the return instruction returned a value, replace uses of the call with 1451 // uses of the returned value. 1452 if (!TheCall->use_empty()) { 1453 ReturnInst *R = Returns[0]; 1454 if (TheCall == R->getReturnValue()) 1455 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1456 else 1457 TheCall->replaceAllUsesWith(R->getReturnValue()); 1458 } 1459 // Since we are now done with the Call/Invoke, we can delete it. 1460 TheCall->eraseFromParent(); 1461 1462 // Since we are now done with the return instruction, delete it also. 1463 Returns[0]->eraseFromParent(); 1464 1465 // We are now done with the inlining. 1466 return true; 1467 } 1468 1469 // Otherwise, we have the normal case, of more than one block to inline or 1470 // multiple return sites. 1471 1472 // We want to clone the entire callee function into the hole between the 1473 // "starter" and "ender" blocks. How we accomplish this depends on whether 1474 // this is an invoke instruction or a call instruction. 1475 BasicBlock *AfterCallBB; 1476 BranchInst *CreatedBranchToNormalDest = nullptr; 1477 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 1478 1479 // Add an unconditional branch to make this look like the CallInst case... 1480 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall); 1481 1482 // Split the basic block. This guarantees that no PHI nodes will have to be 1483 // updated due to new incoming edges, and make the invoke case more 1484 // symmetric to the call case. 1485 AfterCallBB = 1486 OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(), 1487 CalledFunc->getName() + ".exit"); 1488 1489 } else { // It's a call 1490 // If this is a call instruction, we need to split the basic block that 1491 // the call lives in. 1492 // 1493 AfterCallBB = OrigBB->splitBasicBlock(TheCall->getIterator(), 1494 CalledFunc->getName() + ".exit"); 1495 } 1496 1497 // Change the branch that used to go to AfterCallBB to branch to the first 1498 // basic block of the inlined function. 1499 // 1500 TerminatorInst *Br = OrigBB->getTerminator(); 1501 assert(Br && Br->getOpcode() == Instruction::Br && 1502 "splitBasicBlock broken!"); 1503 Br->setOperand(0, &*FirstNewBlock); 1504 1505 // Now that the function is correct, make it a little bit nicer. In 1506 // particular, move the basic blocks inserted from the end of the function 1507 // into the space made by splitting the source basic block. 1508 Caller->getBasicBlockList().splice(AfterCallBB->getIterator(), 1509 Caller->getBasicBlockList(), FirstNewBlock, 1510 Caller->end()); 1511 1512 // Handle all of the return instructions that we just cloned in, and eliminate 1513 // any users of the original call/invoke instruction. 1514 Type *RTy = CalledFunc->getReturnType(); 1515 1516 PHINode *PHI = nullptr; 1517 if (Returns.size() > 1) { 1518 // The PHI node should go at the front of the new basic block to merge all 1519 // possible incoming values. 1520 if (!TheCall->use_empty()) { 1521 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), 1522 &AfterCallBB->front()); 1523 // Anything that used the result of the function call should now use the 1524 // PHI node as their operand. 1525 TheCall->replaceAllUsesWith(PHI); 1526 } 1527 1528 // Loop over all of the return instructions adding entries to the PHI node 1529 // as appropriate. 1530 if (PHI) { 1531 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1532 ReturnInst *RI = Returns[i]; 1533 assert(RI->getReturnValue()->getType() == PHI->getType() && 1534 "Ret value not consistent in function!"); 1535 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 1536 } 1537 } 1538 1539 // Add a branch to the merge points and remove return instructions. 1540 DebugLoc Loc; 1541 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1542 ReturnInst *RI = Returns[i]; 1543 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 1544 Loc = RI->getDebugLoc(); 1545 BI->setDebugLoc(Loc); 1546 RI->eraseFromParent(); 1547 } 1548 // We need to set the debug location to *somewhere* inside the 1549 // inlined function. The line number may be nonsensical, but the 1550 // instruction will at least be associated with the right 1551 // function. 1552 if (CreatedBranchToNormalDest) 1553 CreatedBranchToNormalDest->setDebugLoc(Loc); 1554 } else if (!Returns.empty()) { 1555 // Otherwise, if there is exactly one return value, just replace anything 1556 // using the return value of the call with the computed value. 1557 if (!TheCall->use_empty()) { 1558 if (TheCall == Returns[0]->getReturnValue()) 1559 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1560 else 1561 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); 1562 } 1563 1564 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 1565 BasicBlock *ReturnBB = Returns[0]->getParent(); 1566 ReturnBB->replaceAllUsesWith(AfterCallBB); 1567 1568 // Splice the code from the return block into the block that it will return 1569 // to, which contains the code that was after the call. 1570 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 1571 ReturnBB->getInstList()); 1572 1573 if (CreatedBranchToNormalDest) 1574 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 1575 1576 // Delete the return instruction now and empty ReturnBB now. 1577 Returns[0]->eraseFromParent(); 1578 ReturnBB->eraseFromParent(); 1579 } else if (!TheCall->use_empty()) { 1580 // No returns, but something is using the return value of the call. Just 1581 // nuke the result. 1582 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1583 } 1584 1585 // Since we are now done with the Call/Invoke, we can delete it. 1586 TheCall->eraseFromParent(); 1587 1588 // If we inlined any musttail calls and the original return is now 1589 // unreachable, delete it. It can only contain a bitcast and ret. 1590 if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB)) 1591 AfterCallBB->eraseFromParent(); 1592 1593 // We should always be able to fold the entry block of the function into the 1594 // single predecessor of the block... 1595 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 1596 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 1597 1598 // Splice the code entry block into calling block, right before the 1599 // unconditional branch. 1600 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 1601 OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList()); 1602 1603 // Remove the unconditional branch. 1604 OrigBB->getInstList().erase(Br); 1605 1606 // Now we can remove the CalleeEntry block, which is now empty. 1607 Caller->getBasicBlockList().erase(CalleeEntry); 1608 1609 // If we inserted a phi node, check to see if it has a single value (e.g. all 1610 // the entries are the same or undef). If so, remove the PHI so it doesn't 1611 // block other optimizations. 1612 if (PHI) { 1613 auto &DL = Caller->getParent()->getDataLayout(); 1614 if (Value *V = SimplifyInstruction(PHI, DL, nullptr, nullptr, 1615 &IFI.ACT->getAssumptionCache(*Caller))) { 1616 PHI->replaceAllUsesWith(V); 1617 PHI->eraseFromParent(); 1618 } 1619 } 1620 1621 return true; 1622 } 1623