1 //===- InlineFunction.cpp - Code to perform function inlining -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements inlining of a function into a call site, resolving
10 // parameters and the return value as appropriate.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/BlockFrequencyInfo.h"
26 #include "llvm/Analysis/CallGraph.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/EHPersonalities.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/ObjCARCAnalysisUtils.h"
31 #include "llvm/Analysis/ObjCARCUtil.h"
32 #include "llvm/Analysis/ProfileSummaryInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DIBuilder.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Dominators.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/MDBuilder.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
65 #include "llvm/Transforms/Utils/Cloning.h"
66 #include "llvm/Transforms/Utils/Local.h"
67 #include "llvm/Transforms/Utils/ValueMapper.h"
68 #include <algorithm>
69 #include <cassert>
70 #include <cstdint>
71 #include <iterator>
72 #include <limits>
73 #include <string>
74 #include <utility>
75 #include <vector>
76 
77 using namespace llvm;
78 using ProfileCount = Function::ProfileCount;
79 
80 static cl::opt<bool>
81 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
82   cl::Hidden,
83   cl::desc("Convert noalias attributes to metadata during inlining."));
84 
85 static cl::opt<bool>
86     UseNoAliasIntrinsic("use-noalias-intrinsic-during-inlining", cl::Hidden,
87                         cl::ZeroOrMore, cl::init(true),
88                         cl::desc("Use the llvm.experimental.noalias.scope.decl "
89                                  "intrinsic during inlining."));
90 
91 // Disabled by default, because the added alignment assumptions may increase
92 // compile-time and block optimizations. This option is not suitable for use
93 // with frontends that emit comprehensive parameter alignment annotations.
94 static cl::opt<bool>
95 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
96   cl::init(false), cl::Hidden,
97   cl::desc("Convert align attributes to assumptions during inlining."));
98 
99 static cl::opt<bool> UpdateReturnAttributes(
100         "update-return-attrs", cl::init(true), cl::Hidden,
101             cl::desc("Update return attributes on calls within inlined body"));
102 
103 static cl::opt<unsigned> InlinerAttributeWindow(
104     "max-inst-checked-for-throw-during-inlining", cl::Hidden,
105     cl::desc("the maximum number of instructions analyzed for may throw during "
106              "attribute inference in inlined body"),
107     cl::init(4));
108 
109 namespace {
110 
111   /// A class for recording information about inlining a landing pad.
112   class LandingPadInliningInfo {
113     /// Destination of the invoke's unwind.
114     BasicBlock *OuterResumeDest;
115 
116     /// Destination for the callee's resume.
117     BasicBlock *InnerResumeDest = nullptr;
118 
119     /// LandingPadInst associated with the invoke.
120     LandingPadInst *CallerLPad = nullptr;
121 
122     /// PHI for EH values from landingpad insts.
123     PHINode *InnerEHValuesPHI = nullptr;
124 
125     SmallVector<Value*, 8> UnwindDestPHIValues;
126 
127   public:
128     LandingPadInliningInfo(InvokeInst *II)
129         : OuterResumeDest(II->getUnwindDest()) {
130       // If there are PHI nodes in the unwind destination block, we need to keep
131       // track of which values came into them from the invoke before removing
132       // the edge from this block.
133       BasicBlock *InvokeBB = II->getParent();
134       BasicBlock::iterator I = OuterResumeDest->begin();
135       for (; isa<PHINode>(I); ++I) {
136         // Save the value to use for this edge.
137         PHINode *PHI = cast<PHINode>(I);
138         UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
139       }
140 
141       CallerLPad = cast<LandingPadInst>(I);
142     }
143 
144     /// The outer unwind destination is the target of
145     /// unwind edges introduced for calls within the inlined function.
146     BasicBlock *getOuterResumeDest() const {
147       return OuterResumeDest;
148     }
149 
150     BasicBlock *getInnerResumeDest();
151 
152     LandingPadInst *getLandingPadInst() const { return CallerLPad; }
153 
154     /// Forward the 'resume' instruction to the caller's landing pad block.
155     /// When the landing pad block has only one predecessor, this is
156     /// a simple branch. When there is more than one predecessor, we need to
157     /// split the landing pad block after the landingpad instruction and jump
158     /// to there.
159     void forwardResume(ResumeInst *RI,
160                        SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
161 
162     /// Add incoming-PHI values to the unwind destination block for the given
163     /// basic block, using the values for the original invoke's source block.
164     void addIncomingPHIValuesFor(BasicBlock *BB) const {
165       addIncomingPHIValuesForInto(BB, OuterResumeDest);
166     }
167 
168     void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
169       BasicBlock::iterator I = dest->begin();
170       for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
171         PHINode *phi = cast<PHINode>(I);
172         phi->addIncoming(UnwindDestPHIValues[i], src);
173       }
174     }
175   };
176 
177 } // end anonymous namespace
178 
179 /// Get or create a target for the branch from ResumeInsts.
180 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
181   if (InnerResumeDest) return InnerResumeDest;
182 
183   // Split the landing pad.
184   BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
185   InnerResumeDest =
186     OuterResumeDest->splitBasicBlock(SplitPoint,
187                                      OuterResumeDest->getName() + ".body");
188 
189   // The number of incoming edges we expect to the inner landing pad.
190   const unsigned PHICapacity = 2;
191 
192   // Create corresponding new PHIs for all the PHIs in the outer landing pad.
193   Instruction *InsertPoint = &InnerResumeDest->front();
194   BasicBlock::iterator I = OuterResumeDest->begin();
195   for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
196     PHINode *OuterPHI = cast<PHINode>(I);
197     PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
198                                         OuterPHI->getName() + ".lpad-body",
199                                         InsertPoint);
200     OuterPHI->replaceAllUsesWith(InnerPHI);
201     InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
202   }
203 
204   // Create a PHI for the exception values.
205   InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
206                                      "eh.lpad-body", InsertPoint);
207   CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
208   InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
209 
210   // All done.
211   return InnerResumeDest;
212 }
213 
214 /// Forward the 'resume' instruction to the caller's landing pad block.
215 /// When the landing pad block has only one predecessor, this is a simple
216 /// branch. When there is more than one predecessor, we need to split the
217 /// landing pad block after the landingpad instruction and jump to there.
218 void LandingPadInliningInfo::forwardResume(
219     ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
220   BasicBlock *Dest = getInnerResumeDest();
221   BasicBlock *Src = RI->getParent();
222 
223   BranchInst::Create(Dest, Src);
224 
225   // Update the PHIs in the destination. They were inserted in an order which
226   // makes this work.
227   addIncomingPHIValuesForInto(Src, Dest);
228 
229   InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
230   RI->eraseFromParent();
231 }
232 
233 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
234 static Value *getParentPad(Value *EHPad) {
235   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
236     return FPI->getParentPad();
237   return cast<CatchSwitchInst>(EHPad)->getParentPad();
238 }
239 
240 using UnwindDestMemoTy = DenseMap<Instruction *, Value *>;
241 
242 /// Helper for getUnwindDestToken that does the descendant-ward part of
243 /// the search.
244 static Value *getUnwindDestTokenHelper(Instruction *EHPad,
245                                        UnwindDestMemoTy &MemoMap) {
246   SmallVector<Instruction *, 8> Worklist(1, EHPad);
247 
248   while (!Worklist.empty()) {
249     Instruction *CurrentPad = Worklist.pop_back_val();
250     // We only put pads on the worklist that aren't in the MemoMap.  When
251     // we find an unwind dest for a pad we may update its ancestors, but
252     // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
253     // so they should never get updated while queued on the worklist.
254     assert(!MemoMap.count(CurrentPad));
255     Value *UnwindDestToken = nullptr;
256     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
257       if (CatchSwitch->hasUnwindDest()) {
258         UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
259       } else {
260         // Catchswitch doesn't have a 'nounwind' variant, and one might be
261         // annotated as "unwinds to caller" when really it's nounwind (see
262         // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
263         // parent's unwind dest from this.  We can check its catchpads'
264         // descendants, since they might include a cleanuppad with an
265         // "unwinds to caller" cleanupret, which can be trusted.
266         for (auto HI = CatchSwitch->handler_begin(),
267                   HE = CatchSwitch->handler_end();
268              HI != HE && !UnwindDestToken; ++HI) {
269           BasicBlock *HandlerBlock = *HI;
270           auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
271           for (User *Child : CatchPad->users()) {
272             // Intentionally ignore invokes here -- since the catchswitch is
273             // marked "unwind to caller", it would be a verifier error if it
274             // contained an invoke which unwinds out of it, so any invoke we'd
275             // encounter must unwind to some child of the catch.
276             if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
277               continue;
278 
279             Instruction *ChildPad = cast<Instruction>(Child);
280             auto Memo = MemoMap.find(ChildPad);
281             if (Memo == MemoMap.end()) {
282               // Haven't figured out this child pad yet; queue it.
283               Worklist.push_back(ChildPad);
284               continue;
285             }
286             // We've already checked this child, but might have found that
287             // it offers no proof either way.
288             Value *ChildUnwindDestToken = Memo->second;
289             if (!ChildUnwindDestToken)
290               continue;
291             // We already know the child's unwind dest, which can either
292             // be ConstantTokenNone to indicate unwind to caller, or can
293             // be another child of the catchpad.  Only the former indicates
294             // the unwind dest of the catchswitch.
295             if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
296               UnwindDestToken = ChildUnwindDestToken;
297               break;
298             }
299             assert(getParentPad(ChildUnwindDestToken) == CatchPad);
300           }
301         }
302       }
303     } else {
304       auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
305       for (User *U : CleanupPad->users()) {
306         if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
307           if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
308             UnwindDestToken = RetUnwindDest->getFirstNonPHI();
309           else
310             UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
311           break;
312         }
313         Value *ChildUnwindDestToken;
314         if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
315           ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
316         } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
317           Instruction *ChildPad = cast<Instruction>(U);
318           auto Memo = MemoMap.find(ChildPad);
319           if (Memo == MemoMap.end()) {
320             // Haven't resolved this child yet; queue it and keep searching.
321             Worklist.push_back(ChildPad);
322             continue;
323           }
324           // We've checked this child, but still need to ignore it if it
325           // had no proof either way.
326           ChildUnwindDestToken = Memo->second;
327           if (!ChildUnwindDestToken)
328             continue;
329         } else {
330           // Not a relevant user of the cleanuppad
331           continue;
332         }
333         // In a well-formed program, the child/invoke must either unwind to
334         // an(other) child of the cleanup, or exit the cleanup.  In the
335         // first case, continue searching.
336         if (isa<Instruction>(ChildUnwindDestToken) &&
337             getParentPad(ChildUnwindDestToken) == CleanupPad)
338           continue;
339         UnwindDestToken = ChildUnwindDestToken;
340         break;
341       }
342     }
343     // If we haven't found an unwind dest for CurrentPad, we may have queued its
344     // children, so move on to the next in the worklist.
345     if (!UnwindDestToken)
346       continue;
347 
348     // Now we know that CurrentPad unwinds to UnwindDestToken.  It also exits
349     // any ancestors of CurrentPad up to but not including UnwindDestToken's
350     // parent pad.  Record this in the memo map, and check to see if the
351     // original EHPad being queried is one of the ones exited.
352     Value *UnwindParent;
353     if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
354       UnwindParent = getParentPad(UnwindPad);
355     else
356       UnwindParent = nullptr;
357     bool ExitedOriginalPad = false;
358     for (Instruction *ExitedPad = CurrentPad;
359          ExitedPad && ExitedPad != UnwindParent;
360          ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
361       // Skip over catchpads since they just follow their catchswitches.
362       if (isa<CatchPadInst>(ExitedPad))
363         continue;
364       MemoMap[ExitedPad] = UnwindDestToken;
365       ExitedOriginalPad |= (ExitedPad == EHPad);
366     }
367 
368     if (ExitedOriginalPad)
369       return UnwindDestToken;
370 
371     // Continue the search.
372   }
373 
374   // No definitive information is contained within this funclet.
375   return nullptr;
376 }
377 
378 /// Given an EH pad, find where it unwinds.  If it unwinds to an EH pad,
379 /// return that pad instruction.  If it unwinds to caller, return
380 /// ConstantTokenNone.  If it does not have a definitive unwind destination,
381 /// return nullptr.
382 ///
383 /// This routine gets invoked for calls in funclets in inlinees when inlining
384 /// an invoke.  Since many funclets don't have calls inside them, it's queried
385 /// on-demand rather than building a map of pads to unwind dests up front.
386 /// Determining a funclet's unwind dest may require recursively searching its
387 /// descendants, and also ancestors and cousins if the descendants don't provide
388 /// an answer.  Since most funclets will have their unwind dest immediately
389 /// available as the unwind dest of a catchswitch or cleanupret, this routine
390 /// searches top-down from the given pad and then up. To avoid worst-case
391 /// quadratic run-time given that approach, it uses a memo map to avoid
392 /// re-processing funclet trees.  The callers that rewrite the IR as they go
393 /// take advantage of this, for correctness, by checking/forcing rewritten
394 /// pads' entries to match the original callee view.
395 static Value *getUnwindDestToken(Instruction *EHPad,
396                                  UnwindDestMemoTy &MemoMap) {
397   // Catchpads unwind to the same place as their catchswitch;
398   // redirct any queries on catchpads so the code below can
399   // deal with just catchswitches and cleanuppads.
400   if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
401     EHPad = CPI->getCatchSwitch();
402 
403   // Check if we've already determined the unwind dest for this pad.
404   auto Memo = MemoMap.find(EHPad);
405   if (Memo != MemoMap.end())
406     return Memo->second;
407 
408   // Search EHPad and, if necessary, its descendants.
409   Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
410   assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
411   if (UnwindDestToken)
412     return UnwindDestToken;
413 
414   // No information is available for this EHPad from itself or any of its
415   // descendants.  An unwind all the way out to a pad in the caller would
416   // need also to agree with the unwind dest of the parent funclet, so
417   // search up the chain to try to find a funclet with information.  Put
418   // null entries in the memo map to avoid re-processing as we go up.
419   MemoMap[EHPad] = nullptr;
420 #ifndef NDEBUG
421   SmallPtrSet<Instruction *, 4> TempMemos;
422   TempMemos.insert(EHPad);
423 #endif
424   Instruction *LastUselessPad = EHPad;
425   Value *AncestorToken;
426   for (AncestorToken = getParentPad(EHPad);
427        auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
428        AncestorToken = getParentPad(AncestorToken)) {
429     // Skip over catchpads since they just follow their catchswitches.
430     if (isa<CatchPadInst>(AncestorPad))
431       continue;
432     // If the MemoMap had an entry mapping AncestorPad to nullptr, since we
433     // haven't yet called getUnwindDestTokenHelper for AncestorPad in this
434     // call to getUnwindDestToken, that would mean that AncestorPad had no
435     // information in itself, its descendants, or its ancestors.  If that
436     // were the case, then we should also have recorded the lack of information
437     // for the descendant that we're coming from.  So assert that we don't
438     // find a null entry in the MemoMap for AncestorPad.
439     assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
440     auto AncestorMemo = MemoMap.find(AncestorPad);
441     if (AncestorMemo == MemoMap.end()) {
442       UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
443     } else {
444       UnwindDestToken = AncestorMemo->second;
445     }
446     if (UnwindDestToken)
447       break;
448     LastUselessPad = AncestorPad;
449     MemoMap[LastUselessPad] = nullptr;
450 #ifndef NDEBUG
451     TempMemos.insert(LastUselessPad);
452 #endif
453   }
454 
455   // We know that getUnwindDestTokenHelper was called on LastUselessPad and
456   // returned nullptr (and likewise for EHPad and any of its ancestors up to
457   // LastUselessPad), so LastUselessPad has no information from below.  Since
458   // getUnwindDestTokenHelper must investigate all downward paths through
459   // no-information nodes to prove that a node has no information like this,
460   // and since any time it finds information it records it in the MemoMap for
461   // not just the immediately-containing funclet but also any ancestors also
462   // exited, it must be the case that, walking downward from LastUselessPad,
463   // visiting just those nodes which have not been mapped to an unwind dest
464   // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since
465   // they are just used to keep getUnwindDestTokenHelper from repeating work),
466   // any node visited must have been exhaustively searched with no information
467   // for it found.
468   SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
469   while (!Worklist.empty()) {
470     Instruction *UselessPad = Worklist.pop_back_val();
471     auto Memo = MemoMap.find(UselessPad);
472     if (Memo != MemoMap.end() && Memo->second) {
473       // Here the name 'UselessPad' is a bit of a misnomer, because we've found
474       // that it is a funclet that does have information about unwinding to
475       // a particular destination; its parent was a useless pad.
476       // Since its parent has no information, the unwind edge must not escape
477       // the parent, and must target a sibling of this pad.  This local unwind
478       // gives us no information about EHPad.  Leave it and the subtree rooted
479       // at it alone.
480       assert(getParentPad(Memo->second) == getParentPad(UselessPad));
481       continue;
482     }
483     // We know we don't have information for UselesPad.  If it has an entry in
484     // the MemoMap (mapping it to nullptr), it must be one of the TempMemos
485     // added on this invocation of getUnwindDestToken; if a previous invocation
486     // recorded nullptr, it would have had to prove that the ancestors of
487     // UselessPad, which include LastUselessPad, had no information, and that
488     // in turn would have required proving that the descendants of
489     // LastUselesPad, which include EHPad, have no information about
490     // LastUselessPad, which would imply that EHPad was mapped to nullptr in
491     // the MemoMap on that invocation, which isn't the case if we got here.
492     assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad));
493     // Assert as we enumerate users that 'UselessPad' doesn't have any unwind
494     // information that we'd be contradicting by making a map entry for it
495     // (which is something that getUnwindDestTokenHelper must have proved for
496     // us to get here).  Just assert on is direct users here; the checks in
497     // this downward walk at its descendants will verify that they don't have
498     // any unwind edges that exit 'UselessPad' either (i.e. they either have no
499     // unwind edges or unwind to a sibling).
500     MemoMap[UselessPad] = UnwindDestToken;
501     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
502       assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad");
503       for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) {
504         auto *CatchPad = HandlerBlock->getFirstNonPHI();
505         for (User *U : CatchPad->users()) {
506           assert(
507               (!isa<InvokeInst>(U) ||
508                (getParentPad(
509                     cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
510                 CatchPad)) &&
511               "Expected useless pad");
512           if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
513             Worklist.push_back(cast<Instruction>(U));
514         }
515       }
516     } else {
517       assert(isa<CleanupPadInst>(UselessPad));
518       for (User *U : UselessPad->users()) {
519         assert(!isa<CleanupReturnInst>(U) && "Expected useless pad");
520         assert((!isa<InvokeInst>(U) ||
521                 (getParentPad(
522                      cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
523                  UselessPad)) &&
524                "Expected useless pad");
525         if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
526           Worklist.push_back(cast<Instruction>(U));
527       }
528     }
529   }
530 
531   return UnwindDestToken;
532 }
533 
534 /// When we inline a basic block into an invoke,
535 /// we have to turn all of the calls that can throw into invokes.
536 /// This function analyze BB to see if there are any calls, and if so,
537 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
538 /// nodes in that block with the values specified in InvokeDestPHIValues.
539 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
540     BasicBlock *BB, BasicBlock *UnwindEdge,
541     UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
542   for (Instruction &I : llvm::make_early_inc_range(*BB)) {
543     // We only need to check for function calls: inlined invoke
544     // instructions require no special handling.
545     CallInst *CI = dyn_cast<CallInst>(&I);
546 
547     if (!CI || CI->doesNotThrow())
548       continue;
549 
550     if (CI->isInlineAsm()) {
551       InlineAsm *IA = cast<InlineAsm>(CI->getCalledOperand());
552       if (!IA->canThrow()) {
553         continue;
554       }
555     }
556 
557     // We do not need to (and in fact, cannot) convert possibly throwing calls
558     // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
559     // invokes.  The caller's "segment" of the deoptimization continuation
560     // attached to the newly inlined @llvm.experimental_deoptimize
561     // (resp. @llvm.experimental.guard) call should contain the exception
562     // handling logic, if any.
563     if (auto *F = CI->getCalledFunction())
564       if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize ||
565           F->getIntrinsicID() == Intrinsic::experimental_guard)
566         continue;
567 
568     if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
569       // This call is nested inside a funclet.  If that funclet has an unwind
570       // destination within the inlinee, then unwinding out of this call would
571       // be UB.  Rewriting this call to an invoke which targets the inlined
572       // invoke's unwind dest would give the call's parent funclet multiple
573       // unwind destinations, which is something that subsequent EH table
574       // generation can't handle and that the veirifer rejects.  So when we
575       // see such a call, leave it as a call.
576       auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
577       Value *UnwindDestToken =
578           getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
579       if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
580         continue;
581 #ifndef NDEBUG
582       Instruction *MemoKey;
583       if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
584         MemoKey = CatchPad->getCatchSwitch();
585       else
586         MemoKey = FuncletPad;
587       assert(FuncletUnwindMap->count(MemoKey) &&
588              (*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
589              "must get memoized to avoid confusing later searches");
590 #endif // NDEBUG
591     }
592 
593     changeToInvokeAndSplitBasicBlock(CI, UnwindEdge);
594     return BB;
595   }
596   return nullptr;
597 }
598 
599 /// If we inlined an invoke site, we need to convert calls
600 /// in the body of the inlined function into invokes.
601 ///
602 /// II is the invoke instruction being inlined.  FirstNewBlock is the first
603 /// block of the inlined code (the last block is the end of the function),
604 /// and InlineCodeInfo is information about the code that got inlined.
605 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
606                                     ClonedCodeInfo &InlinedCodeInfo) {
607   BasicBlock *InvokeDest = II->getUnwindDest();
608 
609   Function *Caller = FirstNewBlock->getParent();
610 
611   // The inlined code is currently at the end of the function, scan from the
612   // start of the inlined code to its end, checking for stuff we need to
613   // rewrite.
614   LandingPadInliningInfo Invoke(II);
615 
616   // Get all of the inlined landing pad instructions.
617   SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
618   for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
619        I != E; ++I)
620     if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
621       InlinedLPads.insert(II->getLandingPadInst());
622 
623   // Append the clauses from the outer landing pad instruction into the inlined
624   // landing pad instructions.
625   LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
626   for (LandingPadInst *InlinedLPad : InlinedLPads) {
627     unsigned OuterNum = OuterLPad->getNumClauses();
628     InlinedLPad->reserveClauses(OuterNum);
629     for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
630       InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
631     if (OuterLPad->isCleanup())
632       InlinedLPad->setCleanup(true);
633   }
634 
635   for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
636        BB != E; ++BB) {
637     if (InlinedCodeInfo.ContainsCalls)
638       if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
639               &*BB, Invoke.getOuterResumeDest()))
640         // Update any PHI nodes in the exceptional block to indicate that there
641         // is now a new entry in them.
642         Invoke.addIncomingPHIValuesFor(NewBB);
643 
644     // Forward any resumes that are remaining here.
645     if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
646       Invoke.forwardResume(RI, InlinedLPads);
647   }
648 
649   // Now that everything is happy, we have one final detail.  The PHI nodes in
650   // the exception destination block still have entries due to the original
651   // invoke instruction. Eliminate these entries (which might even delete the
652   // PHI node) now.
653   InvokeDest->removePredecessor(II->getParent());
654 }
655 
656 /// If we inlined an invoke site, we need to convert calls
657 /// in the body of the inlined function into invokes.
658 ///
659 /// II is the invoke instruction being inlined.  FirstNewBlock is the first
660 /// block of the inlined code (the last block is the end of the function),
661 /// and InlineCodeInfo is information about the code that got inlined.
662 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
663                                ClonedCodeInfo &InlinedCodeInfo) {
664   BasicBlock *UnwindDest = II->getUnwindDest();
665   Function *Caller = FirstNewBlock->getParent();
666 
667   assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");
668 
669   // If there are PHI nodes in the unwind destination block, we need to keep
670   // track of which values came into them from the invoke before removing the
671   // edge from this block.
672   SmallVector<Value *, 8> UnwindDestPHIValues;
673   BasicBlock *InvokeBB = II->getParent();
674   for (Instruction &I : *UnwindDest) {
675     // Save the value to use for this edge.
676     PHINode *PHI = dyn_cast<PHINode>(&I);
677     if (!PHI)
678       break;
679     UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
680   }
681 
682   // Add incoming-PHI values to the unwind destination block for the given basic
683   // block, using the values for the original invoke's source block.
684   auto UpdatePHINodes = [&](BasicBlock *Src) {
685     BasicBlock::iterator I = UnwindDest->begin();
686     for (Value *V : UnwindDestPHIValues) {
687       PHINode *PHI = cast<PHINode>(I);
688       PHI->addIncoming(V, Src);
689       ++I;
690     }
691   };
692 
693   // This connects all the instructions which 'unwind to caller' to the invoke
694   // destination.
695   UnwindDestMemoTy FuncletUnwindMap;
696   for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
697        BB != E; ++BB) {
698     if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
699       if (CRI->unwindsToCaller()) {
700         auto *CleanupPad = CRI->getCleanupPad();
701         CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
702         CRI->eraseFromParent();
703         UpdatePHINodes(&*BB);
704         // Finding a cleanupret with an unwind destination would confuse
705         // subsequent calls to getUnwindDestToken, so map the cleanuppad
706         // to short-circuit any such calls and recognize this as an "unwind
707         // to caller" cleanup.
708         assert(!FuncletUnwindMap.count(CleanupPad) ||
709                isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
710         FuncletUnwindMap[CleanupPad] =
711             ConstantTokenNone::get(Caller->getContext());
712       }
713     }
714 
715     Instruction *I = BB->getFirstNonPHI();
716     if (!I->isEHPad())
717       continue;
718 
719     Instruction *Replacement = nullptr;
720     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
721       if (CatchSwitch->unwindsToCaller()) {
722         Value *UnwindDestToken;
723         if (auto *ParentPad =
724                 dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
725           // This catchswitch is nested inside another funclet.  If that
726           // funclet has an unwind destination within the inlinee, then
727           // unwinding out of this catchswitch would be UB.  Rewriting this
728           // catchswitch to unwind to the inlined invoke's unwind dest would
729           // give the parent funclet multiple unwind destinations, which is
730           // something that subsequent EH table generation can't handle and
731           // that the veirifer rejects.  So when we see such a call, leave it
732           // as "unwind to caller".
733           UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
734           if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
735             continue;
736         } else {
737           // This catchswitch has no parent to inherit constraints from, and
738           // none of its descendants can have an unwind edge that exits it and
739           // targets another funclet in the inlinee.  It may or may not have a
740           // descendant that definitively has an unwind to caller.  In either
741           // case, we'll have to assume that any unwinds out of it may need to
742           // be routed to the caller, so treat it as though it has a definitive
743           // unwind to caller.
744           UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
745         }
746         auto *NewCatchSwitch = CatchSwitchInst::Create(
747             CatchSwitch->getParentPad(), UnwindDest,
748             CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
749             CatchSwitch);
750         for (BasicBlock *PadBB : CatchSwitch->handlers())
751           NewCatchSwitch->addHandler(PadBB);
752         // Propagate info for the old catchswitch over to the new one in
753         // the unwind map.  This also serves to short-circuit any subsequent
754         // checks for the unwind dest of this catchswitch, which would get
755         // confused if they found the outer handler in the callee.
756         FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
757         Replacement = NewCatchSwitch;
758       }
759     } else if (!isa<FuncletPadInst>(I)) {
760       llvm_unreachable("unexpected EHPad!");
761     }
762 
763     if (Replacement) {
764       Replacement->takeName(I);
765       I->replaceAllUsesWith(Replacement);
766       I->eraseFromParent();
767       UpdatePHINodes(&*BB);
768     }
769   }
770 
771   if (InlinedCodeInfo.ContainsCalls)
772     for (Function::iterator BB = FirstNewBlock->getIterator(),
773                             E = Caller->end();
774          BB != E; ++BB)
775       if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
776               &*BB, UnwindDest, &FuncletUnwindMap))
777         // Update any PHI nodes in the exceptional block to indicate that there
778         // is now a new entry in them.
779         UpdatePHINodes(NewBB);
780 
781   // Now that everything is happy, we have one final detail.  The PHI nodes in
782   // the exception destination block still have entries due to the original
783   // invoke instruction. Eliminate these entries (which might even delete the
784   // PHI node) now.
785   UnwindDest->removePredecessor(InvokeBB);
786 }
787 
788 /// When inlining a call site that has !llvm.mem.parallel_loop_access,
789 /// !llvm.access.group, !alias.scope or !noalias metadata, that metadata should
790 /// be propagated to all memory-accessing cloned instructions.
791 static void PropagateCallSiteMetadata(CallBase &CB, Function::iterator FStart,
792                                       Function::iterator FEnd) {
793   MDNode *MemParallelLoopAccess =
794       CB.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
795   MDNode *AccessGroup = CB.getMetadata(LLVMContext::MD_access_group);
796   MDNode *AliasScope = CB.getMetadata(LLVMContext::MD_alias_scope);
797   MDNode *NoAlias = CB.getMetadata(LLVMContext::MD_noalias);
798   if (!MemParallelLoopAccess && !AccessGroup && !AliasScope && !NoAlias)
799     return;
800 
801   for (BasicBlock &BB : make_range(FStart, FEnd)) {
802     for (Instruction &I : BB) {
803       // This metadata is only relevant for instructions that access memory.
804       if (!I.mayReadOrWriteMemory())
805         continue;
806 
807       if (MemParallelLoopAccess) {
808         // TODO: This probably should not overwrite MemParalleLoopAccess.
809         MemParallelLoopAccess = MDNode::concatenate(
810             I.getMetadata(LLVMContext::MD_mem_parallel_loop_access),
811             MemParallelLoopAccess);
812         I.setMetadata(LLVMContext::MD_mem_parallel_loop_access,
813                       MemParallelLoopAccess);
814       }
815 
816       if (AccessGroup)
817         I.setMetadata(LLVMContext::MD_access_group, uniteAccessGroups(
818             I.getMetadata(LLVMContext::MD_access_group), AccessGroup));
819 
820       if (AliasScope)
821         I.setMetadata(LLVMContext::MD_alias_scope, MDNode::concatenate(
822             I.getMetadata(LLVMContext::MD_alias_scope), AliasScope));
823 
824       if (NoAlias)
825         I.setMetadata(LLVMContext::MD_noalias, MDNode::concatenate(
826             I.getMetadata(LLVMContext::MD_noalias), NoAlias));
827     }
828   }
829 }
830 
831 namespace {
832 /// Utility for cloning !noalias and !alias.scope metadata. When a code region
833 /// using scoped alias metadata is inlined, the aliasing relationships may not
834 /// hold between the two version. It is necessary to create a deep clone of the
835 /// metadata, putting the two versions in separate scope domains.
836 class ScopedAliasMetadataDeepCloner {
837   using MetadataMap = DenseMap<const MDNode *, TrackingMDNodeRef>;
838   SetVector<const MDNode *> MD;
839   MetadataMap MDMap;
840   void addRecursiveMetadataUses();
841 
842 public:
843   ScopedAliasMetadataDeepCloner(const Function *F);
844 
845   /// Create a new clone of the scoped alias metadata, which will be used by
846   /// subsequent remap() calls.
847   void clone();
848 
849   /// Remap instructions in the given range from the original to the cloned
850   /// metadata.
851   void remap(Function::iterator FStart, Function::iterator FEnd);
852 };
853 } // namespace
854 
855 ScopedAliasMetadataDeepCloner::ScopedAliasMetadataDeepCloner(
856     const Function *F) {
857   for (const BasicBlock &BB : *F) {
858     for (const Instruction &I : BB) {
859       if (const MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope))
860         MD.insert(M);
861       if (const MDNode *M = I.getMetadata(LLVMContext::MD_noalias))
862         MD.insert(M);
863 
864       // We also need to clone the metadata in noalias intrinsics.
865       if (const auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
866         MD.insert(Decl->getScopeList());
867     }
868   }
869   addRecursiveMetadataUses();
870 }
871 
872 void ScopedAliasMetadataDeepCloner::addRecursiveMetadataUses() {
873   SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
874   while (!Queue.empty()) {
875     const MDNode *M = cast<MDNode>(Queue.pop_back_val());
876     for (const Metadata *Op : M->operands())
877       if (const MDNode *OpMD = dyn_cast<MDNode>(Op))
878         if (MD.insert(OpMD))
879           Queue.push_back(OpMD);
880   }
881 }
882 
883 void ScopedAliasMetadataDeepCloner::clone() {
884   assert(MDMap.empty() && "clone() already called ?");
885 
886   SmallVector<TempMDTuple, 16> DummyNodes;
887   for (const MDNode *I : MD) {
888     DummyNodes.push_back(MDTuple::getTemporary(I->getContext(), None));
889     MDMap[I].reset(DummyNodes.back().get());
890   }
891 
892   // Create new metadata nodes to replace the dummy nodes, replacing old
893   // metadata references with either a dummy node or an already-created new
894   // node.
895   SmallVector<Metadata *, 4> NewOps;
896   for (const MDNode *I : MD) {
897     for (const Metadata *Op : I->operands()) {
898       if (const MDNode *M = dyn_cast<MDNode>(Op))
899         NewOps.push_back(MDMap[M]);
900       else
901         NewOps.push_back(const_cast<Metadata *>(Op));
902     }
903 
904     MDNode *NewM = MDNode::get(I->getContext(), NewOps);
905     MDTuple *TempM = cast<MDTuple>(MDMap[I]);
906     assert(TempM->isTemporary() && "Expected temporary node");
907 
908     TempM->replaceAllUsesWith(NewM);
909     NewOps.clear();
910   }
911 }
912 
913 void ScopedAliasMetadataDeepCloner::remap(Function::iterator FStart,
914                                           Function::iterator FEnd) {
915   if (MDMap.empty())
916     return; // Nothing to do.
917 
918   for (BasicBlock &BB : make_range(FStart, FEnd)) {
919     for (Instruction &I : BB) {
920       // TODO: The null checks for the MDMap.lookup() results should no longer
921       // be necessary.
922       if (MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope))
923         if (MDNode *MNew = MDMap.lookup(M))
924           I.setMetadata(LLVMContext::MD_alias_scope, MNew);
925 
926       if (MDNode *M = I.getMetadata(LLVMContext::MD_noalias))
927         if (MDNode *MNew = MDMap.lookup(M))
928           I.setMetadata(LLVMContext::MD_noalias, MNew);
929 
930       if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
931         if (MDNode *MNew = MDMap.lookup(Decl->getScopeList()))
932           Decl->setScopeList(MNew);
933     }
934   }
935 }
936 
937 /// If the inlined function has noalias arguments,
938 /// then add new alias scopes for each noalias argument, tag the mapped noalias
939 /// parameters with noalias metadata specifying the new scope, and tag all
940 /// non-derived loads, stores and memory intrinsics with the new alias scopes.
941 static void AddAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap,
942                                   const DataLayout &DL, AAResults *CalleeAAR,
943                                   ClonedCodeInfo &InlinedFunctionInfo) {
944   if (!EnableNoAliasConversion)
945     return;
946 
947   const Function *CalledFunc = CB.getCalledFunction();
948   SmallVector<const Argument *, 4> NoAliasArgs;
949 
950   for (const Argument &Arg : CalledFunc->args())
951     if (CB.paramHasAttr(Arg.getArgNo(), Attribute::NoAlias) && !Arg.use_empty())
952       NoAliasArgs.push_back(&Arg);
953 
954   if (NoAliasArgs.empty())
955     return;
956 
957   // To do a good job, if a noalias variable is captured, we need to know if
958   // the capture point dominates the particular use we're considering.
959   DominatorTree DT;
960   DT.recalculate(const_cast<Function&>(*CalledFunc));
961 
962   // noalias indicates that pointer values based on the argument do not alias
963   // pointer values which are not based on it. So we add a new "scope" for each
964   // noalias function argument. Accesses using pointers based on that argument
965   // become part of that alias scope, accesses using pointers not based on that
966   // argument are tagged as noalias with that scope.
967 
968   DenseMap<const Argument *, MDNode *> NewScopes;
969   MDBuilder MDB(CalledFunc->getContext());
970 
971   // Create a new scope domain for this function.
972   MDNode *NewDomain =
973     MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
974   for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
975     const Argument *A = NoAliasArgs[i];
976 
977     std::string Name = std::string(CalledFunc->getName());
978     if (A->hasName()) {
979       Name += ": %";
980       Name += A->getName();
981     } else {
982       Name += ": argument ";
983       Name += utostr(i);
984     }
985 
986     // Note: We always create a new anonymous root here. This is true regardless
987     // of the linkage of the callee because the aliasing "scope" is not just a
988     // property of the callee, but also all control dependencies in the caller.
989     MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
990     NewScopes.insert(std::make_pair(A, NewScope));
991 
992     if (UseNoAliasIntrinsic) {
993       // Introduce a llvm.experimental.noalias.scope.decl for the noalias
994       // argument.
995       MDNode *AScopeList = MDNode::get(CalledFunc->getContext(), NewScope);
996       auto *NoAliasDecl =
997           IRBuilder<>(&CB).CreateNoAliasScopeDeclaration(AScopeList);
998       // Ignore the result for now. The result will be used when the
999       // llvm.noalias intrinsic is introduced.
1000       (void)NoAliasDecl;
1001     }
1002   }
1003 
1004   // Iterate over all new instructions in the map; for all memory-access
1005   // instructions, add the alias scope metadata.
1006   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
1007        VMI != VMIE; ++VMI) {
1008     if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
1009       if (!VMI->second)
1010         continue;
1011 
1012       Instruction *NI = dyn_cast<Instruction>(VMI->second);
1013       if (!NI || InlinedFunctionInfo.isSimplified(I, NI))
1014         continue;
1015 
1016       bool IsArgMemOnlyCall = false, IsFuncCall = false;
1017       SmallVector<const Value *, 2> PtrArgs;
1018 
1019       if (const LoadInst *LI = dyn_cast<LoadInst>(I))
1020         PtrArgs.push_back(LI->getPointerOperand());
1021       else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
1022         PtrArgs.push_back(SI->getPointerOperand());
1023       else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
1024         PtrArgs.push_back(VAAI->getPointerOperand());
1025       else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
1026         PtrArgs.push_back(CXI->getPointerOperand());
1027       else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
1028         PtrArgs.push_back(RMWI->getPointerOperand());
1029       else if (const auto *Call = dyn_cast<CallBase>(I)) {
1030         // If we know that the call does not access memory, then we'll still
1031         // know that about the inlined clone of this call site, and we don't
1032         // need to add metadata.
1033         if (Call->doesNotAccessMemory())
1034           continue;
1035 
1036         IsFuncCall = true;
1037         if (CalleeAAR) {
1038           FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call);
1039 
1040           // We'll retain this knowledge without additional metadata.
1041           if (AAResults::onlyAccessesInaccessibleMem(MRB))
1042             continue;
1043 
1044           if (AAResults::onlyAccessesArgPointees(MRB))
1045             IsArgMemOnlyCall = true;
1046         }
1047 
1048         for (Value *Arg : Call->args()) {
1049           // We need to check the underlying objects of all arguments, not just
1050           // the pointer arguments, because we might be passing pointers as
1051           // integers, etc.
1052           // However, if we know that the call only accesses pointer arguments,
1053           // then we only need to check the pointer arguments.
1054           if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy())
1055             continue;
1056 
1057           PtrArgs.push_back(Arg);
1058         }
1059       }
1060 
1061       // If we found no pointers, then this instruction is not suitable for
1062       // pairing with an instruction to receive aliasing metadata.
1063       // However, if this is a call, this we might just alias with none of the
1064       // noalias arguments.
1065       if (PtrArgs.empty() && !IsFuncCall)
1066         continue;
1067 
1068       // It is possible that there is only one underlying object, but you
1069       // need to go through several PHIs to see it, and thus could be
1070       // repeated in the Objects list.
1071       SmallPtrSet<const Value *, 4> ObjSet;
1072       SmallVector<Metadata *, 4> Scopes, NoAliases;
1073 
1074       SmallSetVector<const Argument *, 4> NAPtrArgs;
1075       for (const Value *V : PtrArgs) {
1076         SmallVector<const Value *, 4> Objects;
1077         getUnderlyingObjects(V, Objects, /* LI = */ nullptr);
1078 
1079         for (const Value *O : Objects)
1080           ObjSet.insert(O);
1081       }
1082 
1083       // Figure out if we're derived from anything that is not a noalias
1084       // argument.
1085       bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
1086       for (const Value *V : ObjSet) {
1087         // Is this value a constant that cannot be derived from any pointer
1088         // value (we need to exclude constant expressions, for example, that
1089         // are formed from arithmetic on global symbols).
1090         bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
1091                              isa<ConstantPointerNull>(V) ||
1092                              isa<ConstantDataVector>(V) || isa<UndefValue>(V);
1093         if (IsNonPtrConst)
1094           continue;
1095 
1096         // If this is anything other than a noalias argument, then we cannot
1097         // completely describe the aliasing properties using alias.scope
1098         // metadata (and, thus, won't add any).
1099         if (const Argument *A = dyn_cast<Argument>(V)) {
1100           if (!CB.paramHasAttr(A->getArgNo(), Attribute::NoAlias))
1101             UsesAliasingPtr = true;
1102         } else {
1103           UsesAliasingPtr = true;
1104         }
1105 
1106         // If this is not some identified function-local object (which cannot
1107         // directly alias a noalias argument), or some other argument (which,
1108         // by definition, also cannot alias a noalias argument), then we could
1109         // alias a noalias argument that has been captured).
1110         if (!isa<Argument>(V) &&
1111             !isIdentifiedFunctionLocal(const_cast<Value*>(V)))
1112           CanDeriveViaCapture = true;
1113       }
1114 
1115       // A function call can always get captured noalias pointers (via other
1116       // parameters, globals, etc.).
1117       if (IsFuncCall && !IsArgMemOnlyCall)
1118         CanDeriveViaCapture = true;
1119 
1120       // First, we want to figure out all of the sets with which we definitely
1121       // don't alias. Iterate over all noalias set, and add those for which:
1122       //   1. The noalias argument is not in the set of objects from which we
1123       //      definitely derive.
1124       //   2. The noalias argument has not yet been captured.
1125       // An arbitrary function that might load pointers could see captured
1126       // noalias arguments via other noalias arguments or globals, and so we
1127       // must always check for prior capture.
1128       for (const Argument *A : NoAliasArgs) {
1129         if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
1130                                  // It might be tempting to skip the
1131                                  // PointerMayBeCapturedBefore check if
1132                                  // A->hasNoCaptureAttr() is true, but this is
1133                                  // incorrect because nocapture only guarantees
1134                                  // that no copies outlive the function, not
1135                                  // that the value cannot be locally captured.
1136                                  !PointerMayBeCapturedBefore(A,
1137                                    /* ReturnCaptures */ false,
1138                                    /* StoreCaptures */ false, I, &DT)))
1139           NoAliases.push_back(NewScopes[A]);
1140       }
1141 
1142       if (!NoAliases.empty())
1143         NI->setMetadata(LLVMContext::MD_noalias,
1144                         MDNode::concatenate(
1145                             NI->getMetadata(LLVMContext::MD_noalias),
1146                             MDNode::get(CalledFunc->getContext(), NoAliases)));
1147 
1148       // Next, we want to figure out all of the sets to which we might belong.
1149       // We might belong to a set if the noalias argument is in the set of
1150       // underlying objects. If there is some non-noalias argument in our list
1151       // of underlying objects, then we cannot add a scope because the fact
1152       // that some access does not alias with any set of our noalias arguments
1153       // cannot itself guarantee that it does not alias with this access
1154       // (because there is some pointer of unknown origin involved and the
1155       // other access might also depend on this pointer). We also cannot add
1156       // scopes to arbitrary functions unless we know they don't access any
1157       // non-parameter pointer-values.
1158       bool CanAddScopes = !UsesAliasingPtr;
1159       if (CanAddScopes && IsFuncCall)
1160         CanAddScopes = IsArgMemOnlyCall;
1161 
1162       if (CanAddScopes)
1163         for (const Argument *A : NoAliasArgs) {
1164           if (ObjSet.count(A))
1165             Scopes.push_back(NewScopes[A]);
1166         }
1167 
1168       if (!Scopes.empty())
1169         NI->setMetadata(
1170             LLVMContext::MD_alias_scope,
1171             MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
1172                                 MDNode::get(CalledFunc->getContext(), Scopes)));
1173     }
1174   }
1175 }
1176 
1177 static bool MayContainThrowingOrExitingCall(Instruction *Begin,
1178                                             Instruction *End) {
1179 
1180   assert(Begin->getParent() == End->getParent() &&
1181          "Expected to be in same basic block!");
1182   return !llvm::isGuaranteedToTransferExecutionToSuccessor(
1183       Begin->getIterator(), End->getIterator(), InlinerAttributeWindow + 1);
1184 }
1185 
1186 static AttrBuilder IdentifyValidAttributes(CallBase &CB) {
1187 
1188   AttrBuilder AB(CB.getAttributes(), AttributeList::ReturnIndex);
1189   if (AB.empty())
1190     return AB;
1191   AttrBuilder Valid;
1192   // Only allow these white listed attributes to be propagated back to the
1193   // callee. This is because other attributes may only be valid on the call
1194   // itself, i.e. attributes such as signext and zeroext.
1195   if (auto DerefBytes = AB.getDereferenceableBytes())
1196     Valid.addDereferenceableAttr(DerefBytes);
1197   if (auto DerefOrNullBytes = AB.getDereferenceableOrNullBytes())
1198     Valid.addDereferenceableOrNullAttr(DerefOrNullBytes);
1199   if (AB.contains(Attribute::NoAlias))
1200     Valid.addAttribute(Attribute::NoAlias);
1201   if (AB.contains(Attribute::NonNull))
1202     Valid.addAttribute(Attribute::NonNull);
1203   return Valid;
1204 }
1205 
1206 static void AddReturnAttributes(CallBase &CB, ValueToValueMapTy &VMap) {
1207   if (!UpdateReturnAttributes)
1208     return;
1209 
1210   AttrBuilder Valid = IdentifyValidAttributes(CB);
1211   if (Valid.empty())
1212     return;
1213   auto *CalledFunction = CB.getCalledFunction();
1214   auto &Context = CalledFunction->getContext();
1215 
1216   for (auto &BB : *CalledFunction) {
1217     auto *RI = dyn_cast<ReturnInst>(BB.getTerminator());
1218     if (!RI || !isa<CallBase>(RI->getOperand(0)))
1219       continue;
1220     auto *RetVal = cast<CallBase>(RI->getOperand(0));
1221     // Sanity check that the cloned RetVal exists and is a call, otherwise we
1222     // cannot add the attributes on the cloned RetVal.
1223     // Simplification during inlining could have transformed the cloned
1224     // instruction.
1225     auto *NewRetVal = dyn_cast_or_null<CallBase>(VMap.lookup(RetVal));
1226     if (!NewRetVal)
1227       continue;
1228     // Backward propagation of attributes to the returned value may be incorrect
1229     // if it is control flow dependent.
1230     // Consider:
1231     // @callee {
1232     //  %rv = call @foo()
1233     //  %rv2 = call @bar()
1234     //  if (%rv2 != null)
1235     //    return %rv2
1236     //  if (%rv == null)
1237     //    exit()
1238     //  return %rv
1239     // }
1240     // caller() {
1241     //   %val = call nonnull @callee()
1242     // }
1243     // Here we cannot add the nonnull attribute on either foo or bar. So, we
1244     // limit the check to both RetVal and RI are in the same basic block and
1245     // there are no throwing/exiting instructions between these instructions.
1246     if (RI->getParent() != RetVal->getParent() ||
1247         MayContainThrowingOrExitingCall(RetVal, RI))
1248       continue;
1249     // Add to the existing attributes of NewRetVal, i.e. the cloned call
1250     // instruction.
1251     // NB! When we have the same attribute already existing on NewRetVal, but
1252     // with a differing value, the AttributeList's merge API honours the already
1253     // existing attribute value (i.e. attributes such as dereferenceable,
1254     // dereferenceable_or_null etc). See AttrBuilder::merge for more details.
1255     AttributeList AL = NewRetVal->getAttributes();
1256     AttributeList NewAL = AL.addRetAttributes(Context, Valid);
1257     NewRetVal->setAttributes(NewAL);
1258   }
1259 }
1260 
1261 /// If the inlined function has non-byval align arguments, then
1262 /// add @llvm.assume-based alignment assumptions to preserve this information.
1263 static void AddAlignmentAssumptions(CallBase &CB, InlineFunctionInfo &IFI) {
1264   if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache)
1265     return;
1266 
1267   AssumptionCache *AC = &IFI.GetAssumptionCache(*CB.getCaller());
1268   auto &DL = CB.getCaller()->getParent()->getDataLayout();
1269 
1270   // To avoid inserting redundant assumptions, we should check for assumptions
1271   // already in the caller. To do this, we might need a DT of the caller.
1272   DominatorTree DT;
1273   bool DTCalculated = false;
1274 
1275   Function *CalledFunc = CB.getCalledFunction();
1276   for (Argument &Arg : CalledFunc->args()) {
1277     unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0;
1278     if (Align && !Arg.hasPassPointeeByValueCopyAttr() && !Arg.hasNUses(0)) {
1279       if (!DTCalculated) {
1280         DT.recalculate(*CB.getCaller());
1281         DTCalculated = true;
1282       }
1283 
1284       // If we can already prove the asserted alignment in the context of the
1285       // caller, then don't bother inserting the assumption.
1286       Value *ArgVal = CB.getArgOperand(Arg.getArgNo());
1287       if (getKnownAlignment(ArgVal, DL, &CB, AC, &DT) >= Align)
1288         continue;
1289 
1290       CallInst *NewAsmp =
1291           IRBuilder<>(&CB).CreateAlignmentAssumption(DL, ArgVal, Align);
1292       AC->registerAssumption(cast<AssumeInst>(NewAsmp));
1293     }
1294   }
1295 }
1296 
1297 /// Once we have cloned code over from a callee into the caller,
1298 /// update the specified callgraph to reflect the changes we made.
1299 /// Note that it's possible that not all code was copied over, so only
1300 /// some edges of the callgraph may remain.
1301 static void UpdateCallGraphAfterInlining(CallBase &CB,
1302                                          Function::iterator FirstNewBlock,
1303                                          ValueToValueMapTy &VMap,
1304                                          InlineFunctionInfo &IFI) {
1305   CallGraph &CG = *IFI.CG;
1306   const Function *Caller = CB.getCaller();
1307   const Function *Callee = CB.getCalledFunction();
1308   CallGraphNode *CalleeNode = CG[Callee];
1309   CallGraphNode *CallerNode = CG[Caller];
1310 
1311   // Since we inlined some uninlined call sites in the callee into the caller,
1312   // add edges from the caller to all of the callees of the callee.
1313   CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
1314 
1315   // Consider the case where CalleeNode == CallerNode.
1316   CallGraphNode::CalledFunctionsVector CallCache;
1317   if (CalleeNode == CallerNode) {
1318     CallCache.assign(I, E);
1319     I = CallCache.begin();
1320     E = CallCache.end();
1321   }
1322 
1323   for (; I != E; ++I) {
1324     // Skip 'refererence' call records.
1325     if (!I->first)
1326       continue;
1327 
1328     const Value *OrigCall = *I->first;
1329 
1330     ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
1331     // Only copy the edge if the call was inlined!
1332     if (VMI == VMap.end() || VMI->second == nullptr)
1333       continue;
1334 
1335     // If the call was inlined, but then constant folded, there is no edge to
1336     // add.  Check for this case.
1337     auto *NewCall = dyn_cast<CallBase>(VMI->second);
1338     if (!NewCall)
1339       continue;
1340 
1341     // We do not treat intrinsic calls like real function calls because we
1342     // expect them to become inline code; do not add an edge for an intrinsic.
1343     if (NewCall->getCalledFunction() &&
1344         NewCall->getCalledFunction()->isIntrinsic())
1345       continue;
1346 
1347     // Remember that this call site got inlined for the client of
1348     // InlineFunction.
1349     IFI.InlinedCalls.push_back(NewCall);
1350 
1351     // It's possible that inlining the callsite will cause it to go from an
1352     // indirect to a direct call by resolving a function pointer.  If this
1353     // happens, set the callee of the new call site to a more precise
1354     // destination.  This can also happen if the call graph node of the caller
1355     // was just unnecessarily imprecise.
1356     if (!I->second->getFunction())
1357       if (Function *F = NewCall->getCalledFunction()) {
1358         // Indirect call site resolved to direct call.
1359         CallerNode->addCalledFunction(NewCall, CG[F]);
1360 
1361         continue;
1362       }
1363 
1364     CallerNode->addCalledFunction(NewCall, I->second);
1365   }
1366 
1367   // Update the call graph by deleting the edge from Callee to Caller.  We must
1368   // do this after the loop above in case Caller and Callee are the same.
1369   CallerNode->removeCallEdgeFor(*cast<CallBase>(&CB));
1370 }
1371 
1372 static void HandleByValArgumentInit(Type *ByValType, Value *Dst, Value *Src,
1373                                     Module *M, BasicBlock *InsertBlock,
1374                                     InlineFunctionInfo &IFI) {
1375   IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
1376 
1377   Value *Size =
1378       Builder.getInt64(M->getDataLayout().getTypeStoreSize(ByValType));
1379 
1380   // Always generate a memcpy of alignment 1 here because we don't know
1381   // the alignment of the src pointer.  Other optimizations can infer
1382   // better alignment.
1383   Builder.CreateMemCpy(Dst, /*DstAlign*/ Align(1), Src,
1384                        /*SrcAlign*/ Align(1), Size);
1385 }
1386 
1387 /// When inlining a call site that has a byval argument,
1388 /// we have to make the implicit memcpy explicit by adding it.
1389 static Value *HandleByValArgument(Type *ByValType, Value *Arg,
1390                                   Instruction *TheCall,
1391                                   const Function *CalledFunc,
1392                                   InlineFunctionInfo &IFI,
1393                                   unsigned ByValAlignment) {
1394   assert(cast<PointerType>(Arg->getType())
1395              ->isOpaqueOrPointeeTypeMatches(ByValType));
1396   Function *Caller = TheCall->getFunction();
1397   const DataLayout &DL = Caller->getParent()->getDataLayout();
1398 
1399   // If the called function is readonly, then it could not mutate the caller's
1400   // copy of the byval'd memory.  In this case, it is safe to elide the copy and
1401   // temporary.
1402   if (CalledFunc->onlyReadsMemory()) {
1403     // If the byval argument has a specified alignment that is greater than the
1404     // passed in pointer, then we either have to round up the input pointer or
1405     // give up on this transformation.
1406     if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
1407       return Arg;
1408 
1409     AssumptionCache *AC =
1410         IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
1411 
1412     // If the pointer is already known to be sufficiently aligned, or if we can
1413     // round it up to a larger alignment, then we don't need a temporary.
1414     if (getOrEnforceKnownAlignment(Arg, Align(ByValAlignment), DL, TheCall,
1415                                    AC) >= ByValAlignment)
1416       return Arg;
1417 
1418     // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
1419     // for code quality, but rarely happens and is required for correctness.
1420   }
1421 
1422   // Create the alloca.  If we have DataLayout, use nice alignment.
1423   Align Alignment(DL.getPrefTypeAlignment(ByValType));
1424 
1425   // If the byval had an alignment specified, we *must* use at least that
1426   // alignment, as it is required by the byval argument (and uses of the
1427   // pointer inside the callee).
1428   Alignment = max(Alignment, MaybeAlign(ByValAlignment));
1429 
1430   Value *NewAlloca =
1431       new AllocaInst(ByValType, DL.getAllocaAddrSpace(), nullptr, Alignment,
1432                      Arg->getName(), &*Caller->begin()->begin());
1433   IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
1434 
1435   // Uses of the argument in the function should use our new alloca
1436   // instead.
1437   return NewAlloca;
1438 }
1439 
1440 // Check whether this Value is used by a lifetime intrinsic.
1441 static bool isUsedByLifetimeMarker(Value *V) {
1442   for (User *U : V->users())
1443     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U))
1444       if (II->isLifetimeStartOrEnd())
1445         return true;
1446   return false;
1447 }
1448 
1449 // Check whether the given alloca already has
1450 // lifetime.start or lifetime.end intrinsics.
1451 static bool hasLifetimeMarkers(AllocaInst *AI) {
1452   Type *Ty = AI->getType();
1453   Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
1454                                        Ty->getPointerAddressSpace());
1455   if (Ty == Int8PtrTy)
1456     return isUsedByLifetimeMarker(AI);
1457 
1458   // Do a scan to find all the casts to i8*.
1459   for (User *U : AI->users()) {
1460     if (U->getType() != Int8PtrTy) continue;
1461     if (U->stripPointerCasts() != AI) continue;
1462     if (isUsedByLifetimeMarker(U))
1463       return true;
1464   }
1465   return false;
1466 }
1467 
1468 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry
1469 /// block. Allocas used in inalloca calls and allocas of dynamic array size
1470 /// cannot be static.
1471 static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) {
1472   return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca();
1473 }
1474 
1475 /// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL
1476 /// inlined at \p InlinedAt. \p IANodes is an inlined-at cache.
1477 static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt,
1478                                LLVMContext &Ctx,
1479                                DenseMap<const MDNode *, MDNode *> &IANodes) {
1480   auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes);
1481   return DILocation::get(Ctx, OrigDL.getLine(), OrigDL.getCol(),
1482                          OrigDL.getScope(), IA);
1483 }
1484 
1485 /// Update inlined instructions' line numbers to
1486 /// to encode location where these instructions are inlined.
1487 static void fixupLineNumbers(Function *Fn, Function::iterator FI,
1488                              Instruction *TheCall, bool CalleeHasDebugInfo) {
1489   const DebugLoc &TheCallDL = TheCall->getDebugLoc();
1490   if (!TheCallDL)
1491     return;
1492 
1493   auto &Ctx = Fn->getContext();
1494   DILocation *InlinedAtNode = TheCallDL;
1495 
1496   // Create a unique call site, not to be confused with any other call from the
1497   // same location.
1498   InlinedAtNode = DILocation::getDistinct(
1499       Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
1500       InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
1501 
1502   // Cache the inlined-at nodes as they're built so they are reused, without
1503   // this every instruction's inlined-at chain would become distinct from each
1504   // other.
1505   DenseMap<const MDNode *, MDNode *> IANodes;
1506 
1507   // Check if we are not generating inline line tables and want to use
1508   // the call site location instead.
1509   bool NoInlineLineTables = Fn->hasFnAttribute("no-inline-line-tables");
1510 
1511   for (; FI != Fn->end(); ++FI) {
1512     for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
1513          BI != BE; ++BI) {
1514       // Loop metadata needs to be updated so that the start and end locs
1515       // reference inlined-at locations.
1516       auto updateLoopInfoLoc = [&Ctx, &InlinedAtNode,
1517                                 &IANodes](Metadata *MD) -> Metadata * {
1518         if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
1519           return inlineDebugLoc(Loc, InlinedAtNode, Ctx, IANodes).get();
1520         return MD;
1521       };
1522       updateLoopMetadataDebugLocations(*BI, updateLoopInfoLoc);
1523 
1524       if (!NoInlineLineTables)
1525         if (DebugLoc DL = BI->getDebugLoc()) {
1526           DebugLoc IDL =
1527               inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes);
1528           BI->setDebugLoc(IDL);
1529           continue;
1530         }
1531 
1532       if (CalleeHasDebugInfo && !NoInlineLineTables)
1533         continue;
1534 
1535       // If the inlined instruction has no line number, or if inline info
1536       // is not being generated, make it look as if it originates from the call
1537       // location. This is important for ((__always_inline, __nodebug__))
1538       // functions which must use caller location for all instructions in their
1539       // function body.
1540 
1541       // Don't update static allocas, as they may get moved later.
1542       if (auto *AI = dyn_cast<AllocaInst>(BI))
1543         if (allocaWouldBeStaticInEntry(AI))
1544           continue;
1545 
1546       BI->setDebugLoc(TheCallDL);
1547     }
1548 
1549     // Remove debug info intrinsics if we're not keeping inline info.
1550     if (NoInlineLineTables) {
1551       BasicBlock::iterator BI = FI->begin();
1552       while (BI != FI->end()) {
1553         if (isa<DbgInfoIntrinsic>(BI)) {
1554           BI = BI->eraseFromParent();
1555           continue;
1556         }
1557         ++BI;
1558       }
1559     }
1560 
1561   }
1562 }
1563 
1564 /// Update the block frequencies of the caller after a callee has been inlined.
1565 ///
1566 /// Each block cloned into the caller has its block frequency scaled by the
1567 /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of
1568 /// callee's entry block gets the same frequency as the callsite block and the
1569 /// relative frequencies of all cloned blocks remain the same after cloning.
1570 static void updateCallerBFI(BasicBlock *CallSiteBlock,
1571                             const ValueToValueMapTy &VMap,
1572                             BlockFrequencyInfo *CallerBFI,
1573                             BlockFrequencyInfo *CalleeBFI,
1574                             const BasicBlock &CalleeEntryBlock) {
1575   SmallPtrSet<BasicBlock *, 16> ClonedBBs;
1576   for (auto Entry : VMap) {
1577     if (!isa<BasicBlock>(Entry.first) || !Entry.second)
1578       continue;
1579     auto *OrigBB = cast<BasicBlock>(Entry.first);
1580     auto *ClonedBB = cast<BasicBlock>(Entry.second);
1581     uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency();
1582     if (!ClonedBBs.insert(ClonedBB).second) {
1583       // Multiple blocks in the callee might get mapped to one cloned block in
1584       // the caller since we prune the callee as we clone it. When that happens,
1585       // we want to use the maximum among the original blocks' frequencies.
1586       uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency();
1587       if (NewFreq > Freq)
1588         Freq = NewFreq;
1589     }
1590     CallerBFI->setBlockFreq(ClonedBB, Freq);
1591   }
1592   BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock));
1593   CallerBFI->setBlockFreqAndScale(
1594       EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(),
1595       ClonedBBs);
1596 }
1597 
1598 /// Update the branch metadata for cloned call instructions.
1599 static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap,
1600                               const ProfileCount &CalleeEntryCount,
1601                               const CallBase &TheCall, ProfileSummaryInfo *PSI,
1602                               BlockFrequencyInfo *CallerBFI) {
1603   if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() ||
1604       CalleeEntryCount.getCount() < 1)
1605     return;
1606   auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None;
1607   int64_t CallCount =
1608       std::min(CallSiteCount.getValueOr(0), CalleeEntryCount.getCount());
1609   updateProfileCallee(Callee, -CallCount, &VMap);
1610 }
1611 
1612 void llvm::updateProfileCallee(
1613     Function *Callee, int64_t entryDelta,
1614     const ValueMap<const Value *, WeakTrackingVH> *VMap) {
1615   auto CalleeCount = Callee->getEntryCount();
1616   if (!CalleeCount.hasValue())
1617     return;
1618 
1619   uint64_t priorEntryCount = CalleeCount.getCount();
1620   uint64_t newEntryCount;
1621 
1622   // Since CallSiteCount is an estimate, it could exceed the original callee
1623   // count and has to be set to 0 so guard against underflow.
1624   if (entryDelta < 0 && static_cast<uint64_t>(-entryDelta) > priorEntryCount)
1625     newEntryCount = 0;
1626   else
1627     newEntryCount = priorEntryCount + entryDelta;
1628 
1629   // During inlining ?
1630   if (VMap) {
1631     uint64_t cloneEntryCount = priorEntryCount - newEntryCount;
1632     for (auto Entry : *VMap)
1633       if (isa<CallInst>(Entry.first))
1634         if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second))
1635           CI->updateProfWeight(cloneEntryCount, priorEntryCount);
1636   }
1637 
1638   if (entryDelta) {
1639     Callee->setEntryCount(newEntryCount);
1640 
1641     for (BasicBlock &BB : *Callee)
1642       // No need to update the callsite if it is pruned during inlining.
1643       if (!VMap || VMap->count(&BB))
1644         for (Instruction &I : BB)
1645           if (CallInst *CI = dyn_cast<CallInst>(&I))
1646             CI->updateProfWeight(newEntryCount, priorEntryCount);
1647   }
1648 }
1649 
1650 /// An operand bundle "clang.arc.attachedcall" on a call indicates the call
1651 /// result is implicitly consumed by a call to retainRV or claimRV immediately
1652 /// after the call. This function inlines the retainRV/claimRV calls.
1653 ///
1654 /// There are three cases to consider:
1655 ///
1656 /// 1. If there is a call to autoreleaseRV that takes a pointer to the returned
1657 ///    object in the callee return block, the autoreleaseRV call and the
1658 ///    retainRV/claimRV call in the caller cancel out. If the call in the caller
1659 ///    is a claimRV call, a call to objc_release is emitted.
1660 ///
1661 /// 2. If there is a call in the callee return block that doesn't have operand
1662 ///    bundle "clang.arc.attachedcall", the operand bundle on the original call
1663 ///    is transferred to the call in the callee.
1664 ///
1665 /// 3. Otherwise, a call to objc_retain is inserted if the call in the caller is
1666 ///    a retainRV call.
1667 static void
1668 inlineRetainOrClaimRVCalls(CallBase &CB, objcarc::ARCInstKind RVCallKind,
1669                            const SmallVectorImpl<ReturnInst *> &Returns) {
1670   Module *Mod = CB.getModule();
1671   assert(objcarc::isRetainOrClaimRV(RVCallKind) && "unexpected ARC function");
1672   bool IsRetainRV = RVCallKind == objcarc::ARCInstKind::RetainRV,
1673        IsClaimRV = !IsRetainRV;
1674 
1675   for (auto *RI : Returns) {
1676     Value *RetOpnd = objcarc::GetRCIdentityRoot(RI->getOperand(0));
1677     bool InsertRetainCall = IsRetainRV;
1678     IRBuilder<> Builder(RI->getContext());
1679 
1680     // Walk backwards through the basic block looking for either a matching
1681     // autoreleaseRV call or an unannotated call.
1682     auto InstRange = llvm::make_range(++(RI->getIterator().getReverse()),
1683                                       RI->getParent()->rend());
1684     for (Instruction &I : llvm::make_early_inc_range(InstRange)) {
1685       // Ignore casts.
1686       if (isa<CastInst>(I))
1687         continue;
1688 
1689       if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
1690         if (II->getIntrinsicID() != Intrinsic::objc_autoreleaseReturnValue ||
1691             !II->hasNUses(0) ||
1692             objcarc::GetRCIdentityRoot(II->getOperand(0)) != RetOpnd)
1693           break;
1694 
1695         // If we've found a matching authoreleaseRV call:
1696         // - If claimRV is attached to the call, insert a call to objc_release
1697         //   and erase the autoreleaseRV call.
1698         // - If retainRV is attached to the call, just erase the autoreleaseRV
1699         //   call.
1700         if (IsClaimRV) {
1701           Builder.SetInsertPoint(II);
1702           Function *IFn =
1703               Intrinsic::getDeclaration(Mod, Intrinsic::objc_release);
1704           Value *BC = Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType());
1705           Builder.CreateCall(IFn, BC, "");
1706         }
1707         II->eraseFromParent();
1708         InsertRetainCall = false;
1709         break;
1710       }
1711 
1712       auto *CI = dyn_cast<CallInst>(&I);
1713 
1714       if (!CI)
1715         break;
1716 
1717       if (objcarc::GetRCIdentityRoot(CI) != RetOpnd ||
1718           objcarc::hasAttachedCallOpBundle(CI))
1719         break;
1720 
1721       // If we've found an unannotated call that defines RetOpnd, add a
1722       // "clang.arc.attachedcall" operand bundle.
1723       Value *BundleArgs[] = {*objcarc::getAttachedARCFunction(&CB)};
1724       OperandBundleDef OB("clang.arc.attachedcall", BundleArgs);
1725       auto *NewCall = CallBase::addOperandBundle(
1726           CI, LLVMContext::OB_clang_arc_attachedcall, OB, CI);
1727       NewCall->copyMetadata(*CI);
1728       CI->replaceAllUsesWith(NewCall);
1729       CI->eraseFromParent();
1730       InsertRetainCall = false;
1731       break;
1732     }
1733 
1734     if (InsertRetainCall) {
1735       // The retainRV is attached to the call and we've failed to find a
1736       // matching autoreleaseRV or an annotated call in the callee. Emit a call
1737       // to objc_retain.
1738       Builder.SetInsertPoint(RI);
1739       Function *IFn = Intrinsic::getDeclaration(Mod, Intrinsic::objc_retain);
1740       Value *BC = Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType());
1741       Builder.CreateCall(IFn, BC, "");
1742     }
1743   }
1744 }
1745 
1746 /// This function inlines the called function into the basic block of the
1747 /// caller. This returns false if it is not possible to inline this call.
1748 /// The program is still in a well defined state if this occurs though.
1749 ///
1750 /// Note that this only does one level of inlining.  For example, if the
1751 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
1752 /// exists in the instruction stream.  Similarly this will inline a recursive
1753 /// function by one level.
1754 llvm::InlineResult llvm::InlineFunction(CallBase &CB, InlineFunctionInfo &IFI,
1755                                         AAResults *CalleeAAR,
1756                                         bool InsertLifetime,
1757                                         Function *ForwardVarArgsTo) {
1758   assert(CB.getParent() && CB.getFunction() && "Instruction not in function!");
1759 
1760   // FIXME: we don't inline callbr yet.
1761   if (isa<CallBrInst>(CB))
1762     return InlineResult::failure("We don't inline callbr yet.");
1763 
1764   // If IFI has any state in it, zap it before we fill it in.
1765   IFI.reset();
1766 
1767   Function *CalledFunc = CB.getCalledFunction();
1768   if (!CalledFunc ||               // Can't inline external function or indirect
1769       CalledFunc->isDeclaration()) // call!
1770     return InlineResult::failure("external or indirect");
1771 
1772   // The inliner does not know how to inline through calls with operand bundles
1773   // in general ...
1774   if (CB.hasOperandBundles()) {
1775     for (int i = 0, e = CB.getNumOperandBundles(); i != e; ++i) {
1776       uint32_t Tag = CB.getOperandBundleAt(i).getTagID();
1777       // ... but it knows how to inline through "deopt" operand bundles ...
1778       if (Tag == LLVMContext::OB_deopt)
1779         continue;
1780       // ... and "funclet" operand bundles.
1781       if (Tag == LLVMContext::OB_funclet)
1782         continue;
1783       if (Tag == LLVMContext::OB_clang_arc_attachedcall)
1784         continue;
1785 
1786       return InlineResult::failure("unsupported operand bundle");
1787     }
1788   }
1789 
1790   // If the call to the callee cannot throw, set the 'nounwind' flag on any
1791   // calls that we inline.
1792   bool MarkNoUnwind = CB.doesNotThrow();
1793 
1794   BasicBlock *OrigBB = CB.getParent();
1795   Function *Caller = OrigBB->getParent();
1796 
1797   // GC poses two hazards to inlining, which only occur when the callee has GC:
1798   //  1. If the caller has no GC, then the callee's GC must be propagated to the
1799   //     caller.
1800   //  2. If the caller has a differing GC, it is invalid to inline.
1801   if (CalledFunc->hasGC()) {
1802     if (!Caller->hasGC())
1803       Caller->setGC(CalledFunc->getGC());
1804     else if (CalledFunc->getGC() != Caller->getGC())
1805       return InlineResult::failure("incompatible GC");
1806   }
1807 
1808   // Get the personality function from the callee if it contains a landing pad.
1809   Constant *CalledPersonality =
1810       CalledFunc->hasPersonalityFn()
1811           ? CalledFunc->getPersonalityFn()->stripPointerCasts()
1812           : nullptr;
1813 
1814   // Find the personality function used by the landing pads of the caller. If it
1815   // exists, then check to see that it matches the personality function used in
1816   // the callee.
1817   Constant *CallerPersonality =
1818       Caller->hasPersonalityFn()
1819           ? Caller->getPersonalityFn()->stripPointerCasts()
1820           : nullptr;
1821   if (CalledPersonality) {
1822     if (!CallerPersonality)
1823       Caller->setPersonalityFn(CalledPersonality);
1824     // If the personality functions match, then we can perform the
1825     // inlining. Otherwise, we can't inline.
1826     // TODO: This isn't 100% true. Some personality functions are proper
1827     //       supersets of others and can be used in place of the other.
1828     else if (CalledPersonality != CallerPersonality)
1829       return InlineResult::failure("incompatible personality");
1830   }
1831 
1832   // We need to figure out which funclet the callsite was in so that we may
1833   // properly nest the callee.
1834   Instruction *CallSiteEHPad = nullptr;
1835   if (CallerPersonality) {
1836     EHPersonality Personality = classifyEHPersonality(CallerPersonality);
1837     if (isScopedEHPersonality(Personality)) {
1838       Optional<OperandBundleUse> ParentFunclet =
1839           CB.getOperandBundle(LLVMContext::OB_funclet);
1840       if (ParentFunclet)
1841         CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
1842 
1843       // OK, the inlining site is legal.  What about the target function?
1844 
1845       if (CallSiteEHPad) {
1846         if (Personality == EHPersonality::MSVC_CXX) {
1847           // The MSVC personality cannot tolerate catches getting inlined into
1848           // cleanup funclets.
1849           if (isa<CleanupPadInst>(CallSiteEHPad)) {
1850             // Ok, the call site is within a cleanuppad.  Let's check the callee
1851             // for catchpads.
1852             for (const BasicBlock &CalledBB : *CalledFunc) {
1853               if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
1854                 return InlineResult::failure("catch in cleanup funclet");
1855             }
1856           }
1857         } else if (isAsynchronousEHPersonality(Personality)) {
1858           // SEH is even less tolerant, there may not be any sort of exceptional
1859           // funclet in the callee.
1860           for (const BasicBlock &CalledBB : *CalledFunc) {
1861             if (CalledBB.isEHPad())
1862               return InlineResult::failure("SEH in cleanup funclet");
1863           }
1864         }
1865       }
1866     }
1867   }
1868 
1869   // Determine if we are dealing with a call in an EHPad which does not unwind
1870   // to caller.
1871   bool EHPadForCallUnwindsLocally = false;
1872   if (CallSiteEHPad && isa<CallInst>(CB)) {
1873     UnwindDestMemoTy FuncletUnwindMap;
1874     Value *CallSiteUnwindDestToken =
1875         getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap);
1876 
1877     EHPadForCallUnwindsLocally =
1878         CallSiteUnwindDestToken &&
1879         !isa<ConstantTokenNone>(CallSiteUnwindDestToken);
1880   }
1881 
1882   // Get an iterator to the last basic block in the function, which will have
1883   // the new function inlined after it.
1884   Function::iterator LastBlock = --Caller->end();
1885 
1886   // Make sure to capture all of the return instructions from the cloned
1887   // function.
1888   SmallVector<ReturnInst*, 8> Returns;
1889   ClonedCodeInfo InlinedFunctionInfo;
1890   Function::iterator FirstNewBlock;
1891 
1892   { // Scope to destroy VMap after cloning.
1893     ValueToValueMapTy VMap;
1894     struct ByValInit {
1895       Value *Dst;
1896       Value *Src;
1897       Type *Ty;
1898     };
1899     // Keep a list of pair (dst, src) to emit byval initializations.
1900     SmallVector<ByValInit, 4> ByValInits;
1901 
1902     // When inlining a function that contains noalias scope metadata,
1903     // this metadata needs to be cloned so that the inlined blocks
1904     // have different "unique scopes" at every call site.
1905     // Track the metadata that must be cloned. Do this before other changes to
1906     // the function, so that we do not get in trouble when inlining caller ==
1907     // callee.
1908     ScopedAliasMetadataDeepCloner SAMetadataCloner(CB.getCalledFunction());
1909 
1910     auto &DL = Caller->getParent()->getDataLayout();
1911 
1912     // Calculate the vector of arguments to pass into the function cloner, which
1913     // matches up the formal to the actual argument values.
1914     auto AI = CB.arg_begin();
1915     unsigned ArgNo = 0;
1916     for (Function::arg_iterator I = CalledFunc->arg_begin(),
1917          E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
1918       Value *ActualArg = *AI;
1919 
1920       // When byval arguments actually inlined, we need to make the copy implied
1921       // by them explicit.  However, we don't do this if the callee is readonly
1922       // or readnone, because the copy would be unneeded: the callee doesn't
1923       // modify the struct.
1924       if (CB.isByValArgument(ArgNo)) {
1925         ActualArg = HandleByValArgument(CB.getParamByValType(ArgNo), ActualArg,
1926                                         &CB, CalledFunc, IFI,
1927                                         CalledFunc->getParamAlignment(ArgNo));
1928         if (ActualArg != *AI)
1929           ByValInits.push_back(
1930               {ActualArg, (Value *)*AI, CB.getParamByValType(ArgNo)});
1931       }
1932 
1933       VMap[&*I] = ActualArg;
1934     }
1935 
1936     // TODO: Remove this when users have been updated to the assume bundles.
1937     // Add alignment assumptions if necessary. We do this before the inlined
1938     // instructions are actually cloned into the caller so that we can easily
1939     // check what will be known at the start of the inlined code.
1940     AddAlignmentAssumptions(CB, IFI);
1941 
1942     AssumptionCache *AC =
1943         IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
1944 
1945     /// Preserve all attributes on of the call and its parameters.
1946     salvageKnowledge(&CB, AC);
1947 
1948     // We want the inliner to prune the code as it copies.  We would LOVE to
1949     // have no dead or constant instructions leftover after inlining occurs
1950     // (which can happen, e.g., because an argument was constant), but we'll be
1951     // happy with whatever the cloner can do.
1952     CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
1953                               /*ModuleLevelChanges=*/false, Returns, ".i",
1954                               &InlinedFunctionInfo);
1955     // Remember the first block that is newly cloned over.
1956     FirstNewBlock = LastBlock; ++FirstNewBlock;
1957 
1958     // Insert retainRV/clainRV runtime calls.
1959     objcarc::ARCInstKind RVCallKind = objcarc::getAttachedARCFunctionKind(&CB);
1960     if (RVCallKind != objcarc::ARCInstKind::None)
1961       inlineRetainOrClaimRVCalls(CB, RVCallKind, Returns);
1962 
1963     // Updated caller/callee profiles only when requested. For sample loader
1964     // inlining, the context-sensitive inlinee profile doesn't need to be
1965     // subtracted from callee profile, and the inlined clone also doesn't need
1966     // to be scaled based on call site count.
1967     if (IFI.UpdateProfile) {
1968       if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr)
1969         // Update the BFI of blocks cloned into the caller.
1970         updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI,
1971                         CalledFunc->front());
1972 
1973       updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), CB,
1974                         IFI.PSI, IFI.CallerBFI);
1975     }
1976 
1977     // Inject byval arguments initialization.
1978     for (ByValInit &Init : ByValInits)
1979       HandleByValArgumentInit(Init.Ty, Init.Dst, Init.Src, Caller->getParent(),
1980                               &*FirstNewBlock, IFI);
1981 
1982     Optional<OperandBundleUse> ParentDeopt =
1983         CB.getOperandBundle(LLVMContext::OB_deopt);
1984     if (ParentDeopt) {
1985       SmallVector<OperandBundleDef, 2> OpDefs;
1986 
1987       for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
1988         CallBase *ICS = dyn_cast_or_null<CallBase>(VH);
1989         if (!ICS)
1990           continue; // instruction was DCE'd or RAUW'ed to undef
1991 
1992         OpDefs.clear();
1993 
1994         OpDefs.reserve(ICS->getNumOperandBundles());
1995 
1996         for (unsigned COBi = 0, COBe = ICS->getNumOperandBundles(); COBi < COBe;
1997              ++COBi) {
1998           auto ChildOB = ICS->getOperandBundleAt(COBi);
1999           if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
2000             // If the inlined call has other operand bundles, let them be
2001             OpDefs.emplace_back(ChildOB);
2002             continue;
2003           }
2004 
2005           // It may be useful to separate this logic (of handling operand
2006           // bundles) out to a separate "policy" component if this gets crowded.
2007           // Prepend the parent's deoptimization continuation to the newly
2008           // inlined call's deoptimization continuation.
2009           std::vector<Value *> MergedDeoptArgs;
2010           MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
2011                                   ChildOB.Inputs.size());
2012 
2013           llvm::append_range(MergedDeoptArgs, ParentDeopt->Inputs);
2014           llvm::append_range(MergedDeoptArgs, ChildOB.Inputs);
2015 
2016           OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
2017         }
2018 
2019         Instruction *NewI = CallBase::Create(ICS, OpDefs, ICS);
2020 
2021         // Note: the RAUW does the appropriate fixup in VMap, so we need to do
2022         // this even if the call returns void.
2023         ICS->replaceAllUsesWith(NewI);
2024 
2025         VH = nullptr;
2026         ICS->eraseFromParent();
2027       }
2028     }
2029 
2030     // Update the callgraph if requested.
2031     if (IFI.CG)
2032       UpdateCallGraphAfterInlining(CB, FirstNewBlock, VMap, IFI);
2033 
2034     // For 'nodebug' functions, the associated DISubprogram is always null.
2035     // Conservatively avoid propagating the callsite debug location to
2036     // instructions inlined from a function whose DISubprogram is not null.
2037     fixupLineNumbers(Caller, FirstNewBlock, &CB,
2038                      CalledFunc->getSubprogram() != nullptr);
2039 
2040     // Now clone the inlined noalias scope metadata.
2041     SAMetadataCloner.clone();
2042     SAMetadataCloner.remap(FirstNewBlock, Caller->end());
2043 
2044     // Add noalias metadata if necessary.
2045     AddAliasScopeMetadata(CB, VMap, DL, CalleeAAR, InlinedFunctionInfo);
2046 
2047     // Clone return attributes on the callsite into the calls within the inlined
2048     // function which feed into its return value.
2049     AddReturnAttributes(CB, VMap);
2050 
2051     // Propagate metadata on the callsite if necessary.
2052     PropagateCallSiteMetadata(CB, FirstNewBlock, Caller->end());
2053 
2054     // Register any cloned assumptions.
2055     if (IFI.GetAssumptionCache)
2056       for (BasicBlock &NewBlock :
2057            make_range(FirstNewBlock->getIterator(), Caller->end()))
2058         for (Instruction &I : NewBlock)
2059           if (auto *II = dyn_cast<AssumeInst>(&I))
2060             IFI.GetAssumptionCache(*Caller).registerAssumption(II);
2061   }
2062 
2063   // If there are any alloca instructions in the block that used to be the entry
2064   // block for the callee, move them to the entry block of the caller.  First
2065   // calculate which instruction they should be inserted before.  We insert the
2066   // instructions at the end of the current alloca list.
2067   {
2068     BasicBlock::iterator InsertPoint = Caller->begin()->begin();
2069     for (BasicBlock::iterator I = FirstNewBlock->begin(),
2070          E = FirstNewBlock->end(); I != E; ) {
2071       AllocaInst *AI = dyn_cast<AllocaInst>(I++);
2072       if (!AI) continue;
2073 
2074       // If the alloca is now dead, remove it.  This often occurs due to code
2075       // specialization.
2076       if (AI->use_empty()) {
2077         AI->eraseFromParent();
2078         continue;
2079       }
2080 
2081       if (!allocaWouldBeStaticInEntry(AI))
2082         continue;
2083 
2084       // Keep track of the static allocas that we inline into the caller.
2085       IFI.StaticAllocas.push_back(AI);
2086 
2087       // Scan for the block of allocas that we can move over, and move them
2088       // all at once.
2089       while (isa<AllocaInst>(I) &&
2090              !cast<AllocaInst>(I)->use_empty() &&
2091              allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) {
2092         IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
2093         ++I;
2094       }
2095 
2096       // Transfer all of the allocas over in a block.  Using splice means
2097       // that the instructions aren't removed from the symbol table, then
2098       // reinserted.
2099       Caller->getEntryBlock().getInstList().splice(
2100           InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I);
2101     }
2102   }
2103 
2104   SmallVector<Value*,4> VarArgsToForward;
2105   SmallVector<AttributeSet, 4> VarArgsAttrs;
2106   for (unsigned i = CalledFunc->getFunctionType()->getNumParams();
2107        i < CB.arg_size(); i++) {
2108     VarArgsToForward.push_back(CB.getArgOperand(i));
2109     VarArgsAttrs.push_back(CB.getAttributes().getParamAttrs(i));
2110   }
2111 
2112   bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false;
2113   if (InlinedFunctionInfo.ContainsCalls) {
2114     CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
2115     if (CallInst *CI = dyn_cast<CallInst>(&CB))
2116       CallSiteTailKind = CI->getTailCallKind();
2117 
2118     // For inlining purposes, the "notail" marker is the same as no marker.
2119     if (CallSiteTailKind == CallInst::TCK_NoTail)
2120       CallSiteTailKind = CallInst::TCK_None;
2121 
2122     for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
2123          ++BB) {
2124       for (Instruction &I : llvm::make_early_inc_range(*BB)) {
2125         CallInst *CI = dyn_cast<CallInst>(&I);
2126         if (!CI)
2127           continue;
2128 
2129         // Forward varargs from inlined call site to calls to the
2130         // ForwardVarArgsTo function, if requested, and to musttail calls.
2131         if (!VarArgsToForward.empty() &&
2132             ((ForwardVarArgsTo &&
2133               CI->getCalledFunction() == ForwardVarArgsTo) ||
2134              CI->isMustTailCall())) {
2135           // Collect attributes for non-vararg parameters.
2136           AttributeList Attrs = CI->getAttributes();
2137           SmallVector<AttributeSet, 8> ArgAttrs;
2138           if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) {
2139             for (unsigned ArgNo = 0;
2140                  ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo)
2141               ArgAttrs.push_back(Attrs.getParamAttrs(ArgNo));
2142           }
2143 
2144           // Add VarArg attributes.
2145           ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end());
2146           Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttrs(),
2147                                      Attrs.getRetAttrs(), ArgAttrs);
2148           // Add VarArgs to existing parameters.
2149           SmallVector<Value *, 6> Params(CI->args());
2150           Params.append(VarArgsToForward.begin(), VarArgsToForward.end());
2151           CallInst *NewCI = CallInst::Create(
2152               CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI);
2153           NewCI->setDebugLoc(CI->getDebugLoc());
2154           NewCI->setAttributes(Attrs);
2155           NewCI->setCallingConv(CI->getCallingConv());
2156           CI->replaceAllUsesWith(NewCI);
2157           CI->eraseFromParent();
2158           CI = NewCI;
2159         }
2160 
2161         if (Function *F = CI->getCalledFunction())
2162           InlinedDeoptimizeCalls |=
2163               F->getIntrinsicID() == Intrinsic::experimental_deoptimize;
2164 
2165         // We need to reduce the strength of any inlined tail calls.  For
2166         // musttail, we have to avoid introducing potential unbounded stack
2167         // growth.  For example, if functions 'f' and 'g' are mutually recursive
2168         // with musttail, we can inline 'g' into 'f' so long as we preserve
2169         // musttail on the cloned call to 'f'.  If either the inlined call site
2170         // or the cloned call site is *not* musttail, the program already has
2171         // one frame of stack growth, so it's safe to remove musttail.  Here is
2172         // a table of example transformations:
2173         //
2174         //    f -> musttail g -> musttail f  ==>  f -> musttail f
2175         //    f -> musttail g ->     tail f  ==>  f ->     tail f
2176         //    f ->          g -> musttail f  ==>  f ->          f
2177         //    f ->          g ->     tail f  ==>  f ->          f
2178         //
2179         // Inlined notail calls should remain notail calls.
2180         CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
2181         if (ChildTCK != CallInst::TCK_NoTail)
2182           ChildTCK = std::min(CallSiteTailKind, ChildTCK);
2183         CI->setTailCallKind(ChildTCK);
2184         InlinedMustTailCalls |= CI->isMustTailCall();
2185 
2186         // Calls inlined through a 'nounwind' call site should be marked
2187         // 'nounwind'.
2188         if (MarkNoUnwind)
2189           CI->setDoesNotThrow();
2190       }
2191     }
2192   }
2193 
2194   // Leave lifetime markers for the static alloca's, scoping them to the
2195   // function we just inlined.
2196   // We need to insert lifetime intrinsics even at O0 to avoid invalid
2197   // access caused by multithreaded coroutines. The check
2198   // `Caller->isPresplitCoroutine()` would affect AlwaysInliner at O0 only.
2199   if ((InsertLifetime || Caller->isPresplitCoroutine()) &&
2200       !IFI.StaticAllocas.empty()) {
2201     IRBuilder<> builder(&FirstNewBlock->front());
2202     for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
2203       AllocaInst *AI = IFI.StaticAllocas[ai];
2204       // Don't mark swifterror allocas. They can't have bitcast uses.
2205       if (AI->isSwiftError())
2206         continue;
2207 
2208       // If the alloca is already scoped to something smaller than the whole
2209       // function then there's no need to add redundant, less accurate markers.
2210       if (hasLifetimeMarkers(AI))
2211         continue;
2212 
2213       // Try to determine the size of the allocation.
2214       ConstantInt *AllocaSize = nullptr;
2215       if (ConstantInt *AIArraySize =
2216           dyn_cast<ConstantInt>(AI->getArraySize())) {
2217         auto &DL = Caller->getParent()->getDataLayout();
2218         Type *AllocaType = AI->getAllocatedType();
2219         TypeSize AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
2220         uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
2221 
2222         // Don't add markers for zero-sized allocas.
2223         if (AllocaArraySize == 0)
2224           continue;
2225 
2226         // Check that array size doesn't saturate uint64_t and doesn't
2227         // overflow when it's multiplied by type size.
2228         if (!AllocaTypeSize.isScalable() &&
2229             AllocaArraySize != std::numeric_limits<uint64_t>::max() &&
2230             std::numeric_limits<uint64_t>::max() / AllocaArraySize >=
2231                 AllocaTypeSize.getFixedSize()) {
2232           AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
2233                                         AllocaArraySize * AllocaTypeSize);
2234         }
2235       }
2236 
2237       builder.CreateLifetimeStart(AI, AllocaSize);
2238       for (ReturnInst *RI : Returns) {
2239         // Don't insert llvm.lifetime.end calls between a musttail or deoptimize
2240         // call and a return.  The return kills all local allocas.
2241         if (InlinedMustTailCalls &&
2242             RI->getParent()->getTerminatingMustTailCall())
2243           continue;
2244         if (InlinedDeoptimizeCalls &&
2245             RI->getParent()->getTerminatingDeoptimizeCall())
2246           continue;
2247         IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
2248       }
2249     }
2250   }
2251 
2252   // If the inlined code contained dynamic alloca instructions, wrap the inlined
2253   // code with llvm.stacksave/llvm.stackrestore intrinsics.
2254   if (InlinedFunctionInfo.ContainsDynamicAllocas) {
2255     Module *M = Caller->getParent();
2256     // Get the two intrinsics we care about.
2257     Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
2258     Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
2259 
2260     // Insert the llvm.stacksave.
2261     CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
2262                              .CreateCall(StackSave, {}, "savedstack");
2263 
2264     // Insert a call to llvm.stackrestore before any return instructions in the
2265     // inlined function.
2266     for (ReturnInst *RI : Returns) {
2267       // Don't insert llvm.stackrestore calls between a musttail or deoptimize
2268       // call and a return.  The return will restore the stack pointer.
2269       if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
2270         continue;
2271       if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall())
2272         continue;
2273       IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
2274     }
2275   }
2276 
2277   // If we are inlining for an invoke instruction, we must make sure to rewrite
2278   // any call instructions into invoke instructions.  This is sensitive to which
2279   // funclet pads were top-level in the inlinee, so must be done before
2280   // rewriting the "parent pad" links.
2281   if (auto *II = dyn_cast<InvokeInst>(&CB)) {
2282     BasicBlock *UnwindDest = II->getUnwindDest();
2283     Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
2284     if (isa<LandingPadInst>(FirstNonPHI)) {
2285       HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
2286     } else {
2287       HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
2288     }
2289   }
2290 
2291   // Update the lexical scopes of the new funclets and callsites.
2292   // Anything that had 'none' as its parent is now nested inside the callsite's
2293   // EHPad.
2294 
2295   if (CallSiteEHPad) {
2296     for (Function::iterator BB = FirstNewBlock->getIterator(),
2297                             E = Caller->end();
2298          BB != E; ++BB) {
2299       // Add bundle operands to any top-level call sites.
2300       SmallVector<OperandBundleDef, 1> OpBundles;
2301       for (Instruction &II : llvm::make_early_inc_range(*BB)) {
2302         CallBase *I = dyn_cast<CallBase>(&II);
2303         if (!I)
2304           continue;
2305 
2306         // Skip call sites which are nounwind intrinsics.
2307         auto *CalledFn =
2308             dyn_cast<Function>(I->getCalledOperand()->stripPointerCasts());
2309         if (CalledFn && CalledFn->isIntrinsic() && I->doesNotThrow())
2310           continue;
2311 
2312         // Skip call sites which already have a "funclet" bundle.
2313         if (I->getOperandBundle(LLVMContext::OB_funclet))
2314           continue;
2315 
2316         I->getOperandBundlesAsDefs(OpBundles);
2317         OpBundles.emplace_back("funclet", CallSiteEHPad);
2318 
2319         Instruction *NewInst = CallBase::Create(I, OpBundles, I);
2320         NewInst->takeName(I);
2321         I->replaceAllUsesWith(NewInst);
2322         I->eraseFromParent();
2323 
2324         OpBundles.clear();
2325       }
2326 
2327       // It is problematic if the inlinee has a cleanupret which unwinds to
2328       // caller and we inline it into a call site which doesn't unwind but into
2329       // an EH pad that does.  Such an edge must be dynamically unreachable.
2330       // As such, we replace the cleanupret with unreachable.
2331       if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
2332         if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
2333           changeToUnreachable(CleanupRet);
2334 
2335       Instruction *I = BB->getFirstNonPHI();
2336       if (!I->isEHPad())
2337         continue;
2338 
2339       if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
2340         if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
2341           CatchSwitch->setParentPad(CallSiteEHPad);
2342       } else {
2343         auto *FPI = cast<FuncletPadInst>(I);
2344         if (isa<ConstantTokenNone>(FPI->getParentPad()))
2345           FPI->setParentPad(CallSiteEHPad);
2346       }
2347     }
2348   }
2349 
2350   if (InlinedDeoptimizeCalls) {
2351     // We need to at least remove the deoptimizing returns from the Return set,
2352     // so that the control flow from those returns does not get merged into the
2353     // caller (but terminate it instead).  If the caller's return type does not
2354     // match the callee's return type, we also need to change the return type of
2355     // the intrinsic.
2356     if (Caller->getReturnType() == CB.getType()) {
2357       llvm::erase_if(Returns, [](ReturnInst *RI) {
2358         return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr;
2359       });
2360     } else {
2361       SmallVector<ReturnInst *, 8> NormalReturns;
2362       Function *NewDeoptIntrinsic = Intrinsic::getDeclaration(
2363           Caller->getParent(), Intrinsic::experimental_deoptimize,
2364           {Caller->getReturnType()});
2365 
2366       for (ReturnInst *RI : Returns) {
2367         CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall();
2368         if (!DeoptCall) {
2369           NormalReturns.push_back(RI);
2370           continue;
2371         }
2372 
2373         // The calling convention on the deoptimize call itself may be bogus,
2374         // since the code we're inlining may have undefined behavior (and may
2375         // never actually execute at runtime); but all
2376         // @llvm.experimental.deoptimize declarations have to have the same
2377         // calling convention in a well-formed module.
2378         auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv();
2379         NewDeoptIntrinsic->setCallingConv(CallingConv);
2380         auto *CurBB = RI->getParent();
2381         RI->eraseFromParent();
2382 
2383         SmallVector<Value *, 4> CallArgs(DeoptCall->args());
2384 
2385         SmallVector<OperandBundleDef, 1> OpBundles;
2386         DeoptCall->getOperandBundlesAsDefs(OpBundles);
2387         auto DeoptAttributes = DeoptCall->getAttributes();
2388         DeoptCall->eraseFromParent();
2389         assert(!OpBundles.empty() &&
2390                "Expected at least the deopt operand bundle");
2391 
2392         IRBuilder<> Builder(CurBB);
2393         CallInst *NewDeoptCall =
2394             Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles);
2395         NewDeoptCall->setCallingConv(CallingConv);
2396         NewDeoptCall->setAttributes(DeoptAttributes);
2397         if (NewDeoptCall->getType()->isVoidTy())
2398           Builder.CreateRetVoid();
2399         else
2400           Builder.CreateRet(NewDeoptCall);
2401       }
2402 
2403       // Leave behind the normal returns so we can merge control flow.
2404       std::swap(Returns, NormalReturns);
2405     }
2406   }
2407 
2408   // Handle any inlined musttail call sites.  In order for a new call site to be
2409   // musttail, the source of the clone and the inlined call site must have been
2410   // musttail.  Therefore it's safe to return without merging control into the
2411   // phi below.
2412   if (InlinedMustTailCalls) {
2413     // Check if we need to bitcast the result of any musttail calls.
2414     Type *NewRetTy = Caller->getReturnType();
2415     bool NeedBitCast = !CB.use_empty() && CB.getType() != NewRetTy;
2416 
2417     // Handle the returns preceded by musttail calls separately.
2418     SmallVector<ReturnInst *, 8> NormalReturns;
2419     for (ReturnInst *RI : Returns) {
2420       CallInst *ReturnedMustTail =
2421           RI->getParent()->getTerminatingMustTailCall();
2422       if (!ReturnedMustTail) {
2423         NormalReturns.push_back(RI);
2424         continue;
2425       }
2426       if (!NeedBitCast)
2427         continue;
2428 
2429       // Delete the old return and any preceding bitcast.
2430       BasicBlock *CurBB = RI->getParent();
2431       auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
2432       RI->eraseFromParent();
2433       if (OldCast)
2434         OldCast->eraseFromParent();
2435 
2436       // Insert a new bitcast and return with the right type.
2437       IRBuilder<> Builder(CurBB);
2438       Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
2439     }
2440 
2441     // Leave behind the normal returns so we can merge control flow.
2442     std::swap(Returns, NormalReturns);
2443   }
2444 
2445   // Now that all of the transforms on the inlined code have taken place but
2446   // before we splice the inlined code into the CFG and lose track of which
2447   // blocks were actually inlined, collect the call sites. We only do this if
2448   // call graph updates weren't requested, as those provide value handle based
2449   // tracking of inlined call sites instead. Calls to intrinsics are not
2450   // collected because they are not inlineable.
2451   if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) {
2452     // Otherwise just collect the raw call sites that were inlined.
2453     for (BasicBlock &NewBB :
2454          make_range(FirstNewBlock->getIterator(), Caller->end()))
2455       for (Instruction &I : NewBB)
2456         if (auto *CB = dyn_cast<CallBase>(&I))
2457           if (!(CB->getCalledFunction() &&
2458                 CB->getCalledFunction()->isIntrinsic()))
2459             IFI.InlinedCallSites.push_back(CB);
2460   }
2461 
2462   // If we cloned in _exactly one_ basic block, and if that block ends in a
2463   // return instruction, we splice the body of the inlined callee directly into
2464   // the calling basic block.
2465   if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
2466     // Move all of the instructions right before the call.
2467     OrigBB->getInstList().splice(CB.getIterator(), FirstNewBlock->getInstList(),
2468                                  FirstNewBlock->begin(), FirstNewBlock->end());
2469     // Remove the cloned basic block.
2470     Caller->getBasicBlockList().pop_back();
2471 
2472     // If the call site was an invoke instruction, add a branch to the normal
2473     // destination.
2474     if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
2475       BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), &CB);
2476       NewBr->setDebugLoc(Returns[0]->getDebugLoc());
2477     }
2478 
2479     // If the return instruction returned a value, replace uses of the call with
2480     // uses of the returned value.
2481     if (!CB.use_empty()) {
2482       ReturnInst *R = Returns[0];
2483       if (&CB == R->getReturnValue())
2484         CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
2485       else
2486         CB.replaceAllUsesWith(R->getReturnValue());
2487     }
2488     // Since we are now done with the Call/Invoke, we can delete it.
2489     CB.eraseFromParent();
2490 
2491     // Since we are now done with the return instruction, delete it also.
2492     Returns[0]->eraseFromParent();
2493 
2494     // We are now done with the inlining.
2495     return InlineResult::success();
2496   }
2497 
2498   // Otherwise, we have the normal case, of more than one block to inline or
2499   // multiple return sites.
2500 
2501   // We want to clone the entire callee function into the hole between the
2502   // "starter" and "ender" blocks.  How we accomplish this depends on whether
2503   // this is an invoke instruction or a call instruction.
2504   BasicBlock *AfterCallBB;
2505   BranchInst *CreatedBranchToNormalDest = nullptr;
2506   if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
2507 
2508     // Add an unconditional branch to make this look like the CallInst case...
2509     CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), &CB);
2510 
2511     // Split the basic block.  This guarantees that no PHI nodes will have to be
2512     // updated due to new incoming edges, and make the invoke case more
2513     // symmetric to the call case.
2514     AfterCallBB =
2515         OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
2516                                 CalledFunc->getName() + ".exit");
2517 
2518   } else { // It's a call
2519     // If this is a call instruction, we need to split the basic block that
2520     // the call lives in.
2521     //
2522     AfterCallBB = OrigBB->splitBasicBlock(CB.getIterator(),
2523                                           CalledFunc->getName() + ".exit");
2524   }
2525 
2526   if (IFI.CallerBFI) {
2527     // Copy original BB's block frequency to AfterCallBB
2528     IFI.CallerBFI->setBlockFreq(
2529         AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency());
2530   }
2531 
2532   // Change the branch that used to go to AfterCallBB to branch to the first
2533   // basic block of the inlined function.
2534   //
2535   Instruction *Br = OrigBB->getTerminator();
2536   assert(Br && Br->getOpcode() == Instruction::Br &&
2537          "splitBasicBlock broken!");
2538   Br->setOperand(0, &*FirstNewBlock);
2539 
2540   // Now that the function is correct, make it a little bit nicer.  In
2541   // particular, move the basic blocks inserted from the end of the function
2542   // into the space made by splitting the source basic block.
2543   Caller->getBasicBlockList().splice(AfterCallBB->getIterator(),
2544                                      Caller->getBasicBlockList(), FirstNewBlock,
2545                                      Caller->end());
2546 
2547   // Handle all of the return instructions that we just cloned in, and eliminate
2548   // any users of the original call/invoke instruction.
2549   Type *RTy = CalledFunc->getReturnType();
2550 
2551   PHINode *PHI = nullptr;
2552   if (Returns.size() > 1) {
2553     // The PHI node should go at the front of the new basic block to merge all
2554     // possible incoming values.
2555     if (!CB.use_empty()) {
2556       PHI = PHINode::Create(RTy, Returns.size(), CB.getName(),
2557                             &AfterCallBB->front());
2558       // Anything that used the result of the function call should now use the
2559       // PHI node as their operand.
2560       CB.replaceAllUsesWith(PHI);
2561     }
2562 
2563     // Loop over all of the return instructions adding entries to the PHI node
2564     // as appropriate.
2565     if (PHI) {
2566       for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2567         ReturnInst *RI = Returns[i];
2568         assert(RI->getReturnValue()->getType() == PHI->getType() &&
2569                "Ret value not consistent in function!");
2570         PHI->addIncoming(RI->getReturnValue(), RI->getParent());
2571       }
2572     }
2573 
2574     // Add a branch to the merge points and remove return instructions.
2575     DebugLoc Loc;
2576     for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2577       ReturnInst *RI = Returns[i];
2578       BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
2579       Loc = RI->getDebugLoc();
2580       BI->setDebugLoc(Loc);
2581       RI->eraseFromParent();
2582     }
2583     // We need to set the debug location to *somewhere* inside the
2584     // inlined function. The line number may be nonsensical, but the
2585     // instruction will at least be associated with the right
2586     // function.
2587     if (CreatedBranchToNormalDest)
2588       CreatedBranchToNormalDest->setDebugLoc(Loc);
2589   } else if (!Returns.empty()) {
2590     // Otherwise, if there is exactly one return value, just replace anything
2591     // using the return value of the call with the computed value.
2592     if (!CB.use_empty()) {
2593       if (&CB == Returns[0]->getReturnValue())
2594         CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
2595       else
2596         CB.replaceAllUsesWith(Returns[0]->getReturnValue());
2597     }
2598 
2599     // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
2600     BasicBlock *ReturnBB = Returns[0]->getParent();
2601     ReturnBB->replaceAllUsesWith(AfterCallBB);
2602 
2603     // Splice the code from the return block into the block that it will return
2604     // to, which contains the code that was after the call.
2605     AfterCallBB->getInstList().splice(AfterCallBB->begin(),
2606                                       ReturnBB->getInstList());
2607 
2608     if (CreatedBranchToNormalDest)
2609       CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
2610 
2611     // Delete the return instruction now and empty ReturnBB now.
2612     Returns[0]->eraseFromParent();
2613     ReturnBB->eraseFromParent();
2614   } else if (!CB.use_empty()) {
2615     // No returns, but something is using the return value of the call.  Just
2616     // nuke the result.
2617     CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
2618   }
2619 
2620   // Since we are now done with the Call/Invoke, we can delete it.
2621   CB.eraseFromParent();
2622 
2623   // If we inlined any musttail calls and the original return is now
2624   // unreachable, delete it.  It can only contain a bitcast and ret.
2625   if (InlinedMustTailCalls && pred_empty(AfterCallBB))
2626     AfterCallBB->eraseFromParent();
2627 
2628   // We should always be able to fold the entry block of the function into the
2629   // single predecessor of the block...
2630   assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
2631   BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
2632 
2633   // Splice the code entry block into calling block, right before the
2634   // unconditional branch.
2635   CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
2636   OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList());
2637 
2638   // Remove the unconditional branch.
2639   OrigBB->getInstList().erase(Br);
2640 
2641   // Now we can remove the CalleeEntry block, which is now empty.
2642   Caller->getBasicBlockList().erase(CalleeEntry);
2643 
2644   // If we inserted a phi node, check to see if it has a single value (e.g. all
2645   // the entries are the same or undef).  If so, remove the PHI so it doesn't
2646   // block other optimizations.
2647   if (PHI) {
2648     AssumptionCache *AC =
2649         IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
2650     auto &DL = Caller->getParent()->getDataLayout();
2651     if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) {
2652       PHI->replaceAllUsesWith(V);
2653       PHI->eraseFromParent();
2654     }
2655   }
2656 
2657   return InlineResult::success();
2658 }
2659