1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements inlining of a function into a call site, resolving 10 // parameters and the return value as appropriate. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/BlockFrequencyInfo.h" 26 #include "llvm/Analysis/CallGraph.h" 27 #include "llvm/Analysis/CaptureTracking.h" 28 #include "llvm/Analysis/EHPersonalities.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/ObjCARCAnalysisUtils.h" 31 #include "llvm/Analysis/ObjCARCUtil.h" 32 #include "llvm/Analysis/ProfileSummaryInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DIBuilder.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfoMetadata.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Dominators.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/MDBuilder.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 65 #include "llvm/Transforms/Utils/Cloning.h" 66 #include "llvm/Transforms/Utils/Local.h" 67 #include "llvm/Transforms/Utils/ValueMapper.h" 68 #include <algorithm> 69 #include <cassert> 70 #include <cstdint> 71 #include <iterator> 72 #include <limits> 73 #include <string> 74 #include <utility> 75 #include <vector> 76 77 using namespace llvm; 78 using ProfileCount = Function::ProfileCount; 79 80 static cl::opt<bool> 81 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), 82 cl::Hidden, 83 cl::desc("Convert noalias attributes to metadata during inlining.")); 84 85 static cl::opt<bool> 86 UseNoAliasIntrinsic("use-noalias-intrinsic-during-inlining", cl::Hidden, 87 cl::ZeroOrMore, cl::init(true), 88 cl::desc("Use the llvm.experimental.noalias.scope.decl " 89 "intrinsic during inlining.")); 90 91 // Disabled by default, because the added alignment assumptions may increase 92 // compile-time and block optimizations. This option is not suitable for use 93 // with frontends that emit comprehensive parameter alignment annotations. 94 static cl::opt<bool> 95 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", 96 cl::init(false), cl::Hidden, 97 cl::desc("Convert align attributes to assumptions during inlining.")); 98 99 static cl::opt<bool> UpdateReturnAttributes( 100 "update-return-attrs", cl::init(true), cl::Hidden, 101 cl::desc("Update return attributes on calls within inlined body")); 102 103 static cl::opt<unsigned> InlinerAttributeWindow( 104 "max-inst-checked-for-throw-during-inlining", cl::Hidden, 105 cl::desc("the maximum number of instructions analyzed for may throw during " 106 "attribute inference in inlined body"), 107 cl::init(4)); 108 109 namespace { 110 111 /// A class for recording information about inlining a landing pad. 112 class LandingPadInliningInfo { 113 /// Destination of the invoke's unwind. 114 BasicBlock *OuterResumeDest; 115 116 /// Destination for the callee's resume. 117 BasicBlock *InnerResumeDest = nullptr; 118 119 /// LandingPadInst associated with the invoke. 120 LandingPadInst *CallerLPad = nullptr; 121 122 /// PHI for EH values from landingpad insts. 123 PHINode *InnerEHValuesPHI = nullptr; 124 125 SmallVector<Value*, 8> UnwindDestPHIValues; 126 127 public: 128 LandingPadInliningInfo(InvokeInst *II) 129 : OuterResumeDest(II->getUnwindDest()) { 130 // If there are PHI nodes in the unwind destination block, we need to keep 131 // track of which values came into them from the invoke before removing 132 // the edge from this block. 133 BasicBlock *InvokeBB = II->getParent(); 134 BasicBlock::iterator I = OuterResumeDest->begin(); 135 for (; isa<PHINode>(I); ++I) { 136 // Save the value to use for this edge. 137 PHINode *PHI = cast<PHINode>(I); 138 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 139 } 140 141 CallerLPad = cast<LandingPadInst>(I); 142 } 143 144 /// The outer unwind destination is the target of 145 /// unwind edges introduced for calls within the inlined function. 146 BasicBlock *getOuterResumeDest() const { 147 return OuterResumeDest; 148 } 149 150 BasicBlock *getInnerResumeDest(); 151 152 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 153 154 /// Forward the 'resume' instruction to the caller's landing pad block. 155 /// When the landing pad block has only one predecessor, this is 156 /// a simple branch. When there is more than one predecessor, we need to 157 /// split the landing pad block after the landingpad instruction and jump 158 /// to there. 159 void forwardResume(ResumeInst *RI, 160 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); 161 162 /// Add incoming-PHI values to the unwind destination block for the given 163 /// basic block, using the values for the original invoke's source block. 164 void addIncomingPHIValuesFor(BasicBlock *BB) const { 165 addIncomingPHIValuesForInto(BB, OuterResumeDest); 166 } 167 168 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 169 BasicBlock::iterator I = dest->begin(); 170 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 171 PHINode *phi = cast<PHINode>(I); 172 phi->addIncoming(UnwindDestPHIValues[i], src); 173 } 174 } 175 }; 176 177 } // end anonymous namespace 178 179 /// Get or create a target for the branch from ResumeInsts. 180 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() { 181 if (InnerResumeDest) return InnerResumeDest; 182 183 // Split the landing pad. 184 BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator(); 185 InnerResumeDest = 186 OuterResumeDest->splitBasicBlock(SplitPoint, 187 OuterResumeDest->getName() + ".body"); 188 189 // The number of incoming edges we expect to the inner landing pad. 190 const unsigned PHICapacity = 2; 191 192 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 193 Instruction *InsertPoint = &InnerResumeDest->front(); 194 BasicBlock::iterator I = OuterResumeDest->begin(); 195 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 196 PHINode *OuterPHI = cast<PHINode>(I); 197 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 198 OuterPHI->getName() + ".lpad-body", 199 InsertPoint); 200 OuterPHI->replaceAllUsesWith(InnerPHI); 201 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 202 } 203 204 // Create a PHI for the exception values. 205 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 206 "eh.lpad-body", InsertPoint); 207 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 208 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 209 210 // All done. 211 return InnerResumeDest; 212 } 213 214 /// Forward the 'resume' instruction to the caller's landing pad block. 215 /// When the landing pad block has only one predecessor, this is a simple 216 /// branch. When there is more than one predecessor, we need to split the 217 /// landing pad block after the landingpad instruction and jump to there. 218 void LandingPadInliningInfo::forwardResume( 219 ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) { 220 BasicBlock *Dest = getInnerResumeDest(); 221 BasicBlock *Src = RI->getParent(); 222 223 BranchInst::Create(Dest, Src); 224 225 // Update the PHIs in the destination. They were inserted in an order which 226 // makes this work. 227 addIncomingPHIValuesForInto(Src, Dest); 228 229 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 230 RI->eraseFromParent(); 231 } 232 233 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper. 234 static Value *getParentPad(Value *EHPad) { 235 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 236 return FPI->getParentPad(); 237 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 238 } 239 240 using UnwindDestMemoTy = DenseMap<Instruction *, Value *>; 241 242 /// Helper for getUnwindDestToken that does the descendant-ward part of 243 /// the search. 244 static Value *getUnwindDestTokenHelper(Instruction *EHPad, 245 UnwindDestMemoTy &MemoMap) { 246 SmallVector<Instruction *, 8> Worklist(1, EHPad); 247 248 while (!Worklist.empty()) { 249 Instruction *CurrentPad = Worklist.pop_back_val(); 250 // We only put pads on the worklist that aren't in the MemoMap. When 251 // we find an unwind dest for a pad we may update its ancestors, but 252 // the queue only ever contains uncles/great-uncles/etc. of CurrentPad, 253 // so they should never get updated while queued on the worklist. 254 assert(!MemoMap.count(CurrentPad)); 255 Value *UnwindDestToken = nullptr; 256 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) { 257 if (CatchSwitch->hasUnwindDest()) { 258 UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI(); 259 } else { 260 // Catchswitch doesn't have a 'nounwind' variant, and one might be 261 // annotated as "unwinds to caller" when really it's nounwind (see 262 // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the 263 // parent's unwind dest from this. We can check its catchpads' 264 // descendants, since they might include a cleanuppad with an 265 // "unwinds to caller" cleanupret, which can be trusted. 266 for (auto HI = CatchSwitch->handler_begin(), 267 HE = CatchSwitch->handler_end(); 268 HI != HE && !UnwindDestToken; ++HI) { 269 BasicBlock *HandlerBlock = *HI; 270 auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI()); 271 for (User *Child : CatchPad->users()) { 272 // Intentionally ignore invokes here -- since the catchswitch is 273 // marked "unwind to caller", it would be a verifier error if it 274 // contained an invoke which unwinds out of it, so any invoke we'd 275 // encounter must unwind to some child of the catch. 276 if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child)) 277 continue; 278 279 Instruction *ChildPad = cast<Instruction>(Child); 280 auto Memo = MemoMap.find(ChildPad); 281 if (Memo == MemoMap.end()) { 282 // Haven't figured out this child pad yet; queue it. 283 Worklist.push_back(ChildPad); 284 continue; 285 } 286 // We've already checked this child, but might have found that 287 // it offers no proof either way. 288 Value *ChildUnwindDestToken = Memo->second; 289 if (!ChildUnwindDestToken) 290 continue; 291 // We already know the child's unwind dest, which can either 292 // be ConstantTokenNone to indicate unwind to caller, or can 293 // be another child of the catchpad. Only the former indicates 294 // the unwind dest of the catchswitch. 295 if (isa<ConstantTokenNone>(ChildUnwindDestToken)) { 296 UnwindDestToken = ChildUnwindDestToken; 297 break; 298 } 299 assert(getParentPad(ChildUnwindDestToken) == CatchPad); 300 } 301 } 302 } 303 } else { 304 auto *CleanupPad = cast<CleanupPadInst>(CurrentPad); 305 for (User *U : CleanupPad->users()) { 306 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) { 307 if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest()) 308 UnwindDestToken = RetUnwindDest->getFirstNonPHI(); 309 else 310 UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext()); 311 break; 312 } 313 Value *ChildUnwindDestToken; 314 if (auto *Invoke = dyn_cast<InvokeInst>(U)) { 315 ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI(); 316 } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) { 317 Instruction *ChildPad = cast<Instruction>(U); 318 auto Memo = MemoMap.find(ChildPad); 319 if (Memo == MemoMap.end()) { 320 // Haven't resolved this child yet; queue it and keep searching. 321 Worklist.push_back(ChildPad); 322 continue; 323 } 324 // We've checked this child, but still need to ignore it if it 325 // had no proof either way. 326 ChildUnwindDestToken = Memo->second; 327 if (!ChildUnwindDestToken) 328 continue; 329 } else { 330 // Not a relevant user of the cleanuppad 331 continue; 332 } 333 // In a well-formed program, the child/invoke must either unwind to 334 // an(other) child of the cleanup, or exit the cleanup. In the 335 // first case, continue searching. 336 if (isa<Instruction>(ChildUnwindDestToken) && 337 getParentPad(ChildUnwindDestToken) == CleanupPad) 338 continue; 339 UnwindDestToken = ChildUnwindDestToken; 340 break; 341 } 342 } 343 // If we haven't found an unwind dest for CurrentPad, we may have queued its 344 // children, so move on to the next in the worklist. 345 if (!UnwindDestToken) 346 continue; 347 348 // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits 349 // any ancestors of CurrentPad up to but not including UnwindDestToken's 350 // parent pad. Record this in the memo map, and check to see if the 351 // original EHPad being queried is one of the ones exited. 352 Value *UnwindParent; 353 if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken)) 354 UnwindParent = getParentPad(UnwindPad); 355 else 356 UnwindParent = nullptr; 357 bool ExitedOriginalPad = false; 358 for (Instruction *ExitedPad = CurrentPad; 359 ExitedPad && ExitedPad != UnwindParent; 360 ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) { 361 // Skip over catchpads since they just follow their catchswitches. 362 if (isa<CatchPadInst>(ExitedPad)) 363 continue; 364 MemoMap[ExitedPad] = UnwindDestToken; 365 ExitedOriginalPad |= (ExitedPad == EHPad); 366 } 367 368 if (ExitedOriginalPad) 369 return UnwindDestToken; 370 371 // Continue the search. 372 } 373 374 // No definitive information is contained within this funclet. 375 return nullptr; 376 } 377 378 /// Given an EH pad, find where it unwinds. If it unwinds to an EH pad, 379 /// return that pad instruction. If it unwinds to caller, return 380 /// ConstantTokenNone. If it does not have a definitive unwind destination, 381 /// return nullptr. 382 /// 383 /// This routine gets invoked for calls in funclets in inlinees when inlining 384 /// an invoke. Since many funclets don't have calls inside them, it's queried 385 /// on-demand rather than building a map of pads to unwind dests up front. 386 /// Determining a funclet's unwind dest may require recursively searching its 387 /// descendants, and also ancestors and cousins if the descendants don't provide 388 /// an answer. Since most funclets will have their unwind dest immediately 389 /// available as the unwind dest of a catchswitch or cleanupret, this routine 390 /// searches top-down from the given pad and then up. To avoid worst-case 391 /// quadratic run-time given that approach, it uses a memo map to avoid 392 /// re-processing funclet trees. The callers that rewrite the IR as they go 393 /// take advantage of this, for correctness, by checking/forcing rewritten 394 /// pads' entries to match the original callee view. 395 static Value *getUnwindDestToken(Instruction *EHPad, 396 UnwindDestMemoTy &MemoMap) { 397 // Catchpads unwind to the same place as their catchswitch; 398 // redirct any queries on catchpads so the code below can 399 // deal with just catchswitches and cleanuppads. 400 if (auto *CPI = dyn_cast<CatchPadInst>(EHPad)) 401 EHPad = CPI->getCatchSwitch(); 402 403 // Check if we've already determined the unwind dest for this pad. 404 auto Memo = MemoMap.find(EHPad); 405 if (Memo != MemoMap.end()) 406 return Memo->second; 407 408 // Search EHPad and, if necessary, its descendants. 409 Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap); 410 assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0)); 411 if (UnwindDestToken) 412 return UnwindDestToken; 413 414 // No information is available for this EHPad from itself or any of its 415 // descendants. An unwind all the way out to a pad in the caller would 416 // need also to agree with the unwind dest of the parent funclet, so 417 // search up the chain to try to find a funclet with information. Put 418 // null entries in the memo map to avoid re-processing as we go up. 419 MemoMap[EHPad] = nullptr; 420 #ifndef NDEBUG 421 SmallPtrSet<Instruction *, 4> TempMemos; 422 TempMemos.insert(EHPad); 423 #endif 424 Instruction *LastUselessPad = EHPad; 425 Value *AncestorToken; 426 for (AncestorToken = getParentPad(EHPad); 427 auto *AncestorPad = dyn_cast<Instruction>(AncestorToken); 428 AncestorToken = getParentPad(AncestorToken)) { 429 // Skip over catchpads since they just follow their catchswitches. 430 if (isa<CatchPadInst>(AncestorPad)) 431 continue; 432 // If the MemoMap had an entry mapping AncestorPad to nullptr, since we 433 // haven't yet called getUnwindDestTokenHelper for AncestorPad in this 434 // call to getUnwindDestToken, that would mean that AncestorPad had no 435 // information in itself, its descendants, or its ancestors. If that 436 // were the case, then we should also have recorded the lack of information 437 // for the descendant that we're coming from. So assert that we don't 438 // find a null entry in the MemoMap for AncestorPad. 439 assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]); 440 auto AncestorMemo = MemoMap.find(AncestorPad); 441 if (AncestorMemo == MemoMap.end()) { 442 UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap); 443 } else { 444 UnwindDestToken = AncestorMemo->second; 445 } 446 if (UnwindDestToken) 447 break; 448 LastUselessPad = AncestorPad; 449 MemoMap[LastUselessPad] = nullptr; 450 #ifndef NDEBUG 451 TempMemos.insert(LastUselessPad); 452 #endif 453 } 454 455 // We know that getUnwindDestTokenHelper was called on LastUselessPad and 456 // returned nullptr (and likewise for EHPad and any of its ancestors up to 457 // LastUselessPad), so LastUselessPad has no information from below. Since 458 // getUnwindDestTokenHelper must investigate all downward paths through 459 // no-information nodes to prove that a node has no information like this, 460 // and since any time it finds information it records it in the MemoMap for 461 // not just the immediately-containing funclet but also any ancestors also 462 // exited, it must be the case that, walking downward from LastUselessPad, 463 // visiting just those nodes which have not been mapped to an unwind dest 464 // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since 465 // they are just used to keep getUnwindDestTokenHelper from repeating work), 466 // any node visited must have been exhaustively searched with no information 467 // for it found. 468 SmallVector<Instruction *, 8> Worklist(1, LastUselessPad); 469 while (!Worklist.empty()) { 470 Instruction *UselessPad = Worklist.pop_back_val(); 471 auto Memo = MemoMap.find(UselessPad); 472 if (Memo != MemoMap.end() && Memo->second) { 473 // Here the name 'UselessPad' is a bit of a misnomer, because we've found 474 // that it is a funclet that does have information about unwinding to 475 // a particular destination; its parent was a useless pad. 476 // Since its parent has no information, the unwind edge must not escape 477 // the parent, and must target a sibling of this pad. This local unwind 478 // gives us no information about EHPad. Leave it and the subtree rooted 479 // at it alone. 480 assert(getParentPad(Memo->second) == getParentPad(UselessPad)); 481 continue; 482 } 483 // We know we don't have information for UselesPad. If it has an entry in 484 // the MemoMap (mapping it to nullptr), it must be one of the TempMemos 485 // added on this invocation of getUnwindDestToken; if a previous invocation 486 // recorded nullptr, it would have had to prove that the ancestors of 487 // UselessPad, which include LastUselessPad, had no information, and that 488 // in turn would have required proving that the descendants of 489 // LastUselesPad, which include EHPad, have no information about 490 // LastUselessPad, which would imply that EHPad was mapped to nullptr in 491 // the MemoMap on that invocation, which isn't the case if we got here. 492 assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad)); 493 // Assert as we enumerate users that 'UselessPad' doesn't have any unwind 494 // information that we'd be contradicting by making a map entry for it 495 // (which is something that getUnwindDestTokenHelper must have proved for 496 // us to get here). Just assert on is direct users here; the checks in 497 // this downward walk at its descendants will verify that they don't have 498 // any unwind edges that exit 'UselessPad' either (i.e. they either have no 499 // unwind edges or unwind to a sibling). 500 MemoMap[UselessPad] = UnwindDestToken; 501 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) { 502 assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad"); 503 for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) { 504 auto *CatchPad = HandlerBlock->getFirstNonPHI(); 505 for (User *U : CatchPad->users()) { 506 assert( 507 (!isa<InvokeInst>(U) || 508 (getParentPad( 509 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 510 CatchPad)) && 511 "Expected useless pad"); 512 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 513 Worklist.push_back(cast<Instruction>(U)); 514 } 515 } 516 } else { 517 assert(isa<CleanupPadInst>(UselessPad)); 518 for (User *U : UselessPad->users()) { 519 assert(!isa<CleanupReturnInst>(U) && "Expected useless pad"); 520 assert((!isa<InvokeInst>(U) || 521 (getParentPad( 522 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 523 UselessPad)) && 524 "Expected useless pad"); 525 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 526 Worklist.push_back(cast<Instruction>(U)); 527 } 528 } 529 } 530 531 return UnwindDestToken; 532 } 533 534 /// When we inline a basic block into an invoke, 535 /// we have to turn all of the calls that can throw into invokes. 536 /// This function analyze BB to see if there are any calls, and if so, 537 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 538 /// nodes in that block with the values specified in InvokeDestPHIValues. 539 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke( 540 BasicBlock *BB, BasicBlock *UnwindEdge, 541 UnwindDestMemoTy *FuncletUnwindMap = nullptr) { 542 for (Instruction &I : llvm::make_early_inc_range(*BB)) { 543 // We only need to check for function calls: inlined invoke 544 // instructions require no special handling. 545 CallInst *CI = dyn_cast<CallInst>(&I); 546 547 if (!CI || CI->doesNotThrow()) 548 continue; 549 550 if (CI->isInlineAsm()) { 551 InlineAsm *IA = cast<InlineAsm>(CI->getCalledOperand()); 552 if (!IA->canThrow()) { 553 continue; 554 } 555 } 556 557 // We do not need to (and in fact, cannot) convert possibly throwing calls 558 // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into 559 // invokes. The caller's "segment" of the deoptimization continuation 560 // attached to the newly inlined @llvm.experimental_deoptimize 561 // (resp. @llvm.experimental.guard) call should contain the exception 562 // handling logic, if any. 563 if (auto *F = CI->getCalledFunction()) 564 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize || 565 F->getIntrinsicID() == Intrinsic::experimental_guard) 566 continue; 567 568 if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) { 569 // This call is nested inside a funclet. If that funclet has an unwind 570 // destination within the inlinee, then unwinding out of this call would 571 // be UB. Rewriting this call to an invoke which targets the inlined 572 // invoke's unwind dest would give the call's parent funclet multiple 573 // unwind destinations, which is something that subsequent EH table 574 // generation can't handle and that the veirifer rejects. So when we 575 // see such a call, leave it as a call. 576 auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]); 577 Value *UnwindDestToken = 578 getUnwindDestToken(FuncletPad, *FuncletUnwindMap); 579 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 580 continue; 581 #ifndef NDEBUG 582 Instruction *MemoKey; 583 if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad)) 584 MemoKey = CatchPad->getCatchSwitch(); 585 else 586 MemoKey = FuncletPad; 587 assert(FuncletUnwindMap->count(MemoKey) && 588 (*FuncletUnwindMap)[MemoKey] == UnwindDestToken && 589 "must get memoized to avoid confusing later searches"); 590 #endif // NDEBUG 591 } 592 593 changeToInvokeAndSplitBasicBlock(CI, UnwindEdge); 594 return BB; 595 } 596 return nullptr; 597 } 598 599 /// If we inlined an invoke site, we need to convert calls 600 /// in the body of the inlined function into invokes. 601 /// 602 /// II is the invoke instruction being inlined. FirstNewBlock is the first 603 /// block of the inlined code (the last block is the end of the function), 604 /// and InlineCodeInfo is information about the code that got inlined. 605 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock, 606 ClonedCodeInfo &InlinedCodeInfo) { 607 BasicBlock *InvokeDest = II->getUnwindDest(); 608 609 Function *Caller = FirstNewBlock->getParent(); 610 611 // The inlined code is currently at the end of the function, scan from the 612 // start of the inlined code to its end, checking for stuff we need to 613 // rewrite. 614 LandingPadInliningInfo Invoke(II); 615 616 // Get all of the inlined landing pad instructions. 617 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 618 for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end(); 619 I != E; ++I) 620 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 621 InlinedLPads.insert(II->getLandingPadInst()); 622 623 // Append the clauses from the outer landing pad instruction into the inlined 624 // landing pad instructions. 625 LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 626 for (LandingPadInst *InlinedLPad : InlinedLPads) { 627 unsigned OuterNum = OuterLPad->getNumClauses(); 628 InlinedLPad->reserveClauses(OuterNum); 629 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 630 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 631 if (OuterLPad->isCleanup()) 632 InlinedLPad->setCleanup(true); 633 } 634 635 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 636 BB != E; ++BB) { 637 if (InlinedCodeInfo.ContainsCalls) 638 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 639 &*BB, Invoke.getOuterResumeDest())) 640 // Update any PHI nodes in the exceptional block to indicate that there 641 // is now a new entry in them. 642 Invoke.addIncomingPHIValuesFor(NewBB); 643 644 // Forward any resumes that are remaining here. 645 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 646 Invoke.forwardResume(RI, InlinedLPads); 647 } 648 649 // Now that everything is happy, we have one final detail. The PHI nodes in 650 // the exception destination block still have entries due to the original 651 // invoke instruction. Eliminate these entries (which might even delete the 652 // PHI node) now. 653 InvokeDest->removePredecessor(II->getParent()); 654 } 655 656 /// If we inlined an invoke site, we need to convert calls 657 /// in the body of the inlined function into invokes. 658 /// 659 /// II is the invoke instruction being inlined. FirstNewBlock is the first 660 /// block of the inlined code (the last block is the end of the function), 661 /// and InlineCodeInfo is information about the code that got inlined. 662 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock, 663 ClonedCodeInfo &InlinedCodeInfo) { 664 BasicBlock *UnwindDest = II->getUnwindDest(); 665 Function *Caller = FirstNewBlock->getParent(); 666 667 assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!"); 668 669 // If there are PHI nodes in the unwind destination block, we need to keep 670 // track of which values came into them from the invoke before removing the 671 // edge from this block. 672 SmallVector<Value *, 8> UnwindDestPHIValues; 673 BasicBlock *InvokeBB = II->getParent(); 674 for (Instruction &I : *UnwindDest) { 675 // Save the value to use for this edge. 676 PHINode *PHI = dyn_cast<PHINode>(&I); 677 if (!PHI) 678 break; 679 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 680 } 681 682 // Add incoming-PHI values to the unwind destination block for the given basic 683 // block, using the values for the original invoke's source block. 684 auto UpdatePHINodes = [&](BasicBlock *Src) { 685 BasicBlock::iterator I = UnwindDest->begin(); 686 for (Value *V : UnwindDestPHIValues) { 687 PHINode *PHI = cast<PHINode>(I); 688 PHI->addIncoming(V, Src); 689 ++I; 690 } 691 }; 692 693 // This connects all the instructions which 'unwind to caller' to the invoke 694 // destination. 695 UnwindDestMemoTy FuncletUnwindMap; 696 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 697 BB != E; ++BB) { 698 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 699 if (CRI->unwindsToCaller()) { 700 auto *CleanupPad = CRI->getCleanupPad(); 701 CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI); 702 CRI->eraseFromParent(); 703 UpdatePHINodes(&*BB); 704 // Finding a cleanupret with an unwind destination would confuse 705 // subsequent calls to getUnwindDestToken, so map the cleanuppad 706 // to short-circuit any such calls and recognize this as an "unwind 707 // to caller" cleanup. 708 assert(!FuncletUnwindMap.count(CleanupPad) || 709 isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad])); 710 FuncletUnwindMap[CleanupPad] = 711 ConstantTokenNone::get(Caller->getContext()); 712 } 713 } 714 715 Instruction *I = BB->getFirstNonPHI(); 716 if (!I->isEHPad()) 717 continue; 718 719 Instruction *Replacement = nullptr; 720 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 721 if (CatchSwitch->unwindsToCaller()) { 722 Value *UnwindDestToken; 723 if (auto *ParentPad = 724 dyn_cast<Instruction>(CatchSwitch->getParentPad())) { 725 // This catchswitch is nested inside another funclet. If that 726 // funclet has an unwind destination within the inlinee, then 727 // unwinding out of this catchswitch would be UB. Rewriting this 728 // catchswitch to unwind to the inlined invoke's unwind dest would 729 // give the parent funclet multiple unwind destinations, which is 730 // something that subsequent EH table generation can't handle and 731 // that the veirifer rejects. So when we see such a call, leave it 732 // as "unwind to caller". 733 UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap); 734 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 735 continue; 736 } else { 737 // This catchswitch has no parent to inherit constraints from, and 738 // none of its descendants can have an unwind edge that exits it and 739 // targets another funclet in the inlinee. It may or may not have a 740 // descendant that definitively has an unwind to caller. In either 741 // case, we'll have to assume that any unwinds out of it may need to 742 // be routed to the caller, so treat it as though it has a definitive 743 // unwind to caller. 744 UnwindDestToken = ConstantTokenNone::get(Caller->getContext()); 745 } 746 auto *NewCatchSwitch = CatchSwitchInst::Create( 747 CatchSwitch->getParentPad(), UnwindDest, 748 CatchSwitch->getNumHandlers(), CatchSwitch->getName(), 749 CatchSwitch); 750 for (BasicBlock *PadBB : CatchSwitch->handlers()) 751 NewCatchSwitch->addHandler(PadBB); 752 // Propagate info for the old catchswitch over to the new one in 753 // the unwind map. This also serves to short-circuit any subsequent 754 // checks for the unwind dest of this catchswitch, which would get 755 // confused if they found the outer handler in the callee. 756 FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken; 757 Replacement = NewCatchSwitch; 758 } 759 } else if (!isa<FuncletPadInst>(I)) { 760 llvm_unreachable("unexpected EHPad!"); 761 } 762 763 if (Replacement) { 764 Replacement->takeName(I); 765 I->replaceAllUsesWith(Replacement); 766 I->eraseFromParent(); 767 UpdatePHINodes(&*BB); 768 } 769 } 770 771 if (InlinedCodeInfo.ContainsCalls) 772 for (Function::iterator BB = FirstNewBlock->getIterator(), 773 E = Caller->end(); 774 BB != E; ++BB) 775 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 776 &*BB, UnwindDest, &FuncletUnwindMap)) 777 // Update any PHI nodes in the exceptional block to indicate that there 778 // is now a new entry in them. 779 UpdatePHINodes(NewBB); 780 781 // Now that everything is happy, we have one final detail. The PHI nodes in 782 // the exception destination block still have entries due to the original 783 // invoke instruction. Eliminate these entries (which might even delete the 784 // PHI node) now. 785 UnwindDest->removePredecessor(InvokeBB); 786 } 787 788 /// When inlining a call site that has !llvm.mem.parallel_loop_access, 789 /// !llvm.access.group, !alias.scope or !noalias metadata, that metadata should 790 /// be propagated to all memory-accessing cloned instructions. 791 static void PropagateCallSiteMetadata(CallBase &CB, Function::iterator FStart, 792 Function::iterator FEnd) { 793 MDNode *MemParallelLoopAccess = 794 CB.getMetadata(LLVMContext::MD_mem_parallel_loop_access); 795 MDNode *AccessGroup = CB.getMetadata(LLVMContext::MD_access_group); 796 MDNode *AliasScope = CB.getMetadata(LLVMContext::MD_alias_scope); 797 MDNode *NoAlias = CB.getMetadata(LLVMContext::MD_noalias); 798 if (!MemParallelLoopAccess && !AccessGroup && !AliasScope && !NoAlias) 799 return; 800 801 for (BasicBlock &BB : make_range(FStart, FEnd)) { 802 for (Instruction &I : BB) { 803 // This metadata is only relevant for instructions that access memory. 804 if (!I.mayReadOrWriteMemory()) 805 continue; 806 807 if (MemParallelLoopAccess) { 808 // TODO: This probably should not overwrite MemParalleLoopAccess. 809 MemParallelLoopAccess = MDNode::concatenate( 810 I.getMetadata(LLVMContext::MD_mem_parallel_loop_access), 811 MemParallelLoopAccess); 812 I.setMetadata(LLVMContext::MD_mem_parallel_loop_access, 813 MemParallelLoopAccess); 814 } 815 816 if (AccessGroup) 817 I.setMetadata(LLVMContext::MD_access_group, uniteAccessGroups( 818 I.getMetadata(LLVMContext::MD_access_group), AccessGroup)); 819 820 if (AliasScope) 821 I.setMetadata(LLVMContext::MD_alias_scope, MDNode::concatenate( 822 I.getMetadata(LLVMContext::MD_alias_scope), AliasScope)); 823 824 if (NoAlias) 825 I.setMetadata(LLVMContext::MD_noalias, MDNode::concatenate( 826 I.getMetadata(LLVMContext::MD_noalias), NoAlias)); 827 } 828 } 829 } 830 831 namespace { 832 /// Utility for cloning !noalias and !alias.scope metadata. When a code region 833 /// using scoped alias metadata is inlined, the aliasing relationships may not 834 /// hold between the two version. It is necessary to create a deep clone of the 835 /// metadata, putting the two versions in separate scope domains. 836 class ScopedAliasMetadataDeepCloner { 837 using MetadataMap = DenseMap<const MDNode *, TrackingMDNodeRef>; 838 SetVector<const MDNode *> MD; 839 MetadataMap MDMap; 840 void addRecursiveMetadataUses(); 841 842 public: 843 ScopedAliasMetadataDeepCloner(const Function *F); 844 845 /// Create a new clone of the scoped alias metadata, which will be used by 846 /// subsequent remap() calls. 847 void clone(); 848 849 /// Remap instructions in the given range from the original to the cloned 850 /// metadata. 851 void remap(Function::iterator FStart, Function::iterator FEnd); 852 }; 853 } // namespace 854 855 ScopedAliasMetadataDeepCloner::ScopedAliasMetadataDeepCloner( 856 const Function *F) { 857 for (const BasicBlock &BB : *F) { 858 for (const Instruction &I : BB) { 859 if (const MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope)) 860 MD.insert(M); 861 if (const MDNode *M = I.getMetadata(LLVMContext::MD_noalias)) 862 MD.insert(M); 863 864 // We also need to clone the metadata in noalias intrinsics. 865 if (const auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) 866 MD.insert(Decl->getScopeList()); 867 } 868 } 869 addRecursiveMetadataUses(); 870 } 871 872 void ScopedAliasMetadataDeepCloner::addRecursiveMetadataUses() { 873 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end()); 874 while (!Queue.empty()) { 875 const MDNode *M = cast<MDNode>(Queue.pop_back_val()); 876 for (const Metadata *Op : M->operands()) 877 if (const MDNode *OpMD = dyn_cast<MDNode>(Op)) 878 if (MD.insert(OpMD)) 879 Queue.push_back(OpMD); 880 } 881 } 882 883 void ScopedAliasMetadataDeepCloner::clone() { 884 assert(MDMap.empty() && "clone() already called ?"); 885 886 SmallVector<TempMDTuple, 16> DummyNodes; 887 for (const MDNode *I : MD) { 888 DummyNodes.push_back(MDTuple::getTemporary(I->getContext(), None)); 889 MDMap[I].reset(DummyNodes.back().get()); 890 } 891 892 // Create new metadata nodes to replace the dummy nodes, replacing old 893 // metadata references with either a dummy node or an already-created new 894 // node. 895 SmallVector<Metadata *, 4> NewOps; 896 for (const MDNode *I : MD) { 897 for (const Metadata *Op : I->operands()) { 898 if (const MDNode *M = dyn_cast<MDNode>(Op)) 899 NewOps.push_back(MDMap[M]); 900 else 901 NewOps.push_back(const_cast<Metadata *>(Op)); 902 } 903 904 MDNode *NewM = MDNode::get(I->getContext(), NewOps); 905 MDTuple *TempM = cast<MDTuple>(MDMap[I]); 906 assert(TempM->isTemporary() && "Expected temporary node"); 907 908 TempM->replaceAllUsesWith(NewM); 909 NewOps.clear(); 910 } 911 } 912 913 void ScopedAliasMetadataDeepCloner::remap(Function::iterator FStart, 914 Function::iterator FEnd) { 915 if (MDMap.empty()) 916 return; // Nothing to do. 917 918 for (BasicBlock &BB : make_range(FStart, FEnd)) { 919 for (Instruction &I : BB) { 920 // TODO: The null checks for the MDMap.lookup() results should no longer 921 // be necessary. 922 if (MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope)) 923 if (MDNode *MNew = MDMap.lookup(M)) 924 I.setMetadata(LLVMContext::MD_alias_scope, MNew); 925 926 if (MDNode *M = I.getMetadata(LLVMContext::MD_noalias)) 927 if (MDNode *MNew = MDMap.lookup(M)) 928 I.setMetadata(LLVMContext::MD_noalias, MNew); 929 930 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) 931 if (MDNode *MNew = MDMap.lookup(Decl->getScopeList())) 932 Decl->setScopeList(MNew); 933 } 934 } 935 } 936 937 /// If the inlined function has noalias arguments, 938 /// then add new alias scopes for each noalias argument, tag the mapped noalias 939 /// parameters with noalias metadata specifying the new scope, and tag all 940 /// non-derived loads, stores and memory intrinsics with the new alias scopes. 941 static void AddAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap, 942 const DataLayout &DL, AAResults *CalleeAAR, 943 ClonedCodeInfo &InlinedFunctionInfo) { 944 if (!EnableNoAliasConversion) 945 return; 946 947 const Function *CalledFunc = CB.getCalledFunction(); 948 SmallVector<const Argument *, 4> NoAliasArgs; 949 950 for (const Argument &Arg : CalledFunc->args()) 951 if (CB.paramHasAttr(Arg.getArgNo(), Attribute::NoAlias) && !Arg.use_empty()) 952 NoAliasArgs.push_back(&Arg); 953 954 if (NoAliasArgs.empty()) 955 return; 956 957 // To do a good job, if a noalias variable is captured, we need to know if 958 // the capture point dominates the particular use we're considering. 959 DominatorTree DT; 960 DT.recalculate(const_cast<Function&>(*CalledFunc)); 961 962 // noalias indicates that pointer values based on the argument do not alias 963 // pointer values which are not based on it. So we add a new "scope" for each 964 // noalias function argument. Accesses using pointers based on that argument 965 // become part of that alias scope, accesses using pointers not based on that 966 // argument are tagged as noalias with that scope. 967 968 DenseMap<const Argument *, MDNode *> NewScopes; 969 MDBuilder MDB(CalledFunc->getContext()); 970 971 // Create a new scope domain for this function. 972 MDNode *NewDomain = 973 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); 974 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { 975 const Argument *A = NoAliasArgs[i]; 976 977 std::string Name = std::string(CalledFunc->getName()); 978 if (A->hasName()) { 979 Name += ": %"; 980 Name += A->getName(); 981 } else { 982 Name += ": argument "; 983 Name += utostr(i); 984 } 985 986 // Note: We always create a new anonymous root here. This is true regardless 987 // of the linkage of the callee because the aliasing "scope" is not just a 988 // property of the callee, but also all control dependencies in the caller. 989 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); 990 NewScopes.insert(std::make_pair(A, NewScope)); 991 992 if (UseNoAliasIntrinsic) { 993 // Introduce a llvm.experimental.noalias.scope.decl for the noalias 994 // argument. 995 MDNode *AScopeList = MDNode::get(CalledFunc->getContext(), NewScope); 996 auto *NoAliasDecl = 997 IRBuilder<>(&CB).CreateNoAliasScopeDeclaration(AScopeList); 998 // Ignore the result for now. The result will be used when the 999 // llvm.noalias intrinsic is introduced. 1000 (void)NoAliasDecl; 1001 } 1002 } 1003 1004 // Iterate over all new instructions in the map; for all memory-access 1005 // instructions, add the alias scope metadata. 1006 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 1007 VMI != VMIE; ++VMI) { 1008 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { 1009 if (!VMI->second) 1010 continue; 1011 1012 Instruction *NI = dyn_cast<Instruction>(VMI->second); 1013 if (!NI || InlinedFunctionInfo.isSimplified(I, NI)) 1014 continue; 1015 1016 bool IsArgMemOnlyCall = false, IsFuncCall = false; 1017 SmallVector<const Value *, 2> PtrArgs; 1018 1019 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 1020 PtrArgs.push_back(LI->getPointerOperand()); 1021 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 1022 PtrArgs.push_back(SI->getPointerOperand()); 1023 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) 1024 PtrArgs.push_back(VAAI->getPointerOperand()); 1025 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 1026 PtrArgs.push_back(CXI->getPointerOperand()); 1027 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 1028 PtrArgs.push_back(RMWI->getPointerOperand()); 1029 else if (const auto *Call = dyn_cast<CallBase>(I)) { 1030 // If we know that the call does not access memory, then we'll still 1031 // know that about the inlined clone of this call site, and we don't 1032 // need to add metadata. 1033 if (Call->doesNotAccessMemory()) 1034 continue; 1035 1036 IsFuncCall = true; 1037 if (CalleeAAR) { 1038 FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call); 1039 1040 // We'll retain this knowledge without additional metadata. 1041 if (AAResults::onlyAccessesInaccessibleMem(MRB)) 1042 continue; 1043 1044 if (AAResults::onlyAccessesArgPointees(MRB)) 1045 IsArgMemOnlyCall = true; 1046 } 1047 1048 for (Value *Arg : Call->args()) { 1049 // We need to check the underlying objects of all arguments, not just 1050 // the pointer arguments, because we might be passing pointers as 1051 // integers, etc. 1052 // However, if we know that the call only accesses pointer arguments, 1053 // then we only need to check the pointer arguments. 1054 if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy()) 1055 continue; 1056 1057 PtrArgs.push_back(Arg); 1058 } 1059 } 1060 1061 // If we found no pointers, then this instruction is not suitable for 1062 // pairing with an instruction to receive aliasing metadata. 1063 // However, if this is a call, this we might just alias with none of the 1064 // noalias arguments. 1065 if (PtrArgs.empty() && !IsFuncCall) 1066 continue; 1067 1068 // It is possible that there is only one underlying object, but you 1069 // need to go through several PHIs to see it, and thus could be 1070 // repeated in the Objects list. 1071 SmallPtrSet<const Value *, 4> ObjSet; 1072 SmallVector<Metadata *, 4> Scopes, NoAliases; 1073 1074 SmallSetVector<const Argument *, 4> NAPtrArgs; 1075 for (const Value *V : PtrArgs) { 1076 SmallVector<const Value *, 4> Objects; 1077 getUnderlyingObjects(V, Objects, /* LI = */ nullptr); 1078 1079 for (const Value *O : Objects) 1080 ObjSet.insert(O); 1081 } 1082 1083 // Figure out if we're derived from anything that is not a noalias 1084 // argument. 1085 bool CanDeriveViaCapture = false, UsesAliasingPtr = false; 1086 for (const Value *V : ObjSet) { 1087 // Is this value a constant that cannot be derived from any pointer 1088 // value (we need to exclude constant expressions, for example, that 1089 // are formed from arithmetic on global symbols). 1090 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || 1091 isa<ConstantPointerNull>(V) || 1092 isa<ConstantDataVector>(V) || isa<UndefValue>(V); 1093 if (IsNonPtrConst) 1094 continue; 1095 1096 // If this is anything other than a noalias argument, then we cannot 1097 // completely describe the aliasing properties using alias.scope 1098 // metadata (and, thus, won't add any). 1099 if (const Argument *A = dyn_cast<Argument>(V)) { 1100 if (!CB.paramHasAttr(A->getArgNo(), Attribute::NoAlias)) 1101 UsesAliasingPtr = true; 1102 } else { 1103 UsesAliasingPtr = true; 1104 } 1105 1106 // If this is not some identified function-local object (which cannot 1107 // directly alias a noalias argument), or some other argument (which, 1108 // by definition, also cannot alias a noalias argument), then we could 1109 // alias a noalias argument that has been captured). 1110 if (!isa<Argument>(V) && 1111 !isIdentifiedFunctionLocal(const_cast<Value*>(V))) 1112 CanDeriveViaCapture = true; 1113 } 1114 1115 // A function call can always get captured noalias pointers (via other 1116 // parameters, globals, etc.). 1117 if (IsFuncCall && !IsArgMemOnlyCall) 1118 CanDeriveViaCapture = true; 1119 1120 // First, we want to figure out all of the sets with which we definitely 1121 // don't alias. Iterate over all noalias set, and add those for which: 1122 // 1. The noalias argument is not in the set of objects from which we 1123 // definitely derive. 1124 // 2. The noalias argument has not yet been captured. 1125 // An arbitrary function that might load pointers could see captured 1126 // noalias arguments via other noalias arguments or globals, and so we 1127 // must always check for prior capture. 1128 for (const Argument *A : NoAliasArgs) { 1129 if (!ObjSet.count(A) && (!CanDeriveViaCapture || 1130 // It might be tempting to skip the 1131 // PointerMayBeCapturedBefore check if 1132 // A->hasNoCaptureAttr() is true, but this is 1133 // incorrect because nocapture only guarantees 1134 // that no copies outlive the function, not 1135 // that the value cannot be locally captured. 1136 !PointerMayBeCapturedBefore(A, 1137 /* ReturnCaptures */ false, 1138 /* StoreCaptures */ false, I, &DT))) 1139 NoAliases.push_back(NewScopes[A]); 1140 } 1141 1142 if (!NoAliases.empty()) 1143 NI->setMetadata(LLVMContext::MD_noalias, 1144 MDNode::concatenate( 1145 NI->getMetadata(LLVMContext::MD_noalias), 1146 MDNode::get(CalledFunc->getContext(), NoAliases))); 1147 1148 // Next, we want to figure out all of the sets to which we might belong. 1149 // We might belong to a set if the noalias argument is in the set of 1150 // underlying objects. If there is some non-noalias argument in our list 1151 // of underlying objects, then we cannot add a scope because the fact 1152 // that some access does not alias with any set of our noalias arguments 1153 // cannot itself guarantee that it does not alias with this access 1154 // (because there is some pointer of unknown origin involved and the 1155 // other access might also depend on this pointer). We also cannot add 1156 // scopes to arbitrary functions unless we know they don't access any 1157 // non-parameter pointer-values. 1158 bool CanAddScopes = !UsesAliasingPtr; 1159 if (CanAddScopes && IsFuncCall) 1160 CanAddScopes = IsArgMemOnlyCall; 1161 1162 if (CanAddScopes) 1163 for (const Argument *A : NoAliasArgs) { 1164 if (ObjSet.count(A)) 1165 Scopes.push_back(NewScopes[A]); 1166 } 1167 1168 if (!Scopes.empty()) 1169 NI->setMetadata( 1170 LLVMContext::MD_alias_scope, 1171 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), 1172 MDNode::get(CalledFunc->getContext(), Scopes))); 1173 } 1174 } 1175 } 1176 1177 static bool MayContainThrowingOrExitingCall(Instruction *Begin, 1178 Instruction *End) { 1179 1180 assert(Begin->getParent() == End->getParent() && 1181 "Expected to be in same basic block!"); 1182 return !llvm::isGuaranteedToTransferExecutionToSuccessor( 1183 Begin->getIterator(), End->getIterator(), InlinerAttributeWindow + 1); 1184 } 1185 1186 static AttrBuilder IdentifyValidAttributes(CallBase &CB) { 1187 1188 AttrBuilder AB(CB.getAttributes(), AttributeList::ReturnIndex); 1189 if (AB.empty()) 1190 return AB; 1191 AttrBuilder Valid; 1192 // Only allow these white listed attributes to be propagated back to the 1193 // callee. This is because other attributes may only be valid on the call 1194 // itself, i.e. attributes such as signext and zeroext. 1195 if (auto DerefBytes = AB.getDereferenceableBytes()) 1196 Valid.addDereferenceableAttr(DerefBytes); 1197 if (auto DerefOrNullBytes = AB.getDereferenceableOrNullBytes()) 1198 Valid.addDereferenceableOrNullAttr(DerefOrNullBytes); 1199 if (AB.contains(Attribute::NoAlias)) 1200 Valid.addAttribute(Attribute::NoAlias); 1201 if (AB.contains(Attribute::NonNull)) 1202 Valid.addAttribute(Attribute::NonNull); 1203 return Valid; 1204 } 1205 1206 static void AddReturnAttributes(CallBase &CB, ValueToValueMapTy &VMap) { 1207 if (!UpdateReturnAttributes) 1208 return; 1209 1210 AttrBuilder Valid = IdentifyValidAttributes(CB); 1211 if (Valid.empty()) 1212 return; 1213 auto *CalledFunction = CB.getCalledFunction(); 1214 auto &Context = CalledFunction->getContext(); 1215 1216 for (auto &BB : *CalledFunction) { 1217 auto *RI = dyn_cast<ReturnInst>(BB.getTerminator()); 1218 if (!RI || !isa<CallBase>(RI->getOperand(0))) 1219 continue; 1220 auto *RetVal = cast<CallBase>(RI->getOperand(0)); 1221 // Sanity check that the cloned RetVal exists and is a call, otherwise we 1222 // cannot add the attributes on the cloned RetVal. 1223 // Simplification during inlining could have transformed the cloned 1224 // instruction. 1225 auto *NewRetVal = dyn_cast_or_null<CallBase>(VMap.lookup(RetVal)); 1226 if (!NewRetVal) 1227 continue; 1228 // Backward propagation of attributes to the returned value may be incorrect 1229 // if it is control flow dependent. 1230 // Consider: 1231 // @callee { 1232 // %rv = call @foo() 1233 // %rv2 = call @bar() 1234 // if (%rv2 != null) 1235 // return %rv2 1236 // if (%rv == null) 1237 // exit() 1238 // return %rv 1239 // } 1240 // caller() { 1241 // %val = call nonnull @callee() 1242 // } 1243 // Here we cannot add the nonnull attribute on either foo or bar. So, we 1244 // limit the check to both RetVal and RI are in the same basic block and 1245 // there are no throwing/exiting instructions between these instructions. 1246 if (RI->getParent() != RetVal->getParent() || 1247 MayContainThrowingOrExitingCall(RetVal, RI)) 1248 continue; 1249 // Add to the existing attributes of NewRetVal, i.e. the cloned call 1250 // instruction. 1251 // NB! When we have the same attribute already existing on NewRetVal, but 1252 // with a differing value, the AttributeList's merge API honours the already 1253 // existing attribute value (i.e. attributes such as dereferenceable, 1254 // dereferenceable_or_null etc). See AttrBuilder::merge for more details. 1255 AttributeList AL = NewRetVal->getAttributes(); 1256 AttributeList NewAL = AL.addRetAttributes(Context, Valid); 1257 NewRetVal->setAttributes(NewAL); 1258 } 1259 } 1260 1261 /// If the inlined function has non-byval align arguments, then 1262 /// add @llvm.assume-based alignment assumptions to preserve this information. 1263 static void AddAlignmentAssumptions(CallBase &CB, InlineFunctionInfo &IFI) { 1264 if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache) 1265 return; 1266 1267 AssumptionCache *AC = &IFI.GetAssumptionCache(*CB.getCaller()); 1268 auto &DL = CB.getCaller()->getParent()->getDataLayout(); 1269 1270 // To avoid inserting redundant assumptions, we should check for assumptions 1271 // already in the caller. To do this, we might need a DT of the caller. 1272 DominatorTree DT; 1273 bool DTCalculated = false; 1274 1275 Function *CalledFunc = CB.getCalledFunction(); 1276 for (Argument &Arg : CalledFunc->args()) { 1277 unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0; 1278 if (Align && !Arg.hasPassPointeeByValueCopyAttr() && !Arg.hasNUses(0)) { 1279 if (!DTCalculated) { 1280 DT.recalculate(*CB.getCaller()); 1281 DTCalculated = true; 1282 } 1283 1284 // If we can already prove the asserted alignment in the context of the 1285 // caller, then don't bother inserting the assumption. 1286 Value *ArgVal = CB.getArgOperand(Arg.getArgNo()); 1287 if (getKnownAlignment(ArgVal, DL, &CB, AC, &DT) >= Align) 1288 continue; 1289 1290 CallInst *NewAsmp = 1291 IRBuilder<>(&CB).CreateAlignmentAssumption(DL, ArgVal, Align); 1292 AC->registerAssumption(cast<AssumeInst>(NewAsmp)); 1293 } 1294 } 1295 } 1296 1297 /// Once we have cloned code over from a callee into the caller, 1298 /// update the specified callgraph to reflect the changes we made. 1299 /// Note that it's possible that not all code was copied over, so only 1300 /// some edges of the callgraph may remain. 1301 static void UpdateCallGraphAfterInlining(CallBase &CB, 1302 Function::iterator FirstNewBlock, 1303 ValueToValueMapTy &VMap, 1304 InlineFunctionInfo &IFI) { 1305 CallGraph &CG = *IFI.CG; 1306 const Function *Caller = CB.getCaller(); 1307 const Function *Callee = CB.getCalledFunction(); 1308 CallGraphNode *CalleeNode = CG[Callee]; 1309 CallGraphNode *CallerNode = CG[Caller]; 1310 1311 // Since we inlined some uninlined call sites in the callee into the caller, 1312 // add edges from the caller to all of the callees of the callee. 1313 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 1314 1315 // Consider the case where CalleeNode == CallerNode. 1316 CallGraphNode::CalledFunctionsVector CallCache; 1317 if (CalleeNode == CallerNode) { 1318 CallCache.assign(I, E); 1319 I = CallCache.begin(); 1320 E = CallCache.end(); 1321 } 1322 1323 for (; I != E; ++I) { 1324 // Skip 'refererence' call records. 1325 if (!I->first) 1326 continue; 1327 1328 const Value *OrigCall = *I->first; 1329 1330 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 1331 // Only copy the edge if the call was inlined! 1332 if (VMI == VMap.end() || VMI->second == nullptr) 1333 continue; 1334 1335 // If the call was inlined, but then constant folded, there is no edge to 1336 // add. Check for this case. 1337 auto *NewCall = dyn_cast<CallBase>(VMI->second); 1338 if (!NewCall) 1339 continue; 1340 1341 // We do not treat intrinsic calls like real function calls because we 1342 // expect them to become inline code; do not add an edge for an intrinsic. 1343 if (NewCall->getCalledFunction() && 1344 NewCall->getCalledFunction()->isIntrinsic()) 1345 continue; 1346 1347 // Remember that this call site got inlined for the client of 1348 // InlineFunction. 1349 IFI.InlinedCalls.push_back(NewCall); 1350 1351 // It's possible that inlining the callsite will cause it to go from an 1352 // indirect to a direct call by resolving a function pointer. If this 1353 // happens, set the callee of the new call site to a more precise 1354 // destination. This can also happen if the call graph node of the caller 1355 // was just unnecessarily imprecise. 1356 if (!I->second->getFunction()) 1357 if (Function *F = NewCall->getCalledFunction()) { 1358 // Indirect call site resolved to direct call. 1359 CallerNode->addCalledFunction(NewCall, CG[F]); 1360 1361 continue; 1362 } 1363 1364 CallerNode->addCalledFunction(NewCall, I->second); 1365 } 1366 1367 // Update the call graph by deleting the edge from Callee to Caller. We must 1368 // do this after the loop above in case Caller and Callee are the same. 1369 CallerNode->removeCallEdgeFor(*cast<CallBase>(&CB)); 1370 } 1371 1372 static void HandleByValArgumentInit(Type *ByValType, Value *Dst, Value *Src, 1373 Module *M, BasicBlock *InsertBlock, 1374 InlineFunctionInfo &IFI) { 1375 IRBuilder<> Builder(InsertBlock, InsertBlock->begin()); 1376 1377 Value *Size = 1378 Builder.getInt64(M->getDataLayout().getTypeStoreSize(ByValType)); 1379 1380 // Always generate a memcpy of alignment 1 here because we don't know 1381 // the alignment of the src pointer. Other optimizations can infer 1382 // better alignment. 1383 Builder.CreateMemCpy(Dst, /*DstAlign*/ Align(1), Src, 1384 /*SrcAlign*/ Align(1), Size); 1385 } 1386 1387 /// When inlining a call site that has a byval argument, 1388 /// we have to make the implicit memcpy explicit by adding it. 1389 static Value *HandleByValArgument(Type *ByValType, Value *Arg, 1390 Instruction *TheCall, 1391 const Function *CalledFunc, 1392 InlineFunctionInfo &IFI, 1393 unsigned ByValAlignment) { 1394 assert(cast<PointerType>(Arg->getType()) 1395 ->isOpaqueOrPointeeTypeMatches(ByValType)); 1396 Function *Caller = TheCall->getFunction(); 1397 const DataLayout &DL = Caller->getParent()->getDataLayout(); 1398 1399 // If the called function is readonly, then it could not mutate the caller's 1400 // copy of the byval'd memory. In this case, it is safe to elide the copy and 1401 // temporary. 1402 if (CalledFunc->onlyReadsMemory()) { 1403 // If the byval argument has a specified alignment that is greater than the 1404 // passed in pointer, then we either have to round up the input pointer or 1405 // give up on this transformation. 1406 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 1407 return Arg; 1408 1409 AssumptionCache *AC = 1410 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr; 1411 1412 // If the pointer is already known to be sufficiently aligned, or if we can 1413 // round it up to a larger alignment, then we don't need a temporary. 1414 if (getOrEnforceKnownAlignment(Arg, Align(ByValAlignment), DL, TheCall, 1415 AC) >= ByValAlignment) 1416 return Arg; 1417 1418 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 1419 // for code quality, but rarely happens and is required for correctness. 1420 } 1421 1422 // Create the alloca. If we have DataLayout, use nice alignment. 1423 Align Alignment(DL.getPrefTypeAlignment(ByValType)); 1424 1425 // If the byval had an alignment specified, we *must* use at least that 1426 // alignment, as it is required by the byval argument (and uses of the 1427 // pointer inside the callee). 1428 Alignment = max(Alignment, MaybeAlign(ByValAlignment)); 1429 1430 Value *NewAlloca = 1431 new AllocaInst(ByValType, DL.getAllocaAddrSpace(), nullptr, Alignment, 1432 Arg->getName(), &*Caller->begin()->begin()); 1433 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); 1434 1435 // Uses of the argument in the function should use our new alloca 1436 // instead. 1437 return NewAlloca; 1438 } 1439 1440 // Check whether this Value is used by a lifetime intrinsic. 1441 static bool isUsedByLifetimeMarker(Value *V) { 1442 for (User *U : V->users()) 1443 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) 1444 if (II->isLifetimeStartOrEnd()) 1445 return true; 1446 return false; 1447 } 1448 1449 // Check whether the given alloca already has 1450 // lifetime.start or lifetime.end intrinsics. 1451 static bool hasLifetimeMarkers(AllocaInst *AI) { 1452 Type *Ty = AI->getType(); 1453 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), 1454 Ty->getPointerAddressSpace()); 1455 if (Ty == Int8PtrTy) 1456 return isUsedByLifetimeMarker(AI); 1457 1458 // Do a scan to find all the casts to i8*. 1459 for (User *U : AI->users()) { 1460 if (U->getType() != Int8PtrTy) continue; 1461 if (U->stripPointerCasts() != AI) continue; 1462 if (isUsedByLifetimeMarker(U)) 1463 return true; 1464 } 1465 return false; 1466 } 1467 1468 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry 1469 /// block. Allocas used in inalloca calls and allocas of dynamic array size 1470 /// cannot be static. 1471 static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) { 1472 return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca(); 1473 } 1474 1475 /// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL 1476 /// inlined at \p InlinedAt. \p IANodes is an inlined-at cache. 1477 static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt, 1478 LLVMContext &Ctx, 1479 DenseMap<const MDNode *, MDNode *> &IANodes) { 1480 auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes); 1481 return DILocation::get(Ctx, OrigDL.getLine(), OrigDL.getCol(), 1482 OrigDL.getScope(), IA); 1483 } 1484 1485 /// Update inlined instructions' line numbers to 1486 /// to encode location where these instructions are inlined. 1487 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 1488 Instruction *TheCall, bool CalleeHasDebugInfo) { 1489 const DebugLoc &TheCallDL = TheCall->getDebugLoc(); 1490 if (!TheCallDL) 1491 return; 1492 1493 auto &Ctx = Fn->getContext(); 1494 DILocation *InlinedAtNode = TheCallDL; 1495 1496 // Create a unique call site, not to be confused with any other call from the 1497 // same location. 1498 InlinedAtNode = DILocation::getDistinct( 1499 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(), 1500 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt()); 1501 1502 // Cache the inlined-at nodes as they're built so they are reused, without 1503 // this every instruction's inlined-at chain would become distinct from each 1504 // other. 1505 DenseMap<const MDNode *, MDNode *> IANodes; 1506 1507 // Check if we are not generating inline line tables and want to use 1508 // the call site location instead. 1509 bool NoInlineLineTables = Fn->hasFnAttribute("no-inline-line-tables"); 1510 1511 for (; FI != Fn->end(); ++FI) { 1512 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 1513 BI != BE; ++BI) { 1514 // Loop metadata needs to be updated so that the start and end locs 1515 // reference inlined-at locations. 1516 auto updateLoopInfoLoc = [&Ctx, &InlinedAtNode, 1517 &IANodes](Metadata *MD) -> Metadata * { 1518 if (auto *Loc = dyn_cast_or_null<DILocation>(MD)) 1519 return inlineDebugLoc(Loc, InlinedAtNode, Ctx, IANodes).get(); 1520 return MD; 1521 }; 1522 updateLoopMetadataDebugLocations(*BI, updateLoopInfoLoc); 1523 1524 if (!NoInlineLineTables) 1525 if (DebugLoc DL = BI->getDebugLoc()) { 1526 DebugLoc IDL = 1527 inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes); 1528 BI->setDebugLoc(IDL); 1529 continue; 1530 } 1531 1532 if (CalleeHasDebugInfo && !NoInlineLineTables) 1533 continue; 1534 1535 // If the inlined instruction has no line number, or if inline info 1536 // is not being generated, make it look as if it originates from the call 1537 // location. This is important for ((__always_inline, __nodebug__)) 1538 // functions which must use caller location for all instructions in their 1539 // function body. 1540 1541 // Don't update static allocas, as they may get moved later. 1542 if (auto *AI = dyn_cast<AllocaInst>(BI)) 1543 if (allocaWouldBeStaticInEntry(AI)) 1544 continue; 1545 1546 BI->setDebugLoc(TheCallDL); 1547 } 1548 1549 // Remove debug info intrinsics if we're not keeping inline info. 1550 if (NoInlineLineTables) { 1551 BasicBlock::iterator BI = FI->begin(); 1552 while (BI != FI->end()) { 1553 if (isa<DbgInfoIntrinsic>(BI)) { 1554 BI = BI->eraseFromParent(); 1555 continue; 1556 } 1557 ++BI; 1558 } 1559 } 1560 1561 } 1562 } 1563 1564 /// Update the block frequencies of the caller after a callee has been inlined. 1565 /// 1566 /// Each block cloned into the caller has its block frequency scaled by the 1567 /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of 1568 /// callee's entry block gets the same frequency as the callsite block and the 1569 /// relative frequencies of all cloned blocks remain the same after cloning. 1570 static void updateCallerBFI(BasicBlock *CallSiteBlock, 1571 const ValueToValueMapTy &VMap, 1572 BlockFrequencyInfo *CallerBFI, 1573 BlockFrequencyInfo *CalleeBFI, 1574 const BasicBlock &CalleeEntryBlock) { 1575 SmallPtrSet<BasicBlock *, 16> ClonedBBs; 1576 for (auto Entry : VMap) { 1577 if (!isa<BasicBlock>(Entry.first) || !Entry.second) 1578 continue; 1579 auto *OrigBB = cast<BasicBlock>(Entry.first); 1580 auto *ClonedBB = cast<BasicBlock>(Entry.second); 1581 uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency(); 1582 if (!ClonedBBs.insert(ClonedBB).second) { 1583 // Multiple blocks in the callee might get mapped to one cloned block in 1584 // the caller since we prune the callee as we clone it. When that happens, 1585 // we want to use the maximum among the original blocks' frequencies. 1586 uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency(); 1587 if (NewFreq > Freq) 1588 Freq = NewFreq; 1589 } 1590 CallerBFI->setBlockFreq(ClonedBB, Freq); 1591 } 1592 BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock)); 1593 CallerBFI->setBlockFreqAndScale( 1594 EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(), 1595 ClonedBBs); 1596 } 1597 1598 /// Update the branch metadata for cloned call instructions. 1599 static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap, 1600 const ProfileCount &CalleeEntryCount, 1601 const CallBase &TheCall, ProfileSummaryInfo *PSI, 1602 BlockFrequencyInfo *CallerBFI) { 1603 if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() || 1604 CalleeEntryCount.getCount() < 1) 1605 return; 1606 auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None; 1607 int64_t CallCount = 1608 std::min(CallSiteCount.getValueOr(0), CalleeEntryCount.getCount()); 1609 updateProfileCallee(Callee, -CallCount, &VMap); 1610 } 1611 1612 void llvm::updateProfileCallee( 1613 Function *Callee, int64_t entryDelta, 1614 const ValueMap<const Value *, WeakTrackingVH> *VMap) { 1615 auto CalleeCount = Callee->getEntryCount(); 1616 if (!CalleeCount.hasValue()) 1617 return; 1618 1619 uint64_t priorEntryCount = CalleeCount.getCount(); 1620 uint64_t newEntryCount; 1621 1622 // Since CallSiteCount is an estimate, it could exceed the original callee 1623 // count and has to be set to 0 so guard against underflow. 1624 if (entryDelta < 0 && static_cast<uint64_t>(-entryDelta) > priorEntryCount) 1625 newEntryCount = 0; 1626 else 1627 newEntryCount = priorEntryCount + entryDelta; 1628 1629 // During inlining ? 1630 if (VMap) { 1631 uint64_t cloneEntryCount = priorEntryCount - newEntryCount; 1632 for (auto Entry : *VMap) 1633 if (isa<CallInst>(Entry.first)) 1634 if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second)) 1635 CI->updateProfWeight(cloneEntryCount, priorEntryCount); 1636 } 1637 1638 if (entryDelta) { 1639 Callee->setEntryCount(newEntryCount); 1640 1641 for (BasicBlock &BB : *Callee) 1642 // No need to update the callsite if it is pruned during inlining. 1643 if (!VMap || VMap->count(&BB)) 1644 for (Instruction &I : BB) 1645 if (CallInst *CI = dyn_cast<CallInst>(&I)) 1646 CI->updateProfWeight(newEntryCount, priorEntryCount); 1647 } 1648 } 1649 1650 /// An operand bundle "clang.arc.attachedcall" on a call indicates the call 1651 /// result is implicitly consumed by a call to retainRV or claimRV immediately 1652 /// after the call. This function inlines the retainRV/claimRV calls. 1653 /// 1654 /// There are three cases to consider: 1655 /// 1656 /// 1. If there is a call to autoreleaseRV that takes a pointer to the returned 1657 /// object in the callee return block, the autoreleaseRV call and the 1658 /// retainRV/claimRV call in the caller cancel out. If the call in the caller 1659 /// is a claimRV call, a call to objc_release is emitted. 1660 /// 1661 /// 2. If there is a call in the callee return block that doesn't have operand 1662 /// bundle "clang.arc.attachedcall", the operand bundle on the original call 1663 /// is transferred to the call in the callee. 1664 /// 1665 /// 3. Otherwise, a call to objc_retain is inserted if the call in the caller is 1666 /// a retainRV call. 1667 static void 1668 inlineRetainOrClaimRVCalls(CallBase &CB, objcarc::ARCInstKind RVCallKind, 1669 const SmallVectorImpl<ReturnInst *> &Returns) { 1670 Module *Mod = CB.getModule(); 1671 assert(objcarc::isRetainOrClaimRV(RVCallKind) && "unexpected ARC function"); 1672 bool IsRetainRV = RVCallKind == objcarc::ARCInstKind::RetainRV, 1673 IsClaimRV = !IsRetainRV; 1674 1675 for (auto *RI : Returns) { 1676 Value *RetOpnd = objcarc::GetRCIdentityRoot(RI->getOperand(0)); 1677 bool InsertRetainCall = IsRetainRV; 1678 IRBuilder<> Builder(RI->getContext()); 1679 1680 // Walk backwards through the basic block looking for either a matching 1681 // autoreleaseRV call or an unannotated call. 1682 auto InstRange = llvm::make_range(++(RI->getIterator().getReverse()), 1683 RI->getParent()->rend()); 1684 for (Instruction &I : llvm::make_early_inc_range(InstRange)) { 1685 // Ignore casts. 1686 if (isa<CastInst>(I)) 1687 continue; 1688 1689 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 1690 if (II->getIntrinsicID() != Intrinsic::objc_autoreleaseReturnValue || 1691 !II->hasNUses(0) || 1692 objcarc::GetRCIdentityRoot(II->getOperand(0)) != RetOpnd) 1693 break; 1694 1695 // If we've found a matching authoreleaseRV call: 1696 // - If claimRV is attached to the call, insert a call to objc_release 1697 // and erase the autoreleaseRV call. 1698 // - If retainRV is attached to the call, just erase the autoreleaseRV 1699 // call. 1700 if (IsClaimRV) { 1701 Builder.SetInsertPoint(II); 1702 Function *IFn = 1703 Intrinsic::getDeclaration(Mod, Intrinsic::objc_release); 1704 Value *BC = Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType()); 1705 Builder.CreateCall(IFn, BC, ""); 1706 } 1707 II->eraseFromParent(); 1708 InsertRetainCall = false; 1709 break; 1710 } 1711 1712 auto *CI = dyn_cast<CallInst>(&I); 1713 1714 if (!CI) 1715 break; 1716 1717 if (objcarc::GetRCIdentityRoot(CI) != RetOpnd || 1718 objcarc::hasAttachedCallOpBundle(CI)) 1719 break; 1720 1721 // If we've found an unannotated call that defines RetOpnd, add a 1722 // "clang.arc.attachedcall" operand bundle. 1723 Value *BundleArgs[] = {*objcarc::getAttachedARCFunction(&CB)}; 1724 OperandBundleDef OB("clang.arc.attachedcall", BundleArgs); 1725 auto *NewCall = CallBase::addOperandBundle( 1726 CI, LLVMContext::OB_clang_arc_attachedcall, OB, CI); 1727 NewCall->copyMetadata(*CI); 1728 CI->replaceAllUsesWith(NewCall); 1729 CI->eraseFromParent(); 1730 InsertRetainCall = false; 1731 break; 1732 } 1733 1734 if (InsertRetainCall) { 1735 // The retainRV is attached to the call and we've failed to find a 1736 // matching autoreleaseRV or an annotated call in the callee. Emit a call 1737 // to objc_retain. 1738 Builder.SetInsertPoint(RI); 1739 Function *IFn = Intrinsic::getDeclaration(Mod, Intrinsic::objc_retain); 1740 Value *BC = Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType()); 1741 Builder.CreateCall(IFn, BC, ""); 1742 } 1743 } 1744 } 1745 1746 /// This function inlines the called function into the basic block of the 1747 /// caller. This returns false if it is not possible to inline this call. 1748 /// The program is still in a well defined state if this occurs though. 1749 /// 1750 /// Note that this only does one level of inlining. For example, if the 1751 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 1752 /// exists in the instruction stream. Similarly this will inline a recursive 1753 /// function by one level. 1754 llvm::InlineResult llvm::InlineFunction(CallBase &CB, InlineFunctionInfo &IFI, 1755 AAResults *CalleeAAR, 1756 bool InsertLifetime, 1757 Function *ForwardVarArgsTo) { 1758 assert(CB.getParent() && CB.getFunction() && "Instruction not in function!"); 1759 1760 // FIXME: we don't inline callbr yet. 1761 if (isa<CallBrInst>(CB)) 1762 return InlineResult::failure("We don't inline callbr yet."); 1763 1764 // If IFI has any state in it, zap it before we fill it in. 1765 IFI.reset(); 1766 1767 Function *CalledFunc = CB.getCalledFunction(); 1768 if (!CalledFunc || // Can't inline external function or indirect 1769 CalledFunc->isDeclaration()) // call! 1770 return InlineResult::failure("external or indirect"); 1771 1772 // The inliner does not know how to inline through calls with operand bundles 1773 // in general ... 1774 if (CB.hasOperandBundles()) { 1775 for (int i = 0, e = CB.getNumOperandBundles(); i != e; ++i) { 1776 uint32_t Tag = CB.getOperandBundleAt(i).getTagID(); 1777 // ... but it knows how to inline through "deopt" operand bundles ... 1778 if (Tag == LLVMContext::OB_deopt) 1779 continue; 1780 // ... and "funclet" operand bundles. 1781 if (Tag == LLVMContext::OB_funclet) 1782 continue; 1783 if (Tag == LLVMContext::OB_clang_arc_attachedcall) 1784 continue; 1785 1786 return InlineResult::failure("unsupported operand bundle"); 1787 } 1788 } 1789 1790 // If the call to the callee cannot throw, set the 'nounwind' flag on any 1791 // calls that we inline. 1792 bool MarkNoUnwind = CB.doesNotThrow(); 1793 1794 BasicBlock *OrigBB = CB.getParent(); 1795 Function *Caller = OrigBB->getParent(); 1796 1797 // GC poses two hazards to inlining, which only occur when the callee has GC: 1798 // 1. If the caller has no GC, then the callee's GC must be propagated to the 1799 // caller. 1800 // 2. If the caller has a differing GC, it is invalid to inline. 1801 if (CalledFunc->hasGC()) { 1802 if (!Caller->hasGC()) 1803 Caller->setGC(CalledFunc->getGC()); 1804 else if (CalledFunc->getGC() != Caller->getGC()) 1805 return InlineResult::failure("incompatible GC"); 1806 } 1807 1808 // Get the personality function from the callee if it contains a landing pad. 1809 Constant *CalledPersonality = 1810 CalledFunc->hasPersonalityFn() 1811 ? CalledFunc->getPersonalityFn()->stripPointerCasts() 1812 : nullptr; 1813 1814 // Find the personality function used by the landing pads of the caller. If it 1815 // exists, then check to see that it matches the personality function used in 1816 // the callee. 1817 Constant *CallerPersonality = 1818 Caller->hasPersonalityFn() 1819 ? Caller->getPersonalityFn()->stripPointerCasts() 1820 : nullptr; 1821 if (CalledPersonality) { 1822 if (!CallerPersonality) 1823 Caller->setPersonalityFn(CalledPersonality); 1824 // If the personality functions match, then we can perform the 1825 // inlining. Otherwise, we can't inline. 1826 // TODO: This isn't 100% true. Some personality functions are proper 1827 // supersets of others and can be used in place of the other. 1828 else if (CalledPersonality != CallerPersonality) 1829 return InlineResult::failure("incompatible personality"); 1830 } 1831 1832 // We need to figure out which funclet the callsite was in so that we may 1833 // properly nest the callee. 1834 Instruction *CallSiteEHPad = nullptr; 1835 if (CallerPersonality) { 1836 EHPersonality Personality = classifyEHPersonality(CallerPersonality); 1837 if (isScopedEHPersonality(Personality)) { 1838 Optional<OperandBundleUse> ParentFunclet = 1839 CB.getOperandBundle(LLVMContext::OB_funclet); 1840 if (ParentFunclet) 1841 CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front()); 1842 1843 // OK, the inlining site is legal. What about the target function? 1844 1845 if (CallSiteEHPad) { 1846 if (Personality == EHPersonality::MSVC_CXX) { 1847 // The MSVC personality cannot tolerate catches getting inlined into 1848 // cleanup funclets. 1849 if (isa<CleanupPadInst>(CallSiteEHPad)) { 1850 // Ok, the call site is within a cleanuppad. Let's check the callee 1851 // for catchpads. 1852 for (const BasicBlock &CalledBB : *CalledFunc) { 1853 if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI())) 1854 return InlineResult::failure("catch in cleanup funclet"); 1855 } 1856 } 1857 } else if (isAsynchronousEHPersonality(Personality)) { 1858 // SEH is even less tolerant, there may not be any sort of exceptional 1859 // funclet in the callee. 1860 for (const BasicBlock &CalledBB : *CalledFunc) { 1861 if (CalledBB.isEHPad()) 1862 return InlineResult::failure("SEH in cleanup funclet"); 1863 } 1864 } 1865 } 1866 } 1867 } 1868 1869 // Determine if we are dealing with a call in an EHPad which does not unwind 1870 // to caller. 1871 bool EHPadForCallUnwindsLocally = false; 1872 if (CallSiteEHPad && isa<CallInst>(CB)) { 1873 UnwindDestMemoTy FuncletUnwindMap; 1874 Value *CallSiteUnwindDestToken = 1875 getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap); 1876 1877 EHPadForCallUnwindsLocally = 1878 CallSiteUnwindDestToken && 1879 !isa<ConstantTokenNone>(CallSiteUnwindDestToken); 1880 } 1881 1882 // Get an iterator to the last basic block in the function, which will have 1883 // the new function inlined after it. 1884 Function::iterator LastBlock = --Caller->end(); 1885 1886 // Make sure to capture all of the return instructions from the cloned 1887 // function. 1888 SmallVector<ReturnInst*, 8> Returns; 1889 ClonedCodeInfo InlinedFunctionInfo; 1890 Function::iterator FirstNewBlock; 1891 1892 { // Scope to destroy VMap after cloning. 1893 ValueToValueMapTy VMap; 1894 struct ByValInit { 1895 Value *Dst; 1896 Value *Src; 1897 Type *Ty; 1898 }; 1899 // Keep a list of pair (dst, src) to emit byval initializations. 1900 SmallVector<ByValInit, 4> ByValInits; 1901 1902 // When inlining a function that contains noalias scope metadata, 1903 // this metadata needs to be cloned so that the inlined blocks 1904 // have different "unique scopes" at every call site. 1905 // Track the metadata that must be cloned. Do this before other changes to 1906 // the function, so that we do not get in trouble when inlining caller == 1907 // callee. 1908 ScopedAliasMetadataDeepCloner SAMetadataCloner(CB.getCalledFunction()); 1909 1910 auto &DL = Caller->getParent()->getDataLayout(); 1911 1912 // Calculate the vector of arguments to pass into the function cloner, which 1913 // matches up the formal to the actual argument values. 1914 auto AI = CB.arg_begin(); 1915 unsigned ArgNo = 0; 1916 for (Function::arg_iterator I = CalledFunc->arg_begin(), 1917 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 1918 Value *ActualArg = *AI; 1919 1920 // When byval arguments actually inlined, we need to make the copy implied 1921 // by them explicit. However, we don't do this if the callee is readonly 1922 // or readnone, because the copy would be unneeded: the callee doesn't 1923 // modify the struct. 1924 if (CB.isByValArgument(ArgNo)) { 1925 ActualArg = HandleByValArgument(CB.getParamByValType(ArgNo), ActualArg, 1926 &CB, CalledFunc, IFI, 1927 CalledFunc->getParamAlignment(ArgNo)); 1928 if (ActualArg != *AI) 1929 ByValInits.push_back( 1930 {ActualArg, (Value *)*AI, CB.getParamByValType(ArgNo)}); 1931 } 1932 1933 VMap[&*I] = ActualArg; 1934 } 1935 1936 // TODO: Remove this when users have been updated to the assume bundles. 1937 // Add alignment assumptions if necessary. We do this before the inlined 1938 // instructions are actually cloned into the caller so that we can easily 1939 // check what will be known at the start of the inlined code. 1940 AddAlignmentAssumptions(CB, IFI); 1941 1942 AssumptionCache *AC = 1943 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr; 1944 1945 /// Preserve all attributes on of the call and its parameters. 1946 salvageKnowledge(&CB, AC); 1947 1948 // We want the inliner to prune the code as it copies. We would LOVE to 1949 // have no dead or constant instructions leftover after inlining occurs 1950 // (which can happen, e.g., because an argument was constant), but we'll be 1951 // happy with whatever the cloner can do. 1952 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 1953 /*ModuleLevelChanges=*/false, Returns, ".i", 1954 &InlinedFunctionInfo); 1955 // Remember the first block that is newly cloned over. 1956 FirstNewBlock = LastBlock; ++FirstNewBlock; 1957 1958 // Insert retainRV/clainRV runtime calls. 1959 objcarc::ARCInstKind RVCallKind = objcarc::getAttachedARCFunctionKind(&CB); 1960 if (RVCallKind != objcarc::ARCInstKind::None) 1961 inlineRetainOrClaimRVCalls(CB, RVCallKind, Returns); 1962 1963 // Updated caller/callee profiles only when requested. For sample loader 1964 // inlining, the context-sensitive inlinee profile doesn't need to be 1965 // subtracted from callee profile, and the inlined clone also doesn't need 1966 // to be scaled based on call site count. 1967 if (IFI.UpdateProfile) { 1968 if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr) 1969 // Update the BFI of blocks cloned into the caller. 1970 updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI, 1971 CalledFunc->front()); 1972 1973 updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), CB, 1974 IFI.PSI, IFI.CallerBFI); 1975 } 1976 1977 // Inject byval arguments initialization. 1978 for (ByValInit &Init : ByValInits) 1979 HandleByValArgumentInit(Init.Ty, Init.Dst, Init.Src, Caller->getParent(), 1980 &*FirstNewBlock, IFI); 1981 1982 Optional<OperandBundleUse> ParentDeopt = 1983 CB.getOperandBundle(LLVMContext::OB_deopt); 1984 if (ParentDeopt) { 1985 SmallVector<OperandBundleDef, 2> OpDefs; 1986 1987 for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) { 1988 CallBase *ICS = dyn_cast_or_null<CallBase>(VH); 1989 if (!ICS) 1990 continue; // instruction was DCE'd or RAUW'ed to undef 1991 1992 OpDefs.clear(); 1993 1994 OpDefs.reserve(ICS->getNumOperandBundles()); 1995 1996 for (unsigned COBi = 0, COBe = ICS->getNumOperandBundles(); COBi < COBe; 1997 ++COBi) { 1998 auto ChildOB = ICS->getOperandBundleAt(COBi); 1999 if (ChildOB.getTagID() != LLVMContext::OB_deopt) { 2000 // If the inlined call has other operand bundles, let them be 2001 OpDefs.emplace_back(ChildOB); 2002 continue; 2003 } 2004 2005 // It may be useful to separate this logic (of handling operand 2006 // bundles) out to a separate "policy" component if this gets crowded. 2007 // Prepend the parent's deoptimization continuation to the newly 2008 // inlined call's deoptimization continuation. 2009 std::vector<Value *> MergedDeoptArgs; 2010 MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() + 2011 ChildOB.Inputs.size()); 2012 2013 llvm::append_range(MergedDeoptArgs, ParentDeopt->Inputs); 2014 llvm::append_range(MergedDeoptArgs, ChildOB.Inputs); 2015 2016 OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs)); 2017 } 2018 2019 Instruction *NewI = CallBase::Create(ICS, OpDefs, ICS); 2020 2021 // Note: the RAUW does the appropriate fixup in VMap, so we need to do 2022 // this even if the call returns void. 2023 ICS->replaceAllUsesWith(NewI); 2024 2025 VH = nullptr; 2026 ICS->eraseFromParent(); 2027 } 2028 } 2029 2030 // Update the callgraph if requested. 2031 if (IFI.CG) 2032 UpdateCallGraphAfterInlining(CB, FirstNewBlock, VMap, IFI); 2033 2034 // For 'nodebug' functions, the associated DISubprogram is always null. 2035 // Conservatively avoid propagating the callsite debug location to 2036 // instructions inlined from a function whose DISubprogram is not null. 2037 fixupLineNumbers(Caller, FirstNewBlock, &CB, 2038 CalledFunc->getSubprogram() != nullptr); 2039 2040 // Now clone the inlined noalias scope metadata. 2041 SAMetadataCloner.clone(); 2042 SAMetadataCloner.remap(FirstNewBlock, Caller->end()); 2043 2044 // Add noalias metadata if necessary. 2045 AddAliasScopeMetadata(CB, VMap, DL, CalleeAAR, InlinedFunctionInfo); 2046 2047 // Clone return attributes on the callsite into the calls within the inlined 2048 // function which feed into its return value. 2049 AddReturnAttributes(CB, VMap); 2050 2051 // Propagate metadata on the callsite if necessary. 2052 PropagateCallSiteMetadata(CB, FirstNewBlock, Caller->end()); 2053 2054 // Register any cloned assumptions. 2055 if (IFI.GetAssumptionCache) 2056 for (BasicBlock &NewBlock : 2057 make_range(FirstNewBlock->getIterator(), Caller->end())) 2058 for (Instruction &I : NewBlock) 2059 if (auto *II = dyn_cast<AssumeInst>(&I)) 2060 IFI.GetAssumptionCache(*Caller).registerAssumption(II); 2061 } 2062 2063 // If there are any alloca instructions in the block that used to be the entry 2064 // block for the callee, move them to the entry block of the caller. First 2065 // calculate which instruction they should be inserted before. We insert the 2066 // instructions at the end of the current alloca list. 2067 { 2068 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 2069 for (BasicBlock::iterator I = FirstNewBlock->begin(), 2070 E = FirstNewBlock->end(); I != E; ) { 2071 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 2072 if (!AI) continue; 2073 2074 // If the alloca is now dead, remove it. This often occurs due to code 2075 // specialization. 2076 if (AI->use_empty()) { 2077 AI->eraseFromParent(); 2078 continue; 2079 } 2080 2081 if (!allocaWouldBeStaticInEntry(AI)) 2082 continue; 2083 2084 // Keep track of the static allocas that we inline into the caller. 2085 IFI.StaticAllocas.push_back(AI); 2086 2087 // Scan for the block of allocas that we can move over, and move them 2088 // all at once. 2089 while (isa<AllocaInst>(I) && 2090 !cast<AllocaInst>(I)->use_empty() && 2091 allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) { 2092 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 2093 ++I; 2094 } 2095 2096 // Transfer all of the allocas over in a block. Using splice means 2097 // that the instructions aren't removed from the symbol table, then 2098 // reinserted. 2099 Caller->getEntryBlock().getInstList().splice( 2100 InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I); 2101 } 2102 } 2103 2104 SmallVector<Value*,4> VarArgsToForward; 2105 SmallVector<AttributeSet, 4> VarArgsAttrs; 2106 for (unsigned i = CalledFunc->getFunctionType()->getNumParams(); 2107 i < CB.arg_size(); i++) { 2108 VarArgsToForward.push_back(CB.getArgOperand(i)); 2109 VarArgsAttrs.push_back(CB.getAttributes().getParamAttrs(i)); 2110 } 2111 2112 bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false; 2113 if (InlinedFunctionInfo.ContainsCalls) { 2114 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; 2115 if (CallInst *CI = dyn_cast<CallInst>(&CB)) 2116 CallSiteTailKind = CI->getTailCallKind(); 2117 2118 // For inlining purposes, the "notail" marker is the same as no marker. 2119 if (CallSiteTailKind == CallInst::TCK_NoTail) 2120 CallSiteTailKind = CallInst::TCK_None; 2121 2122 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 2123 ++BB) { 2124 for (Instruction &I : llvm::make_early_inc_range(*BB)) { 2125 CallInst *CI = dyn_cast<CallInst>(&I); 2126 if (!CI) 2127 continue; 2128 2129 // Forward varargs from inlined call site to calls to the 2130 // ForwardVarArgsTo function, if requested, and to musttail calls. 2131 if (!VarArgsToForward.empty() && 2132 ((ForwardVarArgsTo && 2133 CI->getCalledFunction() == ForwardVarArgsTo) || 2134 CI->isMustTailCall())) { 2135 // Collect attributes for non-vararg parameters. 2136 AttributeList Attrs = CI->getAttributes(); 2137 SmallVector<AttributeSet, 8> ArgAttrs; 2138 if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) { 2139 for (unsigned ArgNo = 0; 2140 ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo) 2141 ArgAttrs.push_back(Attrs.getParamAttrs(ArgNo)); 2142 } 2143 2144 // Add VarArg attributes. 2145 ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end()); 2146 Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttrs(), 2147 Attrs.getRetAttrs(), ArgAttrs); 2148 // Add VarArgs to existing parameters. 2149 SmallVector<Value *, 6> Params(CI->args()); 2150 Params.append(VarArgsToForward.begin(), VarArgsToForward.end()); 2151 CallInst *NewCI = CallInst::Create( 2152 CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI); 2153 NewCI->setDebugLoc(CI->getDebugLoc()); 2154 NewCI->setAttributes(Attrs); 2155 NewCI->setCallingConv(CI->getCallingConv()); 2156 CI->replaceAllUsesWith(NewCI); 2157 CI->eraseFromParent(); 2158 CI = NewCI; 2159 } 2160 2161 if (Function *F = CI->getCalledFunction()) 2162 InlinedDeoptimizeCalls |= 2163 F->getIntrinsicID() == Intrinsic::experimental_deoptimize; 2164 2165 // We need to reduce the strength of any inlined tail calls. For 2166 // musttail, we have to avoid introducing potential unbounded stack 2167 // growth. For example, if functions 'f' and 'g' are mutually recursive 2168 // with musttail, we can inline 'g' into 'f' so long as we preserve 2169 // musttail on the cloned call to 'f'. If either the inlined call site 2170 // or the cloned call site is *not* musttail, the program already has 2171 // one frame of stack growth, so it's safe to remove musttail. Here is 2172 // a table of example transformations: 2173 // 2174 // f -> musttail g -> musttail f ==> f -> musttail f 2175 // f -> musttail g -> tail f ==> f -> tail f 2176 // f -> g -> musttail f ==> f -> f 2177 // f -> g -> tail f ==> f -> f 2178 // 2179 // Inlined notail calls should remain notail calls. 2180 CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); 2181 if (ChildTCK != CallInst::TCK_NoTail) 2182 ChildTCK = std::min(CallSiteTailKind, ChildTCK); 2183 CI->setTailCallKind(ChildTCK); 2184 InlinedMustTailCalls |= CI->isMustTailCall(); 2185 2186 // Calls inlined through a 'nounwind' call site should be marked 2187 // 'nounwind'. 2188 if (MarkNoUnwind) 2189 CI->setDoesNotThrow(); 2190 } 2191 } 2192 } 2193 2194 // Leave lifetime markers for the static alloca's, scoping them to the 2195 // function we just inlined. 2196 // We need to insert lifetime intrinsics even at O0 to avoid invalid 2197 // access caused by multithreaded coroutines. The check 2198 // `Caller->isPresplitCoroutine()` would affect AlwaysInliner at O0 only. 2199 if ((InsertLifetime || Caller->isPresplitCoroutine()) && 2200 !IFI.StaticAllocas.empty()) { 2201 IRBuilder<> builder(&FirstNewBlock->front()); 2202 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 2203 AllocaInst *AI = IFI.StaticAllocas[ai]; 2204 // Don't mark swifterror allocas. They can't have bitcast uses. 2205 if (AI->isSwiftError()) 2206 continue; 2207 2208 // If the alloca is already scoped to something smaller than the whole 2209 // function then there's no need to add redundant, less accurate markers. 2210 if (hasLifetimeMarkers(AI)) 2211 continue; 2212 2213 // Try to determine the size of the allocation. 2214 ConstantInt *AllocaSize = nullptr; 2215 if (ConstantInt *AIArraySize = 2216 dyn_cast<ConstantInt>(AI->getArraySize())) { 2217 auto &DL = Caller->getParent()->getDataLayout(); 2218 Type *AllocaType = AI->getAllocatedType(); 2219 TypeSize AllocaTypeSize = DL.getTypeAllocSize(AllocaType); 2220 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 2221 2222 // Don't add markers for zero-sized allocas. 2223 if (AllocaArraySize == 0) 2224 continue; 2225 2226 // Check that array size doesn't saturate uint64_t and doesn't 2227 // overflow when it's multiplied by type size. 2228 if (!AllocaTypeSize.isScalable() && 2229 AllocaArraySize != std::numeric_limits<uint64_t>::max() && 2230 std::numeric_limits<uint64_t>::max() / AllocaArraySize >= 2231 AllocaTypeSize.getFixedSize()) { 2232 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 2233 AllocaArraySize * AllocaTypeSize); 2234 } 2235 } 2236 2237 builder.CreateLifetimeStart(AI, AllocaSize); 2238 for (ReturnInst *RI : Returns) { 2239 // Don't insert llvm.lifetime.end calls between a musttail or deoptimize 2240 // call and a return. The return kills all local allocas. 2241 if (InlinedMustTailCalls && 2242 RI->getParent()->getTerminatingMustTailCall()) 2243 continue; 2244 if (InlinedDeoptimizeCalls && 2245 RI->getParent()->getTerminatingDeoptimizeCall()) 2246 continue; 2247 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); 2248 } 2249 } 2250 } 2251 2252 // If the inlined code contained dynamic alloca instructions, wrap the inlined 2253 // code with llvm.stacksave/llvm.stackrestore intrinsics. 2254 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 2255 Module *M = Caller->getParent(); 2256 // Get the two intrinsics we care about. 2257 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 2258 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 2259 2260 // Insert the llvm.stacksave. 2261 CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin()) 2262 .CreateCall(StackSave, {}, "savedstack"); 2263 2264 // Insert a call to llvm.stackrestore before any return instructions in the 2265 // inlined function. 2266 for (ReturnInst *RI : Returns) { 2267 // Don't insert llvm.stackrestore calls between a musttail or deoptimize 2268 // call and a return. The return will restore the stack pointer. 2269 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) 2270 continue; 2271 if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall()) 2272 continue; 2273 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); 2274 } 2275 } 2276 2277 // If we are inlining for an invoke instruction, we must make sure to rewrite 2278 // any call instructions into invoke instructions. This is sensitive to which 2279 // funclet pads were top-level in the inlinee, so must be done before 2280 // rewriting the "parent pad" links. 2281 if (auto *II = dyn_cast<InvokeInst>(&CB)) { 2282 BasicBlock *UnwindDest = II->getUnwindDest(); 2283 Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI(); 2284 if (isa<LandingPadInst>(FirstNonPHI)) { 2285 HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo); 2286 } else { 2287 HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo); 2288 } 2289 } 2290 2291 // Update the lexical scopes of the new funclets and callsites. 2292 // Anything that had 'none' as its parent is now nested inside the callsite's 2293 // EHPad. 2294 2295 if (CallSiteEHPad) { 2296 for (Function::iterator BB = FirstNewBlock->getIterator(), 2297 E = Caller->end(); 2298 BB != E; ++BB) { 2299 // Add bundle operands to any top-level call sites. 2300 SmallVector<OperandBundleDef, 1> OpBundles; 2301 for (Instruction &II : llvm::make_early_inc_range(*BB)) { 2302 CallBase *I = dyn_cast<CallBase>(&II); 2303 if (!I) 2304 continue; 2305 2306 // Skip call sites which are nounwind intrinsics. 2307 auto *CalledFn = 2308 dyn_cast<Function>(I->getCalledOperand()->stripPointerCasts()); 2309 if (CalledFn && CalledFn->isIntrinsic() && I->doesNotThrow()) 2310 continue; 2311 2312 // Skip call sites which already have a "funclet" bundle. 2313 if (I->getOperandBundle(LLVMContext::OB_funclet)) 2314 continue; 2315 2316 I->getOperandBundlesAsDefs(OpBundles); 2317 OpBundles.emplace_back("funclet", CallSiteEHPad); 2318 2319 Instruction *NewInst = CallBase::Create(I, OpBundles, I); 2320 NewInst->takeName(I); 2321 I->replaceAllUsesWith(NewInst); 2322 I->eraseFromParent(); 2323 2324 OpBundles.clear(); 2325 } 2326 2327 // It is problematic if the inlinee has a cleanupret which unwinds to 2328 // caller and we inline it into a call site which doesn't unwind but into 2329 // an EH pad that does. Such an edge must be dynamically unreachable. 2330 // As such, we replace the cleanupret with unreachable. 2331 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator())) 2332 if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally) 2333 changeToUnreachable(CleanupRet); 2334 2335 Instruction *I = BB->getFirstNonPHI(); 2336 if (!I->isEHPad()) 2337 continue; 2338 2339 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 2340 if (isa<ConstantTokenNone>(CatchSwitch->getParentPad())) 2341 CatchSwitch->setParentPad(CallSiteEHPad); 2342 } else { 2343 auto *FPI = cast<FuncletPadInst>(I); 2344 if (isa<ConstantTokenNone>(FPI->getParentPad())) 2345 FPI->setParentPad(CallSiteEHPad); 2346 } 2347 } 2348 } 2349 2350 if (InlinedDeoptimizeCalls) { 2351 // We need to at least remove the deoptimizing returns from the Return set, 2352 // so that the control flow from those returns does not get merged into the 2353 // caller (but terminate it instead). If the caller's return type does not 2354 // match the callee's return type, we also need to change the return type of 2355 // the intrinsic. 2356 if (Caller->getReturnType() == CB.getType()) { 2357 llvm::erase_if(Returns, [](ReturnInst *RI) { 2358 return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr; 2359 }); 2360 } else { 2361 SmallVector<ReturnInst *, 8> NormalReturns; 2362 Function *NewDeoptIntrinsic = Intrinsic::getDeclaration( 2363 Caller->getParent(), Intrinsic::experimental_deoptimize, 2364 {Caller->getReturnType()}); 2365 2366 for (ReturnInst *RI : Returns) { 2367 CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall(); 2368 if (!DeoptCall) { 2369 NormalReturns.push_back(RI); 2370 continue; 2371 } 2372 2373 // The calling convention on the deoptimize call itself may be bogus, 2374 // since the code we're inlining may have undefined behavior (and may 2375 // never actually execute at runtime); but all 2376 // @llvm.experimental.deoptimize declarations have to have the same 2377 // calling convention in a well-formed module. 2378 auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv(); 2379 NewDeoptIntrinsic->setCallingConv(CallingConv); 2380 auto *CurBB = RI->getParent(); 2381 RI->eraseFromParent(); 2382 2383 SmallVector<Value *, 4> CallArgs(DeoptCall->args()); 2384 2385 SmallVector<OperandBundleDef, 1> OpBundles; 2386 DeoptCall->getOperandBundlesAsDefs(OpBundles); 2387 auto DeoptAttributes = DeoptCall->getAttributes(); 2388 DeoptCall->eraseFromParent(); 2389 assert(!OpBundles.empty() && 2390 "Expected at least the deopt operand bundle"); 2391 2392 IRBuilder<> Builder(CurBB); 2393 CallInst *NewDeoptCall = 2394 Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles); 2395 NewDeoptCall->setCallingConv(CallingConv); 2396 NewDeoptCall->setAttributes(DeoptAttributes); 2397 if (NewDeoptCall->getType()->isVoidTy()) 2398 Builder.CreateRetVoid(); 2399 else 2400 Builder.CreateRet(NewDeoptCall); 2401 } 2402 2403 // Leave behind the normal returns so we can merge control flow. 2404 std::swap(Returns, NormalReturns); 2405 } 2406 } 2407 2408 // Handle any inlined musttail call sites. In order for a new call site to be 2409 // musttail, the source of the clone and the inlined call site must have been 2410 // musttail. Therefore it's safe to return without merging control into the 2411 // phi below. 2412 if (InlinedMustTailCalls) { 2413 // Check if we need to bitcast the result of any musttail calls. 2414 Type *NewRetTy = Caller->getReturnType(); 2415 bool NeedBitCast = !CB.use_empty() && CB.getType() != NewRetTy; 2416 2417 // Handle the returns preceded by musttail calls separately. 2418 SmallVector<ReturnInst *, 8> NormalReturns; 2419 for (ReturnInst *RI : Returns) { 2420 CallInst *ReturnedMustTail = 2421 RI->getParent()->getTerminatingMustTailCall(); 2422 if (!ReturnedMustTail) { 2423 NormalReturns.push_back(RI); 2424 continue; 2425 } 2426 if (!NeedBitCast) 2427 continue; 2428 2429 // Delete the old return and any preceding bitcast. 2430 BasicBlock *CurBB = RI->getParent(); 2431 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); 2432 RI->eraseFromParent(); 2433 if (OldCast) 2434 OldCast->eraseFromParent(); 2435 2436 // Insert a new bitcast and return with the right type. 2437 IRBuilder<> Builder(CurBB); 2438 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); 2439 } 2440 2441 // Leave behind the normal returns so we can merge control flow. 2442 std::swap(Returns, NormalReturns); 2443 } 2444 2445 // Now that all of the transforms on the inlined code have taken place but 2446 // before we splice the inlined code into the CFG and lose track of which 2447 // blocks were actually inlined, collect the call sites. We only do this if 2448 // call graph updates weren't requested, as those provide value handle based 2449 // tracking of inlined call sites instead. Calls to intrinsics are not 2450 // collected because they are not inlineable. 2451 if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) { 2452 // Otherwise just collect the raw call sites that were inlined. 2453 for (BasicBlock &NewBB : 2454 make_range(FirstNewBlock->getIterator(), Caller->end())) 2455 for (Instruction &I : NewBB) 2456 if (auto *CB = dyn_cast<CallBase>(&I)) 2457 if (!(CB->getCalledFunction() && 2458 CB->getCalledFunction()->isIntrinsic())) 2459 IFI.InlinedCallSites.push_back(CB); 2460 } 2461 2462 // If we cloned in _exactly one_ basic block, and if that block ends in a 2463 // return instruction, we splice the body of the inlined callee directly into 2464 // the calling basic block. 2465 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 2466 // Move all of the instructions right before the call. 2467 OrigBB->getInstList().splice(CB.getIterator(), FirstNewBlock->getInstList(), 2468 FirstNewBlock->begin(), FirstNewBlock->end()); 2469 // Remove the cloned basic block. 2470 Caller->getBasicBlockList().pop_back(); 2471 2472 // If the call site was an invoke instruction, add a branch to the normal 2473 // destination. 2474 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 2475 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), &CB); 2476 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 2477 } 2478 2479 // If the return instruction returned a value, replace uses of the call with 2480 // uses of the returned value. 2481 if (!CB.use_empty()) { 2482 ReturnInst *R = Returns[0]; 2483 if (&CB == R->getReturnValue()) 2484 CB.replaceAllUsesWith(UndefValue::get(CB.getType())); 2485 else 2486 CB.replaceAllUsesWith(R->getReturnValue()); 2487 } 2488 // Since we are now done with the Call/Invoke, we can delete it. 2489 CB.eraseFromParent(); 2490 2491 // Since we are now done with the return instruction, delete it also. 2492 Returns[0]->eraseFromParent(); 2493 2494 // We are now done with the inlining. 2495 return InlineResult::success(); 2496 } 2497 2498 // Otherwise, we have the normal case, of more than one block to inline or 2499 // multiple return sites. 2500 2501 // We want to clone the entire callee function into the hole between the 2502 // "starter" and "ender" blocks. How we accomplish this depends on whether 2503 // this is an invoke instruction or a call instruction. 2504 BasicBlock *AfterCallBB; 2505 BranchInst *CreatedBranchToNormalDest = nullptr; 2506 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 2507 2508 // Add an unconditional branch to make this look like the CallInst case... 2509 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), &CB); 2510 2511 // Split the basic block. This guarantees that no PHI nodes will have to be 2512 // updated due to new incoming edges, and make the invoke case more 2513 // symmetric to the call case. 2514 AfterCallBB = 2515 OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(), 2516 CalledFunc->getName() + ".exit"); 2517 2518 } else { // It's a call 2519 // If this is a call instruction, we need to split the basic block that 2520 // the call lives in. 2521 // 2522 AfterCallBB = OrigBB->splitBasicBlock(CB.getIterator(), 2523 CalledFunc->getName() + ".exit"); 2524 } 2525 2526 if (IFI.CallerBFI) { 2527 // Copy original BB's block frequency to AfterCallBB 2528 IFI.CallerBFI->setBlockFreq( 2529 AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency()); 2530 } 2531 2532 // Change the branch that used to go to AfterCallBB to branch to the first 2533 // basic block of the inlined function. 2534 // 2535 Instruction *Br = OrigBB->getTerminator(); 2536 assert(Br && Br->getOpcode() == Instruction::Br && 2537 "splitBasicBlock broken!"); 2538 Br->setOperand(0, &*FirstNewBlock); 2539 2540 // Now that the function is correct, make it a little bit nicer. In 2541 // particular, move the basic blocks inserted from the end of the function 2542 // into the space made by splitting the source basic block. 2543 Caller->getBasicBlockList().splice(AfterCallBB->getIterator(), 2544 Caller->getBasicBlockList(), FirstNewBlock, 2545 Caller->end()); 2546 2547 // Handle all of the return instructions that we just cloned in, and eliminate 2548 // any users of the original call/invoke instruction. 2549 Type *RTy = CalledFunc->getReturnType(); 2550 2551 PHINode *PHI = nullptr; 2552 if (Returns.size() > 1) { 2553 // The PHI node should go at the front of the new basic block to merge all 2554 // possible incoming values. 2555 if (!CB.use_empty()) { 2556 PHI = PHINode::Create(RTy, Returns.size(), CB.getName(), 2557 &AfterCallBB->front()); 2558 // Anything that used the result of the function call should now use the 2559 // PHI node as their operand. 2560 CB.replaceAllUsesWith(PHI); 2561 } 2562 2563 // Loop over all of the return instructions adding entries to the PHI node 2564 // as appropriate. 2565 if (PHI) { 2566 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2567 ReturnInst *RI = Returns[i]; 2568 assert(RI->getReturnValue()->getType() == PHI->getType() && 2569 "Ret value not consistent in function!"); 2570 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 2571 } 2572 } 2573 2574 // Add a branch to the merge points and remove return instructions. 2575 DebugLoc Loc; 2576 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2577 ReturnInst *RI = Returns[i]; 2578 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 2579 Loc = RI->getDebugLoc(); 2580 BI->setDebugLoc(Loc); 2581 RI->eraseFromParent(); 2582 } 2583 // We need to set the debug location to *somewhere* inside the 2584 // inlined function. The line number may be nonsensical, but the 2585 // instruction will at least be associated with the right 2586 // function. 2587 if (CreatedBranchToNormalDest) 2588 CreatedBranchToNormalDest->setDebugLoc(Loc); 2589 } else if (!Returns.empty()) { 2590 // Otherwise, if there is exactly one return value, just replace anything 2591 // using the return value of the call with the computed value. 2592 if (!CB.use_empty()) { 2593 if (&CB == Returns[0]->getReturnValue()) 2594 CB.replaceAllUsesWith(UndefValue::get(CB.getType())); 2595 else 2596 CB.replaceAllUsesWith(Returns[0]->getReturnValue()); 2597 } 2598 2599 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 2600 BasicBlock *ReturnBB = Returns[0]->getParent(); 2601 ReturnBB->replaceAllUsesWith(AfterCallBB); 2602 2603 // Splice the code from the return block into the block that it will return 2604 // to, which contains the code that was after the call. 2605 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 2606 ReturnBB->getInstList()); 2607 2608 if (CreatedBranchToNormalDest) 2609 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 2610 2611 // Delete the return instruction now and empty ReturnBB now. 2612 Returns[0]->eraseFromParent(); 2613 ReturnBB->eraseFromParent(); 2614 } else if (!CB.use_empty()) { 2615 // No returns, but something is using the return value of the call. Just 2616 // nuke the result. 2617 CB.replaceAllUsesWith(UndefValue::get(CB.getType())); 2618 } 2619 2620 // Since we are now done with the Call/Invoke, we can delete it. 2621 CB.eraseFromParent(); 2622 2623 // If we inlined any musttail calls and the original return is now 2624 // unreachable, delete it. It can only contain a bitcast and ret. 2625 if (InlinedMustTailCalls && pred_empty(AfterCallBB)) 2626 AfterCallBB->eraseFromParent(); 2627 2628 // We should always be able to fold the entry block of the function into the 2629 // single predecessor of the block... 2630 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 2631 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 2632 2633 // Splice the code entry block into calling block, right before the 2634 // unconditional branch. 2635 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 2636 OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList()); 2637 2638 // Remove the unconditional branch. 2639 OrigBB->getInstList().erase(Br); 2640 2641 // Now we can remove the CalleeEntry block, which is now empty. 2642 Caller->getBasicBlockList().erase(CalleeEntry); 2643 2644 // If we inserted a phi node, check to see if it has a single value (e.g. all 2645 // the entries are the same or undef). If so, remove the PHI so it doesn't 2646 // block other optimizations. 2647 if (PHI) { 2648 AssumptionCache *AC = 2649 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr; 2650 auto &DL = Caller->getParent()->getDataLayout(); 2651 if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) { 2652 PHI->replaceAllUsesWith(V); 2653 PHI->eraseFromParent(); 2654 } 2655 } 2656 2657 return InlineResult::success(); 2658 } 2659