1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements inlining of a function into a call site, resolving 10 // parameters and the return value as appropriate. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/BlockFrequencyInfo.h" 26 #include "llvm/Analysis/CallGraph.h" 27 #include "llvm/Analysis/CaptureTracking.h" 28 #include "llvm/Analysis/EHPersonalities.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/Analysis/VectorUtils.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/CFG.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DIBuilder.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfoMetadata.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/IRBuilder.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/IntrinsicInst.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/MDBuilder.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/User.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 63 #include "llvm/Transforms/Utils/Cloning.h" 64 #include "llvm/Transforms/Utils/ValueMapper.h" 65 #include <algorithm> 66 #include <cassert> 67 #include <cstdint> 68 #include <iterator> 69 #include <limits> 70 #include <string> 71 #include <utility> 72 #include <vector> 73 74 using namespace llvm; 75 using ProfileCount = Function::ProfileCount; 76 77 static cl::opt<bool> 78 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), 79 cl::Hidden, 80 cl::desc("Convert noalias attributes to metadata during inlining.")); 81 82 static cl::opt<bool> 83 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", 84 cl::init(true), cl::Hidden, 85 cl::desc("Convert align attributes to assumptions during inlining.")); 86 87 static cl::opt<bool> UpdateReturnAttributes( 88 "update-return-attrs", cl::init(true), cl::Hidden, 89 cl::desc("Update return attributes on calls within inlined body")); 90 91 static cl::opt<unsigned> InlinerAttributeWindow( 92 "max-inst-checked-for-throw-during-inlining", cl::Hidden, 93 cl::desc("the maximum number of instructions analyzed for may throw during " 94 "attribute inference in inlined body"), 95 cl::init(4)); 96 97 namespace { 98 99 /// A class for recording information about inlining a landing pad. 100 class LandingPadInliningInfo { 101 /// Destination of the invoke's unwind. 102 BasicBlock *OuterResumeDest; 103 104 /// Destination for the callee's resume. 105 BasicBlock *InnerResumeDest = nullptr; 106 107 /// LandingPadInst associated with the invoke. 108 LandingPadInst *CallerLPad = nullptr; 109 110 /// PHI for EH values from landingpad insts. 111 PHINode *InnerEHValuesPHI = nullptr; 112 113 SmallVector<Value*, 8> UnwindDestPHIValues; 114 115 public: 116 LandingPadInliningInfo(InvokeInst *II) 117 : OuterResumeDest(II->getUnwindDest()) { 118 // If there are PHI nodes in the unwind destination block, we need to keep 119 // track of which values came into them from the invoke before removing 120 // the edge from this block. 121 BasicBlock *InvokeBB = II->getParent(); 122 BasicBlock::iterator I = OuterResumeDest->begin(); 123 for (; isa<PHINode>(I); ++I) { 124 // Save the value to use for this edge. 125 PHINode *PHI = cast<PHINode>(I); 126 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 127 } 128 129 CallerLPad = cast<LandingPadInst>(I); 130 } 131 132 /// The outer unwind destination is the target of 133 /// unwind edges introduced for calls within the inlined function. 134 BasicBlock *getOuterResumeDest() const { 135 return OuterResumeDest; 136 } 137 138 BasicBlock *getInnerResumeDest(); 139 140 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 141 142 /// Forward the 'resume' instruction to the caller's landing pad block. 143 /// When the landing pad block has only one predecessor, this is 144 /// a simple branch. When there is more than one predecessor, we need to 145 /// split the landing pad block after the landingpad instruction and jump 146 /// to there. 147 void forwardResume(ResumeInst *RI, 148 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); 149 150 /// Add incoming-PHI values to the unwind destination block for the given 151 /// basic block, using the values for the original invoke's source block. 152 void addIncomingPHIValuesFor(BasicBlock *BB) const { 153 addIncomingPHIValuesForInto(BB, OuterResumeDest); 154 } 155 156 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 157 BasicBlock::iterator I = dest->begin(); 158 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 159 PHINode *phi = cast<PHINode>(I); 160 phi->addIncoming(UnwindDestPHIValues[i], src); 161 } 162 } 163 }; 164 165 } // end anonymous namespace 166 167 /// Get or create a target for the branch from ResumeInsts. 168 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() { 169 if (InnerResumeDest) return InnerResumeDest; 170 171 // Split the landing pad. 172 BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator(); 173 InnerResumeDest = 174 OuterResumeDest->splitBasicBlock(SplitPoint, 175 OuterResumeDest->getName() + ".body"); 176 177 // The number of incoming edges we expect to the inner landing pad. 178 const unsigned PHICapacity = 2; 179 180 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 181 Instruction *InsertPoint = &InnerResumeDest->front(); 182 BasicBlock::iterator I = OuterResumeDest->begin(); 183 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 184 PHINode *OuterPHI = cast<PHINode>(I); 185 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 186 OuterPHI->getName() + ".lpad-body", 187 InsertPoint); 188 OuterPHI->replaceAllUsesWith(InnerPHI); 189 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 190 } 191 192 // Create a PHI for the exception values. 193 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 194 "eh.lpad-body", InsertPoint); 195 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 196 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 197 198 // All done. 199 return InnerResumeDest; 200 } 201 202 /// Forward the 'resume' instruction to the caller's landing pad block. 203 /// When the landing pad block has only one predecessor, this is a simple 204 /// branch. When there is more than one predecessor, we need to split the 205 /// landing pad block after the landingpad instruction and jump to there. 206 void LandingPadInliningInfo::forwardResume( 207 ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) { 208 BasicBlock *Dest = getInnerResumeDest(); 209 BasicBlock *Src = RI->getParent(); 210 211 BranchInst::Create(Dest, Src); 212 213 // Update the PHIs in the destination. They were inserted in an order which 214 // makes this work. 215 addIncomingPHIValuesForInto(Src, Dest); 216 217 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 218 RI->eraseFromParent(); 219 } 220 221 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper. 222 static Value *getParentPad(Value *EHPad) { 223 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 224 return FPI->getParentPad(); 225 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 226 } 227 228 using UnwindDestMemoTy = DenseMap<Instruction *, Value *>; 229 230 /// Helper for getUnwindDestToken that does the descendant-ward part of 231 /// the search. 232 static Value *getUnwindDestTokenHelper(Instruction *EHPad, 233 UnwindDestMemoTy &MemoMap) { 234 SmallVector<Instruction *, 8> Worklist(1, EHPad); 235 236 while (!Worklist.empty()) { 237 Instruction *CurrentPad = Worklist.pop_back_val(); 238 // We only put pads on the worklist that aren't in the MemoMap. When 239 // we find an unwind dest for a pad we may update its ancestors, but 240 // the queue only ever contains uncles/great-uncles/etc. of CurrentPad, 241 // so they should never get updated while queued on the worklist. 242 assert(!MemoMap.count(CurrentPad)); 243 Value *UnwindDestToken = nullptr; 244 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) { 245 if (CatchSwitch->hasUnwindDest()) { 246 UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI(); 247 } else { 248 // Catchswitch doesn't have a 'nounwind' variant, and one might be 249 // annotated as "unwinds to caller" when really it's nounwind (see 250 // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the 251 // parent's unwind dest from this. We can check its catchpads' 252 // descendants, since they might include a cleanuppad with an 253 // "unwinds to caller" cleanupret, which can be trusted. 254 for (auto HI = CatchSwitch->handler_begin(), 255 HE = CatchSwitch->handler_end(); 256 HI != HE && !UnwindDestToken; ++HI) { 257 BasicBlock *HandlerBlock = *HI; 258 auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI()); 259 for (User *Child : CatchPad->users()) { 260 // Intentionally ignore invokes here -- since the catchswitch is 261 // marked "unwind to caller", it would be a verifier error if it 262 // contained an invoke which unwinds out of it, so any invoke we'd 263 // encounter must unwind to some child of the catch. 264 if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child)) 265 continue; 266 267 Instruction *ChildPad = cast<Instruction>(Child); 268 auto Memo = MemoMap.find(ChildPad); 269 if (Memo == MemoMap.end()) { 270 // Haven't figured out this child pad yet; queue it. 271 Worklist.push_back(ChildPad); 272 continue; 273 } 274 // We've already checked this child, but might have found that 275 // it offers no proof either way. 276 Value *ChildUnwindDestToken = Memo->second; 277 if (!ChildUnwindDestToken) 278 continue; 279 // We already know the child's unwind dest, which can either 280 // be ConstantTokenNone to indicate unwind to caller, or can 281 // be another child of the catchpad. Only the former indicates 282 // the unwind dest of the catchswitch. 283 if (isa<ConstantTokenNone>(ChildUnwindDestToken)) { 284 UnwindDestToken = ChildUnwindDestToken; 285 break; 286 } 287 assert(getParentPad(ChildUnwindDestToken) == CatchPad); 288 } 289 } 290 } 291 } else { 292 auto *CleanupPad = cast<CleanupPadInst>(CurrentPad); 293 for (User *U : CleanupPad->users()) { 294 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) { 295 if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest()) 296 UnwindDestToken = RetUnwindDest->getFirstNonPHI(); 297 else 298 UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext()); 299 break; 300 } 301 Value *ChildUnwindDestToken; 302 if (auto *Invoke = dyn_cast<InvokeInst>(U)) { 303 ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI(); 304 } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) { 305 Instruction *ChildPad = cast<Instruction>(U); 306 auto Memo = MemoMap.find(ChildPad); 307 if (Memo == MemoMap.end()) { 308 // Haven't resolved this child yet; queue it and keep searching. 309 Worklist.push_back(ChildPad); 310 continue; 311 } 312 // We've checked this child, but still need to ignore it if it 313 // had no proof either way. 314 ChildUnwindDestToken = Memo->second; 315 if (!ChildUnwindDestToken) 316 continue; 317 } else { 318 // Not a relevant user of the cleanuppad 319 continue; 320 } 321 // In a well-formed program, the child/invoke must either unwind to 322 // an(other) child of the cleanup, or exit the cleanup. In the 323 // first case, continue searching. 324 if (isa<Instruction>(ChildUnwindDestToken) && 325 getParentPad(ChildUnwindDestToken) == CleanupPad) 326 continue; 327 UnwindDestToken = ChildUnwindDestToken; 328 break; 329 } 330 } 331 // If we haven't found an unwind dest for CurrentPad, we may have queued its 332 // children, so move on to the next in the worklist. 333 if (!UnwindDestToken) 334 continue; 335 336 // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits 337 // any ancestors of CurrentPad up to but not including UnwindDestToken's 338 // parent pad. Record this in the memo map, and check to see if the 339 // original EHPad being queried is one of the ones exited. 340 Value *UnwindParent; 341 if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken)) 342 UnwindParent = getParentPad(UnwindPad); 343 else 344 UnwindParent = nullptr; 345 bool ExitedOriginalPad = false; 346 for (Instruction *ExitedPad = CurrentPad; 347 ExitedPad && ExitedPad != UnwindParent; 348 ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) { 349 // Skip over catchpads since they just follow their catchswitches. 350 if (isa<CatchPadInst>(ExitedPad)) 351 continue; 352 MemoMap[ExitedPad] = UnwindDestToken; 353 ExitedOriginalPad |= (ExitedPad == EHPad); 354 } 355 356 if (ExitedOriginalPad) 357 return UnwindDestToken; 358 359 // Continue the search. 360 } 361 362 // No definitive information is contained within this funclet. 363 return nullptr; 364 } 365 366 /// Given an EH pad, find where it unwinds. If it unwinds to an EH pad, 367 /// return that pad instruction. If it unwinds to caller, return 368 /// ConstantTokenNone. If it does not have a definitive unwind destination, 369 /// return nullptr. 370 /// 371 /// This routine gets invoked for calls in funclets in inlinees when inlining 372 /// an invoke. Since many funclets don't have calls inside them, it's queried 373 /// on-demand rather than building a map of pads to unwind dests up front. 374 /// Determining a funclet's unwind dest may require recursively searching its 375 /// descendants, and also ancestors and cousins if the descendants don't provide 376 /// an answer. Since most funclets will have their unwind dest immediately 377 /// available as the unwind dest of a catchswitch or cleanupret, this routine 378 /// searches top-down from the given pad and then up. To avoid worst-case 379 /// quadratic run-time given that approach, it uses a memo map to avoid 380 /// re-processing funclet trees. The callers that rewrite the IR as they go 381 /// take advantage of this, for correctness, by checking/forcing rewritten 382 /// pads' entries to match the original callee view. 383 static Value *getUnwindDestToken(Instruction *EHPad, 384 UnwindDestMemoTy &MemoMap) { 385 // Catchpads unwind to the same place as their catchswitch; 386 // redirct any queries on catchpads so the code below can 387 // deal with just catchswitches and cleanuppads. 388 if (auto *CPI = dyn_cast<CatchPadInst>(EHPad)) 389 EHPad = CPI->getCatchSwitch(); 390 391 // Check if we've already determined the unwind dest for this pad. 392 auto Memo = MemoMap.find(EHPad); 393 if (Memo != MemoMap.end()) 394 return Memo->second; 395 396 // Search EHPad and, if necessary, its descendants. 397 Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap); 398 assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0)); 399 if (UnwindDestToken) 400 return UnwindDestToken; 401 402 // No information is available for this EHPad from itself or any of its 403 // descendants. An unwind all the way out to a pad in the caller would 404 // need also to agree with the unwind dest of the parent funclet, so 405 // search up the chain to try to find a funclet with information. Put 406 // null entries in the memo map to avoid re-processing as we go up. 407 MemoMap[EHPad] = nullptr; 408 #ifndef NDEBUG 409 SmallPtrSet<Instruction *, 4> TempMemos; 410 TempMemos.insert(EHPad); 411 #endif 412 Instruction *LastUselessPad = EHPad; 413 Value *AncestorToken; 414 for (AncestorToken = getParentPad(EHPad); 415 auto *AncestorPad = dyn_cast<Instruction>(AncestorToken); 416 AncestorToken = getParentPad(AncestorToken)) { 417 // Skip over catchpads since they just follow their catchswitches. 418 if (isa<CatchPadInst>(AncestorPad)) 419 continue; 420 // If the MemoMap had an entry mapping AncestorPad to nullptr, since we 421 // haven't yet called getUnwindDestTokenHelper for AncestorPad in this 422 // call to getUnwindDestToken, that would mean that AncestorPad had no 423 // information in itself, its descendants, or its ancestors. If that 424 // were the case, then we should also have recorded the lack of information 425 // for the descendant that we're coming from. So assert that we don't 426 // find a null entry in the MemoMap for AncestorPad. 427 assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]); 428 auto AncestorMemo = MemoMap.find(AncestorPad); 429 if (AncestorMemo == MemoMap.end()) { 430 UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap); 431 } else { 432 UnwindDestToken = AncestorMemo->second; 433 } 434 if (UnwindDestToken) 435 break; 436 LastUselessPad = AncestorPad; 437 MemoMap[LastUselessPad] = nullptr; 438 #ifndef NDEBUG 439 TempMemos.insert(LastUselessPad); 440 #endif 441 } 442 443 // We know that getUnwindDestTokenHelper was called on LastUselessPad and 444 // returned nullptr (and likewise for EHPad and any of its ancestors up to 445 // LastUselessPad), so LastUselessPad has no information from below. Since 446 // getUnwindDestTokenHelper must investigate all downward paths through 447 // no-information nodes to prove that a node has no information like this, 448 // and since any time it finds information it records it in the MemoMap for 449 // not just the immediately-containing funclet but also any ancestors also 450 // exited, it must be the case that, walking downward from LastUselessPad, 451 // visiting just those nodes which have not been mapped to an unwind dest 452 // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since 453 // they are just used to keep getUnwindDestTokenHelper from repeating work), 454 // any node visited must have been exhaustively searched with no information 455 // for it found. 456 SmallVector<Instruction *, 8> Worklist(1, LastUselessPad); 457 while (!Worklist.empty()) { 458 Instruction *UselessPad = Worklist.pop_back_val(); 459 auto Memo = MemoMap.find(UselessPad); 460 if (Memo != MemoMap.end() && Memo->second) { 461 // Here the name 'UselessPad' is a bit of a misnomer, because we've found 462 // that it is a funclet that does have information about unwinding to 463 // a particular destination; its parent was a useless pad. 464 // Since its parent has no information, the unwind edge must not escape 465 // the parent, and must target a sibling of this pad. This local unwind 466 // gives us no information about EHPad. Leave it and the subtree rooted 467 // at it alone. 468 assert(getParentPad(Memo->second) == getParentPad(UselessPad)); 469 continue; 470 } 471 // We know we don't have information for UselesPad. If it has an entry in 472 // the MemoMap (mapping it to nullptr), it must be one of the TempMemos 473 // added on this invocation of getUnwindDestToken; if a previous invocation 474 // recorded nullptr, it would have had to prove that the ancestors of 475 // UselessPad, which include LastUselessPad, had no information, and that 476 // in turn would have required proving that the descendants of 477 // LastUselesPad, which include EHPad, have no information about 478 // LastUselessPad, which would imply that EHPad was mapped to nullptr in 479 // the MemoMap on that invocation, which isn't the case if we got here. 480 assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad)); 481 // Assert as we enumerate users that 'UselessPad' doesn't have any unwind 482 // information that we'd be contradicting by making a map entry for it 483 // (which is something that getUnwindDestTokenHelper must have proved for 484 // us to get here). Just assert on is direct users here; the checks in 485 // this downward walk at its descendants will verify that they don't have 486 // any unwind edges that exit 'UselessPad' either (i.e. they either have no 487 // unwind edges or unwind to a sibling). 488 MemoMap[UselessPad] = UnwindDestToken; 489 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) { 490 assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad"); 491 for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) { 492 auto *CatchPad = HandlerBlock->getFirstNonPHI(); 493 for (User *U : CatchPad->users()) { 494 assert( 495 (!isa<InvokeInst>(U) || 496 (getParentPad( 497 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 498 CatchPad)) && 499 "Expected useless pad"); 500 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 501 Worklist.push_back(cast<Instruction>(U)); 502 } 503 } 504 } else { 505 assert(isa<CleanupPadInst>(UselessPad)); 506 for (User *U : UselessPad->users()) { 507 assert(!isa<CleanupReturnInst>(U) && "Expected useless pad"); 508 assert((!isa<InvokeInst>(U) || 509 (getParentPad( 510 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 511 UselessPad)) && 512 "Expected useless pad"); 513 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 514 Worklist.push_back(cast<Instruction>(U)); 515 } 516 } 517 } 518 519 return UnwindDestToken; 520 } 521 522 /// When we inline a basic block into an invoke, 523 /// we have to turn all of the calls that can throw into invokes. 524 /// This function analyze BB to see if there are any calls, and if so, 525 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 526 /// nodes in that block with the values specified in InvokeDestPHIValues. 527 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke( 528 BasicBlock *BB, BasicBlock *UnwindEdge, 529 UnwindDestMemoTy *FuncletUnwindMap = nullptr) { 530 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 531 Instruction *I = &*BBI++; 532 533 // We only need to check for function calls: inlined invoke 534 // instructions require no special handling. 535 CallInst *CI = dyn_cast<CallInst>(I); 536 537 if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue())) 538 continue; 539 540 // We do not need to (and in fact, cannot) convert possibly throwing calls 541 // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into 542 // invokes. The caller's "segment" of the deoptimization continuation 543 // attached to the newly inlined @llvm.experimental_deoptimize 544 // (resp. @llvm.experimental.guard) call should contain the exception 545 // handling logic, if any. 546 if (auto *F = CI->getCalledFunction()) 547 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize || 548 F->getIntrinsicID() == Intrinsic::experimental_guard) 549 continue; 550 551 if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) { 552 // This call is nested inside a funclet. If that funclet has an unwind 553 // destination within the inlinee, then unwinding out of this call would 554 // be UB. Rewriting this call to an invoke which targets the inlined 555 // invoke's unwind dest would give the call's parent funclet multiple 556 // unwind destinations, which is something that subsequent EH table 557 // generation can't handle and that the veirifer rejects. So when we 558 // see such a call, leave it as a call. 559 auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]); 560 Value *UnwindDestToken = 561 getUnwindDestToken(FuncletPad, *FuncletUnwindMap); 562 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 563 continue; 564 #ifndef NDEBUG 565 Instruction *MemoKey; 566 if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad)) 567 MemoKey = CatchPad->getCatchSwitch(); 568 else 569 MemoKey = FuncletPad; 570 assert(FuncletUnwindMap->count(MemoKey) && 571 (*FuncletUnwindMap)[MemoKey] == UnwindDestToken && 572 "must get memoized to avoid confusing later searches"); 573 #endif // NDEBUG 574 } 575 576 changeToInvokeAndSplitBasicBlock(CI, UnwindEdge); 577 return BB; 578 } 579 return nullptr; 580 } 581 582 /// If we inlined an invoke site, we need to convert calls 583 /// in the body of the inlined function into invokes. 584 /// 585 /// II is the invoke instruction being inlined. FirstNewBlock is the first 586 /// block of the inlined code (the last block is the end of the function), 587 /// and InlineCodeInfo is information about the code that got inlined. 588 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock, 589 ClonedCodeInfo &InlinedCodeInfo) { 590 BasicBlock *InvokeDest = II->getUnwindDest(); 591 592 Function *Caller = FirstNewBlock->getParent(); 593 594 // The inlined code is currently at the end of the function, scan from the 595 // start of the inlined code to its end, checking for stuff we need to 596 // rewrite. 597 LandingPadInliningInfo Invoke(II); 598 599 // Get all of the inlined landing pad instructions. 600 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 601 for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end(); 602 I != E; ++I) 603 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 604 InlinedLPads.insert(II->getLandingPadInst()); 605 606 // Append the clauses from the outer landing pad instruction into the inlined 607 // landing pad instructions. 608 LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 609 for (LandingPadInst *InlinedLPad : InlinedLPads) { 610 unsigned OuterNum = OuterLPad->getNumClauses(); 611 InlinedLPad->reserveClauses(OuterNum); 612 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 613 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 614 if (OuterLPad->isCleanup()) 615 InlinedLPad->setCleanup(true); 616 } 617 618 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 619 BB != E; ++BB) { 620 if (InlinedCodeInfo.ContainsCalls) 621 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 622 &*BB, Invoke.getOuterResumeDest())) 623 // Update any PHI nodes in the exceptional block to indicate that there 624 // is now a new entry in them. 625 Invoke.addIncomingPHIValuesFor(NewBB); 626 627 // Forward any resumes that are remaining here. 628 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 629 Invoke.forwardResume(RI, InlinedLPads); 630 } 631 632 // Now that everything is happy, we have one final detail. The PHI nodes in 633 // the exception destination block still have entries due to the original 634 // invoke instruction. Eliminate these entries (which might even delete the 635 // PHI node) now. 636 InvokeDest->removePredecessor(II->getParent()); 637 } 638 639 /// If we inlined an invoke site, we need to convert calls 640 /// in the body of the inlined function into invokes. 641 /// 642 /// II is the invoke instruction being inlined. FirstNewBlock is the first 643 /// block of the inlined code (the last block is the end of the function), 644 /// and InlineCodeInfo is information about the code that got inlined. 645 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock, 646 ClonedCodeInfo &InlinedCodeInfo) { 647 BasicBlock *UnwindDest = II->getUnwindDest(); 648 Function *Caller = FirstNewBlock->getParent(); 649 650 assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!"); 651 652 // If there are PHI nodes in the unwind destination block, we need to keep 653 // track of which values came into them from the invoke before removing the 654 // edge from this block. 655 SmallVector<Value *, 8> UnwindDestPHIValues; 656 BasicBlock *InvokeBB = II->getParent(); 657 for (Instruction &I : *UnwindDest) { 658 // Save the value to use for this edge. 659 PHINode *PHI = dyn_cast<PHINode>(&I); 660 if (!PHI) 661 break; 662 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 663 } 664 665 // Add incoming-PHI values to the unwind destination block for the given basic 666 // block, using the values for the original invoke's source block. 667 auto UpdatePHINodes = [&](BasicBlock *Src) { 668 BasicBlock::iterator I = UnwindDest->begin(); 669 for (Value *V : UnwindDestPHIValues) { 670 PHINode *PHI = cast<PHINode>(I); 671 PHI->addIncoming(V, Src); 672 ++I; 673 } 674 }; 675 676 // This connects all the instructions which 'unwind to caller' to the invoke 677 // destination. 678 UnwindDestMemoTy FuncletUnwindMap; 679 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 680 BB != E; ++BB) { 681 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 682 if (CRI->unwindsToCaller()) { 683 auto *CleanupPad = CRI->getCleanupPad(); 684 CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI); 685 CRI->eraseFromParent(); 686 UpdatePHINodes(&*BB); 687 // Finding a cleanupret with an unwind destination would confuse 688 // subsequent calls to getUnwindDestToken, so map the cleanuppad 689 // to short-circuit any such calls and recognize this as an "unwind 690 // to caller" cleanup. 691 assert(!FuncletUnwindMap.count(CleanupPad) || 692 isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad])); 693 FuncletUnwindMap[CleanupPad] = 694 ConstantTokenNone::get(Caller->getContext()); 695 } 696 } 697 698 Instruction *I = BB->getFirstNonPHI(); 699 if (!I->isEHPad()) 700 continue; 701 702 Instruction *Replacement = nullptr; 703 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 704 if (CatchSwitch->unwindsToCaller()) { 705 Value *UnwindDestToken; 706 if (auto *ParentPad = 707 dyn_cast<Instruction>(CatchSwitch->getParentPad())) { 708 // This catchswitch is nested inside another funclet. If that 709 // funclet has an unwind destination within the inlinee, then 710 // unwinding out of this catchswitch would be UB. Rewriting this 711 // catchswitch to unwind to the inlined invoke's unwind dest would 712 // give the parent funclet multiple unwind destinations, which is 713 // something that subsequent EH table generation can't handle and 714 // that the veirifer rejects. So when we see such a call, leave it 715 // as "unwind to caller". 716 UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap); 717 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 718 continue; 719 } else { 720 // This catchswitch has no parent to inherit constraints from, and 721 // none of its descendants can have an unwind edge that exits it and 722 // targets another funclet in the inlinee. It may or may not have a 723 // descendant that definitively has an unwind to caller. In either 724 // case, we'll have to assume that any unwinds out of it may need to 725 // be routed to the caller, so treat it as though it has a definitive 726 // unwind to caller. 727 UnwindDestToken = ConstantTokenNone::get(Caller->getContext()); 728 } 729 auto *NewCatchSwitch = CatchSwitchInst::Create( 730 CatchSwitch->getParentPad(), UnwindDest, 731 CatchSwitch->getNumHandlers(), CatchSwitch->getName(), 732 CatchSwitch); 733 for (BasicBlock *PadBB : CatchSwitch->handlers()) 734 NewCatchSwitch->addHandler(PadBB); 735 // Propagate info for the old catchswitch over to the new one in 736 // the unwind map. This also serves to short-circuit any subsequent 737 // checks for the unwind dest of this catchswitch, which would get 738 // confused if they found the outer handler in the callee. 739 FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken; 740 Replacement = NewCatchSwitch; 741 } 742 } else if (!isa<FuncletPadInst>(I)) { 743 llvm_unreachable("unexpected EHPad!"); 744 } 745 746 if (Replacement) { 747 Replacement->takeName(I); 748 I->replaceAllUsesWith(Replacement); 749 I->eraseFromParent(); 750 UpdatePHINodes(&*BB); 751 } 752 } 753 754 if (InlinedCodeInfo.ContainsCalls) 755 for (Function::iterator BB = FirstNewBlock->getIterator(), 756 E = Caller->end(); 757 BB != E; ++BB) 758 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 759 &*BB, UnwindDest, &FuncletUnwindMap)) 760 // Update any PHI nodes in the exceptional block to indicate that there 761 // is now a new entry in them. 762 UpdatePHINodes(NewBB); 763 764 // Now that everything is happy, we have one final detail. The PHI nodes in 765 // the exception destination block still have entries due to the original 766 // invoke instruction. Eliminate these entries (which might even delete the 767 // PHI node) now. 768 UnwindDest->removePredecessor(InvokeBB); 769 } 770 771 /// When inlining a call site that has !llvm.mem.parallel_loop_access or 772 /// llvm.access.group metadata, that metadata should be propagated to all 773 /// memory-accessing cloned instructions. 774 static void PropagateParallelLoopAccessMetadata(CallBase &CB, 775 ValueToValueMapTy &VMap) { 776 MDNode *M = CB.getMetadata(LLVMContext::MD_mem_parallel_loop_access); 777 MDNode *CallAccessGroup = CB.getMetadata(LLVMContext::MD_access_group); 778 if (!M && !CallAccessGroup) 779 return; 780 781 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 782 VMI != VMIE; ++VMI) { 783 if (!VMI->second) 784 continue; 785 786 Instruction *NI = dyn_cast<Instruction>(VMI->second); 787 if (!NI) 788 continue; 789 790 if (M) { 791 if (MDNode *PM = 792 NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access)) { 793 M = MDNode::concatenate(PM, M); 794 NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M); 795 } else if (NI->mayReadOrWriteMemory()) { 796 NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M); 797 } 798 } 799 800 if (NI->mayReadOrWriteMemory()) { 801 MDNode *UnitedAccGroups = uniteAccessGroups( 802 NI->getMetadata(LLVMContext::MD_access_group), CallAccessGroup); 803 NI->setMetadata(LLVMContext::MD_access_group, UnitedAccGroups); 804 } 805 } 806 } 807 808 /// When inlining a function that contains noalias scope metadata, 809 /// this metadata needs to be cloned so that the inlined blocks 810 /// have different "unique scopes" at every call site. Were this not done, then 811 /// aliasing scopes from a function inlined into a caller multiple times could 812 /// not be differentiated (and this would lead to miscompiles because the 813 /// non-aliasing property communicated by the metadata could have 814 /// call-site-specific control dependencies). 815 static void CloneAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap) { 816 const Function *CalledFunc = CB.getCalledFunction(); 817 SetVector<const MDNode *> MD; 818 819 // Note: We could only clone the metadata if it is already used in the 820 // caller. I'm omitting that check here because it might confuse 821 // inter-procedural alias analysis passes. We can revisit this if it becomes 822 // an efficiency or overhead problem. 823 824 for (const BasicBlock &I : *CalledFunc) 825 for (const Instruction &J : I) { 826 if (const MDNode *M = J.getMetadata(LLVMContext::MD_alias_scope)) 827 MD.insert(M); 828 if (const MDNode *M = J.getMetadata(LLVMContext::MD_noalias)) 829 MD.insert(M); 830 } 831 832 if (MD.empty()) 833 return; 834 835 // Walk the existing metadata, adding the complete (perhaps cyclic) chain to 836 // the set. 837 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end()); 838 while (!Queue.empty()) { 839 const MDNode *M = cast<MDNode>(Queue.pop_back_val()); 840 for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i) 841 if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i))) 842 if (MD.insert(M1)) 843 Queue.push_back(M1); 844 } 845 846 // Now we have a complete set of all metadata in the chains used to specify 847 // the noalias scopes and the lists of those scopes. 848 SmallVector<TempMDTuple, 16> DummyNodes; 849 DenseMap<const MDNode *, TrackingMDNodeRef> MDMap; 850 for (const MDNode *I : MD) { 851 DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None)); 852 MDMap[I].reset(DummyNodes.back().get()); 853 } 854 855 // Create new metadata nodes to replace the dummy nodes, replacing old 856 // metadata references with either a dummy node or an already-created new 857 // node. 858 for (const MDNode *I : MD) { 859 SmallVector<Metadata *, 4> NewOps; 860 for (unsigned i = 0, ie = I->getNumOperands(); i != ie; ++i) { 861 const Metadata *V = I->getOperand(i); 862 if (const MDNode *M = dyn_cast<MDNode>(V)) 863 NewOps.push_back(MDMap[M]); 864 else 865 NewOps.push_back(const_cast<Metadata *>(V)); 866 } 867 868 MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps); 869 MDTuple *TempM = cast<MDTuple>(MDMap[I]); 870 assert(TempM->isTemporary() && "Expected temporary node"); 871 872 TempM->replaceAllUsesWith(NewM); 873 } 874 875 // Now replace the metadata in the new inlined instructions with the 876 // repacements from the map. 877 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 878 VMI != VMIE; ++VMI) { 879 if (!VMI->second) 880 continue; 881 882 Instruction *NI = dyn_cast<Instruction>(VMI->second); 883 if (!NI) 884 continue; 885 886 if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) { 887 MDNode *NewMD = MDMap[M]; 888 // If the call site also had alias scope metadata (a list of scopes to 889 // which instructions inside it might belong), propagate those scopes to 890 // the inlined instructions. 891 if (MDNode *CSM = CB.getMetadata(LLVMContext::MD_alias_scope)) 892 NewMD = MDNode::concatenate(NewMD, CSM); 893 NI->setMetadata(LLVMContext::MD_alias_scope, NewMD); 894 } else if (NI->mayReadOrWriteMemory()) { 895 if (MDNode *M = CB.getMetadata(LLVMContext::MD_alias_scope)) 896 NI->setMetadata(LLVMContext::MD_alias_scope, M); 897 } 898 899 if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) { 900 MDNode *NewMD = MDMap[M]; 901 // If the call site also had noalias metadata (a list of scopes with 902 // which instructions inside it don't alias), propagate those scopes to 903 // the inlined instructions. 904 if (MDNode *CSM = CB.getMetadata(LLVMContext::MD_noalias)) 905 NewMD = MDNode::concatenate(NewMD, CSM); 906 NI->setMetadata(LLVMContext::MD_noalias, NewMD); 907 } else if (NI->mayReadOrWriteMemory()) { 908 if (MDNode *M = CB.getMetadata(LLVMContext::MD_noalias)) 909 NI->setMetadata(LLVMContext::MD_noalias, M); 910 } 911 } 912 } 913 914 /// If the inlined function has noalias arguments, 915 /// then add new alias scopes for each noalias argument, tag the mapped noalias 916 /// parameters with noalias metadata specifying the new scope, and tag all 917 /// non-derived loads, stores and memory intrinsics with the new alias scopes. 918 static void AddAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap, 919 const DataLayout &DL, AAResults *CalleeAAR) { 920 if (!EnableNoAliasConversion) 921 return; 922 923 const Function *CalledFunc = CB.getCalledFunction(); 924 SmallVector<const Argument *, 4> NoAliasArgs; 925 926 for (const Argument &Arg : CalledFunc->args()) 927 if (CB.paramHasAttr(Arg.getArgNo(), Attribute::NoAlias) && !Arg.use_empty()) 928 NoAliasArgs.push_back(&Arg); 929 930 if (NoAliasArgs.empty()) 931 return; 932 933 // To do a good job, if a noalias variable is captured, we need to know if 934 // the capture point dominates the particular use we're considering. 935 DominatorTree DT; 936 DT.recalculate(const_cast<Function&>(*CalledFunc)); 937 938 // noalias indicates that pointer values based on the argument do not alias 939 // pointer values which are not based on it. So we add a new "scope" for each 940 // noalias function argument. Accesses using pointers based on that argument 941 // become part of that alias scope, accesses using pointers not based on that 942 // argument are tagged as noalias with that scope. 943 944 DenseMap<const Argument *, MDNode *> NewScopes; 945 MDBuilder MDB(CalledFunc->getContext()); 946 947 // Create a new scope domain for this function. 948 MDNode *NewDomain = 949 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); 950 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { 951 const Argument *A = NoAliasArgs[i]; 952 953 std::string Name = std::string(CalledFunc->getName()); 954 if (A->hasName()) { 955 Name += ": %"; 956 Name += A->getName(); 957 } else { 958 Name += ": argument "; 959 Name += utostr(i); 960 } 961 962 // Note: We always create a new anonymous root here. This is true regardless 963 // of the linkage of the callee because the aliasing "scope" is not just a 964 // property of the callee, but also all control dependencies in the caller. 965 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); 966 NewScopes.insert(std::make_pair(A, NewScope)); 967 } 968 969 // Iterate over all new instructions in the map; for all memory-access 970 // instructions, add the alias scope metadata. 971 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 972 VMI != VMIE; ++VMI) { 973 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { 974 if (!VMI->second) 975 continue; 976 977 Instruction *NI = dyn_cast<Instruction>(VMI->second); 978 if (!NI) 979 continue; 980 981 bool IsArgMemOnlyCall = false, IsFuncCall = false; 982 SmallVector<const Value *, 2> PtrArgs; 983 984 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 985 PtrArgs.push_back(LI->getPointerOperand()); 986 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 987 PtrArgs.push_back(SI->getPointerOperand()); 988 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) 989 PtrArgs.push_back(VAAI->getPointerOperand()); 990 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 991 PtrArgs.push_back(CXI->getPointerOperand()); 992 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 993 PtrArgs.push_back(RMWI->getPointerOperand()); 994 else if (const auto *Call = dyn_cast<CallBase>(I)) { 995 // If we know that the call does not access memory, then we'll still 996 // know that about the inlined clone of this call site, and we don't 997 // need to add metadata. 998 if (Call->doesNotAccessMemory()) 999 continue; 1000 1001 IsFuncCall = true; 1002 if (CalleeAAR) { 1003 FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call); 1004 if (AAResults::onlyAccessesArgPointees(MRB)) 1005 IsArgMemOnlyCall = true; 1006 } 1007 1008 for (Value *Arg : Call->args()) { 1009 // We need to check the underlying objects of all arguments, not just 1010 // the pointer arguments, because we might be passing pointers as 1011 // integers, etc. 1012 // However, if we know that the call only accesses pointer arguments, 1013 // then we only need to check the pointer arguments. 1014 if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy()) 1015 continue; 1016 1017 PtrArgs.push_back(Arg); 1018 } 1019 } 1020 1021 // If we found no pointers, then this instruction is not suitable for 1022 // pairing with an instruction to receive aliasing metadata. 1023 // However, if this is a call, this we might just alias with none of the 1024 // noalias arguments. 1025 if (PtrArgs.empty() && !IsFuncCall) 1026 continue; 1027 1028 // It is possible that there is only one underlying object, but you 1029 // need to go through several PHIs to see it, and thus could be 1030 // repeated in the Objects list. 1031 SmallPtrSet<const Value *, 4> ObjSet; 1032 SmallVector<Metadata *, 4> Scopes, NoAliases; 1033 1034 SmallSetVector<const Argument *, 4> NAPtrArgs; 1035 for (const Value *V : PtrArgs) { 1036 SmallVector<const Value *, 4> Objects; 1037 GetUnderlyingObjects(V, Objects, DL, /* LI = */ nullptr); 1038 1039 for (const Value *O : Objects) 1040 ObjSet.insert(O); 1041 } 1042 1043 // Figure out if we're derived from anything that is not a noalias 1044 // argument. 1045 bool CanDeriveViaCapture = false, UsesAliasingPtr = false; 1046 for (const Value *V : ObjSet) { 1047 // Is this value a constant that cannot be derived from any pointer 1048 // value (we need to exclude constant expressions, for example, that 1049 // are formed from arithmetic on global symbols). 1050 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || 1051 isa<ConstantPointerNull>(V) || 1052 isa<ConstantDataVector>(V) || isa<UndefValue>(V); 1053 if (IsNonPtrConst) 1054 continue; 1055 1056 // If this is anything other than a noalias argument, then we cannot 1057 // completely describe the aliasing properties using alias.scope 1058 // metadata (and, thus, won't add any). 1059 if (const Argument *A = dyn_cast<Argument>(V)) { 1060 if (!CB.paramHasAttr(A->getArgNo(), Attribute::NoAlias)) 1061 UsesAliasingPtr = true; 1062 } else { 1063 UsesAliasingPtr = true; 1064 } 1065 1066 // If this is not some identified function-local object (which cannot 1067 // directly alias a noalias argument), or some other argument (which, 1068 // by definition, also cannot alias a noalias argument), then we could 1069 // alias a noalias argument that has been captured). 1070 if (!isa<Argument>(V) && 1071 !isIdentifiedFunctionLocal(const_cast<Value*>(V))) 1072 CanDeriveViaCapture = true; 1073 } 1074 1075 // A function call can always get captured noalias pointers (via other 1076 // parameters, globals, etc.). 1077 if (IsFuncCall && !IsArgMemOnlyCall) 1078 CanDeriveViaCapture = true; 1079 1080 // First, we want to figure out all of the sets with which we definitely 1081 // don't alias. Iterate over all noalias set, and add those for which: 1082 // 1. The noalias argument is not in the set of objects from which we 1083 // definitely derive. 1084 // 2. The noalias argument has not yet been captured. 1085 // An arbitrary function that might load pointers could see captured 1086 // noalias arguments via other noalias arguments or globals, and so we 1087 // must always check for prior capture. 1088 for (const Argument *A : NoAliasArgs) { 1089 if (!ObjSet.count(A) && (!CanDeriveViaCapture || 1090 // It might be tempting to skip the 1091 // PointerMayBeCapturedBefore check if 1092 // A->hasNoCaptureAttr() is true, but this is 1093 // incorrect because nocapture only guarantees 1094 // that no copies outlive the function, not 1095 // that the value cannot be locally captured. 1096 !PointerMayBeCapturedBefore(A, 1097 /* ReturnCaptures */ false, 1098 /* StoreCaptures */ false, I, &DT))) 1099 NoAliases.push_back(NewScopes[A]); 1100 } 1101 1102 if (!NoAliases.empty()) 1103 NI->setMetadata(LLVMContext::MD_noalias, 1104 MDNode::concatenate( 1105 NI->getMetadata(LLVMContext::MD_noalias), 1106 MDNode::get(CalledFunc->getContext(), NoAliases))); 1107 1108 // Next, we want to figure out all of the sets to which we might belong. 1109 // We might belong to a set if the noalias argument is in the set of 1110 // underlying objects. If there is some non-noalias argument in our list 1111 // of underlying objects, then we cannot add a scope because the fact 1112 // that some access does not alias with any set of our noalias arguments 1113 // cannot itself guarantee that it does not alias with this access 1114 // (because there is some pointer of unknown origin involved and the 1115 // other access might also depend on this pointer). We also cannot add 1116 // scopes to arbitrary functions unless we know they don't access any 1117 // non-parameter pointer-values. 1118 bool CanAddScopes = !UsesAliasingPtr; 1119 if (CanAddScopes && IsFuncCall) 1120 CanAddScopes = IsArgMemOnlyCall; 1121 1122 if (CanAddScopes) 1123 for (const Argument *A : NoAliasArgs) { 1124 if (ObjSet.count(A)) 1125 Scopes.push_back(NewScopes[A]); 1126 } 1127 1128 if (!Scopes.empty()) 1129 NI->setMetadata( 1130 LLVMContext::MD_alias_scope, 1131 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), 1132 MDNode::get(CalledFunc->getContext(), Scopes))); 1133 } 1134 } 1135 } 1136 1137 static bool MayContainThrowingOrExitingCall(Instruction *Begin, 1138 Instruction *End) { 1139 1140 assert(Begin->getParent() == End->getParent() && 1141 "Expected to be in same basic block!"); 1142 unsigned NumInstChecked = 0; 1143 // Check that all instructions in the range [Begin, End) are guaranteed to 1144 // transfer execution to successor. 1145 for (auto &I : make_range(Begin->getIterator(), End->getIterator())) 1146 if (NumInstChecked++ > InlinerAttributeWindow || 1147 !isGuaranteedToTransferExecutionToSuccessor(&I)) 1148 return true; 1149 return false; 1150 } 1151 1152 static AttrBuilder IdentifyValidAttributes(CallBase &CB) { 1153 1154 AttrBuilder AB(CB.getAttributes(), AttributeList::ReturnIndex); 1155 if (AB.empty()) 1156 return AB; 1157 AttrBuilder Valid; 1158 // Only allow these white listed attributes to be propagated back to the 1159 // callee. This is because other attributes may only be valid on the call 1160 // itself, i.e. attributes such as signext and zeroext. 1161 if (auto DerefBytes = AB.getDereferenceableBytes()) 1162 Valid.addDereferenceableAttr(DerefBytes); 1163 if (auto DerefOrNullBytes = AB.getDereferenceableOrNullBytes()) 1164 Valid.addDereferenceableOrNullAttr(DerefOrNullBytes); 1165 if (AB.contains(Attribute::NoAlias)) 1166 Valid.addAttribute(Attribute::NoAlias); 1167 if (AB.contains(Attribute::NonNull)) 1168 Valid.addAttribute(Attribute::NonNull); 1169 return Valid; 1170 } 1171 1172 static void AddReturnAttributes(CallBase &CB, ValueToValueMapTy &VMap) { 1173 if (!UpdateReturnAttributes) 1174 return; 1175 1176 AttrBuilder Valid = IdentifyValidAttributes(CB); 1177 if (Valid.empty()) 1178 return; 1179 auto *CalledFunction = CB.getCalledFunction(); 1180 auto &Context = CalledFunction->getContext(); 1181 1182 for (auto &BB : *CalledFunction) { 1183 auto *RI = dyn_cast<ReturnInst>(BB.getTerminator()); 1184 if (!RI || !isa<CallBase>(RI->getOperand(0))) 1185 continue; 1186 auto *RetVal = cast<CallBase>(RI->getOperand(0)); 1187 // Sanity check that the cloned RetVal exists and is a call, otherwise we 1188 // cannot add the attributes on the cloned RetVal. 1189 // Simplification during inlining could have transformed the cloned 1190 // instruction. 1191 auto *NewRetVal = dyn_cast_or_null<CallBase>(VMap.lookup(RetVal)); 1192 if (!NewRetVal) 1193 continue; 1194 // Backward propagation of attributes to the returned value may be incorrect 1195 // if it is control flow dependent. 1196 // Consider: 1197 // @callee { 1198 // %rv = call @foo() 1199 // %rv2 = call @bar() 1200 // if (%rv2 != null) 1201 // return %rv2 1202 // if (%rv == null) 1203 // exit() 1204 // return %rv 1205 // } 1206 // caller() { 1207 // %val = call nonnull @callee() 1208 // } 1209 // Here we cannot add the nonnull attribute on either foo or bar. So, we 1210 // limit the check to both RetVal and RI are in the same basic block and 1211 // there are no throwing/exiting instructions between these instructions. 1212 if (RI->getParent() != RetVal->getParent() || 1213 MayContainThrowingOrExitingCall(RetVal, RI)) 1214 continue; 1215 // Add to the existing attributes of NewRetVal, i.e. the cloned call 1216 // instruction. 1217 // NB! When we have the same attribute already existing on NewRetVal, but 1218 // with a differing value, the AttributeList's merge API honours the already 1219 // existing attribute value (i.e. attributes such as dereferenceable, 1220 // dereferenceable_or_null etc). See AttrBuilder::merge for more details. 1221 AttributeList AL = NewRetVal->getAttributes(); 1222 AttributeList NewAL = 1223 AL.addAttributes(Context, AttributeList::ReturnIndex, Valid); 1224 NewRetVal->setAttributes(NewAL); 1225 } 1226 } 1227 1228 /// If the inlined function has non-byval align arguments, then 1229 /// add @llvm.assume-based alignment assumptions to preserve this information. 1230 static void AddAlignmentAssumptions(CallBase &CB, InlineFunctionInfo &IFI) { 1231 if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache) 1232 return; 1233 1234 AssumptionCache *AC = &(*IFI.GetAssumptionCache)(*CB.getCaller()); 1235 auto &DL = CB.getCaller()->getParent()->getDataLayout(); 1236 1237 // To avoid inserting redundant assumptions, we should check for assumptions 1238 // already in the caller. To do this, we might need a DT of the caller. 1239 DominatorTree DT; 1240 bool DTCalculated = false; 1241 1242 Function *CalledFunc = CB.getCalledFunction(); 1243 for (Argument &Arg : CalledFunc->args()) { 1244 unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0; 1245 if (Align && !Arg.hasByValOrInAllocaAttr() && !Arg.hasNUses(0)) { 1246 if (!DTCalculated) { 1247 DT.recalculate(*CB.getCaller()); 1248 DTCalculated = true; 1249 } 1250 1251 // If we can already prove the asserted alignment in the context of the 1252 // caller, then don't bother inserting the assumption. 1253 Value *ArgVal = CB.getArgOperand(Arg.getArgNo()); 1254 if (getKnownAlignment(ArgVal, DL, &CB, AC, &DT) >= Align) 1255 continue; 1256 1257 CallInst *NewAsmp = 1258 IRBuilder<>(&CB).CreateAlignmentAssumption(DL, ArgVal, Align); 1259 AC->registerAssumption(NewAsmp); 1260 } 1261 } 1262 } 1263 1264 /// Once we have cloned code over from a callee into the caller, 1265 /// update the specified callgraph to reflect the changes we made. 1266 /// Note that it's possible that not all code was copied over, so only 1267 /// some edges of the callgraph may remain. 1268 static void UpdateCallGraphAfterInlining(CallBase &CB, 1269 Function::iterator FirstNewBlock, 1270 ValueToValueMapTy &VMap, 1271 InlineFunctionInfo &IFI) { 1272 CallGraph &CG = *IFI.CG; 1273 const Function *Caller = CB.getCaller(); 1274 const Function *Callee = CB.getCalledFunction(); 1275 CallGraphNode *CalleeNode = CG[Callee]; 1276 CallGraphNode *CallerNode = CG[Caller]; 1277 1278 // Since we inlined some uninlined call sites in the callee into the caller, 1279 // add edges from the caller to all of the callees of the callee. 1280 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 1281 1282 // Consider the case where CalleeNode == CallerNode. 1283 CallGraphNode::CalledFunctionsVector CallCache; 1284 if (CalleeNode == CallerNode) { 1285 CallCache.assign(I, E); 1286 I = CallCache.begin(); 1287 E = CallCache.end(); 1288 } 1289 1290 for (; I != E; ++I) { 1291 const Value *OrigCall = I->first; 1292 1293 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 1294 // Only copy the edge if the call was inlined! 1295 if (VMI == VMap.end() || VMI->second == nullptr) 1296 continue; 1297 1298 // If the call was inlined, but then constant folded, there is no edge to 1299 // add. Check for this case. 1300 auto *NewCall = dyn_cast<CallBase>(VMI->second); 1301 if (!NewCall) 1302 continue; 1303 1304 // We do not treat intrinsic calls like real function calls because we 1305 // expect them to become inline code; do not add an edge for an intrinsic. 1306 if (NewCall->getCalledFunction() && 1307 NewCall->getCalledFunction()->isIntrinsic()) 1308 continue; 1309 1310 // Remember that this call site got inlined for the client of 1311 // InlineFunction. 1312 IFI.InlinedCalls.push_back(NewCall); 1313 1314 // It's possible that inlining the callsite will cause it to go from an 1315 // indirect to a direct call by resolving a function pointer. If this 1316 // happens, set the callee of the new call site to a more precise 1317 // destination. This can also happen if the call graph node of the caller 1318 // was just unnecessarily imprecise. 1319 if (!I->second->getFunction()) 1320 if (Function *F = NewCall->getCalledFunction()) { 1321 // Indirect call site resolved to direct call. 1322 CallerNode->addCalledFunction(NewCall, CG[F]); 1323 1324 continue; 1325 } 1326 1327 CallerNode->addCalledFunction(NewCall, I->second); 1328 } 1329 1330 // Update the call graph by deleting the edge from Callee to Caller. We must 1331 // do this after the loop above in case Caller and Callee are the same. 1332 CallerNode->removeCallEdgeFor(*cast<CallBase>(&CB)); 1333 } 1334 1335 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M, 1336 BasicBlock *InsertBlock, 1337 InlineFunctionInfo &IFI) { 1338 Type *AggTy = cast<PointerType>(Src->getType())->getElementType(); 1339 IRBuilder<> Builder(InsertBlock, InsertBlock->begin()); 1340 1341 Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy)); 1342 1343 // Always generate a memcpy of alignment 1 here because we don't know 1344 // the alignment of the src pointer. Other optimizations can infer 1345 // better alignment. 1346 Builder.CreateMemCpy(Dst, /*DstAlign*/ Align(1), Src, 1347 /*SrcAlign*/ Align(1), Size); 1348 } 1349 1350 /// When inlining a call site that has a byval argument, 1351 /// we have to make the implicit memcpy explicit by adding it. 1352 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 1353 const Function *CalledFunc, 1354 InlineFunctionInfo &IFI, 1355 unsigned ByValAlignment) { 1356 PointerType *ArgTy = cast<PointerType>(Arg->getType()); 1357 Type *AggTy = ArgTy->getElementType(); 1358 1359 Function *Caller = TheCall->getFunction(); 1360 const DataLayout &DL = Caller->getParent()->getDataLayout(); 1361 1362 // If the called function is readonly, then it could not mutate the caller's 1363 // copy of the byval'd memory. In this case, it is safe to elide the copy and 1364 // temporary. 1365 if (CalledFunc->onlyReadsMemory()) { 1366 // If the byval argument has a specified alignment that is greater than the 1367 // passed in pointer, then we either have to round up the input pointer or 1368 // give up on this transformation. 1369 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 1370 return Arg; 1371 1372 AssumptionCache *AC = 1373 IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr; 1374 1375 // If the pointer is already known to be sufficiently aligned, or if we can 1376 // round it up to a larger alignment, then we don't need a temporary. 1377 if (getOrEnforceKnownAlignment(Arg, Align(ByValAlignment), DL, TheCall, 1378 AC) >= ByValAlignment) 1379 return Arg; 1380 1381 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 1382 // for code quality, but rarely happens and is required for correctness. 1383 } 1384 1385 // Create the alloca. If we have DataLayout, use nice alignment. 1386 Align Alignment(DL.getPrefTypeAlignment(AggTy)); 1387 1388 // If the byval had an alignment specified, we *must* use at least that 1389 // alignment, as it is required by the byval argument (and uses of the 1390 // pointer inside the callee). 1391 Alignment = max(Alignment, MaybeAlign(ByValAlignment)); 1392 1393 Value *NewAlloca = 1394 new AllocaInst(AggTy, DL.getAllocaAddrSpace(), nullptr, Alignment, 1395 Arg->getName(), &*Caller->begin()->begin()); 1396 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); 1397 1398 // Uses of the argument in the function should use our new alloca 1399 // instead. 1400 return NewAlloca; 1401 } 1402 1403 // Check whether this Value is used by a lifetime intrinsic. 1404 static bool isUsedByLifetimeMarker(Value *V) { 1405 for (User *U : V->users()) 1406 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) 1407 if (II->isLifetimeStartOrEnd()) 1408 return true; 1409 return false; 1410 } 1411 1412 // Check whether the given alloca already has 1413 // lifetime.start or lifetime.end intrinsics. 1414 static bool hasLifetimeMarkers(AllocaInst *AI) { 1415 Type *Ty = AI->getType(); 1416 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), 1417 Ty->getPointerAddressSpace()); 1418 if (Ty == Int8PtrTy) 1419 return isUsedByLifetimeMarker(AI); 1420 1421 // Do a scan to find all the casts to i8*. 1422 for (User *U : AI->users()) { 1423 if (U->getType() != Int8PtrTy) continue; 1424 if (U->stripPointerCasts() != AI) continue; 1425 if (isUsedByLifetimeMarker(U)) 1426 return true; 1427 } 1428 return false; 1429 } 1430 1431 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry 1432 /// block. Allocas used in inalloca calls and allocas of dynamic array size 1433 /// cannot be static. 1434 static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) { 1435 return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca(); 1436 } 1437 1438 /// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL 1439 /// inlined at \p InlinedAt. \p IANodes is an inlined-at cache. 1440 static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt, 1441 LLVMContext &Ctx, 1442 DenseMap<const MDNode *, MDNode *> &IANodes) { 1443 auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes); 1444 return DebugLoc::get(OrigDL.getLine(), OrigDL.getCol(), OrigDL.getScope(), 1445 IA); 1446 } 1447 1448 /// Update inlined instructions' line numbers to 1449 /// to encode location where these instructions are inlined. 1450 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 1451 Instruction *TheCall, bool CalleeHasDebugInfo) { 1452 const DebugLoc &TheCallDL = TheCall->getDebugLoc(); 1453 if (!TheCallDL) 1454 return; 1455 1456 auto &Ctx = Fn->getContext(); 1457 DILocation *InlinedAtNode = TheCallDL; 1458 1459 // Create a unique call site, not to be confused with any other call from the 1460 // same location. 1461 InlinedAtNode = DILocation::getDistinct( 1462 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(), 1463 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt()); 1464 1465 // Cache the inlined-at nodes as they're built so they are reused, without 1466 // this every instruction's inlined-at chain would become distinct from each 1467 // other. 1468 DenseMap<const MDNode *, MDNode *> IANodes; 1469 1470 // Check if we are not generating inline line tables and want to use 1471 // the call site location instead. 1472 bool NoInlineLineTables = Fn->hasFnAttribute("no-inline-line-tables"); 1473 1474 for (; FI != Fn->end(); ++FI) { 1475 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 1476 BI != BE; ++BI) { 1477 // Loop metadata needs to be updated so that the start and end locs 1478 // reference inlined-at locations. 1479 auto updateLoopInfoLoc = [&Ctx, &InlinedAtNode, &IANodes]( 1480 const DILocation &Loc) -> DILocation * { 1481 return inlineDebugLoc(&Loc, InlinedAtNode, Ctx, IANodes).get(); 1482 }; 1483 updateLoopMetadataDebugLocations(*BI, updateLoopInfoLoc); 1484 1485 if (!NoInlineLineTables) 1486 if (DebugLoc DL = BI->getDebugLoc()) { 1487 DebugLoc IDL = 1488 inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes); 1489 BI->setDebugLoc(IDL); 1490 continue; 1491 } 1492 1493 if (CalleeHasDebugInfo && !NoInlineLineTables) 1494 continue; 1495 1496 // If the inlined instruction has no line number, or if inline info 1497 // is not being generated, make it look as if it originates from the call 1498 // location. This is important for ((__always_inline, __nodebug__)) 1499 // functions which must use caller location for all instructions in their 1500 // function body. 1501 1502 // Don't update static allocas, as they may get moved later. 1503 if (auto *AI = dyn_cast<AllocaInst>(BI)) 1504 if (allocaWouldBeStaticInEntry(AI)) 1505 continue; 1506 1507 BI->setDebugLoc(TheCallDL); 1508 } 1509 1510 // Remove debug info intrinsics if we're not keeping inline info. 1511 if (NoInlineLineTables) { 1512 BasicBlock::iterator BI = FI->begin(); 1513 while (BI != FI->end()) { 1514 if (isa<DbgInfoIntrinsic>(BI)) { 1515 BI = BI->eraseFromParent(); 1516 continue; 1517 } 1518 ++BI; 1519 } 1520 } 1521 1522 } 1523 } 1524 1525 /// Update the block frequencies of the caller after a callee has been inlined. 1526 /// 1527 /// Each block cloned into the caller has its block frequency scaled by the 1528 /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of 1529 /// callee's entry block gets the same frequency as the callsite block and the 1530 /// relative frequencies of all cloned blocks remain the same after cloning. 1531 static void updateCallerBFI(BasicBlock *CallSiteBlock, 1532 const ValueToValueMapTy &VMap, 1533 BlockFrequencyInfo *CallerBFI, 1534 BlockFrequencyInfo *CalleeBFI, 1535 const BasicBlock &CalleeEntryBlock) { 1536 SmallPtrSet<BasicBlock *, 16> ClonedBBs; 1537 for (auto Entry : VMap) { 1538 if (!isa<BasicBlock>(Entry.first) || !Entry.second) 1539 continue; 1540 auto *OrigBB = cast<BasicBlock>(Entry.first); 1541 auto *ClonedBB = cast<BasicBlock>(Entry.second); 1542 uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency(); 1543 if (!ClonedBBs.insert(ClonedBB).second) { 1544 // Multiple blocks in the callee might get mapped to one cloned block in 1545 // the caller since we prune the callee as we clone it. When that happens, 1546 // we want to use the maximum among the original blocks' frequencies. 1547 uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency(); 1548 if (NewFreq > Freq) 1549 Freq = NewFreq; 1550 } 1551 CallerBFI->setBlockFreq(ClonedBB, Freq); 1552 } 1553 BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock)); 1554 CallerBFI->setBlockFreqAndScale( 1555 EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(), 1556 ClonedBBs); 1557 } 1558 1559 /// Update the branch metadata for cloned call instructions. 1560 static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap, 1561 const ProfileCount &CalleeEntryCount, 1562 const Instruction *TheCall, 1563 ProfileSummaryInfo *PSI, 1564 BlockFrequencyInfo *CallerBFI) { 1565 if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() || 1566 CalleeEntryCount.getCount() < 1) 1567 return; 1568 auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None; 1569 int64_t CallCount = 1570 std::min(CallSiteCount.hasValue() ? CallSiteCount.getValue() : 0, 1571 CalleeEntryCount.getCount()); 1572 updateProfileCallee(Callee, -CallCount, &VMap); 1573 } 1574 1575 void llvm::updateProfileCallee( 1576 Function *Callee, int64_t entryDelta, 1577 const ValueMap<const Value *, WeakTrackingVH> *VMap) { 1578 auto CalleeCount = Callee->getEntryCount(); 1579 if (!CalleeCount.hasValue()) 1580 return; 1581 1582 uint64_t priorEntryCount = CalleeCount.getCount(); 1583 uint64_t newEntryCount; 1584 1585 // Since CallSiteCount is an estimate, it could exceed the original callee 1586 // count and has to be set to 0 so guard against underflow. 1587 if (entryDelta < 0 && static_cast<uint64_t>(-entryDelta) > priorEntryCount) 1588 newEntryCount = 0; 1589 else 1590 newEntryCount = priorEntryCount + entryDelta; 1591 1592 // During inlining ? 1593 if (VMap) { 1594 uint64_t cloneEntryCount = priorEntryCount - newEntryCount; 1595 for (auto Entry : *VMap) 1596 if (isa<CallInst>(Entry.first)) 1597 if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second)) 1598 CI->updateProfWeight(cloneEntryCount, priorEntryCount); 1599 } 1600 1601 if (entryDelta) { 1602 Callee->setEntryCount(newEntryCount); 1603 1604 for (BasicBlock &BB : *Callee) 1605 // No need to update the callsite if it is pruned during inlining. 1606 if (!VMap || VMap->count(&BB)) 1607 for (Instruction &I : BB) 1608 if (CallInst *CI = dyn_cast<CallInst>(&I)) 1609 CI->updateProfWeight(newEntryCount, priorEntryCount); 1610 } 1611 } 1612 1613 /// This function inlines the called function into the basic block of the 1614 /// caller. This returns false if it is not possible to inline this call. 1615 /// The program is still in a well defined state if this occurs though. 1616 /// 1617 /// Note that this only does one level of inlining. For example, if the 1618 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 1619 /// exists in the instruction stream. Similarly this will inline a recursive 1620 /// function by one level. 1621 llvm::InlineResult llvm::InlineFunction(CallBase &CB, InlineFunctionInfo &IFI, 1622 AAResults *CalleeAAR, 1623 bool InsertLifetime, 1624 Function *ForwardVarArgsTo) { 1625 assert(CB.getParent() && CB.getFunction() && "Instruction not in function!"); 1626 1627 // FIXME: we don't inline callbr yet. 1628 if (isa<CallBrInst>(CB)) 1629 return InlineResult::failure("We don't inline callbr yet."); 1630 1631 // If IFI has any state in it, zap it before we fill it in. 1632 IFI.reset(); 1633 1634 Function *CalledFunc = CB.getCalledFunction(); 1635 if (!CalledFunc || // Can't inline external function or indirect 1636 CalledFunc->isDeclaration()) // call! 1637 return InlineResult::failure("external or indirect"); 1638 1639 // The inliner does not know how to inline through calls with operand bundles 1640 // in general ... 1641 if (CB.hasOperandBundles()) { 1642 for (int i = 0, e = CB.getNumOperandBundles(); i != e; ++i) { 1643 uint32_t Tag = CB.getOperandBundleAt(i).getTagID(); 1644 // ... but it knows how to inline through "deopt" operand bundles ... 1645 if (Tag == LLVMContext::OB_deopt) 1646 continue; 1647 // ... and "funclet" operand bundles. 1648 if (Tag == LLVMContext::OB_funclet) 1649 continue; 1650 1651 return InlineResult::failure("unsupported operand bundle"); 1652 } 1653 } 1654 1655 // If the call to the callee cannot throw, set the 'nounwind' flag on any 1656 // calls that we inline. 1657 bool MarkNoUnwind = CB.doesNotThrow(); 1658 1659 BasicBlock *OrigBB = CB.getParent(); 1660 Function *Caller = OrigBB->getParent(); 1661 1662 // GC poses two hazards to inlining, which only occur when the callee has GC: 1663 // 1. If the caller has no GC, then the callee's GC must be propagated to the 1664 // caller. 1665 // 2. If the caller has a differing GC, it is invalid to inline. 1666 if (CalledFunc->hasGC()) { 1667 if (!Caller->hasGC()) 1668 Caller->setGC(CalledFunc->getGC()); 1669 else if (CalledFunc->getGC() != Caller->getGC()) 1670 return InlineResult::failure("incompatible GC"); 1671 } 1672 1673 // Get the personality function from the callee if it contains a landing pad. 1674 Constant *CalledPersonality = 1675 CalledFunc->hasPersonalityFn() 1676 ? CalledFunc->getPersonalityFn()->stripPointerCasts() 1677 : nullptr; 1678 1679 // Find the personality function used by the landing pads of the caller. If it 1680 // exists, then check to see that it matches the personality function used in 1681 // the callee. 1682 Constant *CallerPersonality = 1683 Caller->hasPersonalityFn() 1684 ? Caller->getPersonalityFn()->stripPointerCasts() 1685 : nullptr; 1686 if (CalledPersonality) { 1687 if (!CallerPersonality) 1688 Caller->setPersonalityFn(CalledPersonality); 1689 // If the personality functions match, then we can perform the 1690 // inlining. Otherwise, we can't inline. 1691 // TODO: This isn't 100% true. Some personality functions are proper 1692 // supersets of others and can be used in place of the other. 1693 else if (CalledPersonality != CallerPersonality) 1694 return InlineResult::failure("incompatible personality"); 1695 } 1696 1697 // We need to figure out which funclet the callsite was in so that we may 1698 // properly nest the callee. 1699 Instruction *CallSiteEHPad = nullptr; 1700 if (CallerPersonality) { 1701 EHPersonality Personality = classifyEHPersonality(CallerPersonality); 1702 if (isScopedEHPersonality(Personality)) { 1703 Optional<OperandBundleUse> ParentFunclet = 1704 CB.getOperandBundle(LLVMContext::OB_funclet); 1705 if (ParentFunclet) 1706 CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front()); 1707 1708 // OK, the inlining site is legal. What about the target function? 1709 1710 if (CallSiteEHPad) { 1711 if (Personality == EHPersonality::MSVC_CXX) { 1712 // The MSVC personality cannot tolerate catches getting inlined into 1713 // cleanup funclets. 1714 if (isa<CleanupPadInst>(CallSiteEHPad)) { 1715 // Ok, the call site is within a cleanuppad. Let's check the callee 1716 // for catchpads. 1717 for (const BasicBlock &CalledBB : *CalledFunc) { 1718 if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI())) 1719 return InlineResult::failure("catch in cleanup funclet"); 1720 } 1721 } 1722 } else if (isAsynchronousEHPersonality(Personality)) { 1723 // SEH is even less tolerant, there may not be any sort of exceptional 1724 // funclet in the callee. 1725 for (const BasicBlock &CalledBB : *CalledFunc) { 1726 if (CalledBB.isEHPad()) 1727 return InlineResult::failure("SEH in cleanup funclet"); 1728 } 1729 } 1730 } 1731 } 1732 } 1733 1734 // Determine if we are dealing with a call in an EHPad which does not unwind 1735 // to caller. 1736 bool EHPadForCallUnwindsLocally = false; 1737 if (CallSiteEHPad && isa<CallInst>(CB)) { 1738 UnwindDestMemoTy FuncletUnwindMap; 1739 Value *CallSiteUnwindDestToken = 1740 getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap); 1741 1742 EHPadForCallUnwindsLocally = 1743 CallSiteUnwindDestToken && 1744 !isa<ConstantTokenNone>(CallSiteUnwindDestToken); 1745 } 1746 1747 // Get an iterator to the last basic block in the function, which will have 1748 // the new function inlined after it. 1749 Function::iterator LastBlock = --Caller->end(); 1750 1751 // Make sure to capture all of the return instructions from the cloned 1752 // function. 1753 SmallVector<ReturnInst*, 8> Returns; 1754 ClonedCodeInfo InlinedFunctionInfo; 1755 Function::iterator FirstNewBlock; 1756 1757 { // Scope to destroy VMap after cloning. 1758 ValueToValueMapTy VMap; 1759 // Keep a list of pair (dst, src) to emit byval initializations. 1760 SmallVector<std::pair<Value*, Value*>, 4> ByValInit; 1761 1762 auto &DL = Caller->getParent()->getDataLayout(); 1763 1764 // Calculate the vector of arguments to pass into the function cloner, which 1765 // matches up the formal to the actual argument values. 1766 auto AI = CB.arg_begin(); 1767 unsigned ArgNo = 0; 1768 for (Function::arg_iterator I = CalledFunc->arg_begin(), 1769 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 1770 Value *ActualArg = *AI; 1771 1772 // When byval arguments actually inlined, we need to make the copy implied 1773 // by them explicit. However, we don't do this if the callee is readonly 1774 // or readnone, because the copy would be unneeded: the callee doesn't 1775 // modify the struct. 1776 if (CB.isByValArgument(ArgNo)) { 1777 ActualArg = HandleByValArgument(ActualArg, &CB, CalledFunc, IFI, 1778 CalledFunc->getParamAlignment(ArgNo)); 1779 if (ActualArg != *AI) 1780 ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI)); 1781 } 1782 1783 VMap[&*I] = ActualArg; 1784 } 1785 1786 // TODO: Remove this when users have been updated to the assume bundles. 1787 // Add alignment assumptions if necessary. We do this before the inlined 1788 // instructions are actually cloned into the caller so that we can easily 1789 // check what will be known at the start of the inlined code. 1790 AddAlignmentAssumptions(CB, IFI); 1791 1792 AssumptionCache *AC = 1793 IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr; 1794 1795 /// Preserve all attributes on of the call and its parameters. 1796 salvageKnowledge(&CB, AC); 1797 1798 // We want the inliner to prune the code as it copies. We would LOVE to 1799 // have no dead or constant instructions leftover after inlining occurs 1800 // (which can happen, e.g., because an argument was constant), but we'll be 1801 // happy with whatever the cloner can do. 1802 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 1803 /*ModuleLevelChanges=*/false, Returns, ".i", 1804 &InlinedFunctionInfo, &CB); 1805 // Remember the first block that is newly cloned over. 1806 FirstNewBlock = LastBlock; ++FirstNewBlock; 1807 1808 if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr) 1809 // Update the BFI of blocks cloned into the caller. 1810 updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI, 1811 CalledFunc->front()); 1812 1813 updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), &CB, 1814 IFI.PSI, IFI.CallerBFI); 1815 1816 // Inject byval arguments initialization. 1817 for (std::pair<Value*, Value*> &Init : ByValInit) 1818 HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(), 1819 &*FirstNewBlock, IFI); 1820 1821 Optional<OperandBundleUse> ParentDeopt = 1822 CB.getOperandBundle(LLVMContext::OB_deopt); 1823 if (ParentDeopt) { 1824 SmallVector<OperandBundleDef, 2> OpDefs; 1825 1826 for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) { 1827 CallBase *ICS = dyn_cast_or_null<CallBase>(VH); 1828 if (!ICS) 1829 continue; // instruction was DCE'd or RAUW'ed to undef 1830 1831 OpDefs.clear(); 1832 1833 OpDefs.reserve(ICS->getNumOperandBundles()); 1834 1835 for (unsigned COBi = 0, COBe = ICS->getNumOperandBundles(); COBi < COBe; 1836 ++COBi) { 1837 auto ChildOB = ICS->getOperandBundleAt(COBi); 1838 if (ChildOB.getTagID() != LLVMContext::OB_deopt) { 1839 // If the inlined call has other operand bundles, let them be 1840 OpDefs.emplace_back(ChildOB); 1841 continue; 1842 } 1843 1844 // It may be useful to separate this logic (of handling operand 1845 // bundles) out to a separate "policy" component if this gets crowded. 1846 // Prepend the parent's deoptimization continuation to the newly 1847 // inlined call's deoptimization continuation. 1848 std::vector<Value *> MergedDeoptArgs; 1849 MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() + 1850 ChildOB.Inputs.size()); 1851 1852 MergedDeoptArgs.insert(MergedDeoptArgs.end(), 1853 ParentDeopt->Inputs.begin(), 1854 ParentDeopt->Inputs.end()); 1855 MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(), 1856 ChildOB.Inputs.end()); 1857 1858 OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs)); 1859 } 1860 1861 Instruction *NewI = nullptr; 1862 if (isa<CallInst>(ICS)) 1863 NewI = CallInst::Create(cast<CallInst>(ICS), OpDefs, ICS); 1864 else if (isa<CallBrInst>(ICS)) 1865 NewI = CallBrInst::Create(cast<CallBrInst>(ICS), OpDefs, ICS); 1866 else 1867 NewI = InvokeInst::Create(cast<InvokeInst>(ICS), OpDefs, ICS); 1868 1869 // Note: the RAUW does the appropriate fixup in VMap, so we need to do 1870 // this even if the call returns void. 1871 ICS->replaceAllUsesWith(NewI); 1872 1873 VH = nullptr; 1874 ICS->eraseFromParent(); 1875 } 1876 } 1877 1878 // Update the callgraph if requested. 1879 if (IFI.CG) 1880 UpdateCallGraphAfterInlining(CB, FirstNewBlock, VMap, IFI); 1881 1882 // For 'nodebug' functions, the associated DISubprogram is always null. 1883 // Conservatively avoid propagating the callsite debug location to 1884 // instructions inlined from a function whose DISubprogram is not null. 1885 fixupLineNumbers(Caller, FirstNewBlock, &CB, 1886 CalledFunc->getSubprogram() != nullptr); 1887 1888 // Clone existing noalias metadata if necessary. 1889 CloneAliasScopeMetadata(CB, VMap); 1890 1891 // Add noalias metadata if necessary. 1892 AddAliasScopeMetadata(CB, VMap, DL, CalleeAAR); 1893 1894 // Clone return attributes on the callsite into the calls within the inlined 1895 // function which feed into its return value. 1896 AddReturnAttributes(CB, VMap); 1897 1898 // Propagate llvm.mem.parallel_loop_access if necessary. 1899 PropagateParallelLoopAccessMetadata(CB, VMap); 1900 1901 // Register any cloned assumptions. 1902 if (IFI.GetAssumptionCache) 1903 for (BasicBlock &NewBlock : 1904 make_range(FirstNewBlock->getIterator(), Caller->end())) 1905 for (Instruction &I : NewBlock) { 1906 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 1907 if (II->getIntrinsicID() == Intrinsic::assume) 1908 (*IFI.GetAssumptionCache)(*Caller).registerAssumption(II); 1909 } 1910 } 1911 1912 // If there are any alloca instructions in the block that used to be the entry 1913 // block for the callee, move them to the entry block of the caller. First 1914 // calculate which instruction they should be inserted before. We insert the 1915 // instructions at the end of the current alloca list. 1916 { 1917 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 1918 for (BasicBlock::iterator I = FirstNewBlock->begin(), 1919 E = FirstNewBlock->end(); I != E; ) { 1920 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 1921 if (!AI) continue; 1922 1923 // If the alloca is now dead, remove it. This often occurs due to code 1924 // specialization. 1925 if (AI->use_empty()) { 1926 AI->eraseFromParent(); 1927 continue; 1928 } 1929 1930 if (!allocaWouldBeStaticInEntry(AI)) 1931 continue; 1932 1933 // Keep track of the static allocas that we inline into the caller. 1934 IFI.StaticAllocas.push_back(AI); 1935 1936 // Scan for the block of allocas that we can move over, and move them 1937 // all at once. 1938 while (isa<AllocaInst>(I) && 1939 !cast<AllocaInst>(I)->use_empty() && 1940 allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) { 1941 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 1942 ++I; 1943 } 1944 1945 // Transfer all of the allocas over in a block. Using splice means 1946 // that the instructions aren't removed from the symbol table, then 1947 // reinserted. 1948 Caller->getEntryBlock().getInstList().splice( 1949 InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I); 1950 } 1951 } 1952 1953 SmallVector<Value*,4> VarArgsToForward; 1954 SmallVector<AttributeSet, 4> VarArgsAttrs; 1955 for (unsigned i = CalledFunc->getFunctionType()->getNumParams(); 1956 i < CB.getNumArgOperands(); i++) { 1957 VarArgsToForward.push_back(CB.getArgOperand(i)); 1958 VarArgsAttrs.push_back(CB.getAttributes().getParamAttributes(i)); 1959 } 1960 1961 bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false; 1962 if (InlinedFunctionInfo.ContainsCalls) { 1963 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; 1964 if (CallInst *CI = dyn_cast<CallInst>(&CB)) 1965 CallSiteTailKind = CI->getTailCallKind(); 1966 1967 // For inlining purposes, the "notail" marker is the same as no marker. 1968 if (CallSiteTailKind == CallInst::TCK_NoTail) 1969 CallSiteTailKind = CallInst::TCK_None; 1970 1971 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 1972 ++BB) { 1973 for (auto II = BB->begin(); II != BB->end();) { 1974 Instruction &I = *II++; 1975 CallInst *CI = dyn_cast<CallInst>(&I); 1976 if (!CI) 1977 continue; 1978 1979 // Forward varargs from inlined call site to calls to the 1980 // ForwardVarArgsTo function, if requested, and to musttail calls. 1981 if (!VarArgsToForward.empty() && 1982 ((ForwardVarArgsTo && 1983 CI->getCalledFunction() == ForwardVarArgsTo) || 1984 CI->isMustTailCall())) { 1985 // Collect attributes for non-vararg parameters. 1986 AttributeList Attrs = CI->getAttributes(); 1987 SmallVector<AttributeSet, 8> ArgAttrs; 1988 if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) { 1989 for (unsigned ArgNo = 0; 1990 ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo) 1991 ArgAttrs.push_back(Attrs.getParamAttributes(ArgNo)); 1992 } 1993 1994 // Add VarArg attributes. 1995 ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end()); 1996 Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttributes(), 1997 Attrs.getRetAttributes(), ArgAttrs); 1998 // Add VarArgs to existing parameters. 1999 SmallVector<Value *, 6> Params(CI->arg_operands()); 2000 Params.append(VarArgsToForward.begin(), VarArgsToForward.end()); 2001 CallInst *NewCI = CallInst::Create( 2002 CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI); 2003 NewCI->setDebugLoc(CI->getDebugLoc()); 2004 NewCI->setAttributes(Attrs); 2005 NewCI->setCallingConv(CI->getCallingConv()); 2006 CI->replaceAllUsesWith(NewCI); 2007 CI->eraseFromParent(); 2008 CI = NewCI; 2009 } 2010 2011 if (Function *F = CI->getCalledFunction()) 2012 InlinedDeoptimizeCalls |= 2013 F->getIntrinsicID() == Intrinsic::experimental_deoptimize; 2014 2015 // We need to reduce the strength of any inlined tail calls. For 2016 // musttail, we have to avoid introducing potential unbounded stack 2017 // growth. For example, if functions 'f' and 'g' are mutually recursive 2018 // with musttail, we can inline 'g' into 'f' so long as we preserve 2019 // musttail on the cloned call to 'f'. If either the inlined call site 2020 // or the cloned call site is *not* musttail, the program already has 2021 // one frame of stack growth, so it's safe to remove musttail. Here is 2022 // a table of example transformations: 2023 // 2024 // f -> musttail g -> musttail f ==> f -> musttail f 2025 // f -> musttail g -> tail f ==> f -> tail f 2026 // f -> g -> musttail f ==> f -> f 2027 // f -> g -> tail f ==> f -> f 2028 // 2029 // Inlined notail calls should remain notail calls. 2030 CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); 2031 if (ChildTCK != CallInst::TCK_NoTail) 2032 ChildTCK = std::min(CallSiteTailKind, ChildTCK); 2033 CI->setTailCallKind(ChildTCK); 2034 InlinedMustTailCalls |= CI->isMustTailCall(); 2035 2036 // Calls inlined through a 'nounwind' call site should be marked 2037 // 'nounwind'. 2038 if (MarkNoUnwind) 2039 CI->setDoesNotThrow(); 2040 } 2041 } 2042 } 2043 2044 // Leave lifetime markers for the static alloca's, scoping them to the 2045 // function we just inlined. 2046 if (InsertLifetime && !IFI.StaticAllocas.empty()) { 2047 IRBuilder<> builder(&FirstNewBlock->front()); 2048 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 2049 AllocaInst *AI = IFI.StaticAllocas[ai]; 2050 // Don't mark swifterror allocas. They can't have bitcast uses. 2051 if (AI->isSwiftError()) 2052 continue; 2053 2054 // If the alloca is already scoped to something smaller than the whole 2055 // function then there's no need to add redundant, less accurate markers. 2056 if (hasLifetimeMarkers(AI)) 2057 continue; 2058 2059 // Try to determine the size of the allocation. 2060 ConstantInt *AllocaSize = nullptr; 2061 if (ConstantInt *AIArraySize = 2062 dyn_cast<ConstantInt>(AI->getArraySize())) { 2063 auto &DL = Caller->getParent()->getDataLayout(); 2064 Type *AllocaType = AI->getAllocatedType(); 2065 uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType); 2066 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 2067 2068 // Don't add markers for zero-sized allocas. 2069 if (AllocaArraySize == 0) 2070 continue; 2071 2072 // Check that array size doesn't saturate uint64_t and doesn't 2073 // overflow when it's multiplied by type size. 2074 if (AllocaArraySize != std::numeric_limits<uint64_t>::max() && 2075 std::numeric_limits<uint64_t>::max() / AllocaArraySize >= 2076 AllocaTypeSize) { 2077 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 2078 AllocaArraySize * AllocaTypeSize); 2079 } 2080 } 2081 2082 builder.CreateLifetimeStart(AI, AllocaSize); 2083 for (ReturnInst *RI : Returns) { 2084 // Don't insert llvm.lifetime.end calls between a musttail or deoptimize 2085 // call and a return. The return kills all local allocas. 2086 if (InlinedMustTailCalls && 2087 RI->getParent()->getTerminatingMustTailCall()) 2088 continue; 2089 if (InlinedDeoptimizeCalls && 2090 RI->getParent()->getTerminatingDeoptimizeCall()) 2091 continue; 2092 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); 2093 } 2094 } 2095 } 2096 2097 // If the inlined code contained dynamic alloca instructions, wrap the inlined 2098 // code with llvm.stacksave/llvm.stackrestore intrinsics. 2099 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 2100 Module *M = Caller->getParent(); 2101 // Get the two intrinsics we care about. 2102 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 2103 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 2104 2105 // Insert the llvm.stacksave. 2106 CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin()) 2107 .CreateCall(StackSave, {}, "savedstack"); 2108 2109 // Insert a call to llvm.stackrestore before any return instructions in the 2110 // inlined function. 2111 for (ReturnInst *RI : Returns) { 2112 // Don't insert llvm.stackrestore calls between a musttail or deoptimize 2113 // call and a return. The return will restore the stack pointer. 2114 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) 2115 continue; 2116 if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall()) 2117 continue; 2118 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); 2119 } 2120 } 2121 2122 // If we are inlining for an invoke instruction, we must make sure to rewrite 2123 // any call instructions into invoke instructions. This is sensitive to which 2124 // funclet pads were top-level in the inlinee, so must be done before 2125 // rewriting the "parent pad" links. 2126 if (auto *II = dyn_cast<InvokeInst>(&CB)) { 2127 BasicBlock *UnwindDest = II->getUnwindDest(); 2128 Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI(); 2129 if (isa<LandingPadInst>(FirstNonPHI)) { 2130 HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo); 2131 } else { 2132 HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo); 2133 } 2134 } 2135 2136 // Update the lexical scopes of the new funclets and callsites. 2137 // Anything that had 'none' as its parent is now nested inside the callsite's 2138 // EHPad. 2139 2140 if (CallSiteEHPad) { 2141 for (Function::iterator BB = FirstNewBlock->getIterator(), 2142 E = Caller->end(); 2143 BB != E; ++BB) { 2144 // Add bundle operands to any top-level call sites. 2145 SmallVector<OperandBundleDef, 1> OpBundles; 2146 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) { 2147 CallBase *I = dyn_cast<CallBase>(&*BBI++); 2148 if (!I) 2149 continue; 2150 2151 // Skip call sites which are nounwind intrinsics. 2152 auto *CalledFn = 2153 dyn_cast<Function>(I->getCalledValue()->stripPointerCasts()); 2154 if (CalledFn && CalledFn->isIntrinsic() && I->doesNotThrow()) 2155 continue; 2156 2157 // Skip call sites which already have a "funclet" bundle. 2158 if (I->getOperandBundle(LLVMContext::OB_funclet)) 2159 continue; 2160 2161 I->getOperandBundlesAsDefs(OpBundles); 2162 OpBundles.emplace_back("funclet", CallSiteEHPad); 2163 2164 Instruction *NewInst; 2165 if (auto *CallI = dyn_cast<CallInst>(I)) 2166 NewInst = CallInst::Create(CallI, OpBundles, CallI); 2167 else if (auto *CallBrI = dyn_cast<CallBrInst>(I)) 2168 NewInst = CallBrInst::Create(CallBrI, OpBundles, CallBrI); 2169 else 2170 NewInst = InvokeInst::Create(cast<InvokeInst>(I), OpBundles, I); 2171 NewInst->takeName(I); 2172 I->replaceAllUsesWith(NewInst); 2173 I->eraseFromParent(); 2174 2175 OpBundles.clear(); 2176 } 2177 2178 // It is problematic if the inlinee has a cleanupret which unwinds to 2179 // caller and we inline it into a call site which doesn't unwind but into 2180 // an EH pad that does. Such an edge must be dynamically unreachable. 2181 // As such, we replace the cleanupret with unreachable. 2182 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator())) 2183 if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally) 2184 changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false); 2185 2186 Instruction *I = BB->getFirstNonPHI(); 2187 if (!I->isEHPad()) 2188 continue; 2189 2190 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 2191 if (isa<ConstantTokenNone>(CatchSwitch->getParentPad())) 2192 CatchSwitch->setParentPad(CallSiteEHPad); 2193 } else { 2194 auto *FPI = cast<FuncletPadInst>(I); 2195 if (isa<ConstantTokenNone>(FPI->getParentPad())) 2196 FPI->setParentPad(CallSiteEHPad); 2197 } 2198 } 2199 } 2200 2201 if (InlinedDeoptimizeCalls) { 2202 // We need to at least remove the deoptimizing returns from the Return set, 2203 // so that the control flow from those returns does not get merged into the 2204 // caller (but terminate it instead). If the caller's return type does not 2205 // match the callee's return type, we also need to change the return type of 2206 // the intrinsic. 2207 if (Caller->getReturnType() == CB.getType()) { 2208 auto NewEnd = llvm::remove_if(Returns, [](ReturnInst *RI) { 2209 return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr; 2210 }); 2211 Returns.erase(NewEnd, Returns.end()); 2212 } else { 2213 SmallVector<ReturnInst *, 8> NormalReturns; 2214 Function *NewDeoptIntrinsic = Intrinsic::getDeclaration( 2215 Caller->getParent(), Intrinsic::experimental_deoptimize, 2216 {Caller->getReturnType()}); 2217 2218 for (ReturnInst *RI : Returns) { 2219 CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall(); 2220 if (!DeoptCall) { 2221 NormalReturns.push_back(RI); 2222 continue; 2223 } 2224 2225 // The calling convention on the deoptimize call itself may be bogus, 2226 // since the code we're inlining may have undefined behavior (and may 2227 // never actually execute at runtime); but all 2228 // @llvm.experimental.deoptimize declarations have to have the same 2229 // calling convention in a well-formed module. 2230 auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv(); 2231 NewDeoptIntrinsic->setCallingConv(CallingConv); 2232 auto *CurBB = RI->getParent(); 2233 RI->eraseFromParent(); 2234 2235 SmallVector<Value *, 4> CallArgs(DeoptCall->arg_begin(), 2236 DeoptCall->arg_end()); 2237 2238 SmallVector<OperandBundleDef, 1> OpBundles; 2239 DeoptCall->getOperandBundlesAsDefs(OpBundles); 2240 DeoptCall->eraseFromParent(); 2241 assert(!OpBundles.empty() && 2242 "Expected at least the deopt operand bundle"); 2243 2244 IRBuilder<> Builder(CurBB); 2245 CallInst *NewDeoptCall = 2246 Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles); 2247 NewDeoptCall->setCallingConv(CallingConv); 2248 if (NewDeoptCall->getType()->isVoidTy()) 2249 Builder.CreateRetVoid(); 2250 else 2251 Builder.CreateRet(NewDeoptCall); 2252 } 2253 2254 // Leave behind the normal returns so we can merge control flow. 2255 std::swap(Returns, NormalReturns); 2256 } 2257 } 2258 2259 // Handle any inlined musttail call sites. In order for a new call site to be 2260 // musttail, the source of the clone and the inlined call site must have been 2261 // musttail. Therefore it's safe to return without merging control into the 2262 // phi below. 2263 if (InlinedMustTailCalls) { 2264 // Check if we need to bitcast the result of any musttail calls. 2265 Type *NewRetTy = Caller->getReturnType(); 2266 bool NeedBitCast = !CB.use_empty() && CB.getType() != NewRetTy; 2267 2268 // Handle the returns preceded by musttail calls separately. 2269 SmallVector<ReturnInst *, 8> NormalReturns; 2270 for (ReturnInst *RI : Returns) { 2271 CallInst *ReturnedMustTail = 2272 RI->getParent()->getTerminatingMustTailCall(); 2273 if (!ReturnedMustTail) { 2274 NormalReturns.push_back(RI); 2275 continue; 2276 } 2277 if (!NeedBitCast) 2278 continue; 2279 2280 // Delete the old return and any preceding bitcast. 2281 BasicBlock *CurBB = RI->getParent(); 2282 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); 2283 RI->eraseFromParent(); 2284 if (OldCast) 2285 OldCast->eraseFromParent(); 2286 2287 // Insert a new bitcast and return with the right type. 2288 IRBuilder<> Builder(CurBB); 2289 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); 2290 } 2291 2292 // Leave behind the normal returns so we can merge control flow. 2293 std::swap(Returns, NormalReturns); 2294 } 2295 2296 // Now that all of the transforms on the inlined code have taken place but 2297 // before we splice the inlined code into the CFG and lose track of which 2298 // blocks were actually inlined, collect the call sites. We only do this if 2299 // call graph updates weren't requested, as those provide value handle based 2300 // tracking of inlined call sites instead. 2301 if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) { 2302 // Otherwise just collect the raw call sites that were inlined. 2303 for (BasicBlock &NewBB : 2304 make_range(FirstNewBlock->getIterator(), Caller->end())) 2305 for (Instruction &I : NewBB) 2306 if (auto *CB = dyn_cast<CallBase>(&I)) 2307 IFI.InlinedCallSites.push_back(CB); 2308 } 2309 2310 // If we cloned in _exactly one_ basic block, and if that block ends in a 2311 // return instruction, we splice the body of the inlined callee directly into 2312 // the calling basic block. 2313 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 2314 // Move all of the instructions right before the call. 2315 OrigBB->getInstList().splice(CB.getIterator(), FirstNewBlock->getInstList(), 2316 FirstNewBlock->begin(), FirstNewBlock->end()); 2317 // Remove the cloned basic block. 2318 Caller->getBasicBlockList().pop_back(); 2319 2320 // If the call site was an invoke instruction, add a branch to the normal 2321 // destination. 2322 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 2323 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), &CB); 2324 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 2325 } 2326 2327 // If the return instruction returned a value, replace uses of the call with 2328 // uses of the returned value. 2329 if (!CB.use_empty()) { 2330 ReturnInst *R = Returns[0]; 2331 if (&CB == R->getReturnValue()) 2332 CB.replaceAllUsesWith(UndefValue::get(CB.getType())); 2333 else 2334 CB.replaceAllUsesWith(R->getReturnValue()); 2335 } 2336 // Since we are now done with the Call/Invoke, we can delete it. 2337 CB.eraseFromParent(); 2338 2339 // Since we are now done with the return instruction, delete it also. 2340 Returns[0]->eraseFromParent(); 2341 2342 // We are now done with the inlining. 2343 return InlineResult::success(); 2344 } 2345 2346 // Otherwise, we have the normal case, of more than one block to inline or 2347 // multiple return sites. 2348 2349 // We want to clone the entire callee function into the hole between the 2350 // "starter" and "ender" blocks. How we accomplish this depends on whether 2351 // this is an invoke instruction or a call instruction. 2352 BasicBlock *AfterCallBB; 2353 BranchInst *CreatedBranchToNormalDest = nullptr; 2354 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 2355 2356 // Add an unconditional branch to make this look like the CallInst case... 2357 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), &CB); 2358 2359 // Split the basic block. This guarantees that no PHI nodes will have to be 2360 // updated due to new incoming edges, and make the invoke case more 2361 // symmetric to the call case. 2362 AfterCallBB = 2363 OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(), 2364 CalledFunc->getName() + ".exit"); 2365 2366 } else { // It's a call 2367 // If this is a call instruction, we need to split the basic block that 2368 // the call lives in. 2369 // 2370 AfterCallBB = OrigBB->splitBasicBlock(CB.getIterator(), 2371 CalledFunc->getName() + ".exit"); 2372 } 2373 2374 if (IFI.CallerBFI) { 2375 // Copy original BB's block frequency to AfterCallBB 2376 IFI.CallerBFI->setBlockFreq( 2377 AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency()); 2378 } 2379 2380 // Change the branch that used to go to AfterCallBB to branch to the first 2381 // basic block of the inlined function. 2382 // 2383 Instruction *Br = OrigBB->getTerminator(); 2384 assert(Br && Br->getOpcode() == Instruction::Br && 2385 "splitBasicBlock broken!"); 2386 Br->setOperand(0, &*FirstNewBlock); 2387 2388 // Now that the function is correct, make it a little bit nicer. In 2389 // particular, move the basic blocks inserted from the end of the function 2390 // into the space made by splitting the source basic block. 2391 Caller->getBasicBlockList().splice(AfterCallBB->getIterator(), 2392 Caller->getBasicBlockList(), FirstNewBlock, 2393 Caller->end()); 2394 2395 // Handle all of the return instructions that we just cloned in, and eliminate 2396 // any users of the original call/invoke instruction. 2397 Type *RTy = CalledFunc->getReturnType(); 2398 2399 PHINode *PHI = nullptr; 2400 if (Returns.size() > 1) { 2401 // The PHI node should go at the front of the new basic block to merge all 2402 // possible incoming values. 2403 if (!CB.use_empty()) { 2404 PHI = PHINode::Create(RTy, Returns.size(), CB.getName(), 2405 &AfterCallBB->front()); 2406 // Anything that used the result of the function call should now use the 2407 // PHI node as their operand. 2408 CB.replaceAllUsesWith(PHI); 2409 } 2410 2411 // Loop over all of the return instructions adding entries to the PHI node 2412 // as appropriate. 2413 if (PHI) { 2414 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2415 ReturnInst *RI = Returns[i]; 2416 assert(RI->getReturnValue()->getType() == PHI->getType() && 2417 "Ret value not consistent in function!"); 2418 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 2419 } 2420 } 2421 2422 // Add a branch to the merge points and remove return instructions. 2423 DebugLoc Loc; 2424 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2425 ReturnInst *RI = Returns[i]; 2426 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 2427 Loc = RI->getDebugLoc(); 2428 BI->setDebugLoc(Loc); 2429 RI->eraseFromParent(); 2430 } 2431 // We need to set the debug location to *somewhere* inside the 2432 // inlined function. The line number may be nonsensical, but the 2433 // instruction will at least be associated with the right 2434 // function. 2435 if (CreatedBranchToNormalDest) 2436 CreatedBranchToNormalDest->setDebugLoc(Loc); 2437 } else if (!Returns.empty()) { 2438 // Otherwise, if there is exactly one return value, just replace anything 2439 // using the return value of the call with the computed value. 2440 if (!CB.use_empty()) { 2441 if (&CB == Returns[0]->getReturnValue()) 2442 CB.replaceAllUsesWith(UndefValue::get(CB.getType())); 2443 else 2444 CB.replaceAllUsesWith(Returns[0]->getReturnValue()); 2445 } 2446 2447 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 2448 BasicBlock *ReturnBB = Returns[0]->getParent(); 2449 ReturnBB->replaceAllUsesWith(AfterCallBB); 2450 2451 // Splice the code from the return block into the block that it will return 2452 // to, which contains the code that was after the call. 2453 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 2454 ReturnBB->getInstList()); 2455 2456 if (CreatedBranchToNormalDest) 2457 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 2458 2459 // Delete the return instruction now and empty ReturnBB now. 2460 Returns[0]->eraseFromParent(); 2461 ReturnBB->eraseFromParent(); 2462 } else if (!CB.use_empty()) { 2463 // No returns, but something is using the return value of the call. Just 2464 // nuke the result. 2465 CB.replaceAllUsesWith(UndefValue::get(CB.getType())); 2466 } 2467 2468 // Since we are now done with the Call/Invoke, we can delete it. 2469 CB.eraseFromParent(); 2470 2471 // If we inlined any musttail calls and the original return is now 2472 // unreachable, delete it. It can only contain a bitcast and ret. 2473 if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB)) 2474 AfterCallBB->eraseFromParent(); 2475 2476 // We should always be able to fold the entry block of the function into the 2477 // single predecessor of the block... 2478 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 2479 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 2480 2481 // Splice the code entry block into calling block, right before the 2482 // unconditional branch. 2483 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 2484 OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList()); 2485 2486 // Remove the unconditional branch. 2487 OrigBB->getInstList().erase(Br); 2488 2489 // Now we can remove the CalleeEntry block, which is now empty. 2490 Caller->getBasicBlockList().erase(CalleeEntry); 2491 2492 // If we inserted a phi node, check to see if it has a single value (e.g. all 2493 // the entries are the same or undef). If so, remove the PHI so it doesn't 2494 // block other optimizations. 2495 if (PHI) { 2496 AssumptionCache *AC = 2497 IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr; 2498 auto &DL = Caller->getParent()->getDataLayout(); 2499 if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) { 2500 PHI->replaceAllUsesWith(V); 2501 PHI->eraseFromParent(); 2502 } 2503 } 2504 2505 return InlineResult::success(); 2506 } 2507