1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements inlining of a function into a call site, resolving 10 // parameters and the return value as appropriate. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/BlockFrequencyInfo.h" 26 #include "llvm/Analysis/CallGraph.h" 27 #include "llvm/Analysis/CaptureTracking.h" 28 #include "llvm/Analysis/EHPersonalities.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/Analysis/VectorUtils.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/CFG.h" 37 #include "llvm/IR/CallSite.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DIBuilder.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfoMetadata.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Dominators.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/User.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Transforms/Utils/Cloning.h" 64 #include "llvm/Transforms/Utils/ValueMapper.h" 65 #include <algorithm> 66 #include <cassert> 67 #include <cstdint> 68 #include <iterator> 69 #include <limits> 70 #include <string> 71 #include <utility> 72 #include <vector> 73 74 using namespace llvm; 75 using ProfileCount = Function::ProfileCount; 76 77 static cl::opt<bool> 78 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), 79 cl::Hidden, 80 cl::desc("Convert noalias attributes to metadata during inlining.")); 81 82 static cl::opt<bool> 83 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", 84 cl::init(true), cl::Hidden, 85 cl::desc("Convert align attributes to assumptions during inlining.")); 86 87 llvm::InlineResult llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI, 88 AAResults *CalleeAAR, 89 bool InsertLifetime) { 90 return InlineFunction(CallSite(CI), IFI, CalleeAAR, InsertLifetime); 91 } 92 93 llvm::InlineResult llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI, 94 AAResults *CalleeAAR, 95 bool InsertLifetime) { 96 return InlineFunction(CallSite(II), IFI, CalleeAAR, InsertLifetime); 97 } 98 99 namespace { 100 101 /// A class for recording information about inlining a landing pad. 102 class LandingPadInliningInfo { 103 /// Destination of the invoke's unwind. 104 BasicBlock *OuterResumeDest; 105 106 /// Destination for the callee's resume. 107 BasicBlock *InnerResumeDest = nullptr; 108 109 /// LandingPadInst associated with the invoke. 110 LandingPadInst *CallerLPad = nullptr; 111 112 /// PHI for EH values from landingpad insts. 113 PHINode *InnerEHValuesPHI = nullptr; 114 115 SmallVector<Value*, 8> UnwindDestPHIValues; 116 117 public: 118 LandingPadInliningInfo(InvokeInst *II) 119 : OuterResumeDest(II->getUnwindDest()) { 120 // If there are PHI nodes in the unwind destination block, we need to keep 121 // track of which values came into them from the invoke before removing 122 // the edge from this block. 123 BasicBlock *InvokeBB = II->getParent(); 124 BasicBlock::iterator I = OuterResumeDest->begin(); 125 for (; isa<PHINode>(I); ++I) { 126 // Save the value to use for this edge. 127 PHINode *PHI = cast<PHINode>(I); 128 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 129 } 130 131 CallerLPad = cast<LandingPadInst>(I); 132 } 133 134 /// The outer unwind destination is the target of 135 /// unwind edges introduced for calls within the inlined function. 136 BasicBlock *getOuterResumeDest() const { 137 return OuterResumeDest; 138 } 139 140 BasicBlock *getInnerResumeDest(); 141 142 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 143 144 /// Forward the 'resume' instruction to the caller's landing pad block. 145 /// When the landing pad block has only one predecessor, this is 146 /// a simple branch. When there is more than one predecessor, we need to 147 /// split the landing pad block after the landingpad instruction and jump 148 /// to there. 149 void forwardResume(ResumeInst *RI, 150 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); 151 152 /// Add incoming-PHI values to the unwind destination block for the given 153 /// basic block, using the values for the original invoke's source block. 154 void addIncomingPHIValuesFor(BasicBlock *BB) const { 155 addIncomingPHIValuesForInto(BB, OuterResumeDest); 156 } 157 158 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 159 BasicBlock::iterator I = dest->begin(); 160 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 161 PHINode *phi = cast<PHINode>(I); 162 phi->addIncoming(UnwindDestPHIValues[i], src); 163 } 164 } 165 }; 166 167 } // end anonymous namespace 168 169 /// Get or create a target for the branch from ResumeInsts. 170 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() { 171 if (InnerResumeDest) return InnerResumeDest; 172 173 // Split the landing pad. 174 BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator(); 175 InnerResumeDest = 176 OuterResumeDest->splitBasicBlock(SplitPoint, 177 OuterResumeDest->getName() + ".body"); 178 179 // The number of incoming edges we expect to the inner landing pad. 180 const unsigned PHICapacity = 2; 181 182 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 183 Instruction *InsertPoint = &InnerResumeDest->front(); 184 BasicBlock::iterator I = OuterResumeDest->begin(); 185 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 186 PHINode *OuterPHI = cast<PHINode>(I); 187 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 188 OuterPHI->getName() + ".lpad-body", 189 InsertPoint); 190 OuterPHI->replaceAllUsesWith(InnerPHI); 191 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 192 } 193 194 // Create a PHI for the exception values. 195 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 196 "eh.lpad-body", InsertPoint); 197 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 198 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 199 200 // All done. 201 return InnerResumeDest; 202 } 203 204 /// Forward the 'resume' instruction to the caller's landing pad block. 205 /// When the landing pad block has only one predecessor, this is a simple 206 /// branch. When there is more than one predecessor, we need to split the 207 /// landing pad block after the landingpad instruction and jump to there. 208 void LandingPadInliningInfo::forwardResume( 209 ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) { 210 BasicBlock *Dest = getInnerResumeDest(); 211 BasicBlock *Src = RI->getParent(); 212 213 BranchInst::Create(Dest, Src); 214 215 // Update the PHIs in the destination. They were inserted in an order which 216 // makes this work. 217 addIncomingPHIValuesForInto(Src, Dest); 218 219 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 220 RI->eraseFromParent(); 221 } 222 223 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper. 224 static Value *getParentPad(Value *EHPad) { 225 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 226 return FPI->getParentPad(); 227 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 228 } 229 230 using UnwindDestMemoTy = DenseMap<Instruction *, Value *>; 231 232 /// Helper for getUnwindDestToken that does the descendant-ward part of 233 /// the search. 234 static Value *getUnwindDestTokenHelper(Instruction *EHPad, 235 UnwindDestMemoTy &MemoMap) { 236 SmallVector<Instruction *, 8> Worklist(1, EHPad); 237 238 while (!Worklist.empty()) { 239 Instruction *CurrentPad = Worklist.pop_back_val(); 240 // We only put pads on the worklist that aren't in the MemoMap. When 241 // we find an unwind dest for a pad we may update its ancestors, but 242 // the queue only ever contains uncles/great-uncles/etc. of CurrentPad, 243 // so they should never get updated while queued on the worklist. 244 assert(!MemoMap.count(CurrentPad)); 245 Value *UnwindDestToken = nullptr; 246 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) { 247 if (CatchSwitch->hasUnwindDest()) { 248 UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI(); 249 } else { 250 // Catchswitch doesn't have a 'nounwind' variant, and one might be 251 // annotated as "unwinds to caller" when really it's nounwind (see 252 // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the 253 // parent's unwind dest from this. We can check its catchpads' 254 // descendants, since they might include a cleanuppad with an 255 // "unwinds to caller" cleanupret, which can be trusted. 256 for (auto HI = CatchSwitch->handler_begin(), 257 HE = CatchSwitch->handler_end(); 258 HI != HE && !UnwindDestToken; ++HI) { 259 BasicBlock *HandlerBlock = *HI; 260 auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI()); 261 for (User *Child : CatchPad->users()) { 262 // Intentionally ignore invokes here -- since the catchswitch is 263 // marked "unwind to caller", it would be a verifier error if it 264 // contained an invoke which unwinds out of it, so any invoke we'd 265 // encounter must unwind to some child of the catch. 266 if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child)) 267 continue; 268 269 Instruction *ChildPad = cast<Instruction>(Child); 270 auto Memo = MemoMap.find(ChildPad); 271 if (Memo == MemoMap.end()) { 272 // Haven't figured out this child pad yet; queue it. 273 Worklist.push_back(ChildPad); 274 continue; 275 } 276 // We've already checked this child, but might have found that 277 // it offers no proof either way. 278 Value *ChildUnwindDestToken = Memo->second; 279 if (!ChildUnwindDestToken) 280 continue; 281 // We already know the child's unwind dest, which can either 282 // be ConstantTokenNone to indicate unwind to caller, or can 283 // be another child of the catchpad. Only the former indicates 284 // the unwind dest of the catchswitch. 285 if (isa<ConstantTokenNone>(ChildUnwindDestToken)) { 286 UnwindDestToken = ChildUnwindDestToken; 287 break; 288 } 289 assert(getParentPad(ChildUnwindDestToken) == CatchPad); 290 } 291 } 292 } 293 } else { 294 auto *CleanupPad = cast<CleanupPadInst>(CurrentPad); 295 for (User *U : CleanupPad->users()) { 296 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) { 297 if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest()) 298 UnwindDestToken = RetUnwindDest->getFirstNonPHI(); 299 else 300 UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext()); 301 break; 302 } 303 Value *ChildUnwindDestToken; 304 if (auto *Invoke = dyn_cast<InvokeInst>(U)) { 305 ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI(); 306 } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) { 307 Instruction *ChildPad = cast<Instruction>(U); 308 auto Memo = MemoMap.find(ChildPad); 309 if (Memo == MemoMap.end()) { 310 // Haven't resolved this child yet; queue it and keep searching. 311 Worklist.push_back(ChildPad); 312 continue; 313 } 314 // We've checked this child, but still need to ignore it if it 315 // had no proof either way. 316 ChildUnwindDestToken = Memo->second; 317 if (!ChildUnwindDestToken) 318 continue; 319 } else { 320 // Not a relevant user of the cleanuppad 321 continue; 322 } 323 // In a well-formed program, the child/invoke must either unwind to 324 // an(other) child of the cleanup, or exit the cleanup. In the 325 // first case, continue searching. 326 if (isa<Instruction>(ChildUnwindDestToken) && 327 getParentPad(ChildUnwindDestToken) == CleanupPad) 328 continue; 329 UnwindDestToken = ChildUnwindDestToken; 330 break; 331 } 332 } 333 // If we haven't found an unwind dest for CurrentPad, we may have queued its 334 // children, so move on to the next in the worklist. 335 if (!UnwindDestToken) 336 continue; 337 338 // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits 339 // any ancestors of CurrentPad up to but not including UnwindDestToken's 340 // parent pad. Record this in the memo map, and check to see if the 341 // original EHPad being queried is one of the ones exited. 342 Value *UnwindParent; 343 if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken)) 344 UnwindParent = getParentPad(UnwindPad); 345 else 346 UnwindParent = nullptr; 347 bool ExitedOriginalPad = false; 348 for (Instruction *ExitedPad = CurrentPad; 349 ExitedPad && ExitedPad != UnwindParent; 350 ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) { 351 // Skip over catchpads since they just follow their catchswitches. 352 if (isa<CatchPadInst>(ExitedPad)) 353 continue; 354 MemoMap[ExitedPad] = UnwindDestToken; 355 ExitedOriginalPad |= (ExitedPad == EHPad); 356 } 357 358 if (ExitedOriginalPad) 359 return UnwindDestToken; 360 361 // Continue the search. 362 } 363 364 // No definitive information is contained within this funclet. 365 return nullptr; 366 } 367 368 /// Given an EH pad, find where it unwinds. If it unwinds to an EH pad, 369 /// return that pad instruction. If it unwinds to caller, return 370 /// ConstantTokenNone. If it does not have a definitive unwind destination, 371 /// return nullptr. 372 /// 373 /// This routine gets invoked for calls in funclets in inlinees when inlining 374 /// an invoke. Since many funclets don't have calls inside them, it's queried 375 /// on-demand rather than building a map of pads to unwind dests up front. 376 /// Determining a funclet's unwind dest may require recursively searching its 377 /// descendants, and also ancestors and cousins if the descendants don't provide 378 /// an answer. Since most funclets will have their unwind dest immediately 379 /// available as the unwind dest of a catchswitch or cleanupret, this routine 380 /// searches top-down from the given pad and then up. To avoid worst-case 381 /// quadratic run-time given that approach, it uses a memo map to avoid 382 /// re-processing funclet trees. The callers that rewrite the IR as they go 383 /// take advantage of this, for correctness, by checking/forcing rewritten 384 /// pads' entries to match the original callee view. 385 static Value *getUnwindDestToken(Instruction *EHPad, 386 UnwindDestMemoTy &MemoMap) { 387 // Catchpads unwind to the same place as their catchswitch; 388 // redirct any queries on catchpads so the code below can 389 // deal with just catchswitches and cleanuppads. 390 if (auto *CPI = dyn_cast<CatchPadInst>(EHPad)) 391 EHPad = CPI->getCatchSwitch(); 392 393 // Check if we've already determined the unwind dest for this pad. 394 auto Memo = MemoMap.find(EHPad); 395 if (Memo != MemoMap.end()) 396 return Memo->second; 397 398 // Search EHPad and, if necessary, its descendants. 399 Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap); 400 assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0)); 401 if (UnwindDestToken) 402 return UnwindDestToken; 403 404 // No information is available for this EHPad from itself or any of its 405 // descendants. An unwind all the way out to a pad in the caller would 406 // need also to agree with the unwind dest of the parent funclet, so 407 // search up the chain to try to find a funclet with information. Put 408 // null entries in the memo map to avoid re-processing as we go up. 409 MemoMap[EHPad] = nullptr; 410 #ifndef NDEBUG 411 SmallPtrSet<Instruction *, 4> TempMemos; 412 TempMemos.insert(EHPad); 413 #endif 414 Instruction *LastUselessPad = EHPad; 415 Value *AncestorToken; 416 for (AncestorToken = getParentPad(EHPad); 417 auto *AncestorPad = dyn_cast<Instruction>(AncestorToken); 418 AncestorToken = getParentPad(AncestorToken)) { 419 // Skip over catchpads since they just follow their catchswitches. 420 if (isa<CatchPadInst>(AncestorPad)) 421 continue; 422 // If the MemoMap had an entry mapping AncestorPad to nullptr, since we 423 // haven't yet called getUnwindDestTokenHelper for AncestorPad in this 424 // call to getUnwindDestToken, that would mean that AncestorPad had no 425 // information in itself, its descendants, or its ancestors. If that 426 // were the case, then we should also have recorded the lack of information 427 // for the descendant that we're coming from. So assert that we don't 428 // find a null entry in the MemoMap for AncestorPad. 429 assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]); 430 auto AncestorMemo = MemoMap.find(AncestorPad); 431 if (AncestorMemo == MemoMap.end()) { 432 UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap); 433 } else { 434 UnwindDestToken = AncestorMemo->second; 435 } 436 if (UnwindDestToken) 437 break; 438 LastUselessPad = AncestorPad; 439 MemoMap[LastUselessPad] = nullptr; 440 #ifndef NDEBUG 441 TempMemos.insert(LastUselessPad); 442 #endif 443 } 444 445 // We know that getUnwindDestTokenHelper was called on LastUselessPad and 446 // returned nullptr (and likewise for EHPad and any of its ancestors up to 447 // LastUselessPad), so LastUselessPad has no information from below. Since 448 // getUnwindDestTokenHelper must investigate all downward paths through 449 // no-information nodes to prove that a node has no information like this, 450 // and since any time it finds information it records it in the MemoMap for 451 // not just the immediately-containing funclet but also any ancestors also 452 // exited, it must be the case that, walking downward from LastUselessPad, 453 // visiting just those nodes which have not been mapped to an unwind dest 454 // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since 455 // they are just used to keep getUnwindDestTokenHelper from repeating work), 456 // any node visited must have been exhaustively searched with no information 457 // for it found. 458 SmallVector<Instruction *, 8> Worklist(1, LastUselessPad); 459 while (!Worklist.empty()) { 460 Instruction *UselessPad = Worklist.pop_back_val(); 461 auto Memo = MemoMap.find(UselessPad); 462 if (Memo != MemoMap.end() && Memo->second) { 463 // Here the name 'UselessPad' is a bit of a misnomer, because we've found 464 // that it is a funclet that does have information about unwinding to 465 // a particular destination; its parent was a useless pad. 466 // Since its parent has no information, the unwind edge must not escape 467 // the parent, and must target a sibling of this pad. This local unwind 468 // gives us no information about EHPad. Leave it and the subtree rooted 469 // at it alone. 470 assert(getParentPad(Memo->second) == getParentPad(UselessPad)); 471 continue; 472 } 473 // We know we don't have information for UselesPad. If it has an entry in 474 // the MemoMap (mapping it to nullptr), it must be one of the TempMemos 475 // added on this invocation of getUnwindDestToken; if a previous invocation 476 // recorded nullptr, it would have had to prove that the ancestors of 477 // UselessPad, which include LastUselessPad, had no information, and that 478 // in turn would have required proving that the descendants of 479 // LastUselesPad, which include EHPad, have no information about 480 // LastUselessPad, which would imply that EHPad was mapped to nullptr in 481 // the MemoMap on that invocation, which isn't the case if we got here. 482 assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad)); 483 // Assert as we enumerate users that 'UselessPad' doesn't have any unwind 484 // information that we'd be contradicting by making a map entry for it 485 // (which is something that getUnwindDestTokenHelper must have proved for 486 // us to get here). Just assert on is direct users here; the checks in 487 // this downward walk at its descendants will verify that they don't have 488 // any unwind edges that exit 'UselessPad' either (i.e. they either have no 489 // unwind edges or unwind to a sibling). 490 MemoMap[UselessPad] = UnwindDestToken; 491 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) { 492 assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad"); 493 for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) { 494 auto *CatchPad = HandlerBlock->getFirstNonPHI(); 495 for (User *U : CatchPad->users()) { 496 assert( 497 (!isa<InvokeInst>(U) || 498 (getParentPad( 499 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 500 CatchPad)) && 501 "Expected useless pad"); 502 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 503 Worklist.push_back(cast<Instruction>(U)); 504 } 505 } 506 } else { 507 assert(isa<CleanupPadInst>(UselessPad)); 508 for (User *U : UselessPad->users()) { 509 assert(!isa<CleanupReturnInst>(U) && "Expected useless pad"); 510 assert((!isa<InvokeInst>(U) || 511 (getParentPad( 512 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 513 UselessPad)) && 514 "Expected useless pad"); 515 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 516 Worklist.push_back(cast<Instruction>(U)); 517 } 518 } 519 } 520 521 return UnwindDestToken; 522 } 523 524 /// When we inline a basic block into an invoke, 525 /// we have to turn all of the calls that can throw into invokes. 526 /// This function analyze BB to see if there are any calls, and if so, 527 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 528 /// nodes in that block with the values specified in InvokeDestPHIValues. 529 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke( 530 BasicBlock *BB, BasicBlock *UnwindEdge, 531 UnwindDestMemoTy *FuncletUnwindMap = nullptr) { 532 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 533 Instruction *I = &*BBI++; 534 535 // We only need to check for function calls: inlined invoke 536 // instructions require no special handling. 537 CallInst *CI = dyn_cast<CallInst>(I); 538 539 if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue())) 540 continue; 541 542 // We do not need to (and in fact, cannot) convert possibly throwing calls 543 // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into 544 // invokes. The caller's "segment" of the deoptimization continuation 545 // attached to the newly inlined @llvm.experimental_deoptimize 546 // (resp. @llvm.experimental.guard) call should contain the exception 547 // handling logic, if any. 548 if (auto *F = CI->getCalledFunction()) 549 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize || 550 F->getIntrinsicID() == Intrinsic::experimental_guard) 551 continue; 552 553 if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) { 554 // This call is nested inside a funclet. If that funclet has an unwind 555 // destination within the inlinee, then unwinding out of this call would 556 // be UB. Rewriting this call to an invoke which targets the inlined 557 // invoke's unwind dest would give the call's parent funclet multiple 558 // unwind destinations, which is something that subsequent EH table 559 // generation can't handle and that the veirifer rejects. So when we 560 // see such a call, leave it as a call. 561 auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]); 562 Value *UnwindDestToken = 563 getUnwindDestToken(FuncletPad, *FuncletUnwindMap); 564 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 565 continue; 566 #ifndef NDEBUG 567 Instruction *MemoKey; 568 if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad)) 569 MemoKey = CatchPad->getCatchSwitch(); 570 else 571 MemoKey = FuncletPad; 572 assert(FuncletUnwindMap->count(MemoKey) && 573 (*FuncletUnwindMap)[MemoKey] == UnwindDestToken && 574 "must get memoized to avoid confusing later searches"); 575 #endif // NDEBUG 576 } 577 578 changeToInvokeAndSplitBasicBlock(CI, UnwindEdge); 579 return BB; 580 } 581 return nullptr; 582 } 583 584 /// If we inlined an invoke site, we need to convert calls 585 /// in the body of the inlined function into invokes. 586 /// 587 /// II is the invoke instruction being inlined. FirstNewBlock is the first 588 /// block of the inlined code (the last block is the end of the function), 589 /// and InlineCodeInfo is information about the code that got inlined. 590 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock, 591 ClonedCodeInfo &InlinedCodeInfo) { 592 BasicBlock *InvokeDest = II->getUnwindDest(); 593 594 Function *Caller = FirstNewBlock->getParent(); 595 596 // The inlined code is currently at the end of the function, scan from the 597 // start of the inlined code to its end, checking for stuff we need to 598 // rewrite. 599 LandingPadInliningInfo Invoke(II); 600 601 // Get all of the inlined landing pad instructions. 602 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 603 for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end(); 604 I != E; ++I) 605 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 606 InlinedLPads.insert(II->getLandingPadInst()); 607 608 // Append the clauses from the outer landing pad instruction into the inlined 609 // landing pad instructions. 610 LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 611 for (LandingPadInst *InlinedLPad : InlinedLPads) { 612 unsigned OuterNum = OuterLPad->getNumClauses(); 613 InlinedLPad->reserveClauses(OuterNum); 614 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 615 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 616 if (OuterLPad->isCleanup()) 617 InlinedLPad->setCleanup(true); 618 } 619 620 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 621 BB != E; ++BB) { 622 if (InlinedCodeInfo.ContainsCalls) 623 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 624 &*BB, Invoke.getOuterResumeDest())) 625 // Update any PHI nodes in the exceptional block to indicate that there 626 // is now a new entry in them. 627 Invoke.addIncomingPHIValuesFor(NewBB); 628 629 // Forward any resumes that are remaining here. 630 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 631 Invoke.forwardResume(RI, InlinedLPads); 632 } 633 634 // Now that everything is happy, we have one final detail. The PHI nodes in 635 // the exception destination block still have entries due to the original 636 // invoke instruction. Eliminate these entries (which might even delete the 637 // PHI node) now. 638 InvokeDest->removePredecessor(II->getParent()); 639 } 640 641 /// If we inlined an invoke site, we need to convert calls 642 /// in the body of the inlined function into invokes. 643 /// 644 /// II is the invoke instruction being inlined. FirstNewBlock is the first 645 /// block of the inlined code (the last block is the end of the function), 646 /// and InlineCodeInfo is information about the code that got inlined. 647 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock, 648 ClonedCodeInfo &InlinedCodeInfo) { 649 BasicBlock *UnwindDest = II->getUnwindDest(); 650 Function *Caller = FirstNewBlock->getParent(); 651 652 assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!"); 653 654 // If there are PHI nodes in the unwind destination block, we need to keep 655 // track of which values came into them from the invoke before removing the 656 // edge from this block. 657 SmallVector<Value *, 8> UnwindDestPHIValues; 658 BasicBlock *InvokeBB = II->getParent(); 659 for (Instruction &I : *UnwindDest) { 660 // Save the value to use for this edge. 661 PHINode *PHI = dyn_cast<PHINode>(&I); 662 if (!PHI) 663 break; 664 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 665 } 666 667 // Add incoming-PHI values to the unwind destination block for the given basic 668 // block, using the values for the original invoke's source block. 669 auto UpdatePHINodes = [&](BasicBlock *Src) { 670 BasicBlock::iterator I = UnwindDest->begin(); 671 for (Value *V : UnwindDestPHIValues) { 672 PHINode *PHI = cast<PHINode>(I); 673 PHI->addIncoming(V, Src); 674 ++I; 675 } 676 }; 677 678 // This connects all the instructions which 'unwind to caller' to the invoke 679 // destination. 680 UnwindDestMemoTy FuncletUnwindMap; 681 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 682 BB != E; ++BB) { 683 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 684 if (CRI->unwindsToCaller()) { 685 auto *CleanupPad = CRI->getCleanupPad(); 686 CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI); 687 CRI->eraseFromParent(); 688 UpdatePHINodes(&*BB); 689 // Finding a cleanupret with an unwind destination would confuse 690 // subsequent calls to getUnwindDestToken, so map the cleanuppad 691 // to short-circuit any such calls and recognize this as an "unwind 692 // to caller" cleanup. 693 assert(!FuncletUnwindMap.count(CleanupPad) || 694 isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad])); 695 FuncletUnwindMap[CleanupPad] = 696 ConstantTokenNone::get(Caller->getContext()); 697 } 698 } 699 700 Instruction *I = BB->getFirstNonPHI(); 701 if (!I->isEHPad()) 702 continue; 703 704 Instruction *Replacement = nullptr; 705 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 706 if (CatchSwitch->unwindsToCaller()) { 707 Value *UnwindDestToken; 708 if (auto *ParentPad = 709 dyn_cast<Instruction>(CatchSwitch->getParentPad())) { 710 // This catchswitch is nested inside another funclet. If that 711 // funclet has an unwind destination within the inlinee, then 712 // unwinding out of this catchswitch would be UB. Rewriting this 713 // catchswitch to unwind to the inlined invoke's unwind dest would 714 // give the parent funclet multiple unwind destinations, which is 715 // something that subsequent EH table generation can't handle and 716 // that the veirifer rejects. So when we see such a call, leave it 717 // as "unwind to caller". 718 UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap); 719 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 720 continue; 721 } else { 722 // This catchswitch has no parent to inherit constraints from, and 723 // none of its descendants can have an unwind edge that exits it and 724 // targets another funclet in the inlinee. It may or may not have a 725 // descendant that definitively has an unwind to caller. In either 726 // case, we'll have to assume that any unwinds out of it may need to 727 // be routed to the caller, so treat it as though it has a definitive 728 // unwind to caller. 729 UnwindDestToken = ConstantTokenNone::get(Caller->getContext()); 730 } 731 auto *NewCatchSwitch = CatchSwitchInst::Create( 732 CatchSwitch->getParentPad(), UnwindDest, 733 CatchSwitch->getNumHandlers(), CatchSwitch->getName(), 734 CatchSwitch); 735 for (BasicBlock *PadBB : CatchSwitch->handlers()) 736 NewCatchSwitch->addHandler(PadBB); 737 // Propagate info for the old catchswitch over to the new one in 738 // the unwind map. This also serves to short-circuit any subsequent 739 // checks for the unwind dest of this catchswitch, which would get 740 // confused if they found the outer handler in the callee. 741 FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken; 742 Replacement = NewCatchSwitch; 743 } 744 } else if (!isa<FuncletPadInst>(I)) { 745 llvm_unreachable("unexpected EHPad!"); 746 } 747 748 if (Replacement) { 749 Replacement->takeName(I); 750 I->replaceAllUsesWith(Replacement); 751 I->eraseFromParent(); 752 UpdatePHINodes(&*BB); 753 } 754 } 755 756 if (InlinedCodeInfo.ContainsCalls) 757 for (Function::iterator BB = FirstNewBlock->getIterator(), 758 E = Caller->end(); 759 BB != E; ++BB) 760 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 761 &*BB, UnwindDest, &FuncletUnwindMap)) 762 // Update any PHI nodes in the exceptional block to indicate that there 763 // is now a new entry in them. 764 UpdatePHINodes(NewBB); 765 766 // Now that everything is happy, we have one final detail. The PHI nodes in 767 // the exception destination block still have entries due to the original 768 // invoke instruction. Eliminate these entries (which might even delete the 769 // PHI node) now. 770 UnwindDest->removePredecessor(InvokeBB); 771 } 772 773 /// When inlining a call site that has !llvm.mem.parallel_loop_access or 774 /// llvm.access.group metadata, that metadata should be propagated to all 775 /// memory-accessing cloned instructions. 776 static void PropagateParallelLoopAccessMetadata(CallSite CS, 777 ValueToValueMapTy &VMap) { 778 MDNode *M = 779 CS.getInstruction()->getMetadata(LLVMContext::MD_mem_parallel_loop_access); 780 MDNode *CallAccessGroup = 781 CS.getInstruction()->getMetadata(LLVMContext::MD_access_group); 782 if (!M && !CallAccessGroup) 783 return; 784 785 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 786 VMI != VMIE; ++VMI) { 787 if (!VMI->second) 788 continue; 789 790 Instruction *NI = dyn_cast<Instruction>(VMI->second); 791 if (!NI) 792 continue; 793 794 if (M) { 795 if (MDNode *PM = 796 NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access)) { 797 M = MDNode::concatenate(PM, M); 798 NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M); 799 } else if (NI->mayReadOrWriteMemory()) { 800 NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M); 801 } 802 } 803 804 if (NI->mayReadOrWriteMemory()) { 805 MDNode *UnitedAccGroups = uniteAccessGroups( 806 NI->getMetadata(LLVMContext::MD_access_group), CallAccessGroup); 807 NI->setMetadata(LLVMContext::MD_access_group, UnitedAccGroups); 808 } 809 } 810 } 811 812 /// When inlining a function that contains noalias scope metadata, 813 /// this metadata needs to be cloned so that the inlined blocks 814 /// have different "unique scopes" at every call site. Were this not done, then 815 /// aliasing scopes from a function inlined into a caller multiple times could 816 /// not be differentiated (and this would lead to miscompiles because the 817 /// non-aliasing property communicated by the metadata could have 818 /// call-site-specific control dependencies). 819 static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) { 820 const Function *CalledFunc = CS.getCalledFunction(); 821 SetVector<const MDNode *> MD; 822 823 // Note: We could only clone the metadata if it is already used in the 824 // caller. I'm omitting that check here because it might confuse 825 // inter-procedural alias analysis passes. We can revisit this if it becomes 826 // an efficiency or overhead problem. 827 828 for (const BasicBlock &I : *CalledFunc) 829 for (const Instruction &J : I) { 830 if (const MDNode *M = J.getMetadata(LLVMContext::MD_alias_scope)) 831 MD.insert(M); 832 if (const MDNode *M = J.getMetadata(LLVMContext::MD_noalias)) 833 MD.insert(M); 834 } 835 836 if (MD.empty()) 837 return; 838 839 // Walk the existing metadata, adding the complete (perhaps cyclic) chain to 840 // the set. 841 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end()); 842 while (!Queue.empty()) { 843 const MDNode *M = cast<MDNode>(Queue.pop_back_val()); 844 for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i) 845 if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i))) 846 if (MD.insert(M1)) 847 Queue.push_back(M1); 848 } 849 850 // Now we have a complete set of all metadata in the chains used to specify 851 // the noalias scopes and the lists of those scopes. 852 SmallVector<TempMDTuple, 16> DummyNodes; 853 DenseMap<const MDNode *, TrackingMDNodeRef> MDMap; 854 for (const MDNode *I : MD) { 855 DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None)); 856 MDMap[I].reset(DummyNodes.back().get()); 857 } 858 859 // Create new metadata nodes to replace the dummy nodes, replacing old 860 // metadata references with either a dummy node or an already-created new 861 // node. 862 for (const MDNode *I : MD) { 863 SmallVector<Metadata *, 4> NewOps; 864 for (unsigned i = 0, ie = I->getNumOperands(); i != ie; ++i) { 865 const Metadata *V = I->getOperand(i); 866 if (const MDNode *M = dyn_cast<MDNode>(V)) 867 NewOps.push_back(MDMap[M]); 868 else 869 NewOps.push_back(const_cast<Metadata *>(V)); 870 } 871 872 MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps); 873 MDTuple *TempM = cast<MDTuple>(MDMap[I]); 874 assert(TempM->isTemporary() && "Expected temporary node"); 875 876 TempM->replaceAllUsesWith(NewM); 877 } 878 879 // Now replace the metadata in the new inlined instructions with the 880 // repacements from the map. 881 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 882 VMI != VMIE; ++VMI) { 883 if (!VMI->second) 884 continue; 885 886 Instruction *NI = dyn_cast<Instruction>(VMI->second); 887 if (!NI) 888 continue; 889 890 if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) { 891 MDNode *NewMD = MDMap[M]; 892 // If the call site also had alias scope metadata (a list of scopes to 893 // which instructions inside it might belong), propagate those scopes to 894 // the inlined instructions. 895 if (MDNode *CSM = 896 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 897 NewMD = MDNode::concatenate(NewMD, CSM); 898 NI->setMetadata(LLVMContext::MD_alias_scope, NewMD); 899 } else if (NI->mayReadOrWriteMemory()) { 900 if (MDNode *M = 901 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 902 NI->setMetadata(LLVMContext::MD_alias_scope, M); 903 } 904 905 if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) { 906 MDNode *NewMD = MDMap[M]; 907 // If the call site also had noalias metadata (a list of scopes with 908 // which instructions inside it don't alias), propagate those scopes to 909 // the inlined instructions. 910 if (MDNode *CSM = 911 CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 912 NewMD = MDNode::concatenate(NewMD, CSM); 913 NI->setMetadata(LLVMContext::MD_noalias, NewMD); 914 } else if (NI->mayReadOrWriteMemory()) { 915 if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 916 NI->setMetadata(LLVMContext::MD_noalias, M); 917 } 918 } 919 } 920 921 /// If the inlined function has noalias arguments, 922 /// then add new alias scopes for each noalias argument, tag the mapped noalias 923 /// parameters with noalias metadata specifying the new scope, and tag all 924 /// non-derived loads, stores and memory intrinsics with the new alias scopes. 925 static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap, 926 const DataLayout &DL, AAResults *CalleeAAR) { 927 if (!EnableNoAliasConversion) 928 return; 929 930 const Function *CalledFunc = CS.getCalledFunction(); 931 SmallVector<const Argument *, 4> NoAliasArgs; 932 933 for (const Argument &Arg : CalledFunc->args()) 934 if (Arg.hasNoAliasAttr() && !Arg.use_empty()) 935 NoAliasArgs.push_back(&Arg); 936 937 if (NoAliasArgs.empty()) 938 return; 939 940 // To do a good job, if a noalias variable is captured, we need to know if 941 // the capture point dominates the particular use we're considering. 942 DominatorTree DT; 943 DT.recalculate(const_cast<Function&>(*CalledFunc)); 944 945 // noalias indicates that pointer values based on the argument do not alias 946 // pointer values which are not based on it. So we add a new "scope" for each 947 // noalias function argument. Accesses using pointers based on that argument 948 // become part of that alias scope, accesses using pointers not based on that 949 // argument are tagged as noalias with that scope. 950 951 DenseMap<const Argument *, MDNode *> NewScopes; 952 MDBuilder MDB(CalledFunc->getContext()); 953 954 // Create a new scope domain for this function. 955 MDNode *NewDomain = 956 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); 957 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { 958 const Argument *A = NoAliasArgs[i]; 959 960 std::string Name = CalledFunc->getName(); 961 if (A->hasName()) { 962 Name += ": %"; 963 Name += A->getName(); 964 } else { 965 Name += ": argument "; 966 Name += utostr(i); 967 } 968 969 // Note: We always create a new anonymous root here. This is true regardless 970 // of the linkage of the callee because the aliasing "scope" is not just a 971 // property of the callee, but also all control dependencies in the caller. 972 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); 973 NewScopes.insert(std::make_pair(A, NewScope)); 974 } 975 976 // Iterate over all new instructions in the map; for all memory-access 977 // instructions, add the alias scope metadata. 978 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 979 VMI != VMIE; ++VMI) { 980 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { 981 if (!VMI->second) 982 continue; 983 984 Instruction *NI = dyn_cast<Instruction>(VMI->second); 985 if (!NI) 986 continue; 987 988 bool IsArgMemOnlyCall = false, IsFuncCall = false; 989 SmallVector<const Value *, 2> PtrArgs; 990 991 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 992 PtrArgs.push_back(LI->getPointerOperand()); 993 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 994 PtrArgs.push_back(SI->getPointerOperand()); 995 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) 996 PtrArgs.push_back(VAAI->getPointerOperand()); 997 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 998 PtrArgs.push_back(CXI->getPointerOperand()); 999 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 1000 PtrArgs.push_back(RMWI->getPointerOperand()); 1001 else if (const auto *Call = dyn_cast<CallBase>(I)) { 1002 // If we know that the call does not access memory, then we'll still 1003 // know that about the inlined clone of this call site, and we don't 1004 // need to add metadata. 1005 if (Call->doesNotAccessMemory()) 1006 continue; 1007 1008 IsFuncCall = true; 1009 if (CalleeAAR) { 1010 FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call); 1011 if (MRB == FMRB_OnlyAccessesArgumentPointees || 1012 MRB == FMRB_OnlyReadsArgumentPointees) 1013 IsArgMemOnlyCall = true; 1014 } 1015 1016 for (Value *Arg : Call->args()) { 1017 // We need to check the underlying objects of all arguments, not just 1018 // the pointer arguments, because we might be passing pointers as 1019 // integers, etc. 1020 // However, if we know that the call only accesses pointer arguments, 1021 // then we only need to check the pointer arguments. 1022 if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy()) 1023 continue; 1024 1025 PtrArgs.push_back(Arg); 1026 } 1027 } 1028 1029 // If we found no pointers, then this instruction is not suitable for 1030 // pairing with an instruction to receive aliasing metadata. 1031 // However, if this is a call, this we might just alias with none of the 1032 // noalias arguments. 1033 if (PtrArgs.empty() && !IsFuncCall) 1034 continue; 1035 1036 // It is possible that there is only one underlying object, but you 1037 // need to go through several PHIs to see it, and thus could be 1038 // repeated in the Objects list. 1039 SmallPtrSet<const Value *, 4> ObjSet; 1040 SmallVector<Metadata *, 4> Scopes, NoAliases; 1041 1042 SmallSetVector<const Argument *, 4> NAPtrArgs; 1043 for (const Value *V : PtrArgs) { 1044 SmallVector<const Value *, 4> Objects; 1045 GetUnderlyingObjects(V, Objects, DL, /* LI = */ nullptr); 1046 1047 for (const Value *O : Objects) 1048 ObjSet.insert(O); 1049 } 1050 1051 // Figure out if we're derived from anything that is not a noalias 1052 // argument. 1053 bool CanDeriveViaCapture = false, UsesAliasingPtr = false; 1054 for (const Value *V : ObjSet) { 1055 // Is this value a constant that cannot be derived from any pointer 1056 // value (we need to exclude constant expressions, for example, that 1057 // are formed from arithmetic on global symbols). 1058 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || 1059 isa<ConstantPointerNull>(V) || 1060 isa<ConstantDataVector>(V) || isa<UndefValue>(V); 1061 if (IsNonPtrConst) 1062 continue; 1063 1064 // If this is anything other than a noalias argument, then we cannot 1065 // completely describe the aliasing properties using alias.scope 1066 // metadata (and, thus, won't add any). 1067 if (const Argument *A = dyn_cast<Argument>(V)) { 1068 if (!A->hasNoAliasAttr()) 1069 UsesAliasingPtr = true; 1070 } else { 1071 UsesAliasingPtr = true; 1072 } 1073 1074 // If this is not some identified function-local object (which cannot 1075 // directly alias a noalias argument), or some other argument (which, 1076 // by definition, also cannot alias a noalias argument), then we could 1077 // alias a noalias argument that has been captured). 1078 if (!isa<Argument>(V) && 1079 !isIdentifiedFunctionLocal(const_cast<Value*>(V))) 1080 CanDeriveViaCapture = true; 1081 } 1082 1083 // A function call can always get captured noalias pointers (via other 1084 // parameters, globals, etc.). 1085 if (IsFuncCall && !IsArgMemOnlyCall) 1086 CanDeriveViaCapture = true; 1087 1088 // First, we want to figure out all of the sets with which we definitely 1089 // don't alias. Iterate over all noalias set, and add those for which: 1090 // 1. The noalias argument is not in the set of objects from which we 1091 // definitely derive. 1092 // 2. The noalias argument has not yet been captured. 1093 // An arbitrary function that might load pointers could see captured 1094 // noalias arguments via other noalias arguments or globals, and so we 1095 // must always check for prior capture. 1096 for (const Argument *A : NoAliasArgs) { 1097 if (!ObjSet.count(A) && (!CanDeriveViaCapture || 1098 // It might be tempting to skip the 1099 // PointerMayBeCapturedBefore check if 1100 // A->hasNoCaptureAttr() is true, but this is 1101 // incorrect because nocapture only guarantees 1102 // that no copies outlive the function, not 1103 // that the value cannot be locally captured. 1104 !PointerMayBeCapturedBefore(A, 1105 /* ReturnCaptures */ false, 1106 /* StoreCaptures */ false, I, &DT))) 1107 NoAliases.push_back(NewScopes[A]); 1108 } 1109 1110 if (!NoAliases.empty()) 1111 NI->setMetadata(LLVMContext::MD_noalias, 1112 MDNode::concatenate( 1113 NI->getMetadata(LLVMContext::MD_noalias), 1114 MDNode::get(CalledFunc->getContext(), NoAliases))); 1115 1116 // Next, we want to figure out all of the sets to which we might belong. 1117 // We might belong to a set if the noalias argument is in the set of 1118 // underlying objects. If there is some non-noalias argument in our list 1119 // of underlying objects, then we cannot add a scope because the fact 1120 // that some access does not alias with any set of our noalias arguments 1121 // cannot itself guarantee that it does not alias with this access 1122 // (because there is some pointer of unknown origin involved and the 1123 // other access might also depend on this pointer). We also cannot add 1124 // scopes to arbitrary functions unless we know they don't access any 1125 // non-parameter pointer-values. 1126 bool CanAddScopes = !UsesAliasingPtr; 1127 if (CanAddScopes && IsFuncCall) 1128 CanAddScopes = IsArgMemOnlyCall; 1129 1130 if (CanAddScopes) 1131 for (const Argument *A : NoAliasArgs) { 1132 if (ObjSet.count(A)) 1133 Scopes.push_back(NewScopes[A]); 1134 } 1135 1136 if (!Scopes.empty()) 1137 NI->setMetadata( 1138 LLVMContext::MD_alias_scope, 1139 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), 1140 MDNode::get(CalledFunc->getContext(), Scopes))); 1141 } 1142 } 1143 } 1144 1145 /// If the inlined function has non-byval align arguments, then 1146 /// add @llvm.assume-based alignment assumptions to preserve this information. 1147 static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) { 1148 if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache) 1149 return; 1150 1151 AssumptionCache *AC = &(*IFI.GetAssumptionCache)(*CS.getCaller()); 1152 auto &DL = CS.getCaller()->getParent()->getDataLayout(); 1153 1154 // To avoid inserting redundant assumptions, we should check for assumptions 1155 // already in the caller. To do this, we might need a DT of the caller. 1156 DominatorTree DT; 1157 bool DTCalculated = false; 1158 1159 Function *CalledFunc = CS.getCalledFunction(); 1160 for (Argument &Arg : CalledFunc->args()) { 1161 unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0; 1162 if (Align && !Arg.hasByValOrInAllocaAttr() && !Arg.hasNUses(0)) { 1163 if (!DTCalculated) { 1164 DT.recalculate(*CS.getCaller()); 1165 DTCalculated = true; 1166 } 1167 1168 // If we can already prove the asserted alignment in the context of the 1169 // caller, then don't bother inserting the assumption. 1170 Value *ArgVal = CS.getArgument(Arg.getArgNo()); 1171 if (getKnownAlignment(ArgVal, DL, CS.getInstruction(), AC, &DT) >= Align) 1172 continue; 1173 1174 CallInst *NewAsmp = IRBuilder<>(CS.getInstruction()) 1175 .CreateAlignmentAssumption(DL, ArgVal, Align); 1176 AC->registerAssumption(NewAsmp); 1177 } 1178 } 1179 } 1180 1181 /// Once we have cloned code over from a callee into the caller, 1182 /// update the specified callgraph to reflect the changes we made. 1183 /// Note that it's possible that not all code was copied over, so only 1184 /// some edges of the callgraph may remain. 1185 static void UpdateCallGraphAfterInlining(CallSite CS, 1186 Function::iterator FirstNewBlock, 1187 ValueToValueMapTy &VMap, 1188 InlineFunctionInfo &IFI) { 1189 CallGraph &CG = *IFI.CG; 1190 const Function *Caller = CS.getCaller(); 1191 const Function *Callee = CS.getCalledFunction(); 1192 CallGraphNode *CalleeNode = CG[Callee]; 1193 CallGraphNode *CallerNode = CG[Caller]; 1194 1195 // Since we inlined some uninlined call sites in the callee into the caller, 1196 // add edges from the caller to all of the callees of the callee. 1197 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 1198 1199 // Consider the case where CalleeNode == CallerNode. 1200 CallGraphNode::CalledFunctionsVector CallCache; 1201 if (CalleeNode == CallerNode) { 1202 CallCache.assign(I, E); 1203 I = CallCache.begin(); 1204 E = CallCache.end(); 1205 } 1206 1207 for (; I != E; ++I) { 1208 const Value *OrigCall = I->first; 1209 1210 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 1211 // Only copy the edge if the call was inlined! 1212 if (VMI == VMap.end() || VMI->second == nullptr) 1213 continue; 1214 1215 // If the call was inlined, but then constant folded, there is no edge to 1216 // add. Check for this case. 1217 auto *NewCall = dyn_cast<CallBase>(VMI->second); 1218 if (!NewCall) 1219 continue; 1220 1221 // We do not treat intrinsic calls like real function calls because we 1222 // expect them to become inline code; do not add an edge for an intrinsic. 1223 if (NewCall->getCalledFunction() && 1224 NewCall->getCalledFunction()->isIntrinsic()) 1225 continue; 1226 1227 // Remember that this call site got inlined for the client of 1228 // InlineFunction. 1229 IFI.InlinedCalls.push_back(NewCall); 1230 1231 // It's possible that inlining the callsite will cause it to go from an 1232 // indirect to a direct call by resolving a function pointer. If this 1233 // happens, set the callee of the new call site to a more precise 1234 // destination. This can also happen if the call graph node of the caller 1235 // was just unnecessarily imprecise. 1236 if (!I->second->getFunction()) 1237 if (Function *F = NewCall->getCalledFunction()) { 1238 // Indirect call site resolved to direct call. 1239 CallerNode->addCalledFunction(NewCall, CG[F]); 1240 1241 continue; 1242 } 1243 1244 CallerNode->addCalledFunction(NewCall, I->second); 1245 } 1246 1247 // Update the call graph by deleting the edge from Callee to Caller. We must 1248 // do this after the loop above in case Caller and Callee are the same. 1249 CallerNode->removeCallEdgeFor(*cast<CallBase>(CS.getInstruction())); 1250 } 1251 1252 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M, 1253 BasicBlock *InsertBlock, 1254 InlineFunctionInfo &IFI) { 1255 Type *AggTy = cast<PointerType>(Src->getType())->getElementType(); 1256 IRBuilder<> Builder(InsertBlock, InsertBlock->begin()); 1257 1258 Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy)); 1259 1260 // Always generate a memcpy of alignment 1 here because we don't know 1261 // the alignment of the src pointer. Other optimizations can infer 1262 // better alignment. 1263 Builder.CreateMemCpy(Dst, /*DstAlign*/1, Src, /*SrcAlign*/1, Size); 1264 } 1265 1266 /// When inlining a call site that has a byval argument, 1267 /// we have to make the implicit memcpy explicit by adding it. 1268 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 1269 const Function *CalledFunc, 1270 InlineFunctionInfo &IFI, 1271 unsigned ByValAlignment) { 1272 PointerType *ArgTy = cast<PointerType>(Arg->getType()); 1273 Type *AggTy = ArgTy->getElementType(); 1274 1275 Function *Caller = TheCall->getFunction(); 1276 const DataLayout &DL = Caller->getParent()->getDataLayout(); 1277 1278 // If the called function is readonly, then it could not mutate the caller's 1279 // copy of the byval'd memory. In this case, it is safe to elide the copy and 1280 // temporary. 1281 if (CalledFunc->onlyReadsMemory()) { 1282 // If the byval argument has a specified alignment that is greater than the 1283 // passed in pointer, then we either have to round up the input pointer or 1284 // give up on this transformation. 1285 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 1286 return Arg; 1287 1288 AssumptionCache *AC = 1289 IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr; 1290 1291 // If the pointer is already known to be sufficiently aligned, or if we can 1292 // round it up to a larger alignment, then we don't need a temporary. 1293 if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall, AC) >= 1294 ByValAlignment) 1295 return Arg; 1296 1297 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 1298 // for code quality, but rarely happens and is required for correctness. 1299 } 1300 1301 // Create the alloca. If we have DataLayout, use nice alignment. 1302 unsigned Align = DL.getPrefTypeAlignment(AggTy); 1303 1304 // If the byval had an alignment specified, we *must* use at least that 1305 // alignment, as it is required by the byval argument (and uses of the 1306 // pointer inside the callee). 1307 Align = std::max(Align, ByValAlignment); 1308 1309 Value *NewAlloca = new AllocaInst(AggTy, DL.getAllocaAddrSpace(), 1310 nullptr, Align, Arg->getName(), 1311 &*Caller->begin()->begin()); 1312 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); 1313 1314 // Uses of the argument in the function should use our new alloca 1315 // instead. 1316 return NewAlloca; 1317 } 1318 1319 // Check whether this Value is used by a lifetime intrinsic. 1320 static bool isUsedByLifetimeMarker(Value *V) { 1321 for (User *U : V->users()) 1322 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) 1323 if (II->isLifetimeStartOrEnd()) 1324 return true; 1325 return false; 1326 } 1327 1328 // Check whether the given alloca already has 1329 // lifetime.start or lifetime.end intrinsics. 1330 static bool hasLifetimeMarkers(AllocaInst *AI) { 1331 Type *Ty = AI->getType(); 1332 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), 1333 Ty->getPointerAddressSpace()); 1334 if (Ty == Int8PtrTy) 1335 return isUsedByLifetimeMarker(AI); 1336 1337 // Do a scan to find all the casts to i8*. 1338 for (User *U : AI->users()) { 1339 if (U->getType() != Int8PtrTy) continue; 1340 if (U->stripPointerCasts() != AI) continue; 1341 if (isUsedByLifetimeMarker(U)) 1342 return true; 1343 } 1344 return false; 1345 } 1346 1347 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry 1348 /// block. Allocas used in inalloca calls and allocas of dynamic array size 1349 /// cannot be static. 1350 static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) { 1351 return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca(); 1352 } 1353 1354 /// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL 1355 /// inlined at \p InlinedAt. \p IANodes is an inlined-at cache. 1356 static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt, 1357 LLVMContext &Ctx, 1358 DenseMap<const MDNode *, MDNode *> &IANodes) { 1359 auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes); 1360 return DebugLoc::get(OrigDL.getLine(), OrigDL.getCol(), OrigDL.getScope(), 1361 IA); 1362 } 1363 1364 /// Returns the LoopID for a loop which has has been cloned from another 1365 /// function for inlining with the new inlined-at start and end locs. 1366 static MDNode *inlineLoopID(const MDNode *OrigLoopId, DILocation *InlinedAt, 1367 LLVMContext &Ctx, 1368 DenseMap<const MDNode *, MDNode *> &IANodes) { 1369 assert(OrigLoopId && OrigLoopId->getNumOperands() > 0 && 1370 "Loop ID needs at least one operand"); 1371 assert(OrigLoopId && OrigLoopId->getOperand(0).get() == OrigLoopId && 1372 "Loop ID should refer to itself"); 1373 1374 // Save space for the self-referential LoopID. 1375 SmallVector<Metadata *, 4> MDs = {nullptr}; 1376 1377 for (unsigned i = 1; i < OrigLoopId->getNumOperands(); ++i) { 1378 Metadata *MD = OrigLoopId->getOperand(i); 1379 // Update the DILocations to encode the inlined-at metadata. 1380 if (DILocation *DL = dyn_cast<DILocation>(MD)) 1381 MDs.push_back(inlineDebugLoc(DL, InlinedAt, Ctx, IANodes)); 1382 else 1383 MDs.push_back(MD); 1384 } 1385 1386 MDNode *NewLoopID = MDNode::getDistinct(Ctx, MDs); 1387 // Insert the self-referential LoopID. 1388 NewLoopID->replaceOperandWith(0, NewLoopID); 1389 return NewLoopID; 1390 } 1391 1392 /// Update inlined instructions' line numbers to 1393 /// to encode location where these instructions are inlined. 1394 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 1395 Instruction *TheCall, bool CalleeHasDebugInfo) { 1396 const DebugLoc &TheCallDL = TheCall->getDebugLoc(); 1397 if (!TheCallDL) 1398 return; 1399 1400 auto &Ctx = Fn->getContext(); 1401 DILocation *InlinedAtNode = TheCallDL; 1402 1403 // Create a unique call site, not to be confused with any other call from the 1404 // same location. 1405 InlinedAtNode = DILocation::getDistinct( 1406 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(), 1407 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt()); 1408 1409 // Cache the inlined-at nodes as they're built so they are reused, without 1410 // this every instruction's inlined-at chain would become distinct from each 1411 // other. 1412 DenseMap<const MDNode *, MDNode *> IANodes; 1413 1414 for (; FI != Fn->end(); ++FI) { 1415 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 1416 BI != BE; ++BI) { 1417 // Loop metadata needs to be updated so that the start and end locs 1418 // reference inlined-at locations. 1419 if (MDNode *LoopID = BI->getMetadata(LLVMContext::MD_loop)) { 1420 MDNode *NewLoopID = 1421 inlineLoopID(LoopID, InlinedAtNode, BI->getContext(), IANodes); 1422 BI->setMetadata(LLVMContext::MD_loop, NewLoopID); 1423 } 1424 1425 if (DebugLoc DL = BI->getDebugLoc()) { 1426 DebugLoc IDL = 1427 inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes); 1428 BI->setDebugLoc(IDL); 1429 continue; 1430 } 1431 1432 if (CalleeHasDebugInfo) 1433 continue; 1434 1435 // If the inlined instruction has no line number, make it look as if it 1436 // originates from the call location. This is important for 1437 // ((__always_inline__, __nodebug__)) functions which must use caller 1438 // location for all instructions in their function body. 1439 1440 // Don't update static allocas, as they may get moved later. 1441 if (auto *AI = dyn_cast<AllocaInst>(BI)) 1442 if (allocaWouldBeStaticInEntry(AI)) 1443 continue; 1444 1445 BI->setDebugLoc(TheCallDL); 1446 } 1447 } 1448 } 1449 1450 /// Update the block frequencies of the caller after a callee has been inlined. 1451 /// 1452 /// Each block cloned into the caller has its block frequency scaled by the 1453 /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of 1454 /// callee's entry block gets the same frequency as the callsite block and the 1455 /// relative frequencies of all cloned blocks remain the same after cloning. 1456 static void updateCallerBFI(BasicBlock *CallSiteBlock, 1457 const ValueToValueMapTy &VMap, 1458 BlockFrequencyInfo *CallerBFI, 1459 BlockFrequencyInfo *CalleeBFI, 1460 const BasicBlock &CalleeEntryBlock) { 1461 SmallPtrSet<BasicBlock *, 16> ClonedBBs; 1462 for (auto const &Entry : VMap) { 1463 if (!isa<BasicBlock>(Entry.first) || !Entry.second) 1464 continue; 1465 auto *OrigBB = cast<BasicBlock>(Entry.first); 1466 auto *ClonedBB = cast<BasicBlock>(Entry.second); 1467 uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency(); 1468 if (!ClonedBBs.insert(ClonedBB).second) { 1469 // Multiple blocks in the callee might get mapped to one cloned block in 1470 // the caller since we prune the callee as we clone it. When that happens, 1471 // we want to use the maximum among the original blocks' frequencies. 1472 uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency(); 1473 if (NewFreq > Freq) 1474 Freq = NewFreq; 1475 } 1476 CallerBFI->setBlockFreq(ClonedBB, Freq); 1477 } 1478 BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock)); 1479 CallerBFI->setBlockFreqAndScale( 1480 EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(), 1481 ClonedBBs); 1482 } 1483 1484 /// Update the branch metadata for cloned call instructions. 1485 static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap, 1486 const ProfileCount &CalleeEntryCount, 1487 const Instruction *TheCall, 1488 ProfileSummaryInfo *PSI, 1489 BlockFrequencyInfo *CallerBFI) { 1490 if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() || 1491 CalleeEntryCount.getCount() < 1) 1492 return; 1493 auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None; 1494 int64_t CallCount = 1495 std::min(CallSiteCount.hasValue() ? CallSiteCount.getValue() : 0, 1496 CalleeEntryCount.getCount()); 1497 updateProfileCallee(Callee, -CallCount, &VMap); 1498 } 1499 1500 void llvm::updateProfileCallee( 1501 Function *Callee, int64_t entryDelta, 1502 const ValueMap<const Value *, WeakTrackingVH> *VMap) { 1503 auto CalleeCount = Callee->getEntryCount(); 1504 if (!CalleeCount.hasValue()) 1505 return; 1506 1507 uint64_t priorEntryCount = CalleeCount.getCount(); 1508 uint64_t newEntryCount = priorEntryCount; 1509 1510 // Since CallSiteCount is an estimate, it could exceed the original callee 1511 // count and has to be set to 0 so guard against underflow. 1512 if (entryDelta < 0 && static_cast<uint64_t>(-entryDelta) > priorEntryCount) 1513 newEntryCount = 0; 1514 else 1515 newEntryCount = priorEntryCount + entryDelta; 1516 1517 Callee->setEntryCount(newEntryCount); 1518 1519 // During inlining ? 1520 if (VMap) { 1521 uint64_t cloneEntryCount = priorEntryCount - newEntryCount; 1522 for (auto const &Entry : *VMap) 1523 if (isa<CallInst>(Entry.first)) 1524 if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second)) 1525 CI->updateProfWeight(cloneEntryCount, priorEntryCount); 1526 } 1527 for (BasicBlock &BB : *Callee) 1528 // No need to update the callsite if it is pruned during inlining. 1529 if (!VMap || VMap->count(&BB)) 1530 for (Instruction &I : BB) 1531 if (CallInst *CI = dyn_cast<CallInst>(&I)) 1532 CI->updateProfWeight(newEntryCount, priorEntryCount); 1533 } 1534 1535 /// This function inlines the called function into the basic block of the 1536 /// caller. This returns false if it is not possible to inline this call. 1537 /// The program is still in a well defined state if this occurs though. 1538 /// 1539 /// Note that this only does one level of inlining. For example, if the 1540 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 1541 /// exists in the instruction stream. Similarly this will inline a recursive 1542 /// function by one level. 1543 llvm::InlineResult llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI, 1544 AAResults *CalleeAAR, 1545 bool InsertLifetime, 1546 Function *ForwardVarArgsTo) { 1547 Instruction *TheCall = CS.getInstruction(); 1548 assert(TheCall->getParent() && TheCall->getFunction() 1549 && "Instruction not in function!"); 1550 1551 // FIXME: we don't inline callbr yet. 1552 if (isa<CallBrInst>(TheCall)) 1553 return false; 1554 1555 // If IFI has any state in it, zap it before we fill it in. 1556 IFI.reset(); 1557 1558 Function *CalledFunc = CS.getCalledFunction(); 1559 if (!CalledFunc || // Can't inline external function or indirect 1560 CalledFunc->isDeclaration()) // call! 1561 return "external or indirect"; 1562 1563 // The inliner does not know how to inline through calls with operand bundles 1564 // in general ... 1565 if (CS.hasOperandBundles()) { 1566 for (int i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 1567 uint32_t Tag = CS.getOperandBundleAt(i).getTagID(); 1568 // ... but it knows how to inline through "deopt" operand bundles ... 1569 if (Tag == LLVMContext::OB_deopt) 1570 continue; 1571 // ... and "funclet" operand bundles. 1572 if (Tag == LLVMContext::OB_funclet) 1573 continue; 1574 1575 return "unsupported operand bundle"; 1576 } 1577 } 1578 1579 // If the call to the callee cannot throw, set the 'nounwind' flag on any 1580 // calls that we inline. 1581 bool MarkNoUnwind = CS.doesNotThrow(); 1582 1583 BasicBlock *OrigBB = TheCall->getParent(); 1584 Function *Caller = OrigBB->getParent(); 1585 1586 // GC poses two hazards to inlining, which only occur when the callee has GC: 1587 // 1. If the caller has no GC, then the callee's GC must be propagated to the 1588 // caller. 1589 // 2. If the caller has a differing GC, it is invalid to inline. 1590 if (CalledFunc->hasGC()) { 1591 if (!Caller->hasGC()) 1592 Caller->setGC(CalledFunc->getGC()); 1593 else if (CalledFunc->getGC() != Caller->getGC()) 1594 return "incompatible GC"; 1595 } 1596 1597 // Get the personality function from the callee if it contains a landing pad. 1598 Constant *CalledPersonality = 1599 CalledFunc->hasPersonalityFn() 1600 ? CalledFunc->getPersonalityFn()->stripPointerCasts() 1601 : nullptr; 1602 1603 // Find the personality function used by the landing pads of the caller. If it 1604 // exists, then check to see that it matches the personality function used in 1605 // the callee. 1606 Constant *CallerPersonality = 1607 Caller->hasPersonalityFn() 1608 ? Caller->getPersonalityFn()->stripPointerCasts() 1609 : nullptr; 1610 if (CalledPersonality) { 1611 if (!CallerPersonality) 1612 Caller->setPersonalityFn(CalledPersonality); 1613 // If the personality functions match, then we can perform the 1614 // inlining. Otherwise, we can't inline. 1615 // TODO: This isn't 100% true. Some personality functions are proper 1616 // supersets of others and can be used in place of the other. 1617 else if (CalledPersonality != CallerPersonality) 1618 return "incompatible personality"; 1619 } 1620 1621 // We need to figure out which funclet the callsite was in so that we may 1622 // properly nest the callee. 1623 Instruction *CallSiteEHPad = nullptr; 1624 if (CallerPersonality) { 1625 EHPersonality Personality = classifyEHPersonality(CallerPersonality); 1626 if (isScopedEHPersonality(Personality)) { 1627 Optional<OperandBundleUse> ParentFunclet = 1628 CS.getOperandBundle(LLVMContext::OB_funclet); 1629 if (ParentFunclet) 1630 CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front()); 1631 1632 // OK, the inlining site is legal. What about the target function? 1633 1634 if (CallSiteEHPad) { 1635 if (Personality == EHPersonality::MSVC_CXX) { 1636 // The MSVC personality cannot tolerate catches getting inlined into 1637 // cleanup funclets. 1638 if (isa<CleanupPadInst>(CallSiteEHPad)) { 1639 // Ok, the call site is within a cleanuppad. Let's check the callee 1640 // for catchpads. 1641 for (const BasicBlock &CalledBB : *CalledFunc) { 1642 if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI())) 1643 return "catch in cleanup funclet"; 1644 } 1645 } 1646 } else if (isAsynchronousEHPersonality(Personality)) { 1647 // SEH is even less tolerant, there may not be any sort of exceptional 1648 // funclet in the callee. 1649 for (const BasicBlock &CalledBB : *CalledFunc) { 1650 if (CalledBB.isEHPad()) 1651 return "SEH in cleanup funclet"; 1652 } 1653 } 1654 } 1655 } 1656 } 1657 1658 // Determine if we are dealing with a call in an EHPad which does not unwind 1659 // to caller. 1660 bool EHPadForCallUnwindsLocally = false; 1661 if (CallSiteEHPad && CS.isCall()) { 1662 UnwindDestMemoTy FuncletUnwindMap; 1663 Value *CallSiteUnwindDestToken = 1664 getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap); 1665 1666 EHPadForCallUnwindsLocally = 1667 CallSiteUnwindDestToken && 1668 !isa<ConstantTokenNone>(CallSiteUnwindDestToken); 1669 } 1670 1671 // Get an iterator to the last basic block in the function, which will have 1672 // the new function inlined after it. 1673 Function::iterator LastBlock = --Caller->end(); 1674 1675 // Make sure to capture all of the return instructions from the cloned 1676 // function. 1677 SmallVector<ReturnInst*, 8> Returns; 1678 ClonedCodeInfo InlinedFunctionInfo; 1679 Function::iterator FirstNewBlock; 1680 1681 { // Scope to destroy VMap after cloning. 1682 ValueToValueMapTy VMap; 1683 // Keep a list of pair (dst, src) to emit byval initializations. 1684 SmallVector<std::pair<Value*, Value*>, 4> ByValInit; 1685 1686 auto &DL = Caller->getParent()->getDataLayout(); 1687 1688 // Calculate the vector of arguments to pass into the function cloner, which 1689 // matches up the formal to the actual argument values. 1690 CallSite::arg_iterator AI = CS.arg_begin(); 1691 unsigned ArgNo = 0; 1692 for (Function::arg_iterator I = CalledFunc->arg_begin(), 1693 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 1694 Value *ActualArg = *AI; 1695 1696 // When byval arguments actually inlined, we need to make the copy implied 1697 // by them explicit. However, we don't do this if the callee is readonly 1698 // or readnone, because the copy would be unneeded: the callee doesn't 1699 // modify the struct. 1700 if (CS.isByValArgument(ArgNo)) { 1701 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, 1702 CalledFunc->getParamAlignment(ArgNo)); 1703 if (ActualArg != *AI) 1704 ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI)); 1705 } 1706 1707 VMap[&*I] = ActualArg; 1708 } 1709 1710 // Add alignment assumptions if necessary. We do this before the inlined 1711 // instructions are actually cloned into the caller so that we can easily 1712 // check what will be known at the start of the inlined code. 1713 AddAlignmentAssumptions(CS, IFI); 1714 1715 // We want the inliner to prune the code as it copies. We would LOVE to 1716 // have no dead or constant instructions leftover after inlining occurs 1717 // (which can happen, e.g., because an argument was constant), but we'll be 1718 // happy with whatever the cloner can do. 1719 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 1720 /*ModuleLevelChanges=*/false, Returns, ".i", 1721 &InlinedFunctionInfo, TheCall); 1722 // Remember the first block that is newly cloned over. 1723 FirstNewBlock = LastBlock; ++FirstNewBlock; 1724 1725 if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr) 1726 // Update the BFI of blocks cloned into the caller. 1727 updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI, 1728 CalledFunc->front()); 1729 1730 updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), TheCall, 1731 IFI.PSI, IFI.CallerBFI); 1732 1733 // Inject byval arguments initialization. 1734 for (std::pair<Value*, Value*> &Init : ByValInit) 1735 HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(), 1736 &*FirstNewBlock, IFI); 1737 1738 Optional<OperandBundleUse> ParentDeopt = 1739 CS.getOperandBundle(LLVMContext::OB_deopt); 1740 if (ParentDeopt) { 1741 SmallVector<OperandBundleDef, 2> OpDefs; 1742 1743 for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) { 1744 Instruction *I = dyn_cast_or_null<Instruction>(VH); 1745 if (!I) continue; // instruction was DCE'd or RAUW'ed to undef 1746 1747 OpDefs.clear(); 1748 1749 CallSite ICS(I); 1750 OpDefs.reserve(ICS.getNumOperandBundles()); 1751 1752 for (unsigned i = 0, e = ICS.getNumOperandBundles(); i < e; ++i) { 1753 auto ChildOB = ICS.getOperandBundleAt(i); 1754 if (ChildOB.getTagID() != LLVMContext::OB_deopt) { 1755 // If the inlined call has other operand bundles, let them be 1756 OpDefs.emplace_back(ChildOB); 1757 continue; 1758 } 1759 1760 // It may be useful to separate this logic (of handling operand 1761 // bundles) out to a separate "policy" component if this gets crowded. 1762 // Prepend the parent's deoptimization continuation to the newly 1763 // inlined call's deoptimization continuation. 1764 std::vector<Value *> MergedDeoptArgs; 1765 MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() + 1766 ChildOB.Inputs.size()); 1767 1768 MergedDeoptArgs.insert(MergedDeoptArgs.end(), 1769 ParentDeopt->Inputs.begin(), 1770 ParentDeopt->Inputs.end()); 1771 MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(), 1772 ChildOB.Inputs.end()); 1773 1774 OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs)); 1775 } 1776 1777 Instruction *NewI = nullptr; 1778 if (isa<CallInst>(I)) 1779 NewI = CallInst::Create(cast<CallInst>(I), OpDefs, I); 1780 else if (isa<CallBrInst>(I)) 1781 NewI = CallBrInst::Create(cast<CallBrInst>(I), OpDefs, I); 1782 else 1783 NewI = InvokeInst::Create(cast<InvokeInst>(I), OpDefs, I); 1784 1785 // Note: the RAUW does the appropriate fixup in VMap, so we need to do 1786 // this even if the call returns void. 1787 I->replaceAllUsesWith(NewI); 1788 1789 VH = nullptr; 1790 I->eraseFromParent(); 1791 } 1792 } 1793 1794 // Update the callgraph if requested. 1795 if (IFI.CG) 1796 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); 1797 1798 // For 'nodebug' functions, the associated DISubprogram is always null. 1799 // Conservatively avoid propagating the callsite debug location to 1800 // instructions inlined from a function whose DISubprogram is not null. 1801 fixupLineNumbers(Caller, FirstNewBlock, TheCall, 1802 CalledFunc->getSubprogram() != nullptr); 1803 1804 // Clone existing noalias metadata if necessary. 1805 CloneAliasScopeMetadata(CS, VMap); 1806 1807 // Add noalias metadata if necessary. 1808 AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR); 1809 1810 // Propagate llvm.mem.parallel_loop_access if necessary. 1811 PropagateParallelLoopAccessMetadata(CS, VMap); 1812 1813 // Register any cloned assumptions. 1814 if (IFI.GetAssumptionCache) 1815 for (BasicBlock &NewBlock : 1816 make_range(FirstNewBlock->getIterator(), Caller->end())) 1817 for (Instruction &I : NewBlock) { 1818 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 1819 if (II->getIntrinsicID() == Intrinsic::assume) 1820 (*IFI.GetAssumptionCache)(*Caller).registerAssumption(II); 1821 } 1822 } 1823 1824 // If there are any alloca instructions in the block that used to be the entry 1825 // block for the callee, move them to the entry block of the caller. First 1826 // calculate which instruction they should be inserted before. We insert the 1827 // instructions at the end of the current alloca list. 1828 { 1829 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 1830 for (BasicBlock::iterator I = FirstNewBlock->begin(), 1831 E = FirstNewBlock->end(); I != E; ) { 1832 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 1833 if (!AI) continue; 1834 1835 // If the alloca is now dead, remove it. This often occurs due to code 1836 // specialization. 1837 if (AI->use_empty()) { 1838 AI->eraseFromParent(); 1839 continue; 1840 } 1841 1842 if (!allocaWouldBeStaticInEntry(AI)) 1843 continue; 1844 1845 // Keep track of the static allocas that we inline into the caller. 1846 IFI.StaticAllocas.push_back(AI); 1847 1848 // Scan for the block of allocas that we can move over, and move them 1849 // all at once. 1850 while (isa<AllocaInst>(I) && 1851 allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) { 1852 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 1853 ++I; 1854 } 1855 1856 // Transfer all of the allocas over in a block. Using splice means 1857 // that the instructions aren't removed from the symbol table, then 1858 // reinserted. 1859 Caller->getEntryBlock().getInstList().splice( 1860 InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I); 1861 } 1862 // Move any dbg.declares describing the allocas into the entry basic block. 1863 DIBuilder DIB(*Caller->getParent()); 1864 for (auto &AI : IFI.StaticAllocas) 1865 replaceDbgDeclareForAlloca(AI, AI, DIB, DIExpression::ApplyOffset, 0); 1866 } 1867 1868 SmallVector<Value*,4> VarArgsToForward; 1869 SmallVector<AttributeSet, 4> VarArgsAttrs; 1870 for (unsigned i = CalledFunc->getFunctionType()->getNumParams(); 1871 i < CS.getNumArgOperands(); i++) { 1872 VarArgsToForward.push_back(CS.getArgOperand(i)); 1873 VarArgsAttrs.push_back(CS.getAttributes().getParamAttributes(i)); 1874 } 1875 1876 bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false; 1877 if (InlinedFunctionInfo.ContainsCalls) { 1878 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; 1879 if (CallInst *CI = dyn_cast<CallInst>(TheCall)) 1880 CallSiteTailKind = CI->getTailCallKind(); 1881 1882 // For inlining purposes, the "notail" marker is the same as no marker. 1883 if (CallSiteTailKind == CallInst::TCK_NoTail) 1884 CallSiteTailKind = CallInst::TCK_None; 1885 1886 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 1887 ++BB) { 1888 for (auto II = BB->begin(); II != BB->end();) { 1889 Instruction &I = *II++; 1890 CallInst *CI = dyn_cast<CallInst>(&I); 1891 if (!CI) 1892 continue; 1893 1894 // Forward varargs from inlined call site to calls to the 1895 // ForwardVarArgsTo function, if requested, and to musttail calls. 1896 if (!VarArgsToForward.empty() && 1897 ((ForwardVarArgsTo && 1898 CI->getCalledFunction() == ForwardVarArgsTo) || 1899 CI->isMustTailCall())) { 1900 // Collect attributes for non-vararg parameters. 1901 AttributeList Attrs = CI->getAttributes(); 1902 SmallVector<AttributeSet, 8> ArgAttrs; 1903 if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) { 1904 for (unsigned ArgNo = 0; 1905 ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo) 1906 ArgAttrs.push_back(Attrs.getParamAttributes(ArgNo)); 1907 } 1908 1909 // Add VarArg attributes. 1910 ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end()); 1911 Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttributes(), 1912 Attrs.getRetAttributes(), ArgAttrs); 1913 // Add VarArgs to existing parameters. 1914 SmallVector<Value *, 6> Params(CI->arg_operands()); 1915 Params.append(VarArgsToForward.begin(), VarArgsToForward.end()); 1916 CallInst *NewCI = CallInst::Create( 1917 CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI); 1918 NewCI->setDebugLoc(CI->getDebugLoc()); 1919 NewCI->setAttributes(Attrs); 1920 NewCI->setCallingConv(CI->getCallingConv()); 1921 CI->replaceAllUsesWith(NewCI); 1922 CI->eraseFromParent(); 1923 CI = NewCI; 1924 } 1925 1926 if (Function *F = CI->getCalledFunction()) 1927 InlinedDeoptimizeCalls |= 1928 F->getIntrinsicID() == Intrinsic::experimental_deoptimize; 1929 1930 // We need to reduce the strength of any inlined tail calls. For 1931 // musttail, we have to avoid introducing potential unbounded stack 1932 // growth. For example, if functions 'f' and 'g' are mutually recursive 1933 // with musttail, we can inline 'g' into 'f' so long as we preserve 1934 // musttail on the cloned call to 'f'. If either the inlined call site 1935 // or the cloned call site is *not* musttail, the program already has 1936 // one frame of stack growth, so it's safe to remove musttail. Here is 1937 // a table of example transformations: 1938 // 1939 // f -> musttail g -> musttail f ==> f -> musttail f 1940 // f -> musttail g -> tail f ==> f -> tail f 1941 // f -> g -> musttail f ==> f -> f 1942 // f -> g -> tail f ==> f -> f 1943 // 1944 // Inlined notail calls should remain notail calls. 1945 CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); 1946 if (ChildTCK != CallInst::TCK_NoTail) 1947 ChildTCK = std::min(CallSiteTailKind, ChildTCK); 1948 CI->setTailCallKind(ChildTCK); 1949 InlinedMustTailCalls |= CI->isMustTailCall(); 1950 1951 // Calls inlined through a 'nounwind' call site should be marked 1952 // 'nounwind'. 1953 if (MarkNoUnwind) 1954 CI->setDoesNotThrow(); 1955 } 1956 } 1957 } 1958 1959 // Leave lifetime markers for the static alloca's, scoping them to the 1960 // function we just inlined. 1961 if (InsertLifetime && !IFI.StaticAllocas.empty()) { 1962 IRBuilder<> builder(&FirstNewBlock->front()); 1963 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 1964 AllocaInst *AI = IFI.StaticAllocas[ai]; 1965 // Don't mark swifterror allocas. They can't have bitcast uses. 1966 if (AI->isSwiftError()) 1967 continue; 1968 1969 // If the alloca is already scoped to something smaller than the whole 1970 // function then there's no need to add redundant, less accurate markers. 1971 if (hasLifetimeMarkers(AI)) 1972 continue; 1973 1974 // Try to determine the size of the allocation. 1975 ConstantInt *AllocaSize = nullptr; 1976 if (ConstantInt *AIArraySize = 1977 dyn_cast<ConstantInt>(AI->getArraySize())) { 1978 auto &DL = Caller->getParent()->getDataLayout(); 1979 Type *AllocaType = AI->getAllocatedType(); 1980 uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType); 1981 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 1982 1983 // Don't add markers for zero-sized allocas. 1984 if (AllocaArraySize == 0) 1985 continue; 1986 1987 // Check that array size doesn't saturate uint64_t and doesn't 1988 // overflow when it's multiplied by type size. 1989 if (AllocaArraySize != std::numeric_limits<uint64_t>::max() && 1990 std::numeric_limits<uint64_t>::max() / AllocaArraySize >= 1991 AllocaTypeSize) { 1992 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 1993 AllocaArraySize * AllocaTypeSize); 1994 } 1995 } 1996 1997 builder.CreateLifetimeStart(AI, AllocaSize); 1998 for (ReturnInst *RI : Returns) { 1999 // Don't insert llvm.lifetime.end calls between a musttail or deoptimize 2000 // call and a return. The return kills all local allocas. 2001 if (InlinedMustTailCalls && 2002 RI->getParent()->getTerminatingMustTailCall()) 2003 continue; 2004 if (InlinedDeoptimizeCalls && 2005 RI->getParent()->getTerminatingDeoptimizeCall()) 2006 continue; 2007 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); 2008 } 2009 } 2010 } 2011 2012 // If the inlined code contained dynamic alloca instructions, wrap the inlined 2013 // code with llvm.stacksave/llvm.stackrestore intrinsics. 2014 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 2015 Module *M = Caller->getParent(); 2016 // Get the two intrinsics we care about. 2017 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 2018 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 2019 2020 // Insert the llvm.stacksave. 2021 CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin()) 2022 .CreateCall(StackSave, {}, "savedstack"); 2023 2024 // Insert a call to llvm.stackrestore before any return instructions in the 2025 // inlined function. 2026 for (ReturnInst *RI : Returns) { 2027 // Don't insert llvm.stackrestore calls between a musttail or deoptimize 2028 // call and a return. The return will restore the stack pointer. 2029 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) 2030 continue; 2031 if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall()) 2032 continue; 2033 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); 2034 } 2035 } 2036 2037 // If we are inlining for an invoke instruction, we must make sure to rewrite 2038 // any call instructions into invoke instructions. This is sensitive to which 2039 // funclet pads were top-level in the inlinee, so must be done before 2040 // rewriting the "parent pad" links. 2041 if (auto *II = dyn_cast<InvokeInst>(TheCall)) { 2042 BasicBlock *UnwindDest = II->getUnwindDest(); 2043 Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI(); 2044 if (isa<LandingPadInst>(FirstNonPHI)) { 2045 HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo); 2046 } else { 2047 HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo); 2048 } 2049 } 2050 2051 // Update the lexical scopes of the new funclets and callsites. 2052 // Anything that had 'none' as its parent is now nested inside the callsite's 2053 // EHPad. 2054 2055 if (CallSiteEHPad) { 2056 for (Function::iterator BB = FirstNewBlock->getIterator(), 2057 E = Caller->end(); 2058 BB != E; ++BB) { 2059 // Add bundle operands to any top-level call sites. 2060 SmallVector<OperandBundleDef, 1> OpBundles; 2061 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) { 2062 Instruction *I = &*BBI++; 2063 CallSite CS(I); 2064 if (!CS) 2065 continue; 2066 2067 // Skip call sites which are nounwind intrinsics. 2068 auto *CalledFn = 2069 dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts()); 2070 if (CalledFn && CalledFn->isIntrinsic() && CS.doesNotThrow()) 2071 continue; 2072 2073 // Skip call sites which already have a "funclet" bundle. 2074 if (CS.getOperandBundle(LLVMContext::OB_funclet)) 2075 continue; 2076 2077 CS.getOperandBundlesAsDefs(OpBundles); 2078 OpBundles.emplace_back("funclet", CallSiteEHPad); 2079 2080 Instruction *NewInst; 2081 if (CS.isCall()) 2082 NewInst = CallInst::Create(cast<CallInst>(I), OpBundles, I); 2083 else if (CS.isCallBr()) 2084 NewInst = CallBrInst::Create(cast<CallBrInst>(I), OpBundles, I); 2085 else 2086 NewInst = InvokeInst::Create(cast<InvokeInst>(I), OpBundles, I); 2087 NewInst->takeName(I); 2088 I->replaceAllUsesWith(NewInst); 2089 I->eraseFromParent(); 2090 2091 OpBundles.clear(); 2092 } 2093 2094 // It is problematic if the inlinee has a cleanupret which unwinds to 2095 // caller and we inline it into a call site which doesn't unwind but into 2096 // an EH pad that does. Such an edge must be dynamically unreachable. 2097 // As such, we replace the cleanupret with unreachable. 2098 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator())) 2099 if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally) 2100 changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false); 2101 2102 Instruction *I = BB->getFirstNonPHI(); 2103 if (!I->isEHPad()) 2104 continue; 2105 2106 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 2107 if (isa<ConstantTokenNone>(CatchSwitch->getParentPad())) 2108 CatchSwitch->setParentPad(CallSiteEHPad); 2109 } else { 2110 auto *FPI = cast<FuncletPadInst>(I); 2111 if (isa<ConstantTokenNone>(FPI->getParentPad())) 2112 FPI->setParentPad(CallSiteEHPad); 2113 } 2114 } 2115 } 2116 2117 if (InlinedDeoptimizeCalls) { 2118 // We need to at least remove the deoptimizing returns from the Return set, 2119 // so that the control flow from those returns does not get merged into the 2120 // caller (but terminate it instead). If the caller's return type does not 2121 // match the callee's return type, we also need to change the return type of 2122 // the intrinsic. 2123 if (Caller->getReturnType() == TheCall->getType()) { 2124 auto NewEnd = llvm::remove_if(Returns, [](ReturnInst *RI) { 2125 return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr; 2126 }); 2127 Returns.erase(NewEnd, Returns.end()); 2128 } else { 2129 SmallVector<ReturnInst *, 8> NormalReturns; 2130 Function *NewDeoptIntrinsic = Intrinsic::getDeclaration( 2131 Caller->getParent(), Intrinsic::experimental_deoptimize, 2132 {Caller->getReturnType()}); 2133 2134 for (ReturnInst *RI : Returns) { 2135 CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall(); 2136 if (!DeoptCall) { 2137 NormalReturns.push_back(RI); 2138 continue; 2139 } 2140 2141 // The calling convention on the deoptimize call itself may be bogus, 2142 // since the code we're inlining may have undefined behavior (and may 2143 // never actually execute at runtime); but all 2144 // @llvm.experimental.deoptimize declarations have to have the same 2145 // calling convention in a well-formed module. 2146 auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv(); 2147 NewDeoptIntrinsic->setCallingConv(CallingConv); 2148 auto *CurBB = RI->getParent(); 2149 RI->eraseFromParent(); 2150 2151 SmallVector<Value *, 4> CallArgs(DeoptCall->arg_begin(), 2152 DeoptCall->arg_end()); 2153 2154 SmallVector<OperandBundleDef, 1> OpBundles; 2155 DeoptCall->getOperandBundlesAsDefs(OpBundles); 2156 DeoptCall->eraseFromParent(); 2157 assert(!OpBundles.empty() && 2158 "Expected at least the deopt operand bundle"); 2159 2160 IRBuilder<> Builder(CurBB); 2161 CallInst *NewDeoptCall = 2162 Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles); 2163 NewDeoptCall->setCallingConv(CallingConv); 2164 if (NewDeoptCall->getType()->isVoidTy()) 2165 Builder.CreateRetVoid(); 2166 else 2167 Builder.CreateRet(NewDeoptCall); 2168 } 2169 2170 // Leave behind the normal returns so we can merge control flow. 2171 std::swap(Returns, NormalReturns); 2172 } 2173 } 2174 2175 // Handle any inlined musttail call sites. In order for a new call site to be 2176 // musttail, the source of the clone and the inlined call site must have been 2177 // musttail. Therefore it's safe to return without merging control into the 2178 // phi below. 2179 if (InlinedMustTailCalls) { 2180 // Check if we need to bitcast the result of any musttail calls. 2181 Type *NewRetTy = Caller->getReturnType(); 2182 bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy; 2183 2184 // Handle the returns preceded by musttail calls separately. 2185 SmallVector<ReturnInst *, 8> NormalReturns; 2186 for (ReturnInst *RI : Returns) { 2187 CallInst *ReturnedMustTail = 2188 RI->getParent()->getTerminatingMustTailCall(); 2189 if (!ReturnedMustTail) { 2190 NormalReturns.push_back(RI); 2191 continue; 2192 } 2193 if (!NeedBitCast) 2194 continue; 2195 2196 // Delete the old return and any preceding bitcast. 2197 BasicBlock *CurBB = RI->getParent(); 2198 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); 2199 RI->eraseFromParent(); 2200 if (OldCast) 2201 OldCast->eraseFromParent(); 2202 2203 // Insert a new bitcast and return with the right type. 2204 IRBuilder<> Builder(CurBB); 2205 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); 2206 } 2207 2208 // Leave behind the normal returns so we can merge control flow. 2209 std::swap(Returns, NormalReturns); 2210 } 2211 2212 // Now that all of the transforms on the inlined code have taken place but 2213 // before we splice the inlined code into the CFG and lose track of which 2214 // blocks were actually inlined, collect the call sites. We only do this if 2215 // call graph updates weren't requested, as those provide value handle based 2216 // tracking of inlined call sites instead. 2217 if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) { 2218 // Otherwise just collect the raw call sites that were inlined. 2219 for (BasicBlock &NewBB : 2220 make_range(FirstNewBlock->getIterator(), Caller->end())) 2221 for (Instruction &I : NewBB) 2222 if (auto CS = CallSite(&I)) 2223 IFI.InlinedCallSites.push_back(CS); 2224 } 2225 2226 // If we cloned in _exactly one_ basic block, and if that block ends in a 2227 // return instruction, we splice the body of the inlined callee directly into 2228 // the calling basic block. 2229 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 2230 // Move all of the instructions right before the call. 2231 OrigBB->getInstList().splice(TheCall->getIterator(), 2232 FirstNewBlock->getInstList(), 2233 FirstNewBlock->begin(), FirstNewBlock->end()); 2234 // Remove the cloned basic block. 2235 Caller->getBasicBlockList().pop_back(); 2236 2237 // If the call site was an invoke instruction, add a branch to the normal 2238 // destination. 2239 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 2240 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); 2241 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 2242 } 2243 2244 // If the return instruction returned a value, replace uses of the call with 2245 // uses of the returned value. 2246 if (!TheCall->use_empty()) { 2247 ReturnInst *R = Returns[0]; 2248 if (TheCall == R->getReturnValue()) 2249 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 2250 else 2251 TheCall->replaceAllUsesWith(R->getReturnValue()); 2252 } 2253 // Since we are now done with the Call/Invoke, we can delete it. 2254 TheCall->eraseFromParent(); 2255 2256 // Since we are now done with the return instruction, delete it also. 2257 Returns[0]->eraseFromParent(); 2258 2259 // We are now done with the inlining. 2260 return true; 2261 } 2262 2263 // Otherwise, we have the normal case, of more than one block to inline or 2264 // multiple return sites. 2265 2266 // We want to clone the entire callee function into the hole between the 2267 // "starter" and "ender" blocks. How we accomplish this depends on whether 2268 // this is an invoke instruction or a call instruction. 2269 BasicBlock *AfterCallBB; 2270 BranchInst *CreatedBranchToNormalDest = nullptr; 2271 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 2272 2273 // Add an unconditional branch to make this look like the CallInst case... 2274 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall); 2275 2276 // Split the basic block. This guarantees that no PHI nodes will have to be 2277 // updated due to new incoming edges, and make the invoke case more 2278 // symmetric to the call case. 2279 AfterCallBB = 2280 OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(), 2281 CalledFunc->getName() + ".exit"); 2282 2283 } else { // It's a call 2284 // If this is a call instruction, we need to split the basic block that 2285 // the call lives in. 2286 // 2287 AfterCallBB = OrigBB->splitBasicBlock(TheCall->getIterator(), 2288 CalledFunc->getName() + ".exit"); 2289 } 2290 2291 if (IFI.CallerBFI) { 2292 // Copy original BB's block frequency to AfterCallBB 2293 IFI.CallerBFI->setBlockFreq( 2294 AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency()); 2295 } 2296 2297 // Change the branch that used to go to AfterCallBB to branch to the first 2298 // basic block of the inlined function. 2299 // 2300 Instruction *Br = OrigBB->getTerminator(); 2301 assert(Br && Br->getOpcode() == Instruction::Br && 2302 "splitBasicBlock broken!"); 2303 Br->setOperand(0, &*FirstNewBlock); 2304 2305 // Now that the function is correct, make it a little bit nicer. In 2306 // particular, move the basic blocks inserted from the end of the function 2307 // into the space made by splitting the source basic block. 2308 Caller->getBasicBlockList().splice(AfterCallBB->getIterator(), 2309 Caller->getBasicBlockList(), FirstNewBlock, 2310 Caller->end()); 2311 2312 // Handle all of the return instructions that we just cloned in, and eliminate 2313 // any users of the original call/invoke instruction. 2314 Type *RTy = CalledFunc->getReturnType(); 2315 2316 PHINode *PHI = nullptr; 2317 if (Returns.size() > 1) { 2318 // The PHI node should go at the front of the new basic block to merge all 2319 // possible incoming values. 2320 if (!TheCall->use_empty()) { 2321 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), 2322 &AfterCallBB->front()); 2323 // Anything that used the result of the function call should now use the 2324 // PHI node as their operand. 2325 TheCall->replaceAllUsesWith(PHI); 2326 } 2327 2328 // Loop over all of the return instructions adding entries to the PHI node 2329 // as appropriate. 2330 if (PHI) { 2331 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2332 ReturnInst *RI = Returns[i]; 2333 assert(RI->getReturnValue()->getType() == PHI->getType() && 2334 "Ret value not consistent in function!"); 2335 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 2336 } 2337 } 2338 2339 // Add a branch to the merge points and remove return instructions. 2340 DebugLoc Loc; 2341 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2342 ReturnInst *RI = Returns[i]; 2343 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 2344 Loc = RI->getDebugLoc(); 2345 BI->setDebugLoc(Loc); 2346 RI->eraseFromParent(); 2347 } 2348 // We need to set the debug location to *somewhere* inside the 2349 // inlined function. The line number may be nonsensical, but the 2350 // instruction will at least be associated with the right 2351 // function. 2352 if (CreatedBranchToNormalDest) 2353 CreatedBranchToNormalDest->setDebugLoc(Loc); 2354 } else if (!Returns.empty()) { 2355 // Otherwise, if there is exactly one return value, just replace anything 2356 // using the return value of the call with the computed value. 2357 if (!TheCall->use_empty()) { 2358 if (TheCall == Returns[0]->getReturnValue()) 2359 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 2360 else 2361 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); 2362 } 2363 2364 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 2365 BasicBlock *ReturnBB = Returns[0]->getParent(); 2366 ReturnBB->replaceAllUsesWith(AfterCallBB); 2367 2368 // Splice the code from the return block into the block that it will return 2369 // to, which contains the code that was after the call. 2370 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 2371 ReturnBB->getInstList()); 2372 2373 if (CreatedBranchToNormalDest) 2374 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 2375 2376 // Delete the return instruction now and empty ReturnBB now. 2377 Returns[0]->eraseFromParent(); 2378 ReturnBB->eraseFromParent(); 2379 } else if (!TheCall->use_empty()) { 2380 // No returns, but something is using the return value of the call. Just 2381 // nuke the result. 2382 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 2383 } 2384 2385 // Since we are now done with the Call/Invoke, we can delete it. 2386 TheCall->eraseFromParent(); 2387 2388 // If we inlined any musttail calls and the original return is now 2389 // unreachable, delete it. It can only contain a bitcast and ret. 2390 if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB)) 2391 AfterCallBB->eraseFromParent(); 2392 2393 // We should always be able to fold the entry block of the function into the 2394 // single predecessor of the block... 2395 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 2396 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 2397 2398 // Splice the code entry block into calling block, right before the 2399 // unconditional branch. 2400 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 2401 OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList()); 2402 2403 // Remove the unconditional branch. 2404 OrigBB->getInstList().erase(Br); 2405 2406 // Now we can remove the CalleeEntry block, which is now empty. 2407 Caller->getBasicBlockList().erase(CalleeEntry); 2408 2409 // If we inserted a phi node, check to see if it has a single value (e.g. all 2410 // the entries are the same or undef). If so, remove the PHI so it doesn't 2411 // block other optimizations. 2412 if (PHI) { 2413 AssumptionCache *AC = 2414 IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr; 2415 auto &DL = Caller->getParent()->getDataLayout(); 2416 if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) { 2417 PHI->replaceAllUsesWith(V); 2418 PHI->eraseFromParent(); 2419 } 2420 } 2421 2422 return true; 2423 } 2424