1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements inlining of a function into a call site, resolving 10 // parameters and the return value as appropriate. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/BlockFrequencyInfo.h" 26 #include "llvm/Analysis/CallGraph.h" 27 #include "llvm/Analysis/CaptureTracking.h" 28 #include "llvm/Analysis/EHPersonalities.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/Analysis/VectorUtils.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/CFG.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DIBuilder.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfoMetadata.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/IRBuilder.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/IntrinsicInst.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/MDBuilder.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/User.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 63 #include "llvm/Transforms/Utils/Cloning.h" 64 #include "llvm/Transforms/Utils/ValueMapper.h" 65 #include <algorithm> 66 #include <cassert> 67 #include <cstdint> 68 #include <iterator> 69 #include <limits> 70 #include <string> 71 #include <utility> 72 #include <vector> 73 74 using namespace llvm; 75 using ProfileCount = Function::ProfileCount; 76 77 static cl::opt<bool> 78 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), 79 cl::Hidden, 80 cl::desc("Convert noalias attributes to metadata during inlining.")); 81 82 // Disabled by default, because the added alignment assumptions may increase 83 // compile-time and block optimizations. This option is not suitable for use 84 // with frontends that emit comprehensive parameter alignment annotations. 85 static cl::opt<bool> 86 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", 87 cl::init(false), cl::Hidden, 88 cl::desc("Convert align attributes to assumptions during inlining.")); 89 90 static cl::opt<bool> UpdateReturnAttributes( 91 "update-return-attrs", cl::init(true), cl::Hidden, 92 cl::desc("Update return attributes on calls within inlined body")); 93 94 static cl::opt<unsigned> InlinerAttributeWindow( 95 "max-inst-checked-for-throw-during-inlining", cl::Hidden, 96 cl::desc("the maximum number of instructions analyzed for may throw during " 97 "attribute inference in inlined body"), 98 cl::init(4)); 99 100 namespace { 101 102 /// A class for recording information about inlining a landing pad. 103 class LandingPadInliningInfo { 104 /// Destination of the invoke's unwind. 105 BasicBlock *OuterResumeDest; 106 107 /// Destination for the callee's resume. 108 BasicBlock *InnerResumeDest = nullptr; 109 110 /// LandingPadInst associated with the invoke. 111 LandingPadInst *CallerLPad = nullptr; 112 113 /// PHI for EH values from landingpad insts. 114 PHINode *InnerEHValuesPHI = nullptr; 115 116 SmallVector<Value*, 8> UnwindDestPHIValues; 117 118 public: 119 LandingPadInliningInfo(InvokeInst *II) 120 : OuterResumeDest(II->getUnwindDest()) { 121 // If there are PHI nodes in the unwind destination block, we need to keep 122 // track of which values came into them from the invoke before removing 123 // the edge from this block. 124 BasicBlock *InvokeBB = II->getParent(); 125 BasicBlock::iterator I = OuterResumeDest->begin(); 126 for (; isa<PHINode>(I); ++I) { 127 // Save the value to use for this edge. 128 PHINode *PHI = cast<PHINode>(I); 129 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 130 } 131 132 CallerLPad = cast<LandingPadInst>(I); 133 } 134 135 /// The outer unwind destination is the target of 136 /// unwind edges introduced for calls within the inlined function. 137 BasicBlock *getOuterResumeDest() const { 138 return OuterResumeDest; 139 } 140 141 BasicBlock *getInnerResumeDest(); 142 143 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 144 145 /// Forward the 'resume' instruction to the caller's landing pad block. 146 /// When the landing pad block has only one predecessor, this is 147 /// a simple branch. When there is more than one predecessor, we need to 148 /// split the landing pad block after the landingpad instruction and jump 149 /// to there. 150 void forwardResume(ResumeInst *RI, 151 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); 152 153 /// Add incoming-PHI values to the unwind destination block for the given 154 /// basic block, using the values for the original invoke's source block. 155 void addIncomingPHIValuesFor(BasicBlock *BB) const { 156 addIncomingPHIValuesForInto(BB, OuterResumeDest); 157 } 158 159 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 160 BasicBlock::iterator I = dest->begin(); 161 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 162 PHINode *phi = cast<PHINode>(I); 163 phi->addIncoming(UnwindDestPHIValues[i], src); 164 } 165 } 166 }; 167 168 } // end anonymous namespace 169 170 /// Get or create a target for the branch from ResumeInsts. 171 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() { 172 if (InnerResumeDest) return InnerResumeDest; 173 174 // Split the landing pad. 175 BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator(); 176 InnerResumeDest = 177 OuterResumeDest->splitBasicBlock(SplitPoint, 178 OuterResumeDest->getName() + ".body"); 179 180 // The number of incoming edges we expect to the inner landing pad. 181 const unsigned PHICapacity = 2; 182 183 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 184 Instruction *InsertPoint = &InnerResumeDest->front(); 185 BasicBlock::iterator I = OuterResumeDest->begin(); 186 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 187 PHINode *OuterPHI = cast<PHINode>(I); 188 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 189 OuterPHI->getName() + ".lpad-body", 190 InsertPoint); 191 OuterPHI->replaceAllUsesWith(InnerPHI); 192 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 193 } 194 195 // Create a PHI for the exception values. 196 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 197 "eh.lpad-body", InsertPoint); 198 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 199 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 200 201 // All done. 202 return InnerResumeDest; 203 } 204 205 /// Forward the 'resume' instruction to the caller's landing pad block. 206 /// When the landing pad block has only one predecessor, this is a simple 207 /// branch. When there is more than one predecessor, we need to split the 208 /// landing pad block after the landingpad instruction and jump to there. 209 void LandingPadInliningInfo::forwardResume( 210 ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) { 211 BasicBlock *Dest = getInnerResumeDest(); 212 BasicBlock *Src = RI->getParent(); 213 214 BranchInst::Create(Dest, Src); 215 216 // Update the PHIs in the destination. They were inserted in an order which 217 // makes this work. 218 addIncomingPHIValuesForInto(Src, Dest); 219 220 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 221 RI->eraseFromParent(); 222 } 223 224 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper. 225 static Value *getParentPad(Value *EHPad) { 226 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 227 return FPI->getParentPad(); 228 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 229 } 230 231 using UnwindDestMemoTy = DenseMap<Instruction *, Value *>; 232 233 /// Helper for getUnwindDestToken that does the descendant-ward part of 234 /// the search. 235 static Value *getUnwindDestTokenHelper(Instruction *EHPad, 236 UnwindDestMemoTy &MemoMap) { 237 SmallVector<Instruction *, 8> Worklist(1, EHPad); 238 239 while (!Worklist.empty()) { 240 Instruction *CurrentPad = Worklist.pop_back_val(); 241 // We only put pads on the worklist that aren't in the MemoMap. When 242 // we find an unwind dest for a pad we may update its ancestors, but 243 // the queue only ever contains uncles/great-uncles/etc. of CurrentPad, 244 // so they should never get updated while queued on the worklist. 245 assert(!MemoMap.count(CurrentPad)); 246 Value *UnwindDestToken = nullptr; 247 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) { 248 if (CatchSwitch->hasUnwindDest()) { 249 UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI(); 250 } else { 251 // Catchswitch doesn't have a 'nounwind' variant, and one might be 252 // annotated as "unwinds to caller" when really it's nounwind (see 253 // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the 254 // parent's unwind dest from this. We can check its catchpads' 255 // descendants, since they might include a cleanuppad with an 256 // "unwinds to caller" cleanupret, which can be trusted. 257 for (auto HI = CatchSwitch->handler_begin(), 258 HE = CatchSwitch->handler_end(); 259 HI != HE && !UnwindDestToken; ++HI) { 260 BasicBlock *HandlerBlock = *HI; 261 auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI()); 262 for (User *Child : CatchPad->users()) { 263 // Intentionally ignore invokes here -- since the catchswitch is 264 // marked "unwind to caller", it would be a verifier error if it 265 // contained an invoke which unwinds out of it, so any invoke we'd 266 // encounter must unwind to some child of the catch. 267 if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child)) 268 continue; 269 270 Instruction *ChildPad = cast<Instruction>(Child); 271 auto Memo = MemoMap.find(ChildPad); 272 if (Memo == MemoMap.end()) { 273 // Haven't figured out this child pad yet; queue it. 274 Worklist.push_back(ChildPad); 275 continue; 276 } 277 // We've already checked this child, but might have found that 278 // it offers no proof either way. 279 Value *ChildUnwindDestToken = Memo->second; 280 if (!ChildUnwindDestToken) 281 continue; 282 // We already know the child's unwind dest, which can either 283 // be ConstantTokenNone to indicate unwind to caller, or can 284 // be another child of the catchpad. Only the former indicates 285 // the unwind dest of the catchswitch. 286 if (isa<ConstantTokenNone>(ChildUnwindDestToken)) { 287 UnwindDestToken = ChildUnwindDestToken; 288 break; 289 } 290 assert(getParentPad(ChildUnwindDestToken) == CatchPad); 291 } 292 } 293 } 294 } else { 295 auto *CleanupPad = cast<CleanupPadInst>(CurrentPad); 296 for (User *U : CleanupPad->users()) { 297 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) { 298 if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest()) 299 UnwindDestToken = RetUnwindDest->getFirstNonPHI(); 300 else 301 UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext()); 302 break; 303 } 304 Value *ChildUnwindDestToken; 305 if (auto *Invoke = dyn_cast<InvokeInst>(U)) { 306 ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI(); 307 } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) { 308 Instruction *ChildPad = cast<Instruction>(U); 309 auto Memo = MemoMap.find(ChildPad); 310 if (Memo == MemoMap.end()) { 311 // Haven't resolved this child yet; queue it and keep searching. 312 Worklist.push_back(ChildPad); 313 continue; 314 } 315 // We've checked this child, but still need to ignore it if it 316 // had no proof either way. 317 ChildUnwindDestToken = Memo->second; 318 if (!ChildUnwindDestToken) 319 continue; 320 } else { 321 // Not a relevant user of the cleanuppad 322 continue; 323 } 324 // In a well-formed program, the child/invoke must either unwind to 325 // an(other) child of the cleanup, or exit the cleanup. In the 326 // first case, continue searching. 327 if (isa<Instruction>(ChildUnwindDestToken) && 328 getParentPad(ChildUnwindDestToken) == CleanupPad) 329 continue; 330 UnwindDestToken = ChildUnwindDestToken; 331 break; 332 } 333 } 334 // If we haven't found an unwind dest for CurrentPad, we may have queued its 335 // children, so move on to the next in the worklist. 336 if (!UnwindDestToken) 337 continue; 338 339 // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits 340 // any ancestors of CurrentPad up to but not including UnwindDestToken's 341 // parent pad. Record this in the memo map, and check to see if the 342 // original EHPad being queried is one of the ones exited. 343 Value *UnwindParent; 344 if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken)) 345 UnwindParent = getParentPad(UnwindPad); 346 else 347 UnwindParent = nullptr; 348 bool ExitedOriginalPad = false; 349 for (Instruction *ExitedPad = CurrentPad; 350 ExitedPad && ExitedPad != UnwindParent; 351 ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) { 352 // Skip over catchpads since they just follow their catchswitches. 353 if (isa<CatchPadInst>(ExitedPad)) 354 continue; 355 MemoMap[ExitedPad] = UnwindDestToken; 356 ExitedOriginalPad |= (ExitedPad == EHPad); 357 } 358 359 if (ExitedOriginalPad) 360 return UnwindDestToken; 361 362 // Continue the search. 363 } 364 365 // No definitive information is contained within this funclet. 366 return nullptr; 367 } 368 369 /// Given an EH pad, find where it unwinds. If it unwinds to an EH pad, 370 /// return that pad instruction. If it unwinds to caller, return 371 /// ConstantTokenNone. If it does not have a definitive unwind destination, 372 /// return nullptr. 373 /// 374 /// This routine gets invoked for calls in funclets in inlinees when inlining 375 /// an invoke. Since many funclets don't have calls inside them, it's queried 376 /// on-demand rather than building a map of pads to unwind dests up front. 377 /// Determining a funclet's unwind dest may require recursively searching its 378 /// descendants, and also ancestors and cousins if the descendants don't provide 379 /// an answer. Since most funclets will have their unwind dest immediately 380 /// available as the unwind dest of a catchswitch or cleanupret, this routine 381 /// searches top-down from the given pad and then up. To avoid worst-case 382 /// quadratic run-time given that approach, it uses a memo map to avoid 383 /// re-processing funclet trees. The callers that rewrite the IR as they go 384 /// take advantage of this, for correctness, by checking/forcing rewritten 385 /// pads' entries to match the original callee view. 386 static Value *getUnwindDestToken(Instruction *EHPad, 387 UnwindDestMemoTy &MemoMap) { 388 // Catchpads unwind to the same place as their catchswitch; 389 // redirct any queries on catchpads so the code below can 390 // deal with just catchswitches and cleanuppads. 391 if (auto *CPI = dyn_cast<CatchPadInst>(EHPad)) 392 EHPad = CPI->getCatchSwitch(); 393 394 // Check if we've already determined the unwind dest for this pad. 395 auto Memo = MemoMap.find(EHPad); 396 if (Memo != MemoMap.end()) 397 return Memo->second; 398 399 // Search EHPad and, if necessary, its descendants. 400 Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap); 401 assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0)); 402 if (UnwindDestToken) 403 return UnwindDestToken; 404 405 // No information is available for this EHPad from itself or any of its 406 // descendants. An unwind all the way out to a pad in the caller would 407 // need also to agree with the unwind dest of the parent funclet, so 408 // search up the chain to try to find a funclet with information. Put 409 // null entries in the memo map to avoid re-processing as we go up. 410 MemoMap[EHPad] = nullptr; 411 #ifndef NDEBUG 412 SmallPtrSet<Instruction *, 4> TempMemos; 413 TempMemos.insert(EHPad); 414 #endif 415 Instruction *LastUselessPad = EHPad; 416 Value *AncestorToken; 417 for (AncestorToken = getParentPad(EHPad); 418 auto *AncestorPad = dyn_cast<Instruction>(AncestorToken); 419 AncestorToken = getParentPad(AncestorToken)) { 420 // Skip over catchpads since they just follow their catchswitches. 421 if (isa<CatchPadInst>(AncestorPad)) 422 continue; 423 // If the MemoMap had an entry mapping AncestorPad to nullptr, since we 424 // haven't yet called getUnwindDestTokenHelper for AncestorPad in this 425 // call to getUnwindDestToken, that would mean that AncestorPad had no 426 // information in itself, its descendants, or its ancestors. If that 427 // were the case, then we should also have recorded the lack of information 428 // for the descendant that we're coming from. So assert that we don't 429 // find a null entry in the MemoMap for AncestorPad. 430 assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]); 431 auto AncestorMemo = MemoMap.find(AncestorPad); 432 if (AncestorMemo == MemoMap.end()) { 433 UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap); 434 } else { 435 UnwindDestToken = AncestorMemo->second; 436 } 437 if (UnwindDestToken) 438 break; 439 LastUselessPad = AncestorPad; 440 MemoMap[LastUselessPad] = nullptr; 441 #ifndef NDEBUG 442 TempMemos.insert(LastUselessPad); 443 #endif 444 } 445 446 // We know that getUnwindDestTokenHelper was called on LastUselessPad and 447 // returned nullptr (and likewise for EHPad and any of its ancestors up to 448 // LastUselessPad), so LastUselessPad has no information from below. Since 449 // getUnwindDestTokenHelper must investigate all downward paths through 450 // no-information nodes to prove that a node has no information like this, 451 // and since any time it finds information it records it in the MemoMap for 452 // not just the immediately-containing funclet but also any ancestors also 453 // exited, it must be the case that, walking downward from LastUselessPad, 454 // visiting just those nodes which have not been mapped to an unwind dest 455 // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since 456 // they are just used to keep getUnwindDestTokenHelper from repeating work), 457 // any node visited must have been exhaustively searched with no information 458 // for it found. 459 SmallVector<Instruction *, 8> Worklist(1, LastUselessPad); 460 while (!Worklist.empty()) { 461 Instruction *UselessPad = Worklist.pop_back_val(); 462 auto Memo = MemoMap.find(UselessPad); 463 if (Memo != MemoMap.end() && Memo->second) { 464 // Here the name 'UselessPad' is a bit of a misnomer, because we've found 465 // that it is a funclet that does have information about unwinding to 466 // a particular destination; its parent was a useless pad. 467 // Since its parent has no information, the unwind edge must not escape 468 // the parent, and must target a sibling of this pad. This local unwind 469 // gives us no information about EHPad. Leave it and the subtree rooted 470 // at it alone. 471 assert(getParentPad(Memo->second) == getParentPad(UselessPad)); 472 continue; 473 } 474 // We know we don't have information for UselesPad. If it has an entry in 475 // the MemoMap (mapping it to nullptr), it must be one of the TempMemos 476 // added on this invocation of getUnwindDestToken; if a previous invocation 477 // recorded nullptr, it would have had to prove that the ancestors of 478 // UselessPad, which include LastUselessPad, had no information, and that 479 // in turn would have required proving that the descendants of 480 // LastUselesPad, which include EHPad, have no information about 481 // LastUselessPad, which would imply that EHPad was mapped to nullptr in 482 // the MemoMap on that invocation, which isn't the case if we got here. 483 assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad)); 484 // Assert as we enumerate users that 'UselessPad' doesn't have any unwind 485 // information that we'd be contradicting by making a map entry for it 486 // (which is something that getUnwindDestTokenHelper must have proved for 487 // us to get here). Just assert on is direct users here; the checks in 488 // this downward walk at its descendants will verify that they don't have 489 // any unwind edges that exit 'UselessPad' either (i.e. they either have no 490 // unwind edges or unwind to a sibling). 491 MemoMap[UselessPad] = UnwindDestToken; 492 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) { 493 assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad"); 494 for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) { 495 auto *CatchPad = HandlerBlock->getFirstNonPHI(); 496 for (User *U : CatchPad->users()) { 497 assert( 498 (!isa<InvokeInst>(U) || 499 (getParentPad( 500 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 501 CatchPad)) && 502 "Expected useless pad"); 503 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 504 Worklist.push_back(cast<Instruction>(U)); 505 } 506 } 507 } else { 508 assert(isa<CleanupPadInst>(UselessPad)); 509 for (User *U : UselessPad->users()) { 510 assert(!isa<CleanupReturnInst>(U) && "Expected useless pad"); 511 assert((!isa<InvokeInst>(U) || 512 (getParentPad( 513 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 514 UselessPad)) && 515 "Expected useless pad"); 516 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 517 Worklist.push_back(cast<Instruction>(U)); 518 } 519 } 520 } 521 522 return UnwindDestToken; 523 } 524 525 /// When we inline a basic block into an invoke, 526 /// we have to turn all of the calls that can throw into invokes. 527 /// This function analyze BB to see if there are any calls, and if so, 528 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 529 /// nodes in that block with the values specified in InvokeDestPHIValues. 530 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke( 531 BasicBlock *BB, BasicBlock *UnwindEdge, 532 UnwindDestMemoTy *FuncletUnwindMap = nullptr) { 533 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 534 Instruction *I = &*BBI++; 535 536 // We only need to check for function calls: inlined invoke 537 // instructions require no special handling. 538 CallInst *CI = dyn_cast<CallInst>(I); 539 540 if (!CI || CI->doesNotThrow() || CI->isInlineAsm()) 541 continue; 542 543 // We do not need to (and in fact, cannot) convert possibly throwing calls 544 // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into 545 // invokes. The caller's "segment" of the deoptimization continuation 546 // attached to the newly inlined @llvm.experimental_deoptimize 547 // (resp. @llvm.experimental.guard) call should contain the exception 548 // handling logic, if any. 549 if (auto *F = CI->getCalledFunction()) 550 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize || 551 F->getIntrinsicID() == Intrinsic::experimental_guard) 552 continue; 553 554 if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) { 555 // This call is nested inside a funclet. If that funclet has an unwind 556 // destination within the inlinee, then unwinding out of this call would 557 // be UB. Rewriting this call to an invoke which targets the inlined 558 // invoke's unwind dest would give the call's parent funclet multiple 559 // unwind destinations, which is something that subsequent EH table 560 // generation can't handle and that the veirifer rejects. So when we 561 // see such a call, leave it as a call. 562 auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]); 563 Value *UnwindDestToken = 564 getUnwindDestToken(FuncletPad, *FuncletUnwindMap); 565 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 566 continue; 567 #ifndef NDEBUG 568 Instruction *MemoKey; 569 if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad)) 570 MemoKey = CatchPad->getCatchSwitch(); 571 else 572 MemoKey = FuncletPad; 573 assert(FuncletUnwindMap->count(MemoKey) && 574 (*FuncletUnwindMap)[MemoKey] == UnwindDestToken && 575 "must get memoized to avoid confusing later searches"); 576 #endif // NDEBUG 577 } 578 579 changeToInvokeAndSplitBasicBlock(CI, UnwindEdge); 580 return BB; 581 } 582 return nullptr; 583 } 584 585 /// If we inlined an invoke site, we need to convert calls 586 /// in the body of the inlined function into invokes. 587 /// 588 /// II is the invoke instruction being inlined. FirstNewBlock is the first 589 /// block of the inlined code (the last block is the end of the function), 590 /// and InlineCodeInfo is information about the code that got inlined. 591 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock, 592 ClonedCodeInfo &InlinedCodeInfo) { 593 BasicBlock *InvokeDest = II->getUnwindDest(); 594 595 Function *Caller = FirstNewBlock->getParent(); 596 597 // The inlined code is currently at the end of the function, scan from the 598 // start of the inlined code to its end, checking for stuff we need to 599 // rewrite. 600 LandingPadInliningInfo Invoke(II); 601 602 // Get all of the inlined landing pad instructions. 603 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 604 for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end(); 605 I != E; ++I) 606 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 607 InlinedLPads.insert(II->getLandingPadInst()); 608 609 // Append the clauses from the outer landing pad instruction into the inlined 610 // landing pad instructions. 611 LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 612 for (LandingPadInst *InlinedLPad : InlinedLPads) { 613 unsigned OuterNum = OuterLPad->getNumClauses(); 614 InlinedLPad->reserveClauses(OuterNum); 615 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 616 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 617 if (OuterLPad->isCleanup()) 618 InlinedLPad->setCleanup(true); 619 } 620 621 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 622 BB != E; ++BB) { 623 if (InlinedCodeInfo.ContainsCalls) 624 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 625 &*BB, Invoke.getOuterResumeDest())) 626 // Update any PHI nodes in the exceptional block to indicate that there 627 // is now a new entry in them. 628 Invoke.addIncomingPHIValuesFor(NewBB); 629 630 // Forward any resumes that are remaining here. 631 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 632 Invoke.forwardResume(RI, InlinedLPads); 633 } 634 635 // Now that everything is happy, we have one final detail. The PHI nodes in 636 // the exception destination block still have entries due to the original 637 // invoke instruction. Eliminate these entries (which might even delete the 638 // PHI node) now. 639 InvokeDest->removePredecessor(II->getParent()); 640 } 641 642 /// If we inlined an invoke site, we need to convert calls 643 /// in the body of the inlined function into invokes. 644 /// 645 /// II is the invoke instruction being inlined. FirstNewBlock is the first 646 /// block of the inlined code (the last block is the end of the function), 647 /// and InlineCodeInfo is information about the code that got inlined. 648 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock, 649 ClonedCodeInfo &InlinedCodeInfo) { 650 BasicBlock *UnwindDest = II->getUnwindDest(); 651 Function *Caller = FirstNewBlock->getParent(); 652 653 assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!"); 654 655 // If there are PHI nodes in the unwind destination block, we need to keep 656 // track of which values came into them from the invoke before removing the 657 // edge from this block. 658 SmallVector<Value *, 8> UnwindDestPHIValues; 659 BasicBlock *InvokeBB = II->getParent(); 660 for (Instruction &I : *UnwindDest) { 661 // Save the value to use for this edge. 662 PHINode *PHI = dyn_cast<PHINode>(&I); 663 if (!PHI) 664 break; 665 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 666 } 667 668 // Add incoming-PHI values to the unwind destination block for the given basic 669 // block, using the values for the original invoke's source block. 670 auto UpdatePHINodes = [&](BasicBlock *Src) { 671 BasicBlock::iterator I = UnwindDest->begin(); 672 for (Value *V : UnwindDestPHIValues) { 673 PHINode *PHI = cast<PHINode>(I); 674 PHI->addIncoming(V, Src); 675 ++I; 676 } 677 }; 678 679 // This connects all the instructions which 'unwind to caller' to the invoke 680 // destination. 681 UnwindDestMemoTy FuncletUnwindMap; 682 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 683 BB != E; ++BB) { 684 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 685 if (CRI->unwindsToCaller()) { 686 auto *CleanupPad = CRI->getCleanupPad(); 687 CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI); 688 CRI->eraseFromParent(); 689 UpdatePHINodes(&*BB); 690 // Finding a cleanupret with an unwind destination would confuse 691 // subsequent calls to getUnwindDestToken, so map the cleanuppad 692 // to short-circuit any such calls and recognize this as an "unwind 693 // to caller" cleanup. 694 assert(!FuncletUnwindMap.count(CleanupPad) || 695 isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad])); 696 FuncletUnwindMap[CleanupPad] = 697 ConstantTokenNone::get(Caller->getContext()); 698 } 699 } 700 701 Instruction *I = BB->getFirstNonPHI(); 702 if (!I->isEHPad()) 703 continue; 704 705 Instruction *Replacement = nullptr; 706 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 707 if (CatchSwitch->unwindsToCaller()) { 708 Value *UnwindDestToken; 709 if (auto *ParentPad = 710 dyn_cast<Instruction>(CatchSwitch->getParentPad())) { 711 // This catchswitch is nested inside another funclet. If that 712 // funclet has an unwind destination within the inlinee, then 713 // unwinding out of this catchswitch would be UB. Rewriting this 714 // catchswitch to unwind to the inlined invoke's unwind dest would 715 // give the parent funclet multiple unwind destinations, which is 716 // something that subsequent EH table generation can't handle and 717 // that the veirifer rejects. So when we see such a call, leave it 718 // as "unwind to caller". 719 UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap); 720 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 721 continue; 722 } else { 723 // This catchswitch has no parent to inherit constraints from, and 724 // none of its descendants can have an unwind edge that exits it and 725 // targets another funclet in the inlinee. It may or may not have a 726 // descendant that definitively has an unwind to caller. In either 727 // case, we'll have to assume that any unwinds out of it may need to 728 // be routed to the caller, so treat it as though it has a definitive 729 // unwind to caller. 730 UnwindDestToken = ConstantTokenNone::get(Caller->getContext()); 731 } 732 auto *NewCatchSwitch = CatchSwitchInst::Create( 733 CatchSwitch->getParentPad(), UnwindDest, 734 CatchSwitch->getNumHandlers(), CatchSwitch->getName(), 735 CatchSwitch); 736 for (BasicBlock *PadBB : CatchSwitch->handlers()) 737 NewCatchSwitch->addHandler(PadBB); 738 // Propagate info for the old catchswitch over to the new one in 739 // the unwind map. This also serves to short-circuit any subsequent 740 // checks for the unwind dest of this catchswitch, which would get 741 // confused if they found the outer handler in the callee. 742 FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken; 743 Replacement = NewCatchSwitch; 744 } 745 } else if (!isa<FuncletPadInst>(I)) { 746 llvm_unreachable("unexpected EHPad!"); 747 } 748 749 if (Replacement) { 750 Replacement->takeName(I); 751 I->replaceAllUsesWith(Replacement); 752 I->eraseFromParent(); 753 UpdatePHINodes(&*BB); 754 } 755 } 756 757 if (InlinedCodeInfo.ContainsCalls) 758 for (Function::iterator BB = FirstNewBlock->getIterator(), 759 E = Caller->end(); 760 BB != E; ++BB) 761 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 762 &*BB, UnwindDest, &FuncletUnwindMap)) 763 // Update any PHI nodes in the exceptional block to indicate that there 764 // is now a new entry in them. 765 UpdatePHINodes(NewBB); 766 767 // Now that everything is happy, we have one final detail. The PHI nodes in 768 // the exception destination block still have entries due to the original 769 // invoke instruction. Eliminate these entries (which might even delete the 770 // PHI node) now. 771 UnwindDest->removePredecessor(InvokeBB); 772 } 773 774 /// When inlining a call site that has !llvm.mem.parallel_loop_access, 775 /// !llvm.access.group, !alias.scope or !noalias metadata, that metadata should 776 /// be propagated to all memory-accessing cloned instructions. 777 static void PropagateCallSiteMetadata(CallBase &CB, ValueToValueMapTy &VMap) { 778 MDNode *MemParallelLoopAccess = 779 CB.getMetadata(LLVMContext::MD_mem_parallel_loop_access); 780 MDNode *AccessGroup = CB.getMetadata(LLVMContext::MD_access_group); 781 MDNode *AliasScope = CB.getMetadata(LLVMContext::MD_alias_scope); 782 MDNode *NoAlias = CB.getMetadata(LLVMContext::MD_noalias); 783 if (!MemParallelLoopAccess && !AccessGroup && !AliasScope && !NoAlias) 784 return; 785 786 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 787 VMI != VMIE; ++VMI) { 788 if (!VMI->second) 789 continue; 790 791 Instruction *NI = dyn_cast<Instruction>(VMI->second); 792 if (!NI) 793 continue; 794 795 // This metadata is only relevant for instructions that access memory. 796 if (!NI->mayReadOrWriteMemory()) 797 continue; 798 799 if (MemParallelLoopAccess) { 800 // TODO: This probably should not overwrite MemParalleLoopAccess. 801 MemParallelLoopAccess = MDNode::concatenate( 802 NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access), 803 MemParallelLoopAccess); 804 NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, 805 MemParallelLoopAccess); 806 } 807 808 if (AccessGroup) 809 NI->setMetadata(LLVMContext::MD_access_group, uniteAccessGroups( 810 NI->getMetadata(LLVMContext::MD_access_group), AccessGroup)); 811 812 if (AliasScope) 813 NI->setMetadata(LLVMContext::MD_alias_scope, MDNode::concatenate( 814 NI->getMetadata(LLVMContext::MD_alias_scope), AliasScope)); 815 816 if (NoAlias) 817 NI->setMetadata(LLVMContext::MD_noalias, MDNode::concatenate( 818 NI->getMetadata(LLVMContext::MD_noalias), NoAlias)); 819 } 820 } 821 822 /// When inlining a function that contains noalias scope metadata, 823 /// this metadata needs to be cloned so that the inlined blocks 824 /// have different "unique scopes" at every call site. Were this not done, then 825 /// aliasing scopes from a function inlined into a caller multiple times could 826 /// not be differentiated (and this would lead to miscompiles because the 827 /// non-aliasing property communicated by the metadata could have 828 /// call-site-specific control dependencies). 829 static void CloneAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap) { 830 const Function *CalledFunc = CB.getCalledFunction(); 831 SetVector<const MDNode *> MD; 832 833 // Note: We could only clone the metadata if it is already used in the 834 // caller. I'm omitting that check here because it might confuse 835 // inter-procedural alias analysis passes. We can revisit this if it becomes 836 // an efficiency or overhead problem. 837 838 for (const BasicBlock &I : *CalledFunc) 839 for (const Instruction &J : I) { 840 if (const MDNode *M = J.getMetadata(LLVMContext::MD_alias_scope)) 841 MD.insert(M); 842 if (const MDNode *M = J.getMetadata(LLVMContext::MD_noalias)) 843 MD.insert(M); 844 } 845 846 if (MD.empty()) 847 return; 848 849 // Walk the existing metadata, adding the complete (perhaps cyclic) chain to 850 // the set. 851 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end()); 852 while (!Queue.empty()) { 853 const MDNode *M = cast<MDNode>(Queue.pop_back_val()); 854 for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i) 855 if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i))) 856 if (MD.insert(M1)) 857 Queue.push_back(M1); 858 } 859 860 // Now we have a complete set of all metadata in the chains used to specify 861 // the noalias scopes and the lists of those scopes. 862 SmallVector<TempMDTuple, 16> DummyNodes; 863 DenseMap<const MDNode *, TrackingMDNodeRef> MDMap; 864 for (const MDNode *I : MD) { 865 DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None)); 866 MDMap[I].reset(DummyNodes.back().get()); 867 } 868 869 // Create new metadata nodes to replace the dummy nodes, replacing old 870 // metadata references with either a dummy node or an already-created new 871 // node. 872 for (const MDNode *I : MD) { 873 SmallVector<Metadata *, 4> NewOps; 874 for (unsigned i = 0, ie = I->getNumOperands(); i != ie; ++i) { 875 const Metadata *V = I->getOperand(i); 876 if (const MDNode *M = dyn_cast<MDNode>(V)) 877 NewOps.push_back(MDMap[M]); 878 else 879 NewOps.push_back(const_cast<Metadata *>(V)); 880 } 881 882 MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps); 883 MDTuple *TempM = cast<MDTuple>(MDMap[I]); 884 assert(TempM->isTemporary() && "Expected temporary node"); 885 886 TempM->replaceAllUsesWith(NewM); 887 } 888 889 // Now replace the metadata in the new inlined instructions with the 890 // repacements from the map. 891 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 892 VMI != VMIE; ++VMI) { 893 if (!VMI->second) 894 continue; 895 896 Instruction *NI = dyn_cast<Instruction>(VMI->second); 897 if (!NI) 898 continue; 899 900 if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) 901 NI->setMetadata(LLVMContext::MD_alias_scope, MDMap[M]); 902 903 if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) 904 NI->setMetadata(LLVMContext::MD_noalias, MDMap[M]); 905 } 906 } 907 908 /// If the inlined function has noalias arguments, 909 /// then add new alias scopes for each noalias argument, tag the mapped noalias 910 /// parameters with noalias metadata specifying the new scope, and tag all 911 /// non-derived loads, stores and memory intrinsics with the new alias scopes. 912 static void AddAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap, 913 const DataLayout &DL, AAResults *CalleeAAR) { 914 if (!EnableNoAliasConversion) 915 return; 916 917 const Function *CalledFunc = CB.getCalledFunction(); 918 SmallVector<const Argument *, 4> NoAliasArgs; 919 920 for (const Argument &Arg : CalledFunc->args()) 921 if (CB.paramHasAttr(Arg.getArgNo(), Attribute::NoAlias) && !Arg.use_empty()) 922 NoAliasArgs.push_back(&Arg); 923 924 if (NoAliasArgs.empty()) 925 return; 926 927 // To do a good job, if a noalias variable is captured, we need to know if 928 // the capture point dominates the particular use we're considering. 929 DominatorTree DT; 930 DT.recalculate(const_cast<Function&>(*CalledFunc)); 931 932 // noalias indicates that pointer values based on the argument do not alias 933 // pointer values which are not based on it. So we add a new "scope" for each 934 // noalias function argument. Accesses using pointers based on that argument 935 // become part of that alias scope, accesses using pointers not based on that 936 // argument are tagged as noalias with that scope. 937 938 DenseMap<const Argument *, MDNode *> NewScopes; 939 MDBuilder MDB(CalledFunc->getContext()); 940 941 // Create a new scope domain for this function. 942 MDNode *NewDomain = 943 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); 944 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { 945 const Argument *A = NoAliasArgs[i]; 946 947 std::string Name = std::string(CalledFunc->getName()); 948 if (A->hasName()) { 949 Name += ": %"; 950 Name += A->getName(); 951 } else { 952 Name += ": argument "; 953 Name += utostr(i); 954 } 955 956 // Note: We always create a new anonymous root here. This is true regardless 957 // of the linkage of the callee because the aliasing "scope" is not just a 958 // property of the callee, but also all control dependencies in the caller. 959 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); 960 NewScopes.insert(std::make_pair(A, NewScope)); 961 } 962 963 // Iterate over all new instructions in the map; for all memory-access 964 // instructions, add the alias scope metadata. 965 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 966 VMI != VMIE; ++VMI) { 967 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { 968 if (!VMI->second) 969 continue; 970 971 Instruction *NI = dyn_cast<Instruction>(VMI->second); 972 if (!NI) 973 continue; 974 975 bool IsArgMemOnlyCall = false, IsFuncCall = false; 976 SmallVector<const Value *, 2> PtrArgs; 977 978 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 979 PtrArgs.push_back(LI->getPointerOperand()); 980 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 981 PtrArgs.push_back(SI->getPointerOperand()); 982 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) 983 PtrArgs.push_back(VAAI->getPointerOperand()); 984 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 985 PtrArgs.push_back(CXI->getPointerOperand()); 986 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 987 PtrArgs.push_back(RMWI->getPointerOperand()); 988 else if (const auto *Call = dyn_cast<CallBase>(I)) { 989 // If we know that the call does not access memory, then we'll still 990 // know that about the inlined clone of this call site, and we don't 991 // need to add metadata. 992 if (Call->doesNotAccessMemory()) 993 continue; 994 995 IsFuncCall = true; 996 if (CalleeAAR) { 997 FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call); 998 if (AAResults::onlyAccessesArgPointees(MRB)) 999 IsArgMemOnlyCall = true; 1000 } 1001 1002 for (Value *Arg : Call->args()) { 1003 // We need to check the underlying objects of all arguments, not just 1004 // the pointer arguments, because we might be passing pointers as 1005 // integers, etc. 1006 // However, if we know that the call only accesses pointer arguments, 1007 // then we only need to check the pointer arguments. 1008 if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy()) 1009 continue; 1010 1011 PtrArgs.push_back(Arg); 1012 } 1013 } 1014 1015 // If we found no pointers, then this instruction is not suitable for 1016 // pairing with an instruction to receive aliasing metadata. 1017 // However, if this is a call, this we might just alias with none of the 1018 // noalias arguments. 1019 if (PtrArgs.empty() && !IsFuncCall) 1020 continue; 1021 1022 // It is possible that there is only one underlying object, but you 1023 // need to go through several PHIs to see it, and thus could be 1024 // repeated in the Objects list. 1025 SmallPtrSet<const Value *, 4> ObjSet; 1026 SmallVector<Metadata *, 4> Scopes, NoAliases; 1027 1028 SmallSetVector<const Argument *, 4> NAPtrArgs; 1029 for (const Value *V : PtrArgs) { 1030 SmallVector<const Value *, 4> Objects; 1031 getUnderlyingObjects(V, Objects, /* LI = */ nullptr); 1032 1033 for (const Value *O : Objects) 1034 ObjSet.insert(O); 1035 } 1036 1037 // Figure out if we're derived from anything that is not a noalias 1038 // argument. 1039 bool CanDeriveViaCapture = false, UsesAliasingPtr = false; 1040 for (const Value *V : ObjSet) { 1041 // Is this value a constant that cannot be derived from any pointer 1042 // value (we need to exclude constant expressions, for example, that 1043 // are formed from arithmetic on global symbols). 1044 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || 1045 isa<ConstantPointerNull>(V) || 1046 isa<ConstantDataVector>(V) || isa<UndefValue>(V); 1047 if (IsNonPtrConst) 1048 continue; 1049 1050 // If this is anything other than a noalias argument, then we cannot 1051 // completely describe the aliasing properties using alias.scope 1052 // metadata (and, thus, won't add any). 1053 if (const Argument *A = dyn_cast<Argument>(V)) { 1054 if (!CB.paramHasAttr(A->getArgNo(), Attribute::NoAlias)) 1055 UsesAliasingPtr = true; 1056 } else { 1057 UsesAliasingPtr = true; 1058 } 1059 1060 // If this is not some identified function-local object (which cannot 1061 // directly alias a noalias argument), or some other argument (which, 1062 // by definition, also cannot alias a noalias argument), then we could 1063 // alias a noalias argument that has been captured). 1064 if (!isa<Argument>(V) && 1065 !isIdentifiedFunctionLocal(const_cast<Value*>(V))) 1066 CanDeriveViaCapture = true; 1067 } 1068 1069 // A function call can always get captured noalias pointers (via other 1070 // parameters, globals, etc.). 1071 if (IsFuncCall && !IsArgMemOnlyCall) 1072 CanDeriveViaCapture = true; 1073 1074 // First, we want to figure out all of the sets with which we definitely 1075 // don't alias. Iterate over all noalias set, and add those for which: 1076 // 1. The noalias argument is not in the set of objects from which we 1077 // definitely derive. 1078 // 2. The noalias argument has not yet been captured. 1079 // An arbitrary function that might load pointers could see captured 1080 // noalias arguments via other noalias arguments or globals, and so we 1081 // must always check for prior capture. 1082 for (const Argument *A : NoAliasArgs) { 1083 if (!ObjSet.count(A) && (!CanDeriveViaCapture || 1084 // It might be tempting to skip the 1085 // PointerMayBeCapturedBefore check if 1086 // A->hasNoCaptureAttr() is true, but this is 1087 // incorrect because nocapture only guarantees 1088 // that no copies outlive the function, not 1089 // that the value cannot be locally captured. 1090 !PointerMayBeCapturedBefore(A, 1091 /* ReturnCaptures */ false, 1092 /* StoreCaptures */ false, I, &DT))) 1093 NoAliases.push_back(NewScopes[A]); 1094 } 1095 1096 if (!NoAliases.empty()) 1097 NI->setMetadata(LLVMContext::MD_noalias, 1098 MDNode::concatenate( 1099 NI->getMetadata(LLVMContext::MD_noalias), 1100 MDNode::get(CalledFunc->getContext(), NoAliases))); 1101 1102 // Next, we want to figure out all of the sets to which we might belong. 1103 // We might belong to a set if the noalias argument is in the set of 1104 // underlying objects. If there is some non-noalias argument in our list 1105 // of underlying objects, then we cannot add a scope because the fact 1106 // that some access does not alias with any set of our noalias arguments 1107 // cannot itself guarantee that it does not alias with this access 1108 // (because there is some pointer of unknown origin involved and the 1109 // other access might also depend on this pointer). We also cannot add 1110 // scopes to arbitrary functions unless we know they don't access any 1111 // non-parameter pointer-values. 1112 bool CanAddScopes = !UsesAliasingPtr; 1113 if (CanAddScopes && IsFuncCall) 1114 CanAddScopes = IsArgMemOnlyCall; 1115 1116 if (CanAddScopes) 1117 for (const Argument *A : NoAliasArgs) { 1118 if (ObjSet.count(A)) 1119 Scopes.push_back(NewScopes[A]); 1120 } 1121 1122 if (!Scopes.empty()) 1123 NI->setMetadata( 1124 LLVMContext::MD_alias_scope, 1125 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), 1126 MDNode::get(CalledFunc->getContext(), Scopes))); 1127 } 1128 } 1129 } 1130 1131 static bool MayContainThrowingOrExitingCall(Instruction *Begin, 1132 Instruction *End) { 1133 1134 assert(Begin->getParent() == End->getParent() && 1135 "Expected to be in same basic block!"); 1136 unsigned NumInstChecked = 0; 1137 // Check that all instructions in the range [Begin, End) are guaranteed to 1138 // transfer execution to successor. 1139 for (auto &I : make_range(Begin->getIterator(), End->getIterator())) 1140 if (NumInstChecked++ > InlinerAttributeWindow || 1141 !isGuaranteedToTransferExecutionToSuccessor(&I)) 1142 return true; 1143 return false; 1144 } 1145 1146 static AttrBuilder IdentifyValidAttributes(CallBase &CB) { 1147 1148 AttrBuilder AB(CB.getAttributes(), AttributeList::ReturnIndex); 1149 if (AB.empty()) 1150 return AB; 1151 AttrBuilder Valid; 1152 // Only allow these white listed attributes to be propagated back to the 1153 // callee. This is because other attributes may only be valid on the call 1154 // itself, i.e. attributes such as signext and zeroext. 1155 if (auto DerefBytes = AB.getDereferenceableBytes()) 1156 Valid.addDereferenceableAttr(DerefBytes); 1157 if (auto DerefOrNullBytes = AB.getDereferenceableOrNullBytes()) 1158 Valid.addDereferenceableOrNullAttr(DerefOrNullBytes); 1159 if (AB.contains(Attribute::NoAlias)) 1160 Valid.addAttribute(Attribute::NoAlias); 1161 if (AB.contains(Attribute::NonNull)) 1162 Valid.addAttribute(Attribute::NonNull); 1163 return Valid; 1164 } 1165 1166 static void AddReturnAttributes(CallBase &CB, ValueToValueMapTy &VMap) { 1167 if (!UpdateReturnAttributes) 1168 return; 1169 1170 AttrBuilder Valid = IdentifyValidAttributes(CB); 1171 if (Valid.empty()) 1172 return; 1173 auto *CalledFunction = CB.getCalledFunction(); 1174 auto &Context = CalledFunction->getContext(); 1175 1176 for (auto &BB : *CalledFunction) { 1177 auto *RI = dyn_cast<ReturnInst>(BB.getTerminator()); 1178 if (!RI || !isa<CallBase>(RI->getOperand(0))) 1179 continue; 1180 auto *RetVal = cast<CallBase>(RI->getOperand(0)); 1181 // Sanity check that the cloned RetVal exists and is a call, otherwise we 1182 // cannot add the attributes on the cloned RetVal. 1183 // Simplification during inlining could have transformed the cloned 1184 // instruction. 1185 auto *NewRetVal = dyn_cast_or_null<CallBase>(VMap.lookup(RetVal)); 1186 if (!NewRetVal) 1187 continue; 1188 // Backward propagation of attributes to the returned value may be incorrect 1189 // if it is control flow dependent. 1190 // Consider: 1191 // @callee { 1192 // %rv = call @foo() 1193 // %rv2 = call @bar() 1194 // if (%rv2 != null) 1195 // return %rv2 1196 // if (%rv == null) 1197 // exit() 1198 // return %rv 1199 // } 1200 // caller() { 1201 // %val = call nonnull @callee() 1202 // } 1203 // Here we cannot add the nonnull attribute on either foo or bar. So, we 1204 // limit the check to both RetVal and RI are in the same basic block and 1205 // there are no throwing/exiting instructions between these instructions. 1206 if (RI->getParent() != RetVal->getParent() || 1207 MayContainThrowingOrExitingCall(RetVal, RI)) 1208 continue; 1209 // Add to the existing attributes of NewRetVal, i.e. the cloned call 1210 // instruction. 1211 // NB! When we have the same attribute already existing on NewRetVal, but 1212 // with a differing value, the AttributeList's merge API honours the already 1213 // existing attribute value (i.e. attributes such as dereferenceable, 1214 // dereferenceable_or_null etc). See AttrBuilder::merge for more details. 1215 AttributeList AL = NewRetVal->getAttributes(); 1216 AttributeList NewAL = 1217 AL.addAttributes(Context, AttributeList::ReturnIndex, Valid); 1218 NewRetVal->setAttributes(NewAL); 1219 } 1220 } 1221 1222 /// If the inlined function has non-byval align arguments, then 1223 /// add @llvm.assume-based alignment assumptions to preserve this information. 1224 static void AddAlignmentAssumptions(CallBase &CB, InlineFunctionInfo &IFI) { 1225 if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache) 1226 return; 1227 1228 AssumptionCache *AC = &IFI.GetAssumptionCache(*CB.getCaller()); 1229 auto &DL = CB.getCaller()->getParent()->getDataLayout(); 1230 1231 // To avoid inserting redundant assumptions, we should check for assumptions 1232 // already in the caller. To do this, we might need a DT of the caller. 1233 DominatorTree DT; 1234 bool DTCalculated = false; 1235 1236 Function *CalledFunc = CB.getCalledFunction(); 1237 for (Argument &Arg : CalledFunc->args()) { 1238 unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0; 1239 if (Align && !Arg.hasPassPointeeByValueCopyAttr() && !Arg.hasNUses(0)) { 1240 if (!DTCalculated) { 1241 DT.recalculate(*CB.getCaller()); 1242 DTCalculated = true; 1243 } 1244 1245 // If we can already prove the asserted alignment in the context of the 1246 // caller, then don't bother inserting the assumption. 1247 Value *ArgVal = CB.getArgOperand(Arg.getArgNo()); 1248 if (getKnownAlignment(ArgVal, DL, &CB, AC, &DT) >= Align) 1249 continue; 1250 1251 CallInst *NewAsmp = 1252 IRBuilder<>(&CB).CreateAlignmentAssumption(DL, ArgVal, Align); 1253 AC->registerAssumption(NewAsmp); 1254 } 1255 } 1256 } 1257 1258 /// Once we have cloned code over from a callee into the caller, 1259 /// update the specified callgraph to reflect the changes we made. 1260 /// Note that it's possible that not all code was copied over, so only 1261 /// some edges of the callgraph may remain. 1262 static void UpdateCallGraphAfterInlining(CallBase &CB, 1263 Function::iterator FirstNewBlock, 1264 ValueToValueMapTy &VMap, 1265 InlineFunctionInfo &IFI) { 1266 CallGraph &CG = *IFI.CG; 1267 const Function *Caller = CB.getCaller(); 1268 const Function *Callee = CB.getCalledFunction(); 1269 CallGraphNode *CalleeNode = CG[Callee]; 1270 CallGraphNode *CallerNode = CG[Caller]; 1271 1272 // Since we inlined some uninlined call sites in the callee into the caller, 1273 // add edges from the caller to all of the callees of the callee. 1274 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 1275 1276 // Consider the case where CalleeNode == CallerNode. 1277 CallGraphNode::CalledFunctionsVector CallCache; 1278 if (CalleeNode == CallerNode) { 1279 CallCache.assign(I, E); 1280 I = CallCache.begin(); 1281 E = CallCache.end(); 1282 } 1283 1284 for (; I != E; ++I) { 1285 // Skip 'refererence' call records. 1286 if (!I->first) 1287 continue; 1288 1289 const Value *OrigCall = *I->first; 1290 1291 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 1292 // Only copy the edge if the call was inlined! 1293 if (VMI == VMap.end() || VMI->second == nullptr) 1294 continue; 1295 1296 // If the call was inlined, but then constant folded, there is no edge to 1297 // add. Check for this case. 1298 auto *NewCall = dyn_cast<CallBase>(VMI->second); 1299 if (!NewCall) 1300 continue; 1301 1302 // We do not treat intrinsic calls like real function calls because we 1303 // expect them to become inline code; do not add an edge for an intrinsic. 1304 if (NewCall->getCalledFunction() && 1305 NewCall->getCalledFunction()->isIntrinsic()) 1306 continue; 1307 1308 // Remember that this call site got inlined for the client of 1309 // InlineFunction. 1310 IFI.InlinedCalls.push_back(NewCall); 1311 1312 // It's possible that inlining the callsite will cause it to go from an 1313 // indirect to a direct call by resolving a function pointer. If this 1314 // happens, set the callee of the new call site to a more precise 1315 // destination. This can also happen if the call graph node of the caller 1316 // was just unnecessarily imprecise. 1317 if (!I->second->getFunction()) 1318 if (Function *F = NewCall->getCalledFunction()) { 1319 // Indirect call site resolved to direct call. 1320 CallerNode->addCalledFunction(NewCall, CG[F]); 1321 1322 continue; 1323 } 1324 1325 CallerNode->addCalledFunction(NewCall, I->second); 1326 } 1327 1328 // Update the call graph by deleting the edge from Callee to Caller. We must 1329 // do this after the loop above in case Caller and Callee are the same. 1330 CallerNode->removeCallEdgeFor(*cast<CallBase>(&CB)); 1331 } 1332 1333 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M, 1334 BasicBlock *InsertBlock, 1335 InlineFunctionInfo &IFI) { 1336 Type *AggTy = cast<PointerType>(Src->getType())->getElementType(); 1337 IRBuilder<> Builder(InsertBlock, InsertBlock->begin()); 1338 1339 Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy)); 1340 1341 // Always generate a memcpy of alignment 1 here because we don't know 1342 // the alignment of the src pointer. Other optimizations can infer 1343 // better alignment. 1344 Builder.CreateMemCpy(Dst, /*DstAlign*/ Align(1), Src, 1345 /*SrcAlign*/ Align(1), Size); 1346 } 1347 1348 /// When inlining a call site that has a byval argument, 1349 /// we have to make the implicit memcpy explicit by adding it. 1350 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 1351 const Function *CalledFunc, 1352 InlineFunctionInfo &IFI, 1353 unsigned ByValAlignment) { 1354 PointerType *ArgTy = cast<PointerType>(Arg->getType()); 1355 Type *AggTy = ArgTy->getElementType(); 1356 1357 Function *Caller = TheCall->getFunction(); 1358 const DataLayout &DL = Caller->getParent()->getDataLayout(); 1359 1360 // If the called function is readonly, then it could not mutate the caller's 1361 // copy of the byval'd memory. In this case, it is safe to elide the copy and 1362 // temporary. 1363 if (CalledFunc->onlyReadsMemory()) { 1364 // If the byval argument has a specified alignment that is greater than the 1365 // passed in pointer, then we either have to round up the input pointer or 1366 // give up on this transformation. 1367 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 1368 return Arg; 1369 1370 AssumptionCache *AC = 1371 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr; 1372 1373 // If the pointer is already known to be sufficiently aligned, or if we can 1374 // round it up to a larger alignment, then we don't need a temporary. 1375 if (getOrEnforceKnownAlignment(Arg, Align(ByValAlignment), DL, TheCall, 1376 AC) >= ByValAlignment) 1377 return Arg; 1378 1379 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 1380 // for code quality, but rarely happens and is required for correctness. 1381 } 1382 1383 // Create the alloca. If we have DataLayout, use nice alignment. 1384 Align Alignment(DL.getPrefTypeAlignment(AggTy)); 1385 1386 // If the byval had an alignment specified, we *must* use at least that 1387 // alignment, as it is required by the byval argument (and uses of the 1388 // pointer inside the callee). 1389 Alignment = max(Alignment, MaybeAlign(ByValAlignment)); 1390 1391 Value *NewAlloca = 1392 new AllocaInst(AggTy, DL.getAllocaAddrSpace(), nullptr, Alignment, 1393 Arg->getName(), &*Caller->begin()->begin()); 1394 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); 1395 1396 // Uses of the argument in the function should use our new alloca 1397 // instead. 1398 return NewAlloca; 1399 } 1400 1401 // Check whether this Value is used by a lifetime intrinsic. 1402 static bool isUsedByLifetimeMarker(Value *V) { 1403 for (User *U : V->users()) 1404 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) 1405 if (II->isLifetimeStartOrEnd()) 1406 return true; 1407 return false; 1408 } 1409 1410 // Check whether the given alloca already has 1411 // lifetime.start or lifetime.end intrinsics. 1412 static bool hasLifetimeMarkers(AllocaInst *AI) { 1413 Type *Ty = AI->getType(); 1414 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), 1415 Ty->getPointerAddressSpace()); 1416 if (Ty == Int8PtrTy) 1417 return isUsedByLifetimeMarker(AI); 1418 1419 // Do a scan to find all the casts to i8*. 1420 for (User *U : AI->users()) { 1421 if (U->getType() != Int8PtrTy) continue; 1422 if (U->stripPointerCasts() != AI) continue; 1423 if (isUsedByLifetimeMarker(U)) 1424 return true; 1425 } 1426 return false; 1427 } 1428 1429 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry 1430 /// block. Allocas used in inalloca calls and allocas of dynamic array size 1431 /// cannot be static. 1432 static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) { 1433 return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca(); 1434 } 1435 1436 /// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL 1437 /// inlined at \p InlinedAt. \p IANodes is an inlined-at cache. 1438 static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt, 1439 LLVMContext &Ctx, 1440 DenseMap<const MDNode *, MDNode *> &IANodes) { 1441 auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes); 1442 return DebugLoc::get(OrigDL.getLine(), OrigDL.getCol(), OrigDL.getScope(), 1443 IA); 1444 } 1445 1446 /// Update inlined instructions' line numbers to 1447 /// to encode location where these instructions are inlined. 1448 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 1449 Instruction *TheCall, bool CalleeHasDebugInfo) { 1450 const DebugLoc &TheCallDL = TheCall->getDebugLoc(); 1451 if (!TheCallDL) 1452 return; 1453 1454 auto &Ctx = Fn->getContext(); 1455 DILocation *InlinedAtNode = TheCallDL; 1456 1457 // Create a unique call site, not to be confused with any other call from the 1458 // same location. 1459 InlinedAtNode = DILocation::getDistinct( 1460 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(), 1461 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt()); 1462 1463 // Cache the inlined-at nodes as they're built so they are reused, without 1464 // this every instruction's inlined-at chain would become distinct from each 1465 // other. 1466 DenseMap<const MDNode *, MDNode *> IANodes; 1467 1468 // Check if we are not generating inline line tables and want to use 1469 // the call site location instead. 1470 bool NoInlineLineTables = Fn->hasFnAttribute("no-inline-line-tables"); 1471 1472 for (; FI != Fn->end(); ++FI) { 1473 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 1474 BI != BE; ++BI) { 1475 // Loop metadata needs to be updated so that the start and end locs 1476 // reference inlined-at locations. 1477 auto updateLoopInfoLoc = [&Ctx, &InlinedAtNode, &IANodes]( 1478 const DILocation &Loc) -> DILocation * { 1479 return inlineDebugLoc(&Loc, InlinedAtNode, Ctx, IANodes).get(); 1480 }; 1481 updateLoopMetadataDebugLocations(*BI, updateLoopInfoLoc); 1482 1483 if (!NoInlineLineTables) 1484 if (DebugLoc DL = BI->getDebugLoc()) { 1485 DebugLoc IDL = 1486 inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes); 1487 BI->setDebugLoc(IDL); 1488 continue; 1489 } 1490 1491 if (CalleeHasDebugInfo && !NoInlineLineTables) 1492 continue; 1493 1494 // If the inlined instruction has no line number, or if inline info 1495 // is not being generated, make it look as if it originates from the call 1496 // location. This is important for ((__always_inline, __nodebug__)) 1497 // functions which must use caller location for all instructions in their 1498 // function body. 1499 1500 // Don't update static allocas, as they may get moved later. 1501 if (auto *AI = dyn_cast<AllocaInst>(BI)) 1502 if (allocaWouldBeStaticInEntry(AI)) 1503 continue; 1504 1505 BI->setDebugLoc(TheCallDL); 1506 } 1507 1508 // Remove debug info intrinsics if we're not keeping inline info. 1509 if (NoInlineLineTables) { 1510 BasicBlock::iterator BI = FI->begin(); 1511 while (BI != FI->end()) { 1512 if (isa<DbgInfoIntrinsic>(BI)) { 1513 BI = BI->eraseFromParent(); 1514 continue; 1515 } 1516 ++BI; 1517 } 1518 } 1519 1520 } 1521 } 1522 1523 /// Update the block frequencies of the caller after a callee has been inlined. 1524 /// 1525 /// Each block cloned into the caller has its block frequency scaled by the 1526 /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of 1527 /// callee's entry block gets the same frequency as the callsite block and the 1528 /// relative frequencies of all cloned blocks remain the same after cloning. 1529 static void updateCallerBFI(BasicBlock *CallSiteBlock, 1530 const ValueToValueMapTy &VMap, 1531 BlockFrequencyInfo *CallerBFI, 1532 BlockFrequencyInfo *CalleeBFI, 1533 const BasicBlock &CalleeEntryBlock) { 1534 SmallPtrSet<BasicBlock *, 16> ClonedBBs; 1535 for (auto Entry : VMap) { 1536 if (!isa<BasicBlock>(Entry.first) || !Entry.second) 1537 continue; 1538 auto *OrigBB = cast<BasicBlock>(Entry.first); 1539 auto *ClonedBB = cast<BasicBlock>(Entry.second); 1540 uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency(); 1541 if (!ClonedBBs.insert(ClonedBB).second) { 1542 // Multiple blocks in the callee might get mapped to one cloned block in 1543 // the caller since we prune the callee as we clone it. When that happens, 1544 // we want to use the maximum among the original blocks' frequencies. 1545 uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency(); 1546 if (NewFreq > Freq) 1547 Freq = NewFreq; 1548 } 1549 CallerBFI->setBlockFreq(ClonedBB, Freq); 1550 } 1551 BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock)); 1552 CallerBFI->setBlockFreqAndScale( 1553 EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(), 1554 ClonedBBs); 1555 } 1556 1557 /// Update the branch metadata for cloned call instructions. 1558 static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap, 1559 const ProfileCount &CalleeEntryCount, 1560 const CallBase &TheCall, ProfileSummaryInfo *PSI, 1561 BlockFrequencyInfo *CallerBFI) { 1562 if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() || 1563 CalleeEntryCount.getCount() < 1) 1564 return; 1565 auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None; 1566 int64_t CallCount = 1567 std::min(CallSiteCount.hasValue() ? CallSiteCount.getValue() : 0, 1568 CalleeEntryCount.getCount()); 1569 updateProfileCallee(Callee, -CallCount, &VMap); 1570 } 1571 1572 void llvm::updateProfileCallee( 1573 Function *Callee, int64_t entryDelta, 1574 const ValueMap<const Value *, WeakTrackingVH> *VMap) { 1575 auto CalleeCount = Callee->getEntryCount(); 1576 if (!CalleeCount.hasValue()) 1577 return; 1578 1579 uint64_t priorEntryCount = CalleeCount.getCount(); 1580 uint64_t newEntryCount; 1581 1582 // Since CallSiteCount is an estimate, it could exceed the original callee 1583 // count and has to be set to 0 so guard against underflow. 1584 if (entryDelta < 0 && static_cast<uint64_t>(-entryDelta) > priorEntryCount) 1585 newEntryCount = 0; 1586 else 1587 newEntryCount = priorEntryCount + entryDelta; 1588 1589 // During inlining ? 1590 if (VMap) { 1591 uint64_t cloneEntryCount = priorEntryCount - newEntryCount; 1592 for (auto Entry : *VMap) 1593 if (isa<CallInst>(Entry.first)) 1594 if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second)) 1595 CI->updateProfWeight(cloneEntryCount, priorEntryCount); 1596 } 1597 1598 if (entryDelta) { 1599 Callee->setEntryCount(newEntryCount); 1600 1601 for (BasicBlock &BB : *Callee) 1602 // No need to update the callsite if it is pruned during inlining. 1603 if (!VMap || VMap->count(&BB)) 1604 for (Instruction &I : BB) 1605 if (CallInst *CI = dyn_cast<CallInst>(&I)) 1606 CI->updateProfWeight(newEntryCount, priorEntryCount); 1607 } 1608 } 1609 1610 /// This function inlines the called function into the basic block of the 1611 /// caller. This returns false if it is not possible to inline this call. 1612 /// The program is still in a well defined state if this occurs though. 1613 /// 1614 /// Note that this only does one level of inlining. For example, if the 1615 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 1616 /// exists in the instruction stream. Similarly this will inline a recursive 1617 /// function by one level. 1618 llvm::InlineResult llvm::InlineFunction(CallBase &CB, InlineFunctionInfo &IFI, 1619 AAResults *CalleeAAR, 1620 bool InsertLifetime, 1621 Function *ForwardVarArgsTo) { 1622 assert(CB.getParent() && CB.getFunction() && "Instruction not in function!"); 1623 1624 // FIXME: we don't inline callbr yet. 1625 if (isa<CallBrInst>(CB)) 1626 return InlineResult::failure("We don't inline callbr yet."); 1627 1628 // If IFI has any state in it, zap it before we fill it in. 1629 IFI.reset(); 1630 1631 Function *CalledFunc = CB.getCalledFunction(); 1632 if (!CalledFunc || // Can't inline external function or indirect 1633 CalledFunc->isDeclaration()) // call! 1634 return InlineResult::failure("external or indirect"); 1635 1636 // The inliner does not know how to inline through calls with operand bundles 1637 // in general ... 1638 if (CB.hasOperandBundles()) { 1639 for (int i = 0, e = CB.getNumOperandBundles(); i != e; ++i) { 1640 uint32_t Tag = CB.getOperandBundleAt(i).getTagID(); 1641 // ... but it knows how to inline through "deopt" operand bundles ... 1642 if (Tag == LLVMContext::OB_deopt) 1643 continue; 1644 // ... and "funclet" operand bundles. 1645 if (Tag == LLVMContext::OB_funclet) 1646 continue; 1647 1648 return InlineResult::failure("unsupported operand bundle"); 1649 } 1650 } 1651 1652 // If the call to the callee cannot throw, set the 'nounwind' flag on any 1653 // calls that we inline. 1654 bool MarkNoUnwind = CB.doesNotThrow(); 1655 1656 BasicBlock *OrigBB = CB.getParent(); 1657 Function *Caller = OrigBB->getParent(); 1658 1659 // GC poses two hazards to inlining, which only occur when the callee has GC: 1660 // 1. If the caller has no GC, then the callee's GC must be propagated to the 1661 // caller. 1662 // 2. If the caller has a differing GC, it is invalid to inline. 1663 if (CalledFunc->hasGC()) { 1664 if (!Caller->hasGC()) 1665 Caller->setGC(CalledFunc->getGC()); 1666 else if (CalledFunc->getGC() != Caller->getGC()) 1667 return InlineResult::failure("incompatible GC"); 1668 } 1669 1670 // Inlining a function that explicitly should not have a stack protector may 1671 // break the code if inlined into a function that does have a stack 1672 // protector. 1673 if (LLVM_UNLIKELY(Caller->hasFnAttribute(Attribute::NoStackProtect))) 1674 if (CalledFunc->hasFnAttribute(Attribute::StackProtect) || 1675 CalledFunc->hasFnAttribute(Attribute::StackProtectStrong) || 1676 CalledFunc->hasFnAttribute(Attribute::StackProtectReq)) 1677 return InlineResult::failure( 1678 "stack protected callee but caller requested no stack protector"); 1679 if (LLVM_UNLIKELY(CalledFunc->hasFnAttribute(Attribute::NoStackProtect))) 1680 if (Caller->hasFnAttribute(Attribute::StackProtect) || 1681 Caller->hasFnAttribute(Attribute::StackProtectStrong) || 1682 Caller->hasFnAttribute(Attribute::StackProtectReq)) 1683 return InlineResult::failure( 1684 "stack protected caller but callee requested no stack protector"); 1685 1686 // Get the personality function from the callee if it contains a landing pad. 1687 Constant *CalledPersonality = 1688 CalledFunc->hasPersonalityFn() 1689 ? CalledFunc->getPersonalityFn()->stripPointerCasts() 1690 : nullptr; 1691 1692 // Find the personality function used by the landing pads of the caller. If it 1693 // exists, then check to see that it matches the personality function used in 1694 // the callee. 1695 Constant *CallerPersonality = 1696 Caller->hasPersonalityFn() 1697 ? Caller->getPersonalityFn()->stripPointerCasts() 1698 : nullptr; 1699 if (CalledPersonality) { 1700 if (!CallerPersonality) 1701 Caller->setPersonalityFn(CalledPersonality); 1702 // If the personality functions match, then we can perform the 1703 // inlining. Otherwise, we can't inline. 1704 // TODO: This isn't 100% true. Some personality functions are proper 1705 // supersets of others and can be used in place of the other. 1706 else if (CalledPersonality != CallerPersonality) 1707 return InlineResult::failure("incompatible personality"); 1708 } 1709 1710 // We need to figure out which funclet the callsite was in so that we may 1711 // properly nest the callee. 1712 Instruction *CallSiteEHPad = nullptr; 1713 if (CallerPersonality) { 1714 EHPersonality Personality = classifyEHPersonality(CallerPersonality); 1715 if (isScopedEHPersonality(Personality)) { 1716 Optional<OperandBundleUse> ParentFunclet = 1717 CB.getOperandBundle(LLVMContext::OB_funclet); 1718 if (ParentFunclet) 1719 CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front()); 1720 1721 // OK, the inlining site is legal. What about the target function? 1722 1723 if (CallSiteEHPad) { 1724 if (Personality == EHPersonality::MSVC_CXX) { 1725 // The MSVC personality cannot tolerate catches getting inlined into 1726 // cleanup funclets. 1727 if (isa<CleanupPadInst>(CallSiteEHPad)) { 1728 // Ok, the call site is within a cleanuppad. Let's check the callee 1729 // for catchpads. 1730 for (const BasicBlock &CalledBB : *CalledFunc) { 1731 if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI())) 1732 return InlineResult::failure("catch in cleanup funclet"); 1733 } 1734 } 1735 } else if (isAsynchronousEHPersonality(Personality)) { 1736 // SEH is even less tolerant, there may not be any sort of exceptional 1737 // funclet in the callee. 1738 for (const BasicBlock &CalledBB : *CalledFunc) { 1739 if (CalledBB.isEHPad()) 1740 return InlineResult::failure("SEH in cleanup funclet"); 1741 } 1742 } 1743 } 1744 } 1745 } 1746 1747 // Determine if we are dealing with a call in an EHPad which does not unwind 1748 // to caller. 1749 bool EHPadForCallUnwindsLocally = false; 1750 if (CallSiteEHPad && isa<CallInst>(CB)) { 1751 UnwindDestMemoTy FuncletUnwindMap; 1752 Value *CallSiteUnwindDestToken = 1753 getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap); 1754 1755 EHPadForCallUnwindsLocally = 1756 CallSiteUnwindDestToken && 1757 !isa<ConstantTokenNone>(CallSiteUnwindDestToken); 1758 } 1759 1760 // Get an iterator to the last basic block in the function, which will have 1761 // the new function inlined after it. 1762 Function::iterator LastBlock = --Caller->end(); 1763 1764 // Make sure to capture all of the return instructions from the cloned 1765 // function. 1766 SmallVector<ReturnInst*, 8> Returns; 1767 ClonedCodeInfo InlinedFunctionInfo; 1768 Function::iterator FirstNewBlock; 1769 1770 { // Scope to destroy VMap after cloning. 1771 ValueToValueMapTy VMap; 1772 // Keep a list of pair (dst, src) to emit byval initializations. 1773 SmallVector<std::pair<Value*, Value*>, 4> ByValInit; 1774 1775 auto &DL = Caller->getParent()->getDataLayout(); 1776 1777 // Calculate the vector of arguments to pass into the function cloner, which 1778 // matches up the formal to the actual argument values. 1779 auto AI = CB.arg_begin(); 1780 unsigned ArgNo = 0; 1781 for (Function::arg_iterator I = CalledFunc->arg_begin(), 1782 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 1783 Value *ActualArg = *AI; 1784 1785 // When byval arguments actually inlined, we need to make the copy implied 1786 // by them explicit. However, we don't do this if the callee is readonly 1787 // or readnone, because the copy would be unneeded: the callee doesn't 1788 // modify the struct. 1789 if (CB.isByValArgument(ArgNo)) { 1790 ActualArg = HandleByValArgument(ActualArg, &CB, CalledFunc, IFI, 1791 CalledFunc->getParamAlignment(ArgNo)); 1792 if (ActualArg != *AI) 1793 ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI)); 1794 } 1795 1796 VMap[&*I] = ActualArg; 1797 } 1798 1799 // TODO: Remove this when users have been updated to the assume bundles. 1800 // Add alignment assumptions if necessary. We do this before the inlined 1801 // instructions are actually cloned into the caller so that we can easily 1802 // check what will be known at the start of the inlined code. 1803 AddAlignmentAssumptions(CB, IFI); 1804 1805 AssumptionCache *AC = 1806 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr; 1807 1808 /// Preserve all attributes on of the call and its parameters. 1809 salvageKnowledge(&CB, AC); 1810 1811 // We want the inliner to prune the code as it copies. We would LOVE to 1812 // have no dead or constant instructions leftover after inlining occurs 1813 // (which can happen, e.g., because an argument was constant), but we'll be 1814 // happy with whatever the cloner can do. 1815 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 1816 /*ModuleLevelChanges=*/false, Returns, ".i", 1817 &InlinedFunctionInfo, &CB); 1818 // Remember the first block that is newly cloned over. 1819 FirstNewBlock = LastBlock; ++FirstNewBlock; 1820 1821 if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr) 1822 // Update the BFI of blocks cloned into the caller. 1823 updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI, 1824 CalledFunc->front()); 1825 1826 updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), CB, 1827 IFI.PSI, IFI.CallerBFI); 1828 1829 // Inject byval arguments initialization. 1830 for (std::pair<Value*, Value*> &Init : ByValInit) 1831 HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(), 1832 &*FirstNewBlock, IFI); 1833 1834 Optional<OperandBundleUse> ParentDeopt = 1835 CB.getOperandBundle(LLVMContext::OB_deopt); 1836 if (ParentDeopt) { 1837 SmallVector<OperandBundleDef, 2> OpDefs; 1838 1839 for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) { 1840 CallBase *ICS = dyn_cast_or_null<CallBase>(VH); 1841 if (!ICS) 1842 continue; // instruction was DCE'd or RAUW'ed to undef 1843 1844 OpDefs.clear(); 1845 1846 OpDefs.reserve(ICS->getNumOperandBundles()); 1847 1848 for (unsigned COBi = 0, COBe = ICS->getNumOperandBundles(); COBi < COBe; 1849 ++COBi) { 1850 auto ChildOB = ICS->getOperandBundleAt(COBi); 1851 if (ChildOB.getTagID() != LLVMContext::OB_deopt) { 1852 // If the inlined call has other operand bundles, let them be 1853 OpDefs.emplace_back(ChildOB); 1854 continue; 1855 } 1856 1857 // It may be useful to separate this logic (of handling operand 1858 // bundles) out to a separate "policy" component if this gets crowded. 1859 // Prepend the parent's deoptimization continuation to the newly 1860 // inlined call's deoptimization continuation. 1861 std::vector<Value *> MergedDeoptArgs; 1862 MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() + 1863 ChildOB.Inputs.size()); 1864 1865 MergedDeoptArgs.insert(MergedDeoptArgs.end(), 1866 ParentDeopt->Inputs.begin(), 1867 ParentDeopt->Inputs.end()); 1868 MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(), 1869 ChildOB.Inputs.end()); 1870 1871 OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs)); 1872 } 1873 1874 Instruction *NewI = CallBase::Create(ICS, OpDefs, ICS); 1875 1876 // Note: the RAUW does the appropriate fixup in VMap, so we need to do 1877 // this even if the call returns void. 1878 ICS->replaceAllUsesWith(NewI); 1879 1880 VH = nullptr; 1881 ICS->eraseFromParent(); 1882 } 1883 } 1884 1885 // Update the callgraph if requested. 1886 if (IFI.CG) 1887 UpdateCallGraphAfterInlining(CB, FirstNewBlock, VMap, IFI); 1888 1889 // For 'nodebug' functions, the associated DISubprogram is always null. 1890 // Conservatively avoid propagating the callsite debug location to 1891 // instructions inlined from a function whose DISubprogram is not null. 1892 fixupLineNumbers(Caller, FirstNewBlock, &CB, 1893 CalledFunc->getSubprogram() != nullptr); 1894 1895 // Clone existing noalias metadata if necessary. 1896 CloneAliasScopeMetadata(CB, VMap); 1897 1898 // Add noalias metadata if necessary. 1899 AddAliasScopeMetadata(CB, VMap, DL, CalleeAAR); 1900 1901 // Clone return attributes on the callsite into the calls within the inlined 1902 // function which feed into its return value. 1903 AddReturnAttributes(CB, VMap); 1904 1905 // Propagate metadata on the callsite if necessary. 1906 PropagateCallSiteMetadata(CB, VMap); 1907 1908 // Register any cloned assumptions. 1909 if (IFI.GetAssumptionCache) 1910 for (BasicBlock &NewBlock : 1911 make_range(FirstNewBlock->getIterator(), Caller->end())) 1912 for (Instruction &I : NewBlock) 1913 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 1914 if (II->getIntrinsicID() == Intrinsic::assume) 1915 IFI.GetAssumptionCache(*Caller).registerAssumption(II); 1916 } 1917 1918 // If there are any alloca instructions in the block that used to be the entry 1919 // block for the callee, move them to the entry block of the caller. First 1920 // calculate which instruction they should be inserted before. We insert the 1921 // instructions at the end of the current alloca list. 1922 { 1923 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 1924 for (BasicBlock::iterator I = FirstNewBlock->begin(), 1925 E = FirstNewBlock->end(); I != E; ) { 1926 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 1927 if (!AI) continue; 1928 1929 // If the alloca is now dead, remove it. This often occurs due to code 1930 // specialization. 1931 if (AI->use_empty()) { 1932 AI->eraseFromParent(); 1933 continue; 1934 } 1935 1936 if (!allocaWouldBeStaticInEntry(AI)) 1937 continue; 1938 1939 // Keep track of the static allocas that we inline into the caller. 1940 IFI.StaticAllocas.push_back(AI); 1941 1942 // Scan for the block of allocas that we can move over, and move them 1943 // all at once. 1944 while (isa<AllocaInst>(I) && 1945 !cast<AllocaInst>(I)->use_empty() && 1946 allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) { 1947 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 1948 ++I; 1949 } 1950 1951 // Transfer all of the allocas over in a block. Using splice means 1952 // that the instructions aren't removed from the symbol table, then 1953 // reinserted. 1954 Caller->getEntryBlock().getInstList().splice( 1955 InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I); 1956 } 1957 } 1958 1959 SmallVector<Value*,4> VarArgsToForward; 1960 SmallVector<AttributeSet, 4> VarArgsAttrs; 1961 for (unsigned i = CalledFunc->getFunctionType()->getNumParams(); 1962 i < CB.getNumArgOperands(); i++) { 1963 VarArgsToForward.push_back(CB.getArgOperand(i)); 1964 VarArgsAttrs.push_back(CB.getAttributes().getParamAttributes(i)); 1965 } 1966 1967 bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false; 1968 if (InlinedFunctionInfo.ContainsCalls) { 1969 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; 1970 if (CallInst *CI = dyn_cast<CallInst>(&CB)) 1971 CallSiteTailKind = CI->getTailCallKind(); 1972 1973 // For inlining purposes, the "notail" marker is the same as no marker. 1974 if (CallSiteTailKind == CallInst::TCK_NoTail) 1975 CallSiteTailKind = CallInst::TCK_None; 1976 1977 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 1978 ++BB) { 1979 for (auto II = BB->begin(); II != BB->end();) { 1980 Instruction &I = *II++; 1981 CallInst *CI = dyn_cast<CallInst>(&I); 1982 if (!CI) 1983 continue; 1984 1985 // Forward varargs from inlined call site to calls to the 1986 // ForwardVarArgsTo function, if requested, and to musttail calls. 1987 if (!VarArgsToForward.empty() && 1988 ((ForwardVarArgsTo && 1989 CI->getCalledFunction() == ForwardVarArgsTo) || 1990 CI->isMustTailCall())) { 1991 // Collect attributes for non-vararg parameters. 1992 AttributeList Attrs = CI->getAttributes(); 1993 SmallVector<AttributeSet, 8> ArgAttrs; 1994 if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) { 1995 for (unsigned ArgNo = 0; 1996 ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo) 1997 ArgAttrs.push_back(Attrs.getParamAttributes(ArgNo)); 1998 } 1999 2000 // Add VarArg attributes. 2001 ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end()); 2002 Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttributes(), 2003 Attrs.getRetAttributes(), ArgAttrs); 2004 // Add VarArgs to existing parameters. 2005 SmallVector<Value *, 6> Params(CI->arg_operands()); 2006 Params.append(VarArgsToForward.begin(), VarArgsToForward.end()); 2007 CallInst *NewCI = CallInst::Create( 2008 CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI); 2009 NewCI->setDebugLoc(CI->getDebugLoc()); 2010 NewCI->setAttributes(Attrs); 2011 NewCI->setCallingConv(CI->getCallingConv()); 2012 CI->replaceAllUsesWith(NewCI); 2013 CI->eraseFromParent(); 2014 CI = NewCI; 2015 } 2016 2017 if (Function *F = CI->getCalledFunction()) 2018 InlinedDeoptimizeCalls |= 2019 F->getIntrinsicID() == Intrinsic::experimental_deoptimize; 2020 2021 // We need to reduce the strength of any inlined tail calls. For 2022 // musttail, we have to avoid introducing potential unbounded stack 2023 // growth. For example, if functions 'f' and 'g' are mutually recursive 2024 // with musttail, we can inline 'g' into 'f' so long as we preserve 2025 // musttail on the cloned call to 'f'. If either the inlined call site 2026 // or the cloned call site is *not* musttail, the program already has 2027 // one frame of stack growth, so it's safe to remove musttail. Here is 2028 // a table of example transformations: 2029 // 2030 // f -> musttail g -> musttail f ==> f -> musttail f 2031 // f -> musttail g -> tail f ==> f -> tail f 2032 // f -> g -> musttail f ==> f -> f 2033 // f -> g -> tail f ==> f -> f 2034 // 2035 // Inlined notail calls should remain notail calls. 2036 CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); 2037 if (ChildTCK != CallInst::TCK_NoTail) 2038 ChildTCK = std::min(CallSiteTailKind, ChildTCK); 2039 CI->setTailCallKind(ChildTCK); 2040 InlinedMustTailCalls |= CI->isMustTailCall(); 2041 2042 // Calls inlined through a 'nounwind' call site should be marked 2043 // 'nounwind'. 2044 if (MarkNoUnwind) 2045 CI->setDoesNotThrow(); 2046 } 2047 } 2048 } 2049 2050 // Leave lifetime markers for the static alloca's, scoping them to the 2051 // function we just inlined. 2052 if (InsertLifetime && !IFI.StaticAllocas.empty()) { 2053 IRBuilder<> builder(&FirstNewBlock->front()); 2054 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 2055 AllocaInst *AI = IFI.StaticAllocas[ai]; 2056 // Don't mark swifterror allocas. They can't have bitcast uses. 2057 if (AI->isSwiftError()) 2058 continue; 2059 2060 // If the alloca is already scoped to something smaller than the whole 2061 // function then there's no need to add redundant, less accurate markers. 2062 if (hasLifetimeMarkers(AI)) 2063 continue; 2064 2065 // Try to determine the size of the allocation. 2066 ConstantInt *AllocaSize = nullptr; 2067 if (ConstantInt *AIArraySize = 2068 dyn_cast<ConstantInt>(AI->getArraySize())) { 2069 auto &DL = Caller->getParent()->getDataLayout(); 2070 Type *AllocaType = AI->getAllocatedType(); 2071 TypeSize AllocaTypeSize = DL.getTypeAllocSize(AllocaType); 2072 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 2073 2074 // Don't add markers for zero-sized allocas. 2075 if (AllocaArraySize == 0) 2076 continue; 2077 2078 // Check that array size doesn't saturate uint64_t and doesn't 2079 // overflow when it's multiplied by type size. 2080 if (!AllocaTypeSize.isScalable() && 2081 AllocaArraySize != std::numeric_limits<uint64_t>::max() && 2082 std::numeric_limits<uint64_t>::max() / AllocaArraySize >= 2083 AllocaTypeSize.getFixedSize()) { 2084 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 2085 AllocaArraySize * AllocaTypeSize); 2086 } 2087 } 2088 2089 builder.CreateLifetimeStart(AI, AllocaSize); 2090 for (ReturnInst *RI : Returns) { 2091 // Don't insert llvm.lifetime.end calls between a musttail or deoptimize 2092 // call and a return. The return kills all local allocas. 2093 if (InlinedMustTailCalls && 2094 RI->getParent()->getTerminatingMustTailCall()) 2095 continue; 2096 if (InlinedDeoptimizeCalls && 2097 RI->getParent()->getTerminatingDeoptimizeCall()) 2098 continue; 2099 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); 2100 } 2101 } 2102 } 2103 2104 // If the inlined code contained dynamic alloca instructions, wrap the inlined 2105 // code with llvm.stacksave/llvm.stackrestore intrinsics. 2106 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 2107 Module *M = Caller->getParent(); 2108 // Get the two intrinsics we care about. 2109 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 2110 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 2111 2112 // Insert the llvm.stacksave. 2113 CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin()) 2114 .CreateCall(StackSave, {}, "savedstack"); 2115 2116 // Insert a call to llvm.stackrestore before any return instructions in the 2117 // inlined function. 2118 for (ReturnInst *RI : Returns) { 2119 // Don't insert llvm.stackrestore calls between a musttail or deoptimize 2120 // call and a return. The return will restore the stack pointer. 2121 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) 2122 continue; 2123 if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall()) 2124 continue; 2125 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); 2126 } 2127 } 2128 2129 // If we are inlining for an invoke instruction, we must make sure to rewrite 2130 // any call instructions into invoke instructions. This is sensitive to which 2131 // funclet pads were top-level in the inlinee, so must be done before 2132 // rewriting the "parent pad" links. 2133 if (auto *II = dyn_cast<InvokeInst>(&CB)) { 2134 BasicBlock *UnwindDest = II->getUnwindDest(); 2135 Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI(); 2136 if (isa<LandingPadInst>(FirstNonPHI)) { 2137 HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo); 2138 } else { 2139 HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo); 2140 } 2141 } 2142 2143 // Update the lexical scopes of the new funclets and callsites. 2144 // Anything that had 'none' as its parent is now nested inside the callsite's 2145 // EHPad. 2146 2147 if (CallSiteEHPad) { 2148 for (Function::iterator BB = FirstNewBlock->getIterator(), 2149 E = Caller->end(); 2150 BB != E; ++BB) { 2151 // Add bundle operands to any top-level call sites. 2152 SmallVector<OperandBundleDef, 1> OpBundles; 2153 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) { 2154 CallBase *I = dyn_cast<CallBase>(&*BBI++); 2155 if (!I) 2156 continue; 2157 2158 // Skip call sites which are nounwind intrinsics. 2159 auto *CalledFn = 2160 dyn_cast<Function>(I->getCalledOperand()->stripPointerCasts()); 2161 if (CalledFn && CalledFn->isIntrinsic() && I->doesNotThrow()) 2162 continue; 2163 2164 // Skip call sites which already have a "funclet" bundle. 2165 if (I->getOperandBundle(LLVMContext::OB_funclet)) 2166 continue; 2167 2168 I->getOperandBundlesAsDefs(OpBundles); 2169 OpBundles.emplace_back("funclet", CallSiteEHPad); 2170 2171 Instruction *NewInst = CallBase::Create(I, OpBundles, I); 2172 NewInst->takeName(I); 2173 I->replaceAllUsesWith(NewInst); 2174 I->eraseFromParent(); 2175 2176 OpBundles.clear(); 2177 } 2178 2179 // It is problematic if the inlinee has a cleanupret which unwinds to 2180 // caller and we inline it into a call site which doesn't unwind but into 2181 // an EH pad that does. Such an edge must be dynamically unreachable. 2182 // As such, we replace the cleanupret with unreachable. 2183 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator())) 2184 if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally) 2185 changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false); 2186 2187 Instruction *I = BB->getFirstNonPHI(); 2188 if (!I->isEHPad()) 2189 continue; 2190 2191 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 2192 if (isa<ConstantTokenNone>(CatchSwitch->getParentPad())) 2193 CatchSwitch->setParentPad(CallSiteEHPad); 2194 } else { 2195 auto *FPI = cast<FuncletPadInst>(I); 2196 if (isa<ConstantTokenNone>(FPI->getParentPad())) 2197 FPI->setParentPad(CallSiteEHPad); 2198 } 2199 } 2200 } 2201 2202 if (InlinedDeoptimizeCalls) { 2203 // We need to at least remove the deoptimizing returns from the Return set, 2204 // so that the control flow from those returns does not get merged into the 2205 // caller (but terminate it instead). If the caller's return type does not 2206 // match the callee's return type, we also need to change the return type of 2207 // the intrinsic. 2208 if (Caller->getReturnType() == CB.getType()) { 2209 auto NewEnd = llvm::remove_if(Returns, [](ReturnInst *RI) { 2210 return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr; 2211 }); 2212 Returns.erase(NewEnd, Returns.end()); 2213 } else { 2214 SmallVector<ReturnInst *, 8> NormalReturns; 2215 Function *NewDeoptIntrinsic = Intrinsic::getDeclaration( 2216 Caller->getParent(), Intrinsic::experimental_deoptimize, 2217 {Caller->getReturnType()}); 2218 2219 for (ReturnInst *RI : Returns) { 2220 CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall(); 2221 if (!DeoptCall) { 2222 NormalReturns.push_back(RI); 2223 continue; 2224 } 2225 2226 // The calling convention on the deoptimize call itself may be bogus, 2227 // since the code we're inlining may have undefined behavior (and may 2228 // never actually execute at runtime); but all 2229 // @llvm.experimental.deoptimize declarations have to have the same 2230 // calling convention in a well-formed module. 2231 auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv(); 2232 NewDeoptIntrinsic->setCallingConv(CallingConv); 2233 auto *CurBB = RI->getParent(); 2234 RI->eraseFromParent(); 2235 2236 SmallVector<Value *, 4> CallArgs(DeoptCall->arg_begin(), 2237 DeoptCall->arg_end()); 2238 2239 SmallVector<OperandBundleDef, 1> OpBundles; 2240 DeoptCall->getOperandBundlesAsDefs(OpBundles); 2241 DeoptCall->eraseFromParent(); 2242 assert(!OpBundles.empty() && 2243 "Expected at least the deopt operand bundle"); 2244 2245 IRBuilder<> Builder(CurBB); 2246 CallInst *NewDeoptCall = 2247 Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles); 2248 NewDeoptCall->setCallingConv(CallingConv); 2249 if (NewDeoptCall->getType()->isVoidTy()) 2250 Builder.CreateRetVoid(); 2251 else 2252 Builder.CreateRet(NewDeoptCall); 2253 } 2254 2255 // Leave behind the normal returns so we can merge control flow. 2256 std::swap(Returns, NormalReturns); 2257 } 2258 } 2259 2260 // Handle any inlined musttail call sites. In order for a new call site to be 2261 // musttail, the source of the clone and the inlined call site must have been 2262 // musttail. Therefore it's safe to return without merging control into the 2263 // phi below. 2264 if (InlinedMustTailCalls) { 2265 // Check if we need to bitcast the result of any musttail calls. 2266 Type *NewRetTy = Caller->getReturnType(); 2267 bool NeedBitCast = !CB.use_empty() && CB.getType() != NewRetTy; 2268 2269 // Handle the returns preceded by musttail calls separately. 2270 SmallVector<ReturnInst *, 8> NormalReturns; 2271 for (ReturnInst *RI : Returns) { 2272 CallInst *ReturnedMustTail = 2273 RI->getParent()->getTerminatingMustTailCall(); 2274 if (!ReturnedMustTail) { 2275 NormalReturns.push_back(RI); 2276 continue; 2277 } 2278 if (!NeedBitCast) 2279 continue; 2280 2281 // Delete the old return and any preceding bitcast. 2282 BasicBlock *CurBB = RI->getParent(); 2283 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); 2284 RI->eraseFromParent(); 2285 if (OldCast) 2286 OldCast->eraseFromParent(); 2287 2288 // Insert a new bitcast and return with the right type. 2289 IRBuilder<> Builder(CurBB); 2290 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); 2291 } 2292 2293 // Leave behind the normal returns so we can merge control flow. 2294 std::swap(Returns, NormalReturns); 2295 } 2296 2297 // Now that all of the transforms on the inlined code have taken place but 2298 // before we splice the inlined code into the CFG and lose track of which 2299 // blocks were actually inlined, collect the call sites. We only do this if 2300 // call graph updates weren't requested, as those provide value handle based 2301 // tracking of inlined call sites instead. 2302 if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) { 2303 // Otherwise just collect the raw call sites that were inlined. 2304 for (BasicBlock &NewBB : 2305 make_range(FirstNewBlock->getIterator(), Caller->end())) 2306 for (Instruction &I : NewBB) 2307 if (auto *CB = dyn_cast<CallBase>(&I)) 2308 IFI.InlinedCallSites.push_back(CB); 2309 } 2310 2311 // If we cloned in _exactly one_ basic block, and if that block ends in a 2312 // return instruction, we splice the body of the inlined callee directly into 2313 // the calling basic block. 2314 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 2315 // Move all of the instructions right before the call. 2316 OrigBB->getInstList().splice(CB.getIterator(), FirstNewBlock->getInstList(), 2317 FirstNewBlock->begin(), FirstNewBlock->end()); 2318 // Remove the cloned basic block. 2319 Caller->getBasicBlockList().pop_back(); 2320 2321 // If the call site was an invoke instruction, add a branch to the normal 2322 // destination. 2323 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 2324 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), &CB); 2325 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 2326 } 2327 2328 // If the return instruction returned a value, replace uses of the call with 2329 // uses of the returned value. 2330 if (!CB.use_empty()) { 2331 ReturnInst *R = Returns[0]; 2332 if (&CB == R->getReturnValue()) 2333 CB.replaceAllUsesWith(UndefValue::get(CB.getType())); 2334 else 2335 CB.replaceAllUsesWith(R->getReturnValue()); 2336 } 2337 // Since we are now done with the Call/Invoke, we can delete it. 2338 CB.eraseFromParent(); 2339 2340 // Since we are now done with the return instruction, delete it also. 2341 Returns[0]->eraseFromParent(); 2342 2343 // We are now done with the inlining. 2344 return InlineResult::success(); 2345 } 2346 2347 // Otherwise, we have the normal case, of more than one block to inline or 2348 // multiple return sites. 2349 2350 // We want to clone the entire callee function into the hole between the 2351 // "starter" and "ender" blocks. How we accomplish this depends on whether 2352 // this is an invoke instruction or a call instruction. 2353 BasicBlock *AfterCallBB; 2354 BranchInst *CreatedBranchToNormalDest = nullptr; 2355 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 2356 2357 // Add an unconditional branch to make this look like the CallInst case... 2358 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), &CB); 2359 2360 // Split the basic block. This guarantees that no PHI nodes will have to be 2361 // updated due to new incoming edges, and make the invoke case more 2362 // symmetric to the call case. 2363 AfterCallBB = 2364 OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(), 2365 CalledFunc->getName() + ".exit"); 2366 2367 } else { // It's a call 2368 // If this is a call instruction, we need to split the basic block that 2369 // the call lives in. 2370 // 2371 AfterCallBB = OrigBB->splitBasicBlock(CB.getIterator(), 2372 CalledFunc->getName() + ".exit"); 2373 } 2374 2375 if (IFI.CallerBFI) { 2376 // Copy original BB's block frequency to AfterCallBB 2377 IFI.CallerBFI->setBlockFreq( 2378 AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency()); 2379 } 2380 2381 // Change the branch that used to go to AfterCallBB to branch to the first 2382 // basic block of the inlined function. 2383 // 2384 Instruction *Br = OrigBB->getTerminator(); 2385 assert(Br && Br->getOpcode() == Instruction::Br && 2386 "splitBasicBlock broken!"); 2387 Br->setOperand(0, &*FirstNewBlock); 2388 2389 // Now that the function is correct, make it a little bit nicer. In 2390 // particular, move the basic blocks inserted from the end of the function 2391 // into the space made by splitting the source basic block. 2392 Caller->getBasicBlockList().splice(AfterCallBB->getIterator(), 2393 Caller->getBasicBlockList(), FirstNewBlock, 2394 Caller->end()); 2395 2396 // Handle all of the return instructions that we just cloned in, and eliminate 2397 // any users of the original call/invoke instruction. 2398 Type *RTy = CalledFunc->getReturnType(); 2399 2400 PHINode *PHI = nullptr; 2401 if (Returns.size() > 1) { 2402 // The PHI node should go at the front of the new basic block to merge all 2403 // possible incoming values. 2404 if (!CB.use_empty()) { 2405 PHI = PHINode::Create(RTy, Returns.size(), CB.getName(), 2406 &AfterCallBB->front()); 2407 // Anything that used the result of the function call should now use the 2408 // PHI node as their operand. 2409 CB.replaceAllUsesWith(PHI); 2410 } 2411 2412 // Loop over all of the return instructions adding entries to the PHI node 2413 // as appropriate. 2414 if (PHI) { 2415 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2416 ReturnInst *RI = Returns[i]; 2417 assert(RI->getReturnValue()->getType() == PHI->getType() && 2418 "Ret value not consistent in function!"); 2419 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 2420 } 2421 } 2422 2423 // Add a branch to the merge points and remove return instructions. 2424 DebugLoc Loc; 2425 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2426 ReturnInst *RI = Returns[i]; 2427 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 2428 Loc = RI->getDebugLoc(); 2429 BI->setDebugLoc(Loc); 2430 RI->eraseFromParent(); 2431 } 2432 // We need to set the debug location to *somewhere* inside the 2433 // inlined function. The line number may be nonsensical, but the 2434 // instruction will at least be associated with the right 2435 // function. 2436 if (CreatedBranchToNormalDest) 2437 CreatedBranchToNormalDest->setDebugLoc(Loc); 2438 } else if (!Returns.empty()) { 2439 // Otherwise, if there is exactly one return value, just replace anything 2440 // using the return value of the call with the computed value. 2441 if (!CB.use_empty()) { 2442 if (&CB == Returns[0]->getReturnValue()) 2443 CB.replaceAllUsesWith(UndefValue::get(CB.getType())); 2444 else 2445 CB.replaceAllUsesWith(Returns[0]->getReturnValue()); 2446 } 2447 2448 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 2449 BasicBlock *ReturnBB = Returns[0]->getParent(); 2450 ReturnBB->replaceAllUsesWith(AfterCallBB); 2451 2452 // Splice the code from the return block into the block that it will return 2453 // to, which contains the code that was after the call. 2454 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 2455 ReturnBB->getInstList()); 2456 2457 if (CreatedBranchToNormalDest) 2458 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 2459 2460 // Delete the return instruction now and empty ReturnBB now. 2461 Returns[0]->eraseFromParent(); 2462 ReturnBB->eraseFromParent(); 2463 } else if (!CB.use_empty()) { 2464 // No returns, but something is using the return value of the call. Just 2465 // nuke the result. 2466 CB.replaceAllUsesWith(UndefValue::get(CB.getType())); 2467 } 2468 2469 // Since we are now done with the Call/Invoke, we can delete it. 2470 CB.eraseFromParent(); 2471 2472 // If we inlined any musttail calls and the original return is now 2473 // unreachable, delete it. It can only contain a bitcast and ret. 2474 if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB)) 2475 AfterCallBB->eraseFromParent(); 2476 2477 // We should always be able to fold the entry block of the function into the 2478 // single predecessor of the block... 2479 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 2480 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 2481 2482 // Splice the code entry block into calling block, right before the 2483 // unconditional branch. 2484 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 2485 OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList()); 2486 2487 // Remove the unconditional branch. 2488 OrigBB->getInstList().erase(Br); 2489 2490 // Now we can remove the CalleeEntry block, which is now empty. 2491 Caller->getBasicBlockList().erase(CalleeEntry); 2492 2493 // If we inserted a phi node, check to see if it has a single value (e.g. all 2494 // the entries are the same or undef). If so, remove the PHI so it doesn't 2495 // block other optimizations. 2496 if (PHI) { 2497 AssumptionCache *AC = 2498 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr; 2499 auto &DL = Caller->getParent()->getDataLayout(); 2500 if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) { 2501 PHI->replaceAllUsesWith(V); 2502 PHI->eraseFromParent(); 2503 } 2504 } 2505 2506 return InlineResult::success(); 2507 } 2508