1 //===- InlineFunction.cpp - Code to perform function inlining -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements inlining of a function into a call site, resolving
10 // parameters and the return value as appropriate.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/BlockFrequencyInfo.h"
26 #include "llvm/Analysis/CallGraph.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/EHPersonalities.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/ObjCARCAnalysisUtils.h"
31 #include "llvm/Analysis/ObjCARCUtil.h"
32 #include "llvm/Analysis/ProfileSummaryInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DIBuilder.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Dominators.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/IntrinsicInst.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/User.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
64 #include "llvm/Transforms/Utils/Cloning.h"
65 #include "llvm/Transforms/Utils/Local.h"
66 #include "llvm/Transforms/Utils/ValueMapper.h"
67 #include <algorithm>
68 #include <cassert>
69 #include <cstdint>
70 #include <iterator>
71 #include <limits>
72 #include <string>
73 #include <utility>
74 #include <vector>
75 
76 using namespace llvm;
77 using ProfileCount = Function::ProfileCount;
78 
79 static cl::opt<bool>
80 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
81   cl::Hidden,
82   cl::desc("Convert noalias attributes to metadata during inlining."));
83 
84 static cl::opt<bool>
85     UseNoAliasIntrinsic("use-noalias-intrinsic-during-inlining", cl::Hidden,
86                         cl::ZeroOrMore, cl::init(true),
87                         cl::desc("Use the llvm.experimental.noalias.scope.decl "
88                                  "intrinsic during inlining."));
89 
90 // Disabled by default, because the added alignment assumptions may increase
91 // compile-time and block optimizations. This option is not suitable for use
92 // with frontends that emit comprehensive parameter alignment annotations.
93 static cl::opt<bool>
94 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
95   cl::init(false), cl::Hidden,
96   cl::desc("Convert align attributes to assumptions during inlining."));
97 
98 static cl::opt<bool> UpdateReturnAttributes(
99         "update-return-attrs", cl::init(true), cl::Hidden,
100             cl::desc("Update return attributes on calls within inlined body"));
101 
102 static cl::opt<unsigned> InlinerAttributeWindow(
103     "max-inst-checked-for-throw-during-inlining", cl::Hidden,
104     cl::desc("the maximum number of instructions analyzed for may throw during "
105              "attribute inference in inlined body"),
106     cl::init(4));
107 
108 namespace {
109 
110   /// A class for recording information about inlining a landing pad.
111   class LandingPadInliningInfo {
112     /// Destination of the invoke's unwind.
113     BasicBlock *OuterResumeDest;
114 
115     /// Destination for the callee's resume.
116     BasicBlock *InnerResumeDest = nullptr;
117 
118     /// LandingPadInst associated with the invoke.
119     LandingPadInst *CallerLPad = nullptr;
120 
121     /// PHI for EH values from landingpad insts.
122     PHINode *InnerEHValuesPHI = nullptr;
123 
124     SmallVector<Value*, 8> UnwindDestPHIValues;
125 
126   public:
127     LandingPadInliningInfo(InvokeInst *II)
128         : OuterResumeDest(II->getUnwindDest()) {
129       // If there are PHI nodes in the unwind destination block, we need to keep
130       // track of which values came into them from the invoke before removing
131       // the edge from this block.
132       BasicBlock *InvokeBB = II->getParent();
133       BasicBlock::iterator I = OuterResumeDest->begin();
134       for (; isa<PHINode>(I); ++I) {
135         // Save the value to use for this edge.
136         PHINode *PHI = cast<PHINode>(I);
137         UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
138       }
139 
140       CallerLPad = cast<LandingPadInst>(I);
141     }
142 
143     /// The outer unwind destination is the target of
144     /// unwind edges introduced for calls within the inlined function.
145     BasicBlock *getOuterResumeDest() const {
146       return OuterResumeDest;
147     }
148 
149     BasicBlock *getInnerResumeDest();
150 
151     LandingPadInst *getLandingPadInst() const { return CallerLPad; }
152 
153     /// Forward the 'resume' instruction to the caller's landing pad block.
154     /// When the landing pad block has only one predecessor, this is
155     /// a simple branch. When there is more than one predecessor, we need to
156     /// split the landing pad block after the landingpad instruction and jump
157     /// to there.
158     void forwardResume(ResumeInst *RI,
159                        SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
160 
161     /// Add incoming-PHI values to the unwind destination block for the given
162     /// basic block, using the values for the original invoke's source block.
163     void addIncomingPHIValuesFor(BasicBlock *BB) const {
164       addIncomingPHIValuesForInto(BB, OuterResumeDest);
165     }
166 
167     void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
168       BasicBlock::iterator I = dest->begin();
169       for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
170         PHINode *phi = cast<PHINode>(I);
171         phi->addIncoming(UnwindDestPHIValues[i], src);
172       }
173     }
174   };
175 
176 } // end anonymous namespace
177 
178 /// Get or create a target for the branch from ResumeInsts.
179 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
180   if (InnerResumeDest) return InnerResumeDest;
181 
182   // Split the landing pad.
183   BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
184   InnerResumeDest =
185     OuterResumeDest->splitBasicBlock(SplitPoint,
186                                      OuterResumeDest->getName() + ".body");
187 
188   // The number of incoming edges we expect to the inner landing pad.
189   const unsigned PHICapacity = 2;
190 
191   // Create corresponding new PHIs for all the PHIs in the outer landing pad.
192   Instruction *InsertPoint = &InnerResumeDest->front();
193   BasicBlock::iterator I = OuterResumeDest->begin();
194   for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
195     PHINode *OuterPHI = cast<PHINode>(I);
196     PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
197                                         OuterPHI->getName() + ".lpad-body",
198                                         InsertPoint);
199     OuterPHI->replaceAllUsesWith(InnerPHI);
200     InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
201   }
202 
203   // Create a PHI for the exception values.
204   InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
205                                      "eh.lpad-body", InsertPoint);
206   CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
207   InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
208 
209   // All done.
210   return InnerResumeDest;
211 }
212 
213 /// Forward the 'resume' instruction to the caller's landing pad block.
214 /// When the landing pad block has only one predecessor, this is a simple
215 /// branch. When there is more than one predecessor, we need to split the
216 /// landing pad block after the landingpad instruction and jump to there.
217 void LandingPadInliningInfo::forwardResume(
218     ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
219   BasicBlock *Dest = getInnerResumeDest();
220   BasicBlock *Src = RI->getParent();
221 
222   BranchInst::Create(Dest, Src);
223 
224   // Update the PHIs in the destination. They were inserted in an order which
225   // makes this work.
226   addIncomingPHIValuesForInto(Src, Dest);
227 
228   InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
229   RI->eraseFromParent();
230 }
231 
232 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
233 static Value *getParentPad(Value *EHPad) {
234   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
235     return FPI->getParentPad();
236   return cast<CatchSwitchInst>(EHPad)->getParentPad();
237 }
238 
239 using UnwindDestMemoTy = DenseMap<Instruction *, Value *>;
240 
241 /// Helper for getUnwindDestToken that does the descendant-ward part of
242 /// the search.
243 static Value *getUnwindDestTokenHelper(Instruction *EHPad,
244                                        UnwindDestMemoTy &MemoMap) {
245   SmallVector<Instruction *, 8> Worklist(1, EHPad);
246 
247   while (!Worklist.empty()) {
248     Instruction *CurrentPad = Worklist.pop_back_val();
249     // We only put pads on the worklist that aren't in the MemoMap.  When
250     // we find an unwind dest for a pad we may update its ancestors, but
251     // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
252     // so they should never get updated while queued on the worklist.
253     assert(!MemoMap.count(CurrentPad));
254     Value *UnwindDestToken = nullptr;
255     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
256       if (CatchSwitch->hasUnwindDest()) {
257         UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
258       } else {
259         // Catchswitch doesn't have a 'nounwind' variant, and one might be
260         // annotated as "unwinds to caller" when really it's nounwind (see
261         // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
262         // parent's unwind dest from this.  We can check its catchpads'
263         // descendants, since they might include a cleanuppad with an
264         // "unwinds to caller" cleanupret, which can be trusted.
265         for (auto HI = CatchSwitch->handler_begin(),
266                   HE = CatchSwitch->handler_end();
267              HI != HE && !UnwindDestToken; ++HI) {
268           BasicBlock *HandlerBlock = *HI;
269           auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
270           for (User *Child : CatchPad->users()) {
271             // Intentionally ignore invokes here -- since the catchswitch is
272             // marked "unwind to caller", it would be a verifier error if it
273             // contained an invoke which unwinds out of it, so any invoke we'd
274             // encounter must unwind to some child of the catch.
275             if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
276               continue;
277 
278             Instruction *ChildPad = cast<Instruction>(Child);
279             auto Memo = MemoMap.find(ChildPad);
280             if (Memo == MemoMap.end()) {
281               // Haven't figured out this child pad yet; queue it.
282               Worklist.push_back(ChildPad);
283               continue;
284             }
285             // We've already checked this child, but might have found that
286             // it offers no proof either way.
287             Value *ChildUnwindDestToken = Memo->second;
288             if (!ChildUnwindDestToken)
289               continue;
290             // We already know the child's unwind dest, which can either
291             // be ConstantTokenNone to indicate unwind to caller, or can
292             // be another child of the catchpad.  Only the former indicates
293             // the unwind dest of the catchswitch.
294             if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
295               UnwindDestToken = ChildUnwindDestToken;
296               break;
297             }
298             assert(getParentPad(ChildUnwindDestToken) == CatchPad);
299           }
300         }
301       }
302     } else {
303       auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
304       for (User *U : CleanupPad->users()) {
305         if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
306           if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
307             UnwindDestToken = RetUnwindDest->getFirstNonPHI();
308           else
309             UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
310           break;
311         }
312         Value *ChildUnwindDestToken;
313         if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
314           ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
315         } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
316           Instruction *ChildPad = cast<Instruction>(U);
317           auto Memo = MemoMap.find(ChildPad);
318           if (Memo == MemoMap.end()) {
319             // Haven't resolved this child yet; queue it and keep searching.
320             Worklist.push_back(ChildPad);
321             continue;
322           }
323           // We've checked this child, but still need to ignore it if it
324           // had no proof either way.
325           ChildUnwindDestToken = Memo->second;
326           if (!ChildUnwindDestToken)
327             continue;
328         } else {
329           // Not a relevant user of the cleanuppad
330           continue;
331         }
332         // In a well-formed program, the child/invoke must either unwind to
333         // an(other) child of the cleanup, or exit the cleanup.  In the
334         // first case, continue searching.
335         if (isa<Instruction>(ChildUnwindDestToken) &&
336             getParentPad(ChildUnwindDestToken) == CleanupPad)
337           continue;
338         UnwindDestToken = ChildUnwindDestToken;
339         break;
340       }
341     }
342     // If we haven't found an unwind dest for CurrentPad, we may have queued its
343     // children, so move on to the next in the worklist.
344     if (!UnwindDestToken)
345       continue;
346 
347     // Now we know that CurrentPad unwinds to UnwindDestToken.  It also exits
348     // any ancestors of CurrentPad up to but not including UnwindDestToken's
349     // parent pad.  Record this in the memo map, and check to see if the
350     // original EHPad being queried is one of the ones exited.
351     Value *UnwindParent;
352     if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
353       UnwindParent = getParentPad(UnwindPad);
354     else
355       UnwindParent = nullptr;
356     bool ExitedOriginalPad = false;
357     for (Instruction *ExitedPad = CurrentPad;
358          ExitedPad && ExitedPad != UnwindParent;
359          ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
360       // Skip over catchpads since they just follow their catchswitches.
361       if (isa<CatchPadInst>(ExitedPad))
362         continue;
363       MemoMap[ExitedPad] = UnwindDestToken;
364       ExitedOriginalPad |= (ExitedPad == EHPad);
365     }
366 
367     if (ExitedOriginalPad)
368       return UnwindDestToken;
369 
370     // Continue the search.
371   }
372 
373   // No definitive information is contained within this funclet.
374   return nullptr;
375 }
376 
377 /// Given an EH pad, find where it unwinds.  If it unwinds to an EH pad,
378 /// return that pad instruction.  If it unwinds to caller, return
379 /// ConstantTokenNone.  If it does not have a definitive unwind destination,
380 /// return nullptr.
381 ///
382 /// This routine gets invoked for calls in funclets in inlinees when inlining
383 /// an invoke.  Since many funclets don't have calls inside them, it's queried
384 /// on-demand rather than building a map of pads to unwind dests up front.
385 /// Determining a funclet's unwind dest may require recursively searching its
386 /// descendants, and also ancestors and cousins if the descendants don't provide
387 /// an answer.  Since most funclets will have their unwind dest immediately
388 /// available as the unwind dest of a catchswitch or cleanupret, this routine
389 /// searches top-down from the given pad and then up. To avoid worst-case
390 /// quadratic run-time given that approach, it uses a memo map to avoid
391 /// re-processing funclet trees.  The callers that rewrite the IR as they go
392 /// take advantage of this, for correctness, by checking/forcing rewritten
393 /// pads' entries to match the original callee view.
394 static Value *getUnwindDestToken(Instruction *EHPad,
395                                  UnwindDestMemoTy &MemoMap) {
396   // Catchpads unwind to the same place as their catchswitch;
397   // redirct any queries on catchpads so the code below can
398   // deal with just catchswitches and cleanuppads.
399   if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
400     EHPad = CPI->getCatchSwitch();
401 
402   // Check if we've already determined the unwind dest for this pad.
403   auto Memo = MemoMap.find(EHPad);
404   if (Memo != MemoMap.end())
405     return Memo->second;
406 
407   // Search EHPad and, if necessary, its descendants.
408   Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
409   assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
410   if (UnwindDestToken)
411     return UnwindDestToken;
412 
413   // No information is available for this EHPad from itself or any of its
414   // descendants.  An unwind all the way out to a pad in the caller would
415   // need also to agree with the unwind dest of the parent funclet, so
416   // search up the chain to try to find a funclet with information.  Put
417   // null entries in the memo map to avoid re-processing as we go up.
418   MemoMap[EHPad] = nullptr;
419 #ifndef NDEBUG
420   SmallPtrSet<Instruction *, 4> TempMemos;
421   TempMemos.insert(EHPad);
422 #endif
423   Instruction *LastUselessPad = EHPad;
424   Value *AncestorToken;
425   for (AncestorToken = getParentPad(EHPad);
426        auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
427        AncestorToken = getParentPad(AncestorToken)) {
428     // Skip over catchpads since they just follow their catchswitches.
429     if (isa<CatchPadInst>(AncestorPad))
430       continue;
431     // If the MemoMap had an entry mapping AncestorPad to nullptr, since we
432     // haven't yet called getUnwindDestTokenHelper for AncestorPad in this
433     // call to getUnwindDestToken, that would mean that AncestorPad had no
434     // information in itself, its descendants, or its ancestors.  If that
435     // were the case, then we should also have recorded the lack of information
436     // for the descendant that we're coming from.  So assert that we don't
437     // find a null entry in the MemoMap for AncestorPad.
438     assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
439     auto AncestorMemo = MemoMap.find(AncestorPad);
440     if (AncestorMemo == MemoMap.end()) {
441       UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
442     } else {
443       UnwindDestToken = AncestorMemo->second;
444     }
445     if (UnwindDestToken)
446       break;
447     LastUselessPad = AncestorPad;
448     MemoMap[LastUselessPad] = nullptr;
449 #ifndef NDEBUG
450     TempMemos.insert(LastUselessPad);
451 #endif
452   }
453 
454   // We know that getUnwindDestTokenHelper was called on LastUselessPad and
455   // returned nullptr (and likewise for EHPad and any of its ancestors up to
456   // LastUselessPad), so LastUselessPad has no information from below.  Since
457   // getUnwindDestTokenHelper must investigate all downward paths through
458   // no-information nodes to prove that a node has no information like this,
459   // and since any time it finds information it records it in the MemoMap for
460   // not just the immediately-containing funclet but also any ancestors also
461   // exited, it must be the case that, walking downward from LastUselessPad,
462   // visiting just those nodes which have not been mapped to an unwind dest
463   // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since
464   // they are just used to keep getUnwindDestTokenHelper from repeating work),
465   // any node visited must have been exhaustively searched with no information
466   // for it found.
467   SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
468   while (!Worklist.empty()) {
469     Instruction *UselessPad = Worklist.pop_back_val();
470     auto Memo = MemoMap.find(UselessPad);
471     if (Memo != MemoMap.end() && Memo->second) {
472       // Here the name 'UselessPad' is a bit of a misnomer, because we've found
473       // that it is a funclet that does have information about unwinding to
474       // a particular destination; its parent was a useless pad.
475       // Since its parent has no information, the unwind edge must not escape
476       // the parent, and must target a sibling of this pad.  This local unwind
477       // gives us no information about EHPad.  Leave it and the subtree rooted
478       // at it alone.
479       assert(getParentPad(Memo->second) == getParentPad(UselessPad));
480       continue;
481     }
482     // We know we don't have information for UselesPad.  If it has an entry in
483     // the MemoMap (mapping it to nullptr), it must be one of the TempMemos
484     // added on this invocation of getUnwindDestToken; if a previous invocation
485     // recorded nullptr, it would have had to prove that the ancestors of
486     // UselessPad, which include LastUselessPad, had no information, and that
487     // in turn would have required proving that the descendants of
488     // LastUselesPad, which include EHPad, have no information about
489     // LastUselessPad, which would imply that EHPad was mapped to nullptr in
490     // the MemoMap on that invocation, which isn't the case if we got here.
491     assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad));
492     // Assert as we enumerate users that 'UselessPad' doesn't have any unwind
493     // information that we'd be contradicting by making a map entry for it
494     // (which is something that getUnwindDestTokenHelper must have proved for
495     // us to get here).  Just assert on is direct users here; the checks in
496     // this downward walk at its descendants will verify that they don't have
497     // any unwind edges that exit 'UselessPad' either (i.e. they either have no
498     // unwind edges or unwind to a sibling).
499     MemoMap[UselessPad] = UnwindDestToken;
500     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
501       assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad");
502       for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) {
503         auto *CatchPad = HandlerBlock->getFirstNonPHI();
504         for (User *U : CatchPad->users()) {
505           assert(
506               (!isa<InvokeInst>(U) ||
507                (getParentPad(
508                     cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
509                 CatchPad)) &&
510               "Expected useless pad");
511           if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
512             Worklist.push_back(cast<Instruction>(U));
513         }
514       }
515     } else {
516       assert(isa<CleanupPadInst>(UselessPad));
517       for (User *U : UselessPad->users()) {
518         assert(!isa<CleanupReturnInst>(U) && "Expected useless pad");
519         assert((!isa<InvokeInst>(U) ||
520                 (getParentPad(
521                      cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
522                  UselessPad)) &&
523                "Expected useless pad");
524         if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
525           Worklist.push_back(cast<Instruction>(U));
526       }
527     }
528   }
529 
530   return UnwindDestToken;
531 }
532 
533 /// When we inline a basic block into an invoke,
534 /// we have to turn all of the calls that can throw into invokes.
535 /// This function analyze BB to see if there are any calls, and if so,
536 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
537 /// nodes in that block with the values specified in InvokeDestPHIValues.
538 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
539     BasicBlock *BB, BasicBlock *UnwindEdge,
540     UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
541   for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
542     Instruction *I = &*BBI++;
543 
544     // We only need to check for function calls: inlined invoke
545     // instructions require no special handling.
546     CallInst *CI = dyn_cast<CallInst>(I);
547 
548     if (!CI || CI->doesNotThrow() || CI->isInlineAsm())
549       continue;
550 
551     // We do not need to (and in fact, cannot) convert possibly throwing calls
552     // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
553     // invokes.  The caller's "segment" of the deoptimization continuation
554     // attached to the newly inlined @llvm.experimental_deoptimize
555     // (resp. @llvm.experimental.guard) call should contain the exception
556     // handling logic, if any.
557     if (auto *F = CI->getCalledFunction())
558       if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize ||
559           F->getIntrinsicID() == Intrinsic::experimental_guard)
560         continue;
561 
562     if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
563       // This call is nested inside a funclet.  If that funclet has an unwind
564       // destination within the inlinee, then unwinding out of this call would
565       // be UB.  Rewriting this call to an invoke which targets the inlined
566       // invoke's unwind dest would give the call's parent funclet multiple
567       // unwind destinations, which is something that subsequent EH table
568       // generation can't handle and that the veirifer rejects.  So when we
569       // see such a call, leave it as a call.
570       auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
571       Value *UnwindDestToken =
572           getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
573       if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
574         continue;
575 #ifndef NDEBUG
576       Instruction *MemoKey;
577       if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
578         MemoKey = CatchPad->getCatchSwitch();
579       else
580         MemoKey = FuncletPad;
581       assert(FuncletUnwindMap->count(MemoKey) &&
582              (*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
583              "must get memoized to avoid confusing later searches");
584 #endif // NDEBUG
585     }
586 
587     changeToInvokeAndSplitBasicBlock(CI, UnwindEdge);
588     return BB;
589   }
590   return nullptr;
591 }
592 
593 /// If we inlined an invoke site, we need to convert calls
594 /// in the body of the inlined function into invokes.
595 ///
596 /// II is the invoke instruction being inlined.  FirstNewBlock is the first
597 /// block of the inlined code (the last block is the end of the function),
598 /// and InlineCodeInfo is information about the code that got inlined.
599 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
600                                     ClonedCodeInfo &InlinedCodeInfo) {
601   BasicBlock *InvokeDest = II->getUnwindDest();
602 
603   Function *Caller = FirstNewBlock->getParent();
604 
605   // The inlined code is currently at the end of the function, scan from the
606   // start of the inlined code to its end, checking for stuff we need to
607   // rewrite.
608   LandingPadInliningInfo Invoke(II);
609 
610   // Get all of the inlined landing pad instructions.
611   SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
612   for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
613        I != E; ++I)
614     if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
615       InlinedLPads.insert(II->getLandingPadInst());
616 
617   // Append the clauses from the outer landing pad instruction into the inlined
618   // landing pad instructions.
619   LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
620   for (LandingPadInst *InlinedLPad : InlinedLPads) {
621     unsigned OuterNum = OuterLPad->getNumClauses();
622     InlinedLPad->reserveClauses(OuterNum);
623     for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
624       InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
625     if (OuterLPad->isCleanup())
626       InlinedLPad->setCleanup(true);
627   }
628 
629   for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
630        BB != E; ++BB) {
631     if (InlinedCodeInfo.ContainsCalls)
632       if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
633               &*BB, Invoke.getOuterResumeDest()))
634         // Update any PHI nodes in the exceptional block to indicate that there
635         // is now a new entry in them.
636         Invoke.addIncomingPHIValuesFor(NewBB);
637 
638     // Forward any resumes that are remaining here.
639     if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
640       Invoke.forwardResume(RI, InlinedLPads);
641   }
642 
643   // Now that everything is happy, we have one final detail.  The PHI nodes in
644   // the exception destination block still have entries due to the original
645   // invoke instruction. Eliminate these entries (which might even delete the
646   // PHI node) now.
647   InvokeDest->removePredecessor(II->getParent());
648 }
649 
650 /// If we inlined an invoke site, we need to convert calls
651 /// in the body of the inlined function into invokes.
652 ///
653 /// II is the invoke instruction being inlined.  FirstNewBlock is the first
654 /// block of the inlined code (the last block is the end of the function),
655 /// and InlineCodeInfo is information about the code that got inlined.
656 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
657                                ClonedCodeInfo &InlinedCodeInfo) {
658   BasicBlock *UnwindDest = II->getUnwindDest();
659   Function *Caller = FirstNewBlock->getParent();
660 
661   assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");
662 
663   // If there are PHI nodes in the unwind destination block, we need to keep
664   // track of which values came into them from the invoke before removing the
665   // edge from this block.
666   SmallVector<Value *, 8> UnwindDestPHIValues;
667   BasicBlock *InvokeBB = II->getParent();
668   for (Instruction &I : *UnwindDest) {
669     // Save the value to use for this edge.
670     PHINode *PHI = dyn_cast<PHINode>(&I);
671     if (!PHI)
672       break;
673     UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
674   }
675 
676   // Add incoming-PHI values to the unwind destination block for the given basic
677   // block, using the values for the original invoke's source block.
678   auto UpdatePHINodes = [&](BasicBlock *Src) {
679     BasicBlock::iterator I = UnwindDest->begin();
680     for (Value *V : UnwindDestPHIValues) {
681       PHINode *PHI = cast<PHINode>(I);
682       PHI->addIncoming(V, Src);
683       ++I;
684     }
685   };
686 
687   // This connects all the instructions which 'unwind to caller' to the invoke
688   // destination.
689   UnwindDestMemoTy FuncletUnwindMap;
690   for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
691        BB != E; ++BB) {
692     if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
693       if (CRI->unwindsToCaller()) {
694         auto *CleanupPad = CRI->getCleanupPad();
695         CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
696         CRI->eraseFromParent();
697         UpdatePHINodes(&*BB);
698         // Finding a cleanupret with an unwind destination would confuse
699         // subsequent calls to getUnwindDestToken, so map the cleanuppad
700         // to short-circuit any such calls and recognize this as an "unwind
701         // to caller" cleanup.
702         assert(!FuncletUnwindMap.count(CleanupPad) ||
703                isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
704         FuncletUnwindMap[CleanupPad] =
705             ConstantTokenNone::get(Caller->getContext());
706       }
707     }
708 
709     Instruction *I = BB->getFirstNonPHI();
710     if (!I->isEHPad())
711       continue;
712 
713     Instruction *Replacement = nullptr;
714     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
715       if (CatchSwitch->unwindsToCaller()) {
716         Value *UnwindDestToken;
717         if (auto *ParentPad =
718                 dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
719           // This catchswitch is nested inside another funclet.  If that
720           // funclet has an unwind destination within the inlinee, then
721           // unwinding out of this catchswitch would be UB.  Rewriting this
722           // catchswitch to unwind to the inlined invoke's unwind dest would
723           // give the parent funclet multiple unwind destinations, which is
724           // something that subsequent EH table generation can't handle and
725           // that the veirifer rejects.  So when we see such a call, leave it
726           // as "unwind to caller".
727           UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
728           if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
729             continue;
730         } else {
731           // This catchswitch has no parent to inherit constraints from, and
732           // none of its descendants can have an unwind edge that exits it and
733           // targets another funclet in the inlinee.  It may or may not have a
734           // descendant that definitively has an unwind to caller.  In either
735           // case, we'll have to assume that any unwinds out of it may need to
736           // be routed to the caller, so treat it as though it has a definitive
737           // unwind to caller.
738           UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
739         }
740         auto *NewCatchSwitch = CatchSwitchInst::Create(
741             CatchSwitch->getParentPad(), UnwindDest,
742             CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
743             CatchSwitch);
744         for (BasicBlock *PadBB : CatchSwitch->handlers())
745           NewCatchSwitch->addHandler(PadBB);
746         // Propagate info for the old catchswitch over to the new one in
747         // the unwind map.  This also serves to short-circuit any subsequent
748         // checks for the unwind dest of this catchswitch, which would get
749         // confused if they found the outer handler in the callee.
750         FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
751         Replacement = NewCatchSwitch;
752       }
753     } else if (!isa<FuncletPadInst>(I)) {
754       llvm_unreachable("unexpected EHPad!");
755     }
756 
757     if (Replacement) {
758       Replacement->takeName(I);
759       I->replaceAllUsesWith(Replacement);
760       I->eraseFromParent();
761       UpdatePHINodes(&*BB);
762     }
763   }
764 
765   if (InlinedCodeInfo.ContainsCalls)
766     for (Function::iterator BB = FirstNewBlock->getIterator(),
767                             E = Caller->end();
768          BB != E; ++BB)
769       if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
770               &*BB, UnwindDest, &FuncletUnwindMap))
771         // Update any PHI nodes in the exceptional block to indicate that there
772         // is now a new entry in them.
773         UpdatePHINodes(NewBB);
774 
775   // Now that everything is happy, we have one final detail.  The PHI nodes in
776   // the exception destination block still have entries due to the original
777   // invoke instruction. Eliminate these entries (which might even delete the
778   // PHI node) now.
779   UnwindDest->removePredecessor(InvokeBB);
780 }
781 
782 /// When inlining a call site that has !llvm.mem.parallel_loop_access,
783 /// !llvm.access.group, !alias.scope or !noalias metadata, that metadata should
784 /// be propagated to all memory-accessing cloned instructions.
785 static void PropagateCallSiteMetadata(CallBase &CB, Function::iterator FStart,
786                                       Function::iterator FEnd) {
787   MDNode *MemParallelLoopAccess =
788       CB.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
789   MDNode *AccessGroup = CB.getMetadata(LLVMContext::MD_access_group);
790   MDNode *AliasScope = CB.getMetadata(LLVMContext::MD_alias_scope);
791   MDNode *NoAlias = CB.getMetadata(LLVMContext::MD_noalias);
792   if (!MemParallelLoopAccess && !AccessGroup && !AliasScope && !NoAlias)
793     return;
794 
795   for (BasicBlock &BB : make_range(FStart, FEnd)) {
796     for (Instruction &I : BB) {
797       // This metadata is only relevant for instructions that access memory.
798       if (!I.mayReadOrWriteMemory())
799         continue;
800 
801       if (MemParallelLoopAccess) {
802         // TODO: This probably should not overwrite MemParalleLoopAccess.
803         MemParallelLoopAccess = MDNode::concatenate(
804             I.getMetadata(LLVMContext::MD_mem_parallel_loop_access),
805             MemParallelLoopAccess);
806         I.setMetadata(LLVMContext::MD_mem_parallel_loop_access,
807                       MemParallelLoopAccess);
808       }
809 
810       if (AccessGroup)
811         I.setMetadata(LLVMContext::MD_access_group, uniteAccessGroups(
812             I.getMetadata(LLVMContext::MD_access_group), AccessGroup));
813 
814       if (AliasScope)
815         I.setMetadata(LLVMContext::MD_alias_scope, MDNode::concatenate(
816             I.getMetadata(LLVMContext::MD_alias_scope), AliasScope));
817 
818       if (NoAlias)
819         I.setMetadata(LLVMContext::MD_noalias, MDNode::concatenate(
820             I.getMetadata(LLVMContext::MD_noalias), NoAlias));
821     }
822   }
823 }
824 
825 /// Utility for cloning !noalias and !alias.scope metadata. When a code region
826 /// using scoped alias metadata is inlined, the aliasing relationships may not
827 /// hold between the two version. It is necessary to create a deep clone of the
828 /// metadata, putting the two versions in separate scope domains.
829 class ScopedAliasMetadataDeepCloner {
830   using MetadataMap = DenseMap<const MDNode *, TrackingMDNodeRef>;
831   SetVector<const MDNode *> MD;
832   MetadataMap MDMap;
833   void addRecursiveMetadataUses();
834 
835 public:
836   ScopedAliasMetadataDeepCloner(const Function *F);
837 
838   /// Create a new clone of the scoped alias metadata, which will be used by
839   /// subsequent remap() calls.
840   void clone();
841 
842   /// Remap instructions in the given range from the original to the cloned
843   /// metadata.
844   void remap(Function::iterator FStart, Function::iterator FEnd);
845 };
846 
847 ScopedAliasMetadataDeepCloner::ScopedAliasMetadataDeepCloner(
848     const Function *F) {
849   for (const BasicBlock &BB : *F) {
850     for (const Instruction &I : BB) {
851       if (const MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope))
852         MD.insert(M);
853       if (const MDNode *M = I.getMetadata(LLVMContext::MD_noalias))
854         MD.insert(M);
855 
856       // We also need to clone the metadata in noalias intrinsics.
857       if (const auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
858         MD.insert(Decl->getScopeList());
859     }
860   }
861   addRecursiveMetadataUses();
862 }
863 
864 void ScopedAliasMetadataDeepCloner::addRecursiveMetadataUses() {
865   SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
866   while (!Queue.empty()) {
867     const MDNode *M = cast<MDNode>(Queue.pop_back_val());
868     for (const Metadata *Op : M->operands())
869       if (const MDNode *OpMD = dyn_cast<MDNode>(Op))
870         if (MD.insert(OpMD))
871           Queue.push_back(OpMD);
872   }
873 }
874 
875 void ScopedAliasMetadataDeepCloner::clone() {
876   assert(MDMap.empty() && "clone() already called ?");
877 
878   SmallVector<TempMDTuple, 16> DummyNodes;
879   for (const MDNode *I : MD) {
880     DummyNodes.push_back(MDTuple::getTemporary(I->getContext(), None));
881     MDMap[I].reset(DummyNodes.back().get());
882   }
883 
884   // Create new metadata nodes to replace the dummy nodes, replacing old
885   // metadata references with either a dummy node or an already-created new
886   // node.
887   SmallVector<Metadata *, 4> NewOps;
888   for (const MDNode *I : MD) {
889     for (const Metadata *Op : I->operands()) {
890       if (const MDNode *M = dyn_cast<MDNode>(Op))
891         NewOps.push_back(MDMap[M]);
892       else
893         NewOps.push_back(const_cast<Metadata *>(Op));
894     }
895 
896     MDNode *NewM = MDNode::get(I->getContext(), NewOps);
897     MDTuple *TempM = cast<MDTuple>(MDMap[I]);
898     assert(TempM->isTemporary() && "Expected temporary node");
899 
900     TempM->replaceAllUsesWith(NewM);
901     NewOps.clear();
902   }
903 }
904 
905 void ScopedAliasMetadataDeepCloner::remap(Function::iterator FStart,
906                                           Function::iterator FEnd) {
907   if (MDMap.empty())
908     return; // Nothing to do.
909 
910   for (BasicBlock &BB : make_range(FStart, FEnd)) {
911     for (Instruction &I : BB) {
912       // TODO: The null checks for the MDMap.lookup() results should no longer
913       // be necessary.
914       if (MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope))
915         if (MDNode *MNew = MDMap.lookup(M))
916           I.setMetadata(LLVMContext::MD_alias_scope, MNew);
917 
918       if (MDNode *M = I.getMetadata(LLVMContext::MD_noalias))
919         if (MDNode *MNew = MDMap.lookup(M))
920           I.setMetadata(LLVMContext::MD_noalias, MNew);
921 
922       if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
923         if (MDNode *MNew = MDMap.lookup(Decl->getScopeList()))
924           Decl->setScopeList(MNew);
925     }
926   }
927 }
928 
929 /// If the inlined function has noalias arguments,
930 /// then add new alias scopes for each noalias argument, tag the mapped noalias
931 /// parameters with noalias metadata specifying the new scope, and tag all
932 /// non-derived loads, stores and memory intrinsics with the new alias scopes.
933 static void AddAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap,
934                                   const DataLayout &DL, AAResults *CalleeAAR) {
935   if (!EnableNoAliasConversion)
936     return;
937 
938   const Function *CalledFunc = CB.getCalledFunction();
939   SmallVector<const Argument *, 4> NoAliasArgs;
940 
941   for (const Argument &Arg : CalledFunc->args())
942     if (CB.paramHasAttr(Arg.getArgNo(), Attribute::NoAlias) && !Arg.use_empty())
943       NoAliasArgs.push_back(&Arg);
944 
945   if (NoAliasArgs.empty())
946     return;
947 
948   // To do a good job, if a noalias variable is captured, we need to know if
949   // the capture point dominates the particular use we're considering.
950   DominatorTree DT;
951   DT.recalculate(const_cast<Function&>(*CalledFunc));
952 
953   // noalias indicates that pointer values based on the argument do not alias
954   // pointer values which are not based on it. So we add a new "scope" for each
955   // noalias function argument. Accesses using pointers based on that argument
956   // become part of that alias scope, accesses using pointers not based on that
957   // argument are tagged as noalias with that scope.
958 
959   DenseMap<const Argument *, MDNode *> NewScopes;
960   MDBuilder MDB(CalledFunc->getContext());
961 
962   // Create a new scope domain for this function.
963   MDNode *NewDomain =
964     MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
965   for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
966     const Argument *A = NoAliasArgs[i];
967 
968     std::string Name = std::string(CalledFunc->getName());
969     if (A->hasName()) {
970       Name += ": %";
971       Name += A->getName();
972     } else {
973       Name += ": argument ";
974       Name += utostr(i);
975     }
976 
977     // Note: We always create a new anonymous root here. This is true regardless
978     // of the linkage of the callee because the aliasing "scope" is not just a
979     // property of the callee, but also all control dependencies in the caller.
980     MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
981     NewScopes.insert(std::make_pair(A, NewScope));
982 
983     if (UseNoAliasIntrinsic) {
984       // Introduce a llvm.experimental.noalias.scope.decl for the noalias
985       // argument.
986       MDNode *AScopeList = MDNode::get(CalledFunc->getContext(), NewScope);
987       auto *NoAliasDecl =
988           IRBuilder<>(&CB).CreateNoAliasScopeDeclaration(AScopeList);
989       // Ignore the result for now. The result will be used when the
990       // llvm.noalias intrinsic is introduced.
991       (void)NoAliasDecl;
992     }
993   }
994 
995   // Iterate over all new instructions in the map; for all memory-access
996   // instructions, add the alias scope metadata.
997   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
998        VMI != VMIE; ++VMI) {
999     if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
1000       if (!VMI->second)
1001         continue;
1002 
1003       Instruction *NI = dyn_cast<Instruction>(VMI->second);
1004       if (!NI)
1005         continue;
1006 
1007       bool IsArgMemOnlyCall = false, IsFuncCall = false;
1008       SmallVector<const Value *, 2> PtrArgs;
1009 
1010       if (const LoadInst *LI = dyn_cast<LoadInst>(I))
1011         PtrArgs.push_back(LI->getPointerOperand());
1012       else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
1013         PtrArgs.push_back(SI->getPointerOperand());
1014       else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
1015         PtrArgs.push_back(VAAI->getPointerOperand());
1016       else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
1017         PtrArgs.push_back(CXI->getPointerOperand());
1018       else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
1019         PtrArgs.push_back(RMWI->getPointerOperand());
1020       else if (const auto *Call = dyn_cast<CallBase>(I)) {
1021         // If we know that the call does not access memory, then we'll still
1022         // know that about the inlined clone of this call site, and we don't
1023         // need to add metadata.
1024         if (Call->doesNotAccessMemory())
1025           continue;
1026 
1027         IsFuncCall = true;
1028         if (CalleeAAR) {
1029           FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call);
1030 
1031           // We'll retain this knowledge without additional metadata.
1032           if (AAResults::onlyAccessesInaccessibleMem(MRB))
1033             continue;
1034 
1035           if (AAResults::onlyAccessesArgPointees(MRB))
1036             IsArgMemOnlyCall = true;
1037         }
1038 
1039         for (Value *Arg : Call->args()) {
1040           // We need to check the underlying objects of all arguments, not just
1041           // the pointer arguments, because we might be passing pointers as
1042           // integers, etc.
1043           // However, if we know that the call only accesses pointer arguments,
1044           // then we only need to check the pointer arguments.
1045           if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy())
1046             continue;
1047 
1048           PtrArgs.push_back(Arg);
1049         }
1050       }
1051 
1052       // If we found no pointers, then this instruction is not suitable for
1053       // pairing with an instruction to receive aliasing metadata.
1054       // However, if this is a call, this we might just alias with none of the
1055       // noalias arguments.
1056       if (PtrArgs.empty() && !IsFuncCall)
1057         continue;
1058 
1059       // It is possible that there is only one underlying object, but you
1060       // need to go through several PHIs to see it, and thus could be
1061       // repeated in the Objects list.
1062       SmallPtrSet<const Value *, 4> ObjSet;
1063       SmallVector<Metadata *, 4> Scopes, NoAliases;
1064 
1065       SmallSetVector<const Argument *, 4> NAPtrArgs;
1066       for (const Value *V : PtrArgs) {
1067         SmallVector<const Value *, 4> Objects;
1068         getUnderlyingObjects(V, Objects, /* LI = */ nullptr);
1069 
1070         for (const Value *O : Objects)
1071           ObjSet.insert(O);
1072       }
1073 
1074       // Figure out if we're derived from anything that is not a noalias
1075       // argument.
1076       bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
1077       for (const Value *V : ObjSet) {
1078         // Is this value a constant that cannot be derived from any pointer
1079         // value (we need to exclude constant expressions, for example, that
1080         // are formed from arithmetic on global symbols).
1081         bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
1082                              isa<ConstantPointerNull>(V) ||
1083                              isa<ConstantDataVector>(V) || isa<UndefValue>(V);
1084         if (IsNonPtrConst)
1085           continue;
1086 
1087         // If this is anything other than a noalias argument, then we cannot
1088         // completely describe the aliasing properties using alias.scope
1089         // metadata (and, thus, won't add any).
1090         if (const Argument *A = dyn_cast<Argument>(V)) {
1091           if (!CB.paramHasAttr(A->getArgNo(), Attribute::NoAlias))
1092             UsesAliasingPtr = true;
1093         } else {
1094           UsesAliasingPtr = true;
1095         }
1096 
1097         // If this is not some identified function-local object (which cannot
1098         // directly alias a noalias argument), or some other argument (which,
1099         // by definition, also cannot alias a noalias argument), then we could
1100         // alias a noalias argument that has been captured).
1101         if (!isa<Argument>(V) &&
1102             !isIdentifiedFunctionLocal(const_cast<Value*>(V)))
1103           CanDeriveViaCapture = true;
1104       }
1105 
1106       // A function call can always get captured noalias pointers (via other
1107       // parameters, globals, etc.).
1108       if (IsFuncCall && !IsArgMemOnlyCall)
1109         CanDeriveViaCapture = true;
1110 
1111       // First, we want to figure out all of the sets with which we definitely
1112       // don't alias. Iterate over all noalias set, and add those for which:
1113       //   1. The noalias argument is not in the set of objects from which we
1114       //      definitely derive.
1115       //   2. The noalias argument has not yet been captured.
1116       // An arbitrary function that might load pointers could see captured
1117       // noalias arguments via other noalias arguments or globals, and so we
1118       // must always check for prior capture.
1119       for (const Argument *A : NoAliasArgs) {
1120         if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
1121                                  // It might be tempting to skip the
1122                                  // PointerMayBeCapturedBefore check if
1123                                  // A->hasNoCaptureAttr() is true, but this is
1124                                  // incorrect because nocapture only guarantees
1125                                  // that no copies outlive the function, not
1126                                  // that the value cannot be locally captured.
1127                                  !PointerMayBeCapturedBefore(A,
1128                                    /* ReturnCaptures */ false,
1129                                    /* StoreCaptures */ false, I, &DT)))
1130           NoAliases.push_back(NewScopes[A]);
1131       }
1132 
1133       if (!NoAliases.empty())
1134         NI->setMetadata(LLVMContext::MD_noalias,
1135                         MDNode::concatenate(
1136                             NI->getMetadata(LLVMContext::MD_noalias),
1137                             MDNode::get(CalledFunc->getContext(), NoAliases)));
1138 
1139       // Next, we want to figure out all of the sets to which we might belong.
1140       // We might belong to a set if the noalias argument is in the set of
1141       // underlying objects. If there is some non-noalias argument in our list
1142       // of underlying objects, then we cannot add a scope because the fact
1143       // that some access does not alias with any set of our noalias arguments
1144       // cannot itself guarantee that it does not alias with this access
1145       // (because there is some pointer of unknown origin involved and the
1146       // other access might also depend on this pointer). We also cannot add
1147       // scopes to arbitrary functions unless we know they don't access any
1148       // non-parameter pointer-values.
1149       bool CanAddScopes = !UsesAliasingPtr;
1150       if (CanAddScopes && IsFuncCall)
1151         CanAddScopes = IsArgMemOnlyCall;
1152 
1153       if (CanAddScopes)
1154         for (const Argument *A : NoAliasArgs) {
1155           if (ObjSet.count(A))
1156             Scopes.push_back(NewScopes[A]);
1157         }
1158 
1159       if (!Scopes.empty())
1160         NI->setMetadata(
1161             LLVMContext::MD_alias_scope,
1162             MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
1163                                 MDNode::get(CalledFunc->getContext(), Scopes)));
1164     }
1165   }
1166 }
1167 
1168 static bool MayContainThrowingOrExitingCall(Instruction *Begin,
1169                                             Instruction *End) {
1170 
1171   assert(Begin->getParent() == End->getParent() &&
1172          "Expected to be in same basic block!");
1173   unsigned NumInstChecked = 0;
1174   // Check that all instructions in the range [Begin, End) are guaranteed to
1175   // transfer execution to successor.
1176   for (auto &I : make_range(Begin->getIterator(), End->getIterator()))
1177     if (NumInstChecked++ > InlinerAttributeWindow ||
1178         !isGuaranteedToTransferExecutionToSuccessor(&I))
1179       return true;
1180   return false;
1181 }
1182 
1183 static AttrBuilder IdentifyValidAttributes(CallBase &CB) {
1184 
1185   AttrBuilder AB(CB.getAttributes(), AttributeList::ReturnIndex);
1186   if (AB.empty())
1187     return AB;
1188   AttrBuilder Valid;
1189   // Only allow these white listed attributes to be propagated back to the
1190   // callee. This is because other attributes may only be valid on the call
1191   // itself, i.e. attributes such as signext and zeroext.
1192   if (auto DerefBytes = AB.getDereferenceableBytes())
1193     Valid.addDereferenceableAttr(DerefBytes);
1194   if (auto DerefOrNullBytes = AB.getDereferenceableOrNullBytes())
1195     Valid.addDereferenceableOrNullAttr(DerefOrNullBytes);
1196   if (AB.contains(Attribute::NoAlias))
1197     Valid.addAttribute(Attribute::NoAlias);
1198   if (AB.contains(Attribute::NonNull))
1199     Valid.addAttribute(Attribute::NonNull);
1200   return Valid;
1201 }
1202 
1203 static void AddReturnAttributes(CallBase &CB, ValueToValueMapTy &VMap) {
1204   if (!UpdateReturnAttributes)
1205     return;
1206 
1207   AttrBuilder Valid = IdentifyValidAttributes(CB);
1208   if (Valid.empty())
1209     return;
1210   auto *CalledFunction = CB.getCalledFunction();
1211   auto &Context = CalledFunction->getContext();
1212 
1213   for (auto &BB : *CalledFunction) {
1214     auto *RI = dyn_cast<ReturnInst>(BB.getTerminator());
1215     if (!RI || !isa<CallBase>(RI->getOperand(0)))
1216       continue;
1217     auto *RetVal = cast<CallBase>(RI->getOperand(0));
1218     // Sanity check that the cloned RetVal exists and is a call, otherwise we
1219     // cannot add the attributes on the cloned RetVal.
1220     // Simplification during inlining could have transformed the cloned
1221     // instruction.
1222     auto *NewRetVal = dyn_cast_or_null<CallBase>(VMap.lookup(RetVal));
1223     if (!NewRetVal)
1224       continue;
1225     // Backward propagation of attributes to the returned value may be incorrect
1226     // if it is control flow dependent.
1227     // Consider:
1228     // @callee {
1229     //  %rv = call @foo()
1230     //  %rv2 = call @bar()
1231     //  if (%rv2 != null)
1232     //    return %rv2
1233     //  if (%rv == null)
1234     //    exit()
1235     //  return %rv
1236     // }
1237     // caller() {
1238     //   %val = call nonnull @callee()
1239     // }
1240     // Here we cannot add the nonnull attribute on either foo or bar. So, we
1241     // limit the check to both RetVal and RI are in the same basic block and
1242     // there are no throwing/exiting instructions between these instructions.
1243     if (RI->getParent() != RetVal->getParent() ||
1244         MayContainThrowingOrExitingCall(RetVal, RI))
1245       continue;
1246     // Add to the existing attributes of NewRetVal, i.e. the cloned call
1247     // instruction.
1248     // NB! When we have the same attribute already existing on NewRetVal, but
1249     // with a differing value, the AttributeList's merge API honours the already
1250     // existing attribute value (i.e. attributes such as dereferenceable,
1251     // dereferenceable_or_null etc). See AttrBuilder::merge for more details.
1252     AttributeList AL = NewRetVal->getAttributes();
1253     AttributeList NewAL =
1254         AL.addAttributes(Context, AttributeList::ReturnIndex, Valid);
1255     NewRetVal->setAttributes(NewAL);
1256   }
1257 }
1258 
1259 /// If the inlined function has non-byval align arguments, then
1260 /// add @llvm.assume-based alignment assumptions to preserve this information.
1261 static void AddAlignmentAssumptions(CallBase &CB, InlineFunctionInfo &IFI) {
1262   if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache)
1263     return;
1264 
1265   AssumptionCache *AC = &IFI.GetAssumptionCache(*CB.getCaller());
1266   auto &DL = CB.getCaller()->getParent()->getDataLayout();
1267 
1268   // To avoid inserting redundant assumptions, we should check for assumptions
1269   // already in the caller. To do this, we might need a DT of the caller.
1270   DominatorTree DT;
1271   bool DTCalculated = false;
1272 
1273   Function *CalledFunc = CB.getCalledFunction();
1274   for (Argument &Arg : CalledFunc->args()) {
1275     unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0;
1276     if (Align && !Arg.hasPassPointeeByValueCopyAttr() && !Arg.hasNUses(0)) {
1277       if (!DTCalculated) {
1278         DT.recalculate(*CB.getCaller());
1279         DTCalculated = true;
1280       }
1281 
1282       // If we can already prove the asserted alignment in the context of the
1283       // caller, then don't bother inserting the assumption.
1284       Value *ArgVal = CB.getArgOperand(Arg.getArgNo());
1285       if (getKnownAlignment(ArgVal, DL, &CB, AC, &DT) >= Align)
1286         continue;
1287 
1288       CallInst *NewAsmp =
1289           IRBuilder<>(&CB).CreateAlignmentAssumption(DL, ArgVal, Align);
1290       AC->registerAssumption(cast<AssumeInst>(NewAsmp));
1291     }
1292   }
1293 }
1294 
1295 /// Once we have cloned code over from a callee into the caller,
1296 /// update the specified callgraph to reflect the changes we made.
1297 /// Note that it's possible that not all code was copied over, so only
1298 /// some edges of the callgraph may remain.
1299 static void UpdateCallGraphAfterInlining(CallBase &CB,
1300                                          Function::iterator FirstNewBlock,
1301                                          ValueToValueMapTy &VMap,
1302                                          InlineFunctionInfo &IFI) {
1303   CallGraph &CG = *IFI.CG;
1304   const Function *Caller = CB.getCaller();
1305   const Function *Callee = CB.getCalledFunction();
1306   CallGraphNode *CalleeNode = CG[Callee];
1307   CallGraphNode *CallerNode = CG[Caller];
1308 
1309   // Since we inlined some uninlined call sites in the callee into the caller,
1310   // add edges from the caller to all of the callees of the callee.
1311   CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
1312 
1313   // Consider the case where CalleeNode == CallerNode.
1314   CallGraphNode::CalledFunctionsVector CallCache;
1315   if (CalleeNode == CallerNode) {
1316     CallCache.assign(I, E);
1317     I = CallCache.begin();
1318     E = CallCache.end();
1319   }
1320 
1321   for (; I != E; ++I) {
1322     // Skip 'refererence' call records.
1323     if (!I->first)
1324       continue;
1325 
1326     const Value *OrigCall = *I->first;
1327 
1328     ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
1329     // Only copy the edge if the call was inlined!
1330     if (VMI == VMap.end() || VMI->second == nullptr)
1331       continue;
1332 
1333     // If the call was inlined, but then constant folded, there is no edge to
1334     // add.  Check for this case.
1335     auto *NewCall = dyn_cast<CallBase>(VMI->second);
1336     if (!NewCall)
1337       continue;
1338 
1339     // We do not treat intrinsic calls like real function calls because we
1340     // expect them to become inline code; do not add an edge for an intrinsic.
1341     if (NewCall->getCalledFunction() &&
1342         NewCall->getCalledFunction()->isIntrinsic())
1343       continue;
1344 
1345     // Remember that this call site got inlined for the client of
1346     // InlineFunction.
1347     IFI.InlinedCalls.push_back(NewCall);
1348 
1349     // It's possible that inlining the callsite will cause it to go from an
1350     // indirect to a direct call by resolving a function pointer.  If this
1351     // happens, set the callee of the new call site to a more precise
1352     // destination.  This can also happen if the call graph node of the caller
1353     // was just unnecessarily imprecise.
1354     if (!I->second->getFunction())
1355       if (Function *F = NewCall->getCalledFunction()) {
1356         // Indirect call site resolved to direct call.
1357         CallerNode->addCalledFunction(NewCall, CG[F]);
1358 
1359         continue;
1360       }
1361 
1362     CallerNode->addCalledFunction(NewCall, I->second);
1363   }
1364 
1365   // Update the call graph by deleting the edge from Callee to Caller.  We must
1366   // do this after the loop above in case Caller and Callee are the same.
1367   CallerNode->removeCallEdgeFor(*cast<CallBase>(&CB));
1368 }
1369 
1370 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
1371                                     BasicBlock *InsertBlock,
1372                                     InlineFunctionInfo &IFI) {
1373   Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
1374   IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
1375 
1376   Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy));
1377 
1378   // Always generate a memcpy of alignment 1 here because we don't know
1379   // the alignment of the src pointer.  Other optimizations can infer
1380   // better alignment.
1381   Builder.CreateMemCpy(Dst, /*DstAlign*/ Align(1), Src,
1382                        /*SrcAlign*/ Align(1), Size);
1383 }
1384 
1385 /// When inlining a call site that has a byval argument,
1386 /// we have to make the implicit memcpy explicit by adding it.
1387 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
1388                                   const Function *CalledFunc,
1389                                   InlineFunctionInfo &IFI,
1390                                   unsigned ByValAlignment) {
1391   PointerType *ArgTy = cast<PointerType>(Arg->getType());
1392   Type *AggTy = ArgTy->getElementType();
1393 
1394   Function *Caller = TheCall->getFunction();
1395   const DataLayout &DL = Caller->getParent()->getDataLayout();
1396 
1397   // If the called function is readonly, then it could not mutate the caller's
1398   // copy of the byval'd memory.  In this case, it is safe to elide the copy and
1399   // temporary.
1400   if (CalledFunc->onlyReadsMemory()) {
1401     // If the byval argument has a specified alignment that is greater than the
1402     // passed in pointer, then we either have to round up the input pointer or
1403     // give up on this transformation.
1404     if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
1405       return Arg;
1406 
1407     AssumptionCache *AC =
1408         IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
1409 
1410     // If the pointer is already known to be sufficiently aligned, or if we can
1411     // round it up to a larger alignment, then we don't need a temporary.
1412     if (getOrEnforceKnownAlignment(Arg, Align(ByValAlignment), DL, TheCall,
1413                                    AC) >= ByValAlignment)
1414       return Arg;
1415 
1416     // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
1417     // for code quality, but rarely happens and is required for correctness.
1418   }
1419 
1420   // Create the alloca.  If we have DataLayout, use nice alignment.
1421   Align Alignment(DL.getPrefTypeAlignment(AggTy));
1422 
1423   // If the byval had an alignment specified, we *must* use at least that
1424   // alignment, as it is required by the byval argument (and uses of the
1425   // pointer inside the callee).
1426   Alignment = max(Alignment, MaybeAlign(ByValAlignment));
1427 
1428   Value *NewAlloca =
1429       new AllocaInst(AggTy, DL.getAllocaAddrSpace(), nullptr, Alignment,
1430                      Arg->getName(), &*Caller->begin()->begin());
1431   IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
1432 
1433   // Uses of the argument in the function should use our new alloca
1434   // instead.
1435   return NewAlloca;
1436 }
1437 
1438 // Check whether this Value is used by a lifetime intrinsic.
1439 static bool isUsedByLifetimeMarker(Value *V) {
1440   for (User *U : V->users())
1441     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U))
1442       if (II->isLifetimeStartOrEnd())
1443         return true;
1444   return false;
1445 }
1446 
1447 // Check whether the given alloca already has
1448 // lifetime.start or lifetime.end intrinsics.
1449 static bool hasLifetimeMarkers(AllocaInst *AI) {
1450   Type *Ty = AI->getType();
1451   Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
1452                                        Ty->getPointerAddressSpace());
1453   if (Ty == Int8PtrTy)
1454     return isUsedByLifetimeMarker(AI);
1455 
1456   // Do a scan to find all the casts to i8*.
1457   for (User *U : AI->users()) {
1458     if (U->getType() != Int8PtrTy) continue;
1459     if (U->stripPointerCasts() != AI) continue;
1460     if (isUsedByLifetimeMarker(U))
1461       return true;
1462   }
1463   return false;
1464 }
1465 
1466 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry
1467 /// block. Allocas used in inalloca calls and allocas of dynamic array size
1468 /// cannot be static.
1469 static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) {
1470   return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca();
1471 }
1472 
1473 /// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL
1474 /// inlined at \p InlinedAt. \p IANodes is an inlined-at cache.
1475 static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt,
1476                                LLVMContext &Ctx,
1477                                DenseMap<const MDNode *, MDNode *> &IANodes) {
1478   auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes);
1479   return DILocation::get(Ctx, OrigDL.getLine(), OrigDL.getCol(),
1480                          OrigDL.getScope(), IA);
1481 }
1482 
1483 /// Update inlined instructions' line numbers to
1484 /// to encode location where these instructions are inlined.
1485 static void fixupLineNumbers(Function *Fn, Function::iterator FI,
1486                              Instruction *TheCall, bool CalleeHasDebugInfo) {
1487   const DebugLoc &TheCallDL = TheCall->getDebugLoc();
1488   if (!TheCallDL)
1489     return;
1490 
1491   auto &Ctx = Fn->getContext();
1492   DILocation *InlinedAtNode = TheCallDL;
1493 
1494   // Create a unique call site, not to be confused with any other call from the
1495   // same location.
1496   InlinedAtNode = DILocation::getDistinct(
1497       Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
1498       InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
1499 
1500   // Cache the inlined-at nodes as they're built so they are reused, without
1501   // this every instruction's inlined-at chain would become distinct from each
1502   // other.
1503   DenseMap<const MDNode *, MDNode *> IANodes;
1504 
1505   // Check if we are not generating inline line tables and want to use
1506   // the call site location instead.
1507   bool NoInlineLineTables = Fn->hasFnAttribute("no-inline-line-tables");
1508 
1509   for (; FI != Fn->end(); ++FI) {
1510     for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
1511          BI != BE; ++BI) {
1512       // Loop metadata needs to be updated so that the start and end locs
1513       // reference inlined-at locations.
1514       auto updateLoopInfoLoc = [&Ctx, &InlinedAtNode, &IANodes](
1515                                    const DILocation &Loc) -> DILocation * {
1516         return inlineDebugLoc(&Loc, InlinedAtNode, Ctx, IANodes).get();
1517       };
1518       updateLoopMetadataDebugLocations(*BI, updateLoopInfoLoc);
1519 
1520       if (!NoInlineLineTables)
1521         if (DebugLoc DL = BI->getDebugLoc()) {
1522           DebugLoc IDL =
1523               inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes);
1524           BI->setDebugLoc(IDL);
1525           continue;
1526         }
1527 
1528       if (CalleeHasDebugInfo && !NoInlineLineTables)
1529         continue;
1530 
1531       // If the inlined instruction has no line number, or if inline info
1532       // is not being generated, make it look as if it originates from the call
1533       // location. This is important for ((__always_inline, __nodebug__))
1534       // functions which must use caller location for all instructions in their
1535       // function body.
1536 
1537       // Don't update static allocas, as they may get moved later.
1538       if (auto *AI = dyn_cast<AllocaInst>(BI))
1539         if (allocaWouldBeStaticInEntry(AI))
1540           continue;
1541 
1542       BI->setDebugLoc(TheCallDL);
1543     }
1544 
1545     // Remove debug info intrinsics if we're not keeping inline info.
1546     if (NoInlineLineTables) {
1547       BasicBlock::iterator BI = FI->begin();
1548       while (BI != FI->end()) {
1549         if (isa<DbgInfoIntrinsic>(BI)) {
1550           BI = BI->eraseFromParent();
1551           continue;
1552         }
1553         ++BI;
1554       }
1555     }
1556 
1557   }
1558 }
1559 
1560 /// Update the block frequencies of the caller after a callee has been inlined.
1561 ///
1562 /// Each block cloned into the caller has its block frequency scaled by the
1563 /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of
1564 /// callee's entry block gets the same frequency as the callsite block and the
1565 /// relative frequencies of all cloned blocks remain the same after cloning.
1566 static void updateCallerBFI(BasicBlock *CallSiteBlock,
1567                             const ValueToValueMapTy &VMap,
1568                             BlockFrequencyInfo *CallerBFI,
1569                             BlockFrequencyInfo *CalleeBFI,
1570                             const BasicBlock &CalleeEntryBlock) {
1571   SmallPtrSet<BasicBlock *, 16> ClonedBBs;
1572   for (auto Entry : VMap) {
1573     if (!isa<BasicBlock>(Entry.first) || !Entry.second)
1574       continue;
1575     auto *OrigBB = cast<BasicBlock>(Entry.first);
1576     auto *ClonedBB = cast<BasicBlock>(Entry.second);
1577     uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency();
1578     if (!ClonedBBs.insert(ClonedBB).second) {
1579       // Multiple blocks in the callee might get mapped to one cloned block in
1580       // the caller since we prune the callee as we clone it. When that happens,
1581       // we want to use the maximum among the original blocks' frequencies.
1582       uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency();
1583       if (NewFreq > Freq)
1584         Freq = NewFreq;
1585     }
1586     CallerBFI->setBlockFreq(ClonedBB, Freq);
1587   }
1588   BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock));
1589   CallerBFI->setBlockFreqAndScale(
1590       EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(),
1591       ClonedBBs);
1592 }
1593 
1594 /// Update the branch metadata for cloned call instructions.
1595 static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap,
1596                               const ProfileCount &CalleeEntryCount,
1597                               const CallBase &TheCall, ProfileSummaryInfo *PSI,
1598                               BlockFrequencyInfo *CallerBFI) {
1599   if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() ||
1600       CalleeEntryCount.getCount() < 1)
1601     return;
1602   auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None;
1603   int64_t CallCount =
1604       std::min(CallSiteCount.getValueOr(0), CalleeEntryCount.getCount());
1605   updateProfileCallee(Callee, -CallCount, &VMap);
1606 }
1607 
1608 void llvm::updateProfileCallee(
1609     Function *Callee, int64_t entryDelta,
1610     const ValueMap<const Value *, WeakTrackingVH> *VMap) {
1611   auto CalleeCount = Callee->getEntryCount();
1612   if (!CalleeCount.hasValue())
1613     return;
1614 
1615   uint64_t priorEntryCount = CalleeCount.getCount();
1616   uint64_t newEntryCount;
1617 
1618   // Since CallSiteCount is an estimate, it could exceed the original callee
1619   // count and has to be set to 0 so guard against underflow.
1620   if (entryDelta < 0 && static_cast<uint64_t>(-entryDelta) > priorEntryCount)
1621     newEntryCount = 0;
1622   else
1623     newEntryCount = priorEntryCount + entryDelta;
1624 
1625   // During inlining ?
1626   if (VMap) {
1627     uint64_t cloneEntryCount = priorEntryCount - newEntryCount;
1628     for (auto Entry : *VMap)
1629       if (isa<CallInst>(Entry.first))
1630         if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second))
1631           CI->updateProfWeight(cloneEntryCount, priorEntryCount);
1632   }
1633 
1634   if (entryDelta) {
1635     Callee->setEntryCount(newEntryCount);
1636 
1637     for (BasicBlock &BB : *Callee)
1638       // No need to update the callsite if it is pruned during inlining.
1639       if (!VMap || VMap->count(&BB))
1640         for (Instruction &I : BB)
1641           if (CallInst *CI = dyn_cast<CallInst>(&I))
1642             CI->updateProfWeight(newEntryCount, priorEntryCount);
1643   }
1644 }
1645 
1646 /// An operand bundle "clang.arc.attachedcall" on a call indicates the call
1647 /// result is implicitly consumed by a call to retainRV or claimRV immediately
1648 /// after the call. This function inlines the retainRV/claimRV calls.
1649 ///
1650 /// There are three cases to consider:
1651 ///
1652 /// 1. If there is a call to autoreleaseRV that takes a pointer to the returned
1653 ///    object in the callee return block, the autoreleaseRV call and the
1654 ///    retainRV/claimRV call in the caller cancel out. If the call in the caller
1655 ///    is a claimRV call, a call to objc_release is emitted.
1656 ///
1657 /// 2. If there is a call in the callee return block that doesn't have operand
1658 ///    bundle "clang.arc.attachedcall", the operand bundle on the original call
1659 ///    is transferred to the call in the callee.
1660 ///
1661 /// 3. Otherwise, a call to objc_retain is inserted if the call in the caller is
1662 ///    a retainRV call.
1663 static void
1664 inlineRetainOrClaimRVCalls(CallBase &CB,
1665                            const SmallVectorImpl<ReturnInst *> &Returns) {
1666   Module *Mod = CB.getModule();
1667   bool IsRetainRV = objcarc::hasAttachedCallOpBundle(&CB, true),
1668        IsClaimRV = !IsRetainRV;
1669 
1670   for (auto *RI : Returns) {
1671     Value *RetOpnd = objcarc::GetRCIdentityRoot(RI->getOperand(0));
1672     BasicBlock::reverse_iterator I = ++(RI->getIterator().getReverse());
1673     BasicBlock::reverse_iterator EI = RI->getParent()->rend();
1674     bool InsertRetainCall = IsRetainRV;
1675     IRBuilder<> Builder(RI->getContext());
1676 
1677     // Walk backwards through the basic block looking for either a matching
1678     // autoreleaseRV call or an unannotated call.
1679     for (; I != EI;) {
1680       auto CurI = I++;
1681 
1682       // Ignore casts.
1683       if (isa<CastInst>(*CurI))
1684         continue;
1685 
1686       if (auto *II = dyn_cast<IntrinsicInst>(&*CurI)) {
1687         if (II->getIntrinsicID() == Intrinsic::objc_autoreleaseReturnValue &&
1688             II->hasNUses(0) &&
1689             objcarc::GetRCIdentityRoot(II->getOperand(0)) == RetOpnd) {
1690           // If we've found a matching authoreleaseRV call:
1691           // - If claimRV is attached to the call, insert a call to objc_release
1692           //   and erase the autoreleaseRV call.
1693           // - If retainRV is attached to the call, just erase the autoreleaseRV
1694           //   call.
1695           if (IsClaimRV) {
1696             Builder.SetInsertPoint(II);
1697             Function *IFn =
1698                 Intrinsic::getDeclaration(Mod, Intrinsic::objc_release);
1699             Value *BC =
1700                 Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType());
1701             Builder.CreateCall(IFn, BC, "");
1702           }
1703           II->eraseFromParent();
1704           InsertRetainCall = false;
1705         }
1706       } else if (auto *CI = dyn_cast<CallInst>(&*CurI)) {
1707         if (objcarc::GetRCIdentityRoot(CI) == RetOpnd &&
1708             !objcarc::hasAttachedCallOpBundle(CI)) {
1709           // If we've found an unannotated call that defines RetOpnd, add a
1710           // "clang.arc.attachedcall" operand bundle.
1711           Value *BundleArgs[] = {ConstantInt::get(
1712               Builder.getInt64Ty(),
1713               objcarc::getAttachedCallOperandBundleEnum(IsRetainRV))};
1714           OperandBundleDef OB("clang.arc.attachedcall", BundleArgs);
1715           auto *NewCall = CallBase::addOperandBundle(
1716               CI, LLVMContext::OB_clang_arc_attachedcall, OB, CI);
1717           NewCall->copyMetadata(*CI);
1718           CI->replaceAllUsesWith(NewCall);
1719           CI->eraseFromParent();
1720           InsertRetainCall = false;
1721         }
1722       }
1723 
1724       break;
1725     }
1726 
1727     if (InsertRetainCall) {
1728       // The retainRV is attached to the call and we've failed to find a
1729       // matching autoreleaseRV or an annotated call in the callee. Emit a call
1730       // to objc_retain.
1731       Builder.SetInsertPoint(RI);
1732       Function *IFn = Intrinsic::getDeclaration(Mod, Intrinsic::objc_retain);
1733       Value *BC = Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType());
1734       Builder.CreateCall(IFn, BC, "");
1735     }
1736   }
1737 }
1738 
1739 /// This function inlines the called function into the basic block of the
1740 /// caller. This returns false if it is not possible to inline this call.
1741 /// The program is still in a well defined state if this occurs though.
1742 ///
1743 /// Note that this only does one level of inlining.  For example, if the
1744 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
1745 /// exists in the instruction stream.  Similarly this will inline a recursive
1746 /// function by one level.
1747 llvm::InlineResult llvm::InlineFunction(CallBase &CB, InlineFunctionInfo &IFI,
1748                                         AAResults *CalleeAAR,
1749                                         bool InsertLifetime,
1750                                         Function *ForwardVarArgsTo) {
1751   assert(CB.getParent() && CB.getFunction() && "Instruction not in function!");
1752 
1753   // FIXME: we don't inline callbr yet.
1754   if (isa<CallBrInst>(CB))
1755     return InlineResult::failure("We don't inline callbr yet.");
1756 
1757   // If IFI has any state in it, zap it before we fill it in.
1758   IFI.reset();
1759 
1760   Function *CalledFunc = CB.getCalledFunction();
1761   if (!CalledFunc ||               // Can't inline external function or indirect
1762       CalledFunc->isDeclaration()) // call!
1763     return InlineResult::failure("external or indirect");
1764 
1765   // The inliner does not know how to inline through calls with operand bundles
1766   // in general ...
1767   if (CB.hasOperandBundles()) {
1768     for (int i = 0, e = CB.getNumOperandBundles(); i != e; ++i) {
1769       uint32_t Tag = CB.getOperandBundleAt(i).getTagID();
1770       // ... but it knows how to inline through "deopt" operand bundles ...
1771       if (Tag == LLVMContext::OB_deopt)
1772         continue;
1773       // ... and "funclet" operand bundles.
1774       if (Tag == LLVMContext::OB_funclet)
1775         continue;
1776       if (Tag == LLVMContext::OB_clang_arc_attachedcall)
1777         continue;
1778 
1779       return InlineResult::failure("unsupported operand bundle");
1780     }
1781   }
1782 
1783   // If the call to the callee cannot throw, set the 'nounwind' flag on any
1784   // calls that we inline.
1785   bool MarkNoUnwind = CB.doesNotThrow();
1786 
1787   BasicBlock *OrigBB = CB.getParent();
1788   Function *Caller = OrigBB->getParent();
1789 
1790   // GC poses two hazards to inlining, which only occur when the callee has GC:
1791   //  1. If the caller has no GC, then the callee's GC must be propagated to the
1792   //     caller.
1793   //  2. If the caller has a differing GC, it is invalid to inline.
1794   if (CalledFunc->hasGC()) {
1795     if (!Caller->hasGC())
1796       Caller->setGC(CalledFunc->getGC());
1797     else if (CalledFunc->getGC() != Caller->getGC())
1798       return InlineResult::failure("incompatible GC");
1799   }
1800 
1801   // Get the personality function from the callee if it contains a landing pad.
1802   Constant *CalledPersonality =
1803       CalledFunc->hasPersonalityFn()
1804           ? CalledFunc->getPersonalityFn()->stripPointerCasts()
1805           : nullptr;
1806 
1807   // Find the personality function used by the landing pads of the caller. If it
1808   // exists, then check to see that it matches the personality function used in
1809   // the callee.
1810   Constant *CallerPersonality =
1811       Caller->hasPersonalityFn()
1812           ? Caller->getPersonalityFn()->stripPointerCasts()
1813           : nullptr;
1814   if (CalledPersonality) {
1815     if (!CallerPersonality)
1816       Caller->setPersonalityFn(CalledPersonality);
1817     // If the personality functions match, then we can perform the
1818     // inlining. Otherwise, we can't inline.
1819     // TODO: This isn't 100% true. Some personality functions are proper
1820     //       supersets of others and can be used in place of the other.
1821     else if (CalledPersonality != CallerPersonality)
1822       return InlineResult::failure("incompatible personality");
1823   }
1824 
1825   // We need to figure out which funclet the callsite was in so that we may
1826   // properly nest the callee.
1827   Instruction *CallSiteEHPad = nullptr;
1828   if (CallerPersonality) {
1829     EHPersonality Personality = classifyEHPersonality(CallerPersonality);
1830     if (isScopedEHPersonality(Personality)) {
1831       Optional<OperandBundleUse> ParentFunclet =
1832           CB.getOperandBundle(LLVMContext::OB_funclet);
1833       if (ParentFunclet)
1834         CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
1835 
1836       // OK, the inlining site is legal.  What about the target function?
1837 
1838       if (CallSiteEHPad) {
1839         if (Personality == EHPersonality::MSVC_CXX) {
1840           // The MSVC personality cannot tolerate catches getting inlined into
1841           // cleanup funclets.
1842           if (isa<CleanupPadInst>(CallSiteEHPad)) {
1843             // Ok, the call site is within a cleanuppad.  Let's check the callee
1844             // for catchpads.
1845             for (const BasicBlock &CalledBB : *CalledFunc) {
1846               if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
1847                 return InlineResult::failure("catch in cleanup funclet");
1848             }
1849           }
1850         } else if (isAsynchronousEHPersonality(Personality)) {
1851           // SEH is even less tolerant, there may not be any sort of exceptional
1852           // funclet in the callee.
1853           for (const BasicBlock &CalledBB : *CalledFunc) {
1854             if (CalledBB.isEHPad())
1855               return InlineResult::failure("SEH in cleanup funclet");
1856           }
1857         }
1858       }
1859     }
1860   }
1861 
1862   // Determine if we are dealing with a call in an EHPad which does not unwind
1863   // to caller.
1864   bool EHPadForCallUnwindsLocally = false;
1865   if (CallSiteEHPad && isa<CallInst>(CB)) {
1866     UnwindDestMemoTy FuncletUnwindMap;
1867     Value *CallSiteUnwindDestToken =
1868         getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap);
1869 
1870     EHPadForCallUnwindsLocally =
1871         CallSiteUnwindDestToken &&
1872         !isa<ConstantTokenNone>(CallSiteUnwindDestToken);
1873   }
1874 
1875   // Get an iterator to the last basic block in the function, which will have
1876   // the new function inlined after it.
1877   Function::iterator LastBlock = --Caller->end();
1878 
1879   // Make sure to capture all of the return instructions from the cloned
1880   // function.
1881   SmallVector<ReturnInst*, 8> Returns;
1882   ClonedCodeInfo InlinedFunctionInfo;
1883   Function::iterator FirstNewBlock;
1884 
1885   { // Scope to destroy VMap after cloning.
1886     ValueToValueMapTy VMap;
1887     // Keep a list of pair (dst, src) to emit byval initializations.
1888     SmallVector<std::pair<Value*, Value*>, 4> ByValInit;
1889 
1890     // When inlining a function that contains noalias scope metadata,
1891     // this metadata needs to be cloned so that the inlined blocks
1892     // have different "unique scopes" at every call site.
1893     // Track the metadata that must be cloned. Do this before other changes to
1894     // the function, so that we do not get in trouble when inlining caller ==
1895     // callee.
1896     ScopedAliasMetadataDeepCloner SAMetadataCloner(CB.getCalledFunction());
1897 
1898     auto &DL = Caller->getParent()->getDataLayout();
1899 
1900     // Calculate the vector of arguments to pass into the function cloner, which
1901     // matches up the formal to the actual argument values.
1902     auto AI = CB.arg_begin();
1903     unsigned ArgNo = 0;
1904     for (Function::arg_iterator I = CalledFunc->arg_begin(),
1905          E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
1906       Value *ActualArg = *AI;
1907 
1908       // When byval arguments actually inlined, we need to make the copy implied
1909       // by them explicit.  However, we don't do this if the callee is readonly
1910       // or readnone, because the copy would be unneeded: the callee doesn't
1911       // modify the struct.
1912       if (CB.isByValArgument(ArgNo)) {
1913         ActualArg = HandleByValArgument(ActualArg, &CB, CalledFunc, IFI,
1914                                         CalledFunc->getParamAlignment(ArgNo));
1915         if (ActualArg != *AI)
1916           ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
1917       }
1918 
1919       VMap[&*I] = ActualArg;
1920     }
1921 
1922     // TODO: Remove this when users have been updated to the assume bundles.
1923     // Add alignment assumptions if necessary. We do this before the inlined
1924     // instructions are actually cloned into the caller so that we can easily
1925     // check what will be known at the start of the inlined code.
1926     AddAlignmentAssumptions(CB, IFI);
1927 
1928     AssumptionCache *AC =
1929         IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
1930 
1931     /// Preserve all attributes on of the call and its parameters.
1932     salvageKnowledge(&CB, AC);
1933 
1934     // We want the inliner to prune the code as it copies.  We would LOVE to
1935     // have no dead or constant instructions leftover after inlining occurs
1936     // (which can happen, e.g., because an argument was constant), but we'll be
1937     // happy with whatever the cloner can do.
1938     CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
1939                               /*ModuleLevelChanges=*/false, Returns, ".i",
1940                               &InlinedFunctionInfo, &CB);
1941     // Remember the first block that is newly cloned over.
1942     FirstNewBlock = LastBlock; ++FirstNewBlock;
1943 
1944     // Insert retainRV/clainRV runtime calls.
1945     if (objcarc::hasAttachedCallOpBundle(&CB))
1946       inlineRetainOrClaimRVCalls(CB, Returns);
1947 
1948     // Updated caller/callee profiles only when requested. For sample loader
1949     // inlining, the context-sensitive inlinee profile doesn't need to be
1950     // subtracted from callee profile, and the inlined clone also doesn't need
1951     // to be scaled based on call site count.
1952     if (IFI.UpdateProfile) {
1953       if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr)
1954         // Update the BFI of blocks cloned into the caller.
1955         updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI,
1956                         CalledFunc->front());
1957 
1958       updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), CB,
1959                         IFI.PSI, IFI.CallerBFI);
1960     }
1961 
1962     // Inject byval arguments initialization.
1963     for (std::pair<Value*, Value*> &Init : ByValInit)
1964       HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
1965                               &*FirstNewBlock, IFI);
1966 
1967     Optional<OperandBundleUse> ParentDeopt =
1968         CB.getOperandBundle(LLVMContext::OB_deopt);
1969     if (ParentDeopt) {
1970       SmallVector<OperandBundleDef, 2> OpDefs;
1971 
1972       for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
1973         CallBase *ICS = dyn_cast_or_null<CallBase>(VH);
1974         if (!ICS)
1975           continue; // instruction was DCE'd or RAUW'ed to undef
1976 
1977         OpDefs.clear();
1978 
1979         OpDefs.reserve(ICS->getNumOperandBundles());
1980 
1981         for (unsigned COBi = 0, COBe = ICS->getNumOperandBundles(); COBi < COBe;
1982              ++COBi) {
1983           auto ChildOB = ICS->getOperandBundleAt(COBi);
1984           if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
1985             // If the inlined call has other operand bundles, let them be
1986             OpDefs.emplace_back(ChildOB);
1987             continue;
1988           }
1989 
1990           // It may be useful to separate this logic (of handling operand
1991           // bundles) out to a separate "policy" component if this gets crowded.
1992           // Prepend the parent's deoptimization continuation to the newly
1993           // inlined call's deoptimization continuation.
1994           std::vector<Value *> MergedDeoptArgs;
1995           MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
1996                                   ChildOB.Inputs.size());
1997 
1998           llvm::append_range(MergedDeoptArgs, ParentDeopt->Inputs);
1999           llvm::append_range(MergedDeoptArgs, ChildOB.Inputs);
2000 
2001           OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
2002         }
2003 
2004         Instruction *NewI = CallBase::Create(ICS, OpDefs, ICS);
2005 
2006         // Note: the RAUW does the appropriate fixup in VMap, so we need to do
2007         // this even if the call returns void.
2008         ICS->replaceAllUsesWith(NewI);
2009 
2010         VH = nullptr;
2011         ICS->eraseFromParent();
2012       }
2013     }
2014 
2015     // Update the callgraph if requested.
2016     if (IFI.CG)
2017       UpdateCallGraphAfterInlining(CB, FirstNewBlock, VMap, IFI);
2018 
2019     // For 'nodebug' functions, the associated DISubprogram is always null.
2020     // Conservatively avoid propagating the callsite debug location to
2021     // instructions inlined from a function whose DISubprogram is not null.
2022     fixupLineNumbers(Caller, FirstNewBlock, &CB,
2023                      CalledFunc->getSubprogram() != nullptr);
2024 
2025     // Now clone the inlined noalias scope metadata.
2026     SAMetadataCloner.clone();
2027     SAMetadataCloner.remap(FirstNewBlock, Caller->end());
2028 
2029     // Add noalias metadata if necessary.
2030     AddAliasScopeMetadata(CB, VMap, DL, CalleeAAR);
2031 
2032     // Clone return attributes on the callsite into the calls within the inlined
2033     // function which feed into its return value.
2034     AddReturnAttributes(CB, VMap);
2035 
2036     // Propagate metadata on the callsite if necessary.
2037     PropagateCallSiteMetadata(CB, FirstNewBlock, Caller->end());
2038 
2039     // Register any cloned assumptions.
2040     if (IFI.GetAssumptionCache)
2041       for (BasicBlock &NewBlock :
2042            make_range(FirstNewBlock->getIterator(), Caller->end()))
2043         for (Instruction &I : NewBlock)
2044           if (auto *II = dyn_cast<AssumeInst>(&I))
2045             IFI.GetAssumptionCache(*Caller).registerAssumption(II);
2046   }
2047 
2048   // If there are any alloca instructions in the block that used to be the entry
2049   // block for the callee, move them to the entry block of the caller.  First
2050   // calculate which instruction they should be inserted before.  We insert the
2051   // instructions at the end of the current alloca list.
2052   {
2053     BasicBlock::iterator InsertPoint = Caller->begin()->begin();
2054     for (BasicBlock::iterator I = FirstNewBlock->begin(),
2055          E = FirstNewBlock->end(); I != E; ) {
2056       AllocaInst *AI = dyn_cast<AllocaInst>(I++);
2057       if (!AI) continue;
2058 
2059       // If the alloca is now dead, remove it.  This often occurs due to code
2060       // specialization.
2061       if (AI->use_empty()) {
2062         AI->eraseFromParent();
2063         continue;
2064       }
2065 
2066       if (!allocaWouldBeStaticInEntry(AI))
2067         continue;
2068 
2069       // Keep track of the static allocas that we inline into the caller.
2070       IFI.StaticAllocas.push_back(AI);
2071 
2072       // Scan for the block of allocas that we can move over, and move them
2073       // all at once.
2074       while (isa<AllocaInst>(I) &&
2075              !cast<AllocaInst>(I)->use_empty() &&
2076              allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) {
2077         IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
2078         ++I;
2079       }
2080 
2081       // Transfer all of the allocas over in a block.  Using splice means
2082       // that the instructions aren't removed from the symbol table, then
2083       // reinserted.
2084       Caller->getEntryBlock().getInstList().splice(
2085           InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I);
2086     }
2087   }
2088 
2089   SmallVector<Value*,4> VarArgsToForward;
2090   SmallVector<AttributeSet, 4> VarArgsAttrs;
2091   for (unsigned i = CalledFunc->getFunctionType()->getNumParams();
2092        i < CB.getNumArgOperands(); i++) {
2093     VarArgsToForward.push_back(CB.getArgOperand(i));
2094     VarArgsAttrs.push_back(CB.getAttributes().getParamAttributes(i));
2095   }
2096 
2097   bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false;
2098   if (InlinedFunctionInfo.ContainsCalls) {
2099     CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
2100     if (CallInst *CI = dyn_cast<CallInst>(&CB))
2101       CallSiteTailKind = CI->getTailCallKind();
2102 
2103     // For inlining purposes, the "notail" marker is the same as no marker.
2104     if (CallSiteTailKind == CallInst::TCK_NoTail)
2105       CallSiteTailKind = CallInst::TCK_None;
2106 
2107     for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
2108          ++BB) {
2109       for (auto II = BB->begin(); II != BB->end();) {
2110         Instruction &I = *II++;
2111         CallInst *CI = dyn_cast<CallInst>(&I);
2112         if (!CI)
2113           continue;
2114 
2115         // Forward varargs from inlined call site to calls to the
2116         // ForwardVarArgsTo function, if requested, and to musttail calls.
2117         if (!VarArgsToForward.empty() &&
2118             ((ForwardVarArgsTo &&
2119               CI->getCalledFunction() == ForwardVarArgsTo) ||
2120              CI->isMustTailCall())) {
2121           // Collect attributes for non-vararg parameters.
2122           AttributeList Attrs = CI->getAttributes();
2123           SmallVector<AttributeSet, 8> ArgAttrs;
2124           if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) {
2125             for (unsigned ArgNo = 0;
2126                  ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo)
2127               ArgAttrs.push_back(Attrs.getParamAttributes(ArgNo));
2128           }
2129 
2130           // Add VarArg attributes.
2131           ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end());
2132           Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttributes(),
2133                                      Attrs.getRetAttributes(), ArgAttrs);
2134           // Add VarArgs to existing parameters.
2135           SmallVector<Value *, 6> Params(CI->arg_operands());
2136           Params.append(VarArgsToForward.begin(), VarArgsToForward.end());
2137           CallInst *NewCI = CallInst::Create(
2138               CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI);
2139           NewCI->setDebugLoc(CI->getDebugLoc());
2140           NewCI->setAttributes(Attrs);
2141           NewCI->setCallingConv(CI->getCallingConv());
2142           CI->replaceAllUsesWith(NewCI);
2143           CI->eraseFromParent();
2144           CI = NewCI;
2145         }
2146 
2147         if (Function *F = CI->getCalledFunction())
2148           InlinedDeoptimizeCalls |=
2149               F->getIntrinsicID() == Intrinsic::experimental_deoptimize;
2150 
2151         // We need to reduce the strength of any inlined tail calls.  For
2152         // musttail, we have to avoid introducing potential unbounded stack
2153         // growth.  For example, if functions 'f' and 'g' are mutually recursive
2154         // with musttail, we can inline 'g' into 'f' so long as we preserve
2155         // musttail on the cloned call to 'f'.  If either the inlined call site
2156         // or the cloned call site is *not* musttail, the program already has
2157         // one frame of stack growth, so it's safe to remove musttail.  Here is
2158         // a table of example transformations:
2159         //
2160         //    f -> musttail g -> musttail f  ==>  f -> musttail f
2161         //    f -> musttail g ->     tail f  ==>  f ->     tail f
2162         //    f ->          g -> musttail f  ==>  f ->          f
2163         //    f ->          g ->     tail f  ==>  f ->          f
2164         //
2165         // Inlined notail calls should remain notail calls.
2166         CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
2167         if (ChildTCK != CallInst::TCK_NoTail)
2168           ChildTCK = std::min(CallSiteTailKind, ChildTCK);
2169         CI->setTailCallKind(ChildTCK);
2170         InlinedMustTailCalls |= CI->isMustTailCall();
2171 
2172         // Calls inlined through a 'nounwind' call site should be marked
2173         // 'nounwind'.
2174         if (MarkNoUnwind)
2175           CI->setDoesNotThrow();
2176       }
2177     }
2178   }
2179 
2180   // Leave lifetime markers for the static alloca's, scoping them to the
2181   // function we just inlined.
2182   if (InsertLifetime && !IFI.StaticAllocas.empty()) {
2183     IRBuilder<> builder(&FirstNewBlock->front());
2184     for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
2185       AllocaInst *AI = IFI.StaticAllocas[ai];
2186       // Don't mark swifterror allocas. They can't have bitcast uses.
2187       if (AI->isSwiftError())
2188         continue;
2189 
2190       // If the alloca is already scoped to something smaller than the whole
2191       // function then there's no need to add redundant, less accurate markers.
2192       if (hasLifetimeMarkers(AI))
2193         continue;
2194 
2195       // Try to determine the size of the allocation.
2196       ConstantInt *AllocaSize = nullptr;
2197       if (ConstantInt *AIArraySize =
2198           dyn_cast<ConstantInt>(AI->getArraySize())) {
2199         auto &DL = Caller->getParent()->getDataLayout();
2200         Type *AllocaType = AI->getAllocatedType();
2201         TypeSize AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
2202         uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
2203 
2204         // Don't add markers for zero-sized allocas.
2205         if (AllocaArraySize == 0)
2206           continue;
2207 
2208         // Check that array size doesn't saturate uint64_t and doesn't
2209         // overflow when it's multiplied by type size.
2210         if (!AllocaTypeSize.isScalable() &&
2211             AllocaArraySize != std::numeric_limits<uint64_t>::max() &&
2212             std::numeric_limits<uint64_t>::max() / AllocaArraySize >=
2213                 AllocaTypeSize.getFixedSize()) {
2214           AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
2215                                         AllocaArraySize * AllocaTypeSize);
2216         }
2217       }
2218 
2219       builder.CreateLifetimeStart(AI, AllocaSize);
2220       for (ReturnInst *RI : Returns) {
2221         // Don't insert llvm.lifetime.end calls between a musttail or deoptimize
2222         // call and a return.  The return kills all local allocas.
2223         if (InlinedMustTailCalls &&
2224             RI->getParent()->getTerminatingMustTailCall())
2225           continue;
2226         if (InlinedDeoptimizeCalls &&
2227             RI->getParent()->getTerminatingDeoptimizeCall())
2228           continue;
2229         IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
2230       }
2231     }
2232   }
2233 
2234   // If the inlined code contained dynamic alloca instructions, wrap the inlined
2235   // code with llvm.stacksave/llvm.stackrestore intrinsics.
2236   if (InlinedFunctionInfo.ContainsDynamicAllocas) {
2237     Module *M = Caller->getParent();
2238     // Get the two intrinsics we care about.
2239     Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
2240     Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
2241 
2242     // Insert the llvm.stacksave.
2243     CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
2244                              .CreateCall(StackSave, {}, "savedstack");
2245 
2246     // Insert a call to llvm.stackrestore before any return instructions in the
2247     // inlined function.
2248     for (ReturnInst *RI : Returns) {
2249       // Don't insert llvm.stackrestore calls between a musttail or deoptimize
2250       // call and a return.  The return will restore the stack pointer.
2251       if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
2252         continue;
2253       if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall())
2254         continue;
2255       IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
2256     }
2257   }
2258 
2259   // If we are inlining for an invoke instruction, we must make sure to rewrite
2260   // any call instructions into invoke instructions.  This is sensitive to which
2261   // funclet pads were top-level in the inlinee, so must be done before
2262   // rewriting the "parent pad" links.
2263   if (auto *II = dyn_cast<InvokeInst>(&CB)) {
2264     BasicBlock *UnwindDest = II->getUnwindDest();
2265     Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
2266     if (isa<LandingPadInst>(FirstNonPHI)) {
2267       HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
2268     } else {
2269       HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
2270     }
2271   }
2272 
2273   // Update the lexical scopes of the new funclets and callsites.
2274   // Anything that had 'none' as its parent is now nested inside the callsite's
2275   // EHPad.
2276 
2277   if (CallSiteEHPad) {
2278     for (Function::iterator BB = FirstNewBlock->getIterator(),
2279                             E = Caller->end();
2280          BB != E; ++BB) {
2281       // Add bundle operands to any top-level call sites.
2282       SmallVector<OperandBundleDef, 1> OpBundles;
2283       for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) {
2284         CallBase *I = dyn_cast<CallBase>(&*BBI++);
2285         if (!I)
2286           continue;
2287 
2288         // Skip call sites which are nounwind intrinsics.
2289         auto *CalledFn =
2290             dyn_cast<Function>(I->getCalledOperand()->stripPointerCasts());
2291         if (CalledFn && CalledFn->isIntrinsic() && I->doesNotThrow())
2292           continue;
2293 
2294         // Skip call sites which already have a "funclet" bundle.
2295         if (I->getOperandBundle(LLVMContext::OB_funclet))
2296           continue;
2297 
2298         I->getOperandBundlesAsDefs(OpBundles);
2299         OpBundles.emplace_back("funclet", CallSiteEHPad);
2300 
2301         Instruction *NewInst = CallBase::Create(I, OpBundles, I);
2302         NewInst->takeName(I);
2303         I->replaceAllUsesWith(NewInst);
2304         I->eraseFromParent();
2305 
2306         OpBundles.clear();
2307       }
2308 
2309       // It is problematic if the inlinee has a cleanupret which unwinds to
2310       // caller and we inline it into a call site which doesn't unwind but into
2311       // an EH pad that does.  Such an edge must be dynamically unreachable.
2312       // As such, we replace the cleanupret with unreachable.
2313       if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
2314         if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
2315           changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false);
2316 
2317       Instruction *I = BB->getFirstNonPHI();
2318       if (!I->isEHPad())
2319         continue;
2320 
2321       if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
2322         if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
2323           CatchSwitch->setParentPad(CallSiteEHPad);
2324       } else {
2325         auto *FPI = cast<FuncletPadInst>(I);
2326         if (isa<ConstantTokenNone>(FPI->getParentPad()))
2327           FPI->setParentPad(CallSiteEHPad);
2328       }
2329     }
2330   }
2331 
2332   if (InlinedDeoptimizeCalls) {
2333     // We need to at least remove the deoptimizing returns from the Return set,
2334     // so that the control flow from those returns does not get merged into the
2335     // caller (but terminate it instead).  If the caller's return type does not
2336     // match the callee's return type, we also need to change the return type of
2337     // the intrinsic.
2338     if (Caller->getReturnType() == CB.getType()) {
2339       llvm::erase_if(Returns, [](ReturnInst *RI) {
2340         return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr;
2341       });
2342     } else {
2343       SmallVector<ReturnInst *, 8> NormalReturns;
2344       Function *NewDeoptIntrinsic = Intrinsic::getDeclaration(
2345           Caller->getParent(), Intrinsic::experimental_deoptimize,
2346           {Caller->getReturnType()});
2347 
2348       for (ReturnInst *RI : Returns) {
2349         CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall();
2350         if (!DeoptCall) {
2351           NormalReturns.push_back(RI);
2352           continue;
2353         }
2354 
2355         // The calling convention on the deoptimize call itself may be bogus,
2356         // since the code we're inlining may have undefined behavior (and may
2357         // never actually execute at runtime); but all
2358         // @llvm.experimental.deoptimize declarations have to have the same
2359         // calling convention in a well-formed module.
2360         auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv();
2361         NewDeoptIntrinsic->setCallingConv(CallingConv);
2362         auto *CurBB = RI->getParent();
2363         RI->eraseFromParent();
2364 
2365         SmallVector<Value *, 4> CallArgs(DeoptCall->args());
2366 
2367         SmallVector<OperandBundleDef, 1> OpBundles;
2368         DeoptCall->getOperandBundlesAsDefs(OpBundles);
2369         DeoptCall->eraseFromParent();
2370         assert(!OpBundles.empty() &&
2371                "Expected at least the deopt operand bundle");
2372 
2373         IRBuilder<> Builder(CurBB);
2374         CallInst *NewDeoptCall =
2375             Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles);
2376         NewDeoptCall->setCallingConv(CallingConv);
2377         if (NewDeoptCall->getType()->isVoidTy())
2378           Builder.CreateRetVoid();
2379         else
2380           Builder.CreateRet(NewDeoptCall);
2381       }
2382 
2383       // Leave behind the normal returns so we can merge control flow.
2384       std::swap(Returns, NormalReturns);
2385     }
2386   }
2387 
2388   // Handle any inlined musttail call sites.  In order for a new call site to be
2389   // musttail, the source of the clone and the inlined call site must have been
2390   // musttail.  Therefore it's safe to return without merging control into the
2391   // phi below.
2392   if (InlinedMustTailCalls) {
2393     // Check if we need to bitcast the result of any musttail calls.
2394     Type *NewRetTy = Caller->getReturnType();
2395     bool NeedBitCast = !CB.use_empty() && CB.getType() != NewRetTy;
2396 
2397     // Handle the returns preceded by musttail calls separately.
2398     SmallVector<ReturnInst *, 8> NormalReturns;
2399     for (ReturnInst *RI : Returns) {
2400       CallInst *ReturnedMustTail =
2401           RI->getParent()->getTerminatingMustTailCall();
2402       if (!ReturnedMustTail) {
2403         NormalReturns.push_back(RI);
2404         continue;
2405       }
2406       if (!NeedBitCast)
2407         continue;
2408 
2409       // Delete the old return and any preceding bitcast.
2410       BasicBlock *CurBB = RI->getParent();
2411       auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
2412       RI->eraseFromParent();
2413       if (OldCast)
2414         OldCast->eraseFromParent();
2415 
2416       // Insert a new bitcast and return with the right type.
2417       IRBuilder<> Builder(CurBB);
2418       Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
2419     }
2420 
2421     // Leave behind the normal returns so we can merge control flow.
2422     std::swap(Returns, NormalReturns);
2423   }
2424 
2425   // Now that all of the transforms on the inlined code have taken place but
2426   // before we splice the inlined code into the CFG and lose track of which
2427   // blocks were actually inlined, collect the call sites. We only do this if
2428   // call graph updates weren't requested, as those provide value handle based
2429   // tracking of inlined call sites instead.
2430   if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) {
2431     // Otherwise just collect the raw call sites that were inlined.
2432     for (BasicBlock &NewBB :
2433          make_range(FirstNewBlock->getIterator(), Caller->end()))
2434       for (Instruction &I : NewBB)
2435         if (auto *CB = dyn_cast<CallBase>(&I))
2436           IFI.InlinedCallSites.push_back(CB);
2437   }
2438 
2439   // If we cloned in _exactly one_ basic block, and if that block ends in a
2440   // return instruction, we splice the body of the inlined callee directly into
2441   // the calling basic block.
2442   if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
2443     // Move all of the instructions right before the call.
2444     OrigBB->getInstList().splice(CB.getIterator(), FirstNewBlock->getInstList(),
2445                                  FirstNewBlock->begin(), FirstNewBlock->end());
2446     // Remove the cloned basic block.
2447     Caller->getBasicBlockList().pop_back();
2448 
2449     // If the call site was an invoke instruction, add a branch to the normal
2450     // destination.
2451     if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
2452       BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), &CB);
2453       NewBr->setDebugLoc(Returns[0]->getDebugLoc());
2454     }
2455 
2456     // If the return instruction returned a value, replace uses of the call with
2457     // uses of the returned value.
2458     if (!CB.use_empty()) {
2459       ReturnInst *R = Returns[0];
2460       if (&CB == R->getReturnValue())
2461         CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
2462       else
2463         CB.replaceAllUsesWith(R->getReturnValue());
2464     }
2465     // Since we are now done with the Call/Invoke, we can delete it.
2466     CB.eraseFromParent();
2467 
2468     // Since we are now done with the return instruction, delete it also.
2469     Returns[0]->eraseFromParent();
2470 
2471     // We are now done with the inlining.
2472     return InlineResult::success();
2473   }
2474 
2475   // Otherwise, we have the normal case, of more than one block to inline or
2476   // multiple return sites.
2477 
2478   // We want to clone the entire callee function into the hole between the
2479   // "starter" and "ender" blocks.  How we accomplish this depends on whether
2480   // this is an invoke instruction or a call instruction.
2481   BasicBlock *AfterCallBB;
2482   BranchInst *CreatedBranchToNormalDest = nullptr;
2483   if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
2484 
2485     // Add an unconditional branch to make this look like the CallInst case...
2486     CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), &CB);
2487 
2488     // Split the basic block.  This guarantees that no PHI nodes will have to be
2489     // updated due to new incoming edges, and make the invoke case more
2490     // symmetric to the call case.
2491     AfterCallBB =
2492         OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
2493                                 CalledFunc->getName() + ".exit");
2494 
2495   } else { // It's a call
2496     // If this is a call instruction, we need to split the basic block that
2497     // the call lives in.
2498     //
2499     AfterCallBB = OrigBB->splitBasicBlock(CB.getIterator(),
2500                                           CalledFunc->getName() + ".exit");
2501   }
2502 
2503   if (IFI.CallerBFI) {
2504     // Copy original BB's block frequency to AfterCallBB
2505     IFI.CallerBFI->setBlockFreq(
2506         AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency());
2507   }
2508 
2509   // Change the branch that used to go to AfterCallBB to branch to the first
2510   // basic block of the inlined function.
2511   //
2512   Instruction *Br = OrigBB->getTerminator();
2513   assert(Br && Br->getOpcode() == Instruction::Br &&
2514          "splitBasicBlock broken!");
2515   Br->setOperand(0, &*FirstNewBlock);
2516 
2517   // Now that the function is correct, make it a little bit nicer.  In
2518   // particular, move the basic blocks inserted from the end of the function
2519   // into the space made by splitting the source basic block.
2520   Caller->getBasicBlockList().splice(AfterCallBB->getIterator(),
2521                                      Caller->getBasicBlockList(), FirstNewBlock,
2522                                      Caller->end());
2523 
2524   // Handle all of the return instructions that we just cloned in, and eliminate
2525   // any users of the original call/invoke instruction.
2526   Type *RTy = CalledFunc->getReturnType();
2527 
2528   PHINode *PHI = nullptr;
2529   if (Returns.size() > 1) {
2530     // The PHI node should go at the front of the new basic block to merge all
2531     // possible incoming values.
2532     if (!CB.use_empty()) {
2533       PHI = PHINode::Create(RTy, Returns.size(), CB.getName(),
2534                             &AfterCallBB->front());
2535       // Anything that used the result of the function call should now use the
2536       // PHI node as their operand.
2537       CB.replaceAllUsesWith(PHI);
2538     }
2539 
2540     // Loop over all of the return instructions adding entries to the PHI node
2541     // as appropriate.
2542     if (PHI) {
2543       for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2544         ReturnInst *RI = Returns[i];
2545         assert(RI->getReturnValue()->getType() == PHI->getType() &&
2546                "Ret value not consistent in function!");
2547         PHI->addIncoming(RI->getReturnValue(), RI->getParent());
2548       }
2549     }
2550 
2551     // Add a branch to the merge points and remove return instructions.
2552     DebugLoc Loc;
2553     for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2554       ReturnInst *RI = Returns[i];
2555       BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
2556       Loc = RI->getDebugLoc();
2557       BI->setDebugLoc(Loc);
2558       RI->eraseFromParent();
2559     }
2560     // We need to set the debug location to *somewhere* inside the
2561     // inlined function. The line number may be nonsensical, but the
2562     // instruction will at least be associated with the right
2563     // function.
2564     if (CreatedBranchToNormalDest)
2565       CreatedBranchToNormalDest->setDebugLoc(Loc);
2566   } else if (!Returns.empty()) {
2567     // Otherwise, if there is exactly one return value, just replace anything
2568     // using the return value of the call with the computed value.
2569     if (!CB.use_empty()) {
2570       if (&CB == Returns[0]->getReturnValue())
2571         CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
2572       else
2573         CB.replaceAllUsesWith(Returns[0]->getReturnValue());
2574     }
2575 
2576     // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
2577     BasicBlock *ReturnBB = Returns[0]->getParent();
2578     ReturnBB->replaceAllUsesWith(AfterCallBB);
2579 
2580     // Splice the code from the return block into the block that it will return
2581     // to, which contains the code that was after the call.
2582     AfterCallBB->getInstList().splice(AfterCallBB->begin(),
2583                                       ReturnBB->getInstList());
2584 
2585     if (CreatedBranchToNormalDest)
2586       CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
2587 
2588     // Delete the return instruction now and empty ReturnBB now.
2589     Returns[0]->eraseFromParent();
2590     ReturnBB->eraseFromParent();
2591   } else if (!CB.use_empty()) {
2592     // No returns, but something is using the return value of the call.  Just
2593     // nuke the result.
2594     CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
2595   }
2596 
2597   // Since we are now done with the Call/Invoke, we can delete it.
2598   CB.eraseFromParent();
2599 
2600   // If we inlined any musttail calls and the original return is now
2601   // unreachable, delete it.  It can only contain a bitcast and ret.
2602   if (InlinedMustTailCalls && pred_empty(AfterCallBB))
2603     AfterCallBB->eraseFromParent();
2604 
2605   // We should always be able to fold the entry block of the function into the
2606   // single predecessor of the block...
2607   assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
2608   BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
2609 
2610   // Splice the code entry block into calling block, right before the
2611   // unconditional branch.
2612   CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
2613   OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList());
2614 
2615   // Remove the unconditional branch.
2616   OrigBB->getInstList().erase(Br);
2617 
2618   // Now we can remove the CalleeEntry block, which is now empty.
2619   Caller->getBasicBlockList().erase(CalleeEntry);
2620 
2621   // If we inserted a phi node, check to see if it has a single value (e.g. all
2622   // the entries are the same or undef).  If so, remove the PHI so it doesn't
2623   // block other optimizations.
2624   if (PHI) {
2625     AssumptionCache *AC =
2626         IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
2627     auto &DL = Caller->getParent()->getDataLayout();
2628     if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) {
2629       PHI->replaceAllUsesWith(V);
2630       PHI->eraseFromParent();
2631     }
2632   }
2633 
2634   return InlineResult::success();
2635 }
2636