1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements inlining of a function into a call site, resolving 11 // parameters and the return value as appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Cloning.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/Analysis/CallGraph.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/IR/Attributes.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DebugInfo.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 using namespace llvm; 33 34 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI, 35 bool InsertLifetime) { 36 return InlineFunction(CallSite(CI), IFI, InsertLifetime); 37 } 38 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI, 39 bool InsertLifetime) { 40 return InlineFunction(CallSite(II), IFI, InsertLifetime); 41 } 42 43 namespace { 44 /// A class for recording information about inlining through an invoke. 45 class InvokeInliningInfo { 46 BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind. 47 BasicBlock *InnerResumeDest; ///< Destination for the callee's resume. 48 LandingPadInst *CallerLPad; ///< LandingPadInst associated with the invoke. 49 PHINode *InnerEHValuesPHI; ///< PHI for EH values from landingpad insts. 50 SmallVector<Value*, 8> UnwindDestPHIValues; 51 52 public: 53 InvokeInliningInfo(InvokeInst *II) 54 : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(0), 55 CallerLPad(0), InnerEHValuesPHI(0) { 56 // If there are PHI nodes in the unwind destination block, we need to keep 57 // track of which values came into them from the invoke before removing 58 // the edge from this block. 59 llvm::BasicBlock *InvokeBB = II->getParent(); 60 BasicBlock::iterator I = OuterResumeDest->begin(); 61 for (; isa<PHINode>(I); ++I) { 62 // Save the value to use for this edge. 63 PHINode *PHI = cast<PHINode>(I); 64 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 65 } 66 67 CallerLPad = cast<LandingPadInst>(I); 68 } 69 70 /// getOuterResumeDest - The outer unwind destination is the target of 71 /// unwind edges introduced for calls within the inlined function. 72 BasicBlock *getOuterResumeDest() const { 73 return OuterResumeDest; 74 } 75 76 BasicBlock *getInnerResumeDest(); 77 78 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 79 80 /// forwardResume - Forward the 'resume' instruction to the caller's landing 81 /// pad block. When the landing pad block has only one predecessor, this is 82 /// a simple branch. When there is more than one predecessor, we need to 83 /// split the landing pad block after the landingpad instruction and jump 84 /// to there. 85 void forwardResume(ResumeInst *RI, 86 SmallPtrSet<LandingPadInst*, 16> &InlinedLPads); 87 88 /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind 89 /// destination block for the given basic block, using the values for the 90 /// original invoke's source block. 91 void addIncomingPHIValuesFor(BasicBlock *BB) const { 92 addIncomingPHIValuesForInto(BB, OuterResumeDest); 93 } 94 95 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 96 BasicBlock::iterator I = dest->begin(); 97 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 98 PHINode *phi = cast<PHINode>(I); 99 phi->addIncoming(UnwindDestPHIValues[i], src); 100 } 101 } 102 }; 103 } 104 105 /// getInnerResumeDest - Get or create a target for the branch from ResumeInsts. 106 BasicBlock *InvokeInliningInfo::getInnerResumeDest() { 107 if (InnerResumeDest) return InnerResumeDest; 108 109 // Split the landing pad. 110 BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint; 111 InnerResumeDest = 112 OuterResumeDest->splitBasicBlock(SplitPoint, 113 OuterResumeDest->getName() + ".body"); 114 115 // The number of incoming edges we expect to the inner landing pad. 116 const unsigned PHICapacity = 2; 117 118 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 119 BasicBlock::iterator InsertPoint = InnerResumeDest->begin(); 120 BasicBlock::iterator I = OuterResumeDest->begin(); 121 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 122 PHINode *OuterPHI = cast<PHINode>(I); 123 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 124 OuterPHI->getName() + ".lpad-body", 125 InsertPoint); 126 OuterPHI->replaceAllUsesWith(InnerPHI); 127 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 128 } 129 130 // Create a PHI for the exception values. 131 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 132 "eh.lpad-body", InsertPoint); 133 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 134 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 135 136 // All done. 137 return InnerResumeDest; 138 } 139 140 /// forwardResume - Forward the 'resume' instruction to the caller's landing pad 141 /// block. When the landing pad block has only one predecessor, this is a simple 142 /// branch. When there is more than one predecessor, we need to split the 143 /// landing pad block after the landingpad instruction and jump to there. 144 void InvokeInliningInfo::forwardResume(ResumeInst *RI, 145 SmallPtrSet<LandingPadInst*, 16> &InlinedLPads) { 146 BasicBlock *Dest = getInnerResumeDest(); 147 BasicBlock *Src = RI->getParent(); 148 149 BranchInst::Create(Dest, Src); 150 151 // Update the PHIs in the destination. They were inserted in an order which 152 // makes this work. 153 addIncomingPHIValuesForInto(Src, Dest); 154 155 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 156 RI->eraseFromParent(); 157 } 158 159 /// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into 160 /// an invoke, we have to turn all of the calls that can throw into 161 /// invokes. This function analyze BB to see if there are any calls, and if so, 162 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 163 /// nodes in that block with the values specified in InvokeDestPHIValues. 164 static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, 165 InvokeInliningInfo &Invoke) { 166 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 167 Instruction *I = BBI++; 168 169 // We only need to check for function calls: inlined invoke 170 // instructions require no special handling. 171 CallInst *CI = dyn_cast<CallInst>(I); 172 173 // If this call cannot unwind, don't convert it to an invoke. 174 // Inline asm calls cannot throw. 175 if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue())) 176 continue; 177 178 // Convert this function call into an invoke instruction. First, split the 179 // basic block. 180 BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); 181 182 // Delete the unconditional branch inserted by splitBasicBlock 183 BB->getInstList().pop_back(); 184 185 // Create the new invoke instruction. 186 ImmutableCallSite CS(CI); 187 SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end()); 188 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, 189 Invoke.getOuterResumeDest(), 190 InvokeArgs, CI->getName(), BB); 191 II->setCallingConv(CI->getCallingConv()); 192 II->setAttributes(CI->getAttributes()); 193 194 // Make sure that anything using the call now uses the invoke! This also 195 // updates the CallGraph if present, because it uses a WeakVH. 196 CI->replaceAllUsesWith(II); 197 198 // Delete the original call 199 Split->getInstList().pop_front(); 200 201 // Update any PHI nodes in the exceptional block to indicate that there is 202 // now a new entry in them. 203 Invoke.addIncomingPHIValuesFor(BB); 204 return; 205 } 206 } 207 208 /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls 209 /// in the body of the inlined function into invokes. 210 /// 211 /// II is the invoke instruction being inlined. FirstNewBlock is the first 212 /// block of the inlined code (the last block is the end of the function), 213 /// and InlineCodeInfo is information about the code that got inlined. 214 static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock, 215 ClonedCodeInfo &InlinedCodeInfo) { 216 BasicBlock *InvokeDest = II->getUnwindDest(); 217 218 Function *Caller = FirstNewBlock->getParent(); 219 220 // The inlined code is currently at the end of the function, scan from the 221 // start of the inlined code to its end, checking for stuff we need to 222 // rewrite. 223 InvokeInliningInfo Invoke(II); 224 225 // Get all of the inlined landing pad instructions. 226 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 227 for (Function::iterator I = FirstNewBlock, E = Caller->end(); I != E; ++I) 228 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 229 InlinedLPads.insert(II->getLandingPadInst()); 230 231 // Append the clauses from the outer landing pad instruction into the inlined 232 // landing pad instructions. 233 LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 234 for (SmallPtrSet<LandingPadInst*, 16>::iterator I = InlinedLPads.begin(), 235 E = InlinedLPads.end(); I != E; ++I) { 236 LandingPadInst *InlinedLPad = *I; 237 unsigned OuterNum = OuterLPad->getNumClauses(); 238 InlinedLPad->reserveClauses(OuterNum); 239 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 240 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 241 if (OuterLPad->isCleanup()) 242 InlinedLPad->setCleanup(true); 243 } 244 245 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){ 246 if (InlinedCodeInfo.ContainsCalls) 247 HandleCallsInBlockInlinedThroughInvoke(BB, Invoke); 248 249 // Forward any resumes that are remaining here. 250 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 251 Invoke.forwardResume(RI, InlinedLPads); 252 } 253 254 // Now that everything is happy, we have one final detail. The PHI nodes in 255 // the exception destination block still have entries due to the original 256 // invoke instruction. Eliminate these entries (which might even delete the 257 // PHI node) now. 258 InvokeDest->removePredecessor(II->getParent()); 259 } 260 261 /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee 262 /// into the caller, update the specified callgraph to reflect the changes we 263 /// made. Note that it's possible that not all code was copied over, so only 264 /// some edges of the callgraph may remain. 265 static void UpdateCallGraphAfterInlining(CallSite CS, 266 Function::iterator FirstNewBlock, 267 ValueToValueMapTy &VMap, 268 InlineFunctionInfo &IFI) { 269 CallGraph &CG = *IFI.CG; 270 const Function *Caller = CS.getInstruction()->getParent()->getParent(); 271 const Function *Callee = CS.getCalledFunction(); 272 CallGraphNode *CalleeNode = CG[Callee]; 273 CallGraphNode *CallerNode = CG[Caller]; 274 275 // Since we inlined some uninlined call sites in the callee into the caller, 276 // add edges from the caller to all of the callees of the callee. 277 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 278 279 // Consider the case where CalleeNode == CallerNode. 280 CallGraphNode::CalledFunctionsVector CallCache; 281 if (CalleeNode == CallerNode) { 282 CallCache.assign(I, E); 283 I = CallCache.begin(); 284 E = CallCache.end(); 285 } 286 287 for (; I != E; ++I) { 288 const Value *OrigCall = I->first; 289 290 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 291 // Only copy the edge if the call was inlined! 292 if (VMI == VMap.end() || VMI->second == 0) 293 continue; 294 295 // If the call was inlined, but then constant folded, there is no edge to 296 // add. Check for this case. 297 Instruction *NewCall = dyn_cast<Instruction>(VMI->second); 298 if (NewCall == 0) continue; 299 300 // Remember that this call site got inlined for the client of 301 // InlineFunction. 302 IFI.InlinedCalls.push_back(NewCall); 303 304 // It's possible that inlining the callsite will cause it to go from an 305 // indirect to a direct call by resolving a function pointer. If this 306 // happens, set the callee of the new call site to a more precise 307 // destination. This can also happen if the call graph node of the caller 308 // was just unnecessarily imprecise. 309 if (I->second->getFunction() == 0) 310 if (Function *F = CallSite(NewCall).getCalledFunction()) { 311 // Indirect call site resolved to direct call. 312 CallerNode->addCalledFunction(CallSite(NewCall), CG[F]); 313 314 continue; 315 } 316 317 CallerNode->addCalledFunction(CallSite(NewCall), I->second); 318 } 319 320 // Update the call graph by deleting the edge from Callee to Caller. We must 321 // do this after the loop above in case Caller and Callee are the same. 322 CallerNode->removeCallEdgeFor(CS); 323 } 324 325 /// HandleByValArgument - When inlining a call site that has a byval argument, 326 /// we have to make the implicit memcpy explicit by adding it. 327 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 328 const Function *CalledFunc, 329 InlineFunctionInfo &IFI, 330 unsigned ByValAlignment) { 331 Type *AggTy = cast<PointerType>(Arg->getType())->getElementType(); 332 333 // If the called function is readonly, then it could not mutate the caller's 334 // copy of the byval'd memory. In this case, it is safe to elide the copy and 335 // temporary. 336 if (CalledFunc->onlyReadsMemory()) { 337 // If the byval argument has a specified alignment that is greater than the 338 // passed in pointer, then we either have to round up the input pointer or 339 // give up on this transformation. 340 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 341 return Arg; 342 343 // If the pointer is already known to be sufficiently aligned, or if we can 344 // round it up to a larger alignment, then we don't need a temporary. 345 if (getOrEnforceKnownAlignment(Arg, ByValAlignment, 346 IFI.DL) >= ByValAlignment) 347 return Arg; 348 349 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 350 // for code quality, but rarely happens and is required for correctness. 351 } 352 353 LLVMContext &Context = Arg->getContext(); 354 355 Type *VoidPtrTy = Type::getInt8PtrTy(Context); 356 357 // Create the alloca. If we have DataLayout, use nice alignment. 358 unsigned Align = 1; 359 if (IFI.DL) 360 Align = IFI.DL->getPrefTypeAlignment(AggTy); 361 362 // If the byval had an alignment specified, we *must* use at least that 363 // alignment, as it is required by the byval argument (and uses of the 364 // pointer inside the callee). 365 Align = std::max(Align, ByValAlignment); 366 367 Function *Caller = TheCall->getParent()->getParent(); 368 369 Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(), 370 &*Caller->begin()->begin()); 371 // Emit a memcpy. 372 Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)}; 373 Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(), 374 Intrinsic::memcpy, 375 Tys); 376 Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall); 377 Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall); 378 379 Value *Size; 380 if (IFI.DL == 0) 381 Size = ConstantExpr::getSizeOf(AggTy); 382 else 383 Size = ConstantInt::get(Type::getInt64Ty(Context), 384 IFI.DL->getTypeStoreSize(AggTy)); 385 386 // Always generate a memcpy of alignment 1 here because we don't know 387 // the alignment of the src pointer. Other optimizations can infer 388 // better alignment. 389 Value *CallArgs[] = { 390 DestCast, SrcCast, Size, 391 ConstantInt::get(Type::getInt32Ty(Context), 1), 392 ConstantInt::getFalse(Context) // isVolatile 393 }; 394 IRBuilder<>(TheCall).CreateCall(MemCpyFn, CallArgs); 395 396 // Uses of the argument in the function should use our new alloca 397 // instead. 398 return NewAlloca; 399 } 400 401 // isUsedByLifetimeMarker - Check whether this Value is used by a lifetime 402 // intrinsic. 403 static bool isUsedByLifetimeMarker(Value *V) { 404 for (User *U : V->users()) { 405 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 406 switch (II->getIntrinsicID()) { 407 default: break; 408 case Intrinsic::lifetime_start: 409 case Intrinsic::lifetime_end: 410 return true; 411 } 412 } 413 } 414 return false; 415 } 416 417 // hasLifetimeMarkers - Check whether the given alloca already has 418 // lifetime.start or lifetime.end intrinsics. 419 static bool hasLifetimeMarkers(AllocaInst *AI) { 420 Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext()); 421 if (AI->getType() == Int8PtrTy) 422 return isUsedByLifetimeMarker(AI); 423 424 // Do a scan to find all the casts to i8*. 425 for (User *U : AI->users()) { 426 if (U->getType() != Int8PtrTy) continue; 427 if (U->stripPointerCasts() != AI) continue; 428 if (isUsedByLifetimeMarker(U)) 429 return true; 430 } 431 return false; 432 } 433 434 /// updateInlinedAtInfo - Helper function used by fixupLineNumbers to 435 /// recursively update InlinedAtEntry of a DebugLoc. 436 static DebugLoc updateInlinedAtInfo(const DebugLoc &DL, 437 const DebugLoc &InlinedAtDL, 438 LLVMContext &Ctx) { 439 if (MDNode *IA = DL.getInlinedAt(Ctx)) { 440 DebugLoc NewInlinedAtDL 441 = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx); 442 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), 443 NewInlinedAtDL.getAsMDNode(Ctx)); 444 } 445 446 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), 447 InlinedAtDL.getAsMDNode(Ctx)); 448 } 449 450 /// fixupLineNumbers - Update inlined instructions' line numbers to 451 /// to encode location where these instructions are inlined. 452 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 453 Instruction *TheCall) { 454 DebugLoc TheCallDL = TheCall->getDebugLoc(); 455 if (TheCallDL.isUnknown()) 456 return; 457 458 for (; FI != Fn->end(); ++FI) { 459 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 460 BI != BE; ++BI) { 461 DebugLoc DL = BI->getDebugLoc(); 462 if (!DL.isUnknown()) { 463 BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext())); 464 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) { 465 LLVMContext &Ctx = BI->getContext(); 466 MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx); 467 DVI->setOperand(2, createInlinedVariable(DVI->getVariable(), 468 InlinedAt, Ctx)); 469 } 470 } 471 } 472 } 473 } 474 475 /// InlineFunction - This function inlines the called function into the basic 476 /// block of the caller. This returns false if it is not possible to inline 477 /// this call. The program is still in a well defined state if this occurs 478 /// though. 479 /// 480 /// Note that this only does one level of inlining. For example, if the 481 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 482 /// exists in the instruction stream. Similarly this will inline a recursive 483 /// function by one level. 484 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI, 485 bool InsertLifetime) { 486 Instruction *TheCall = CS.getInstruction(); 487 assert(TheCall->getParent() && TheCall->getParent()->getParent() && 488 "Instruction not in function!"); 489 490 // If IFI has any state in it, zap it before we fill it in. 491 IFI.reset(); 492 493 const Function *CalledFunc = CS.getCalledFunction(); 494 if (CalledFunc == 0 || // Can't inline external function or indirect 495 CalledFunc->isDeclaration() || // call, or call to a vararg function! 496 CalledFunc->getFunctionType()->isVarArg()) return false; 497 498 // If the call to the callee is not a tail call, we must clear the 'tail' 499 // flags on any calls that we inline. 500 bool MustClearTailCallFlags = 501 !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall()); 502 503 // If the call to the callee cannot throw, set the 'nounwind' flag on any 504 // calls that we inline. 505 bool MarkNoUnwind = CS.doesNotThrow(); 506 507 BasicBlock *OrigBB = TheCall->getParent(); 508 Function *Caller = OrigBB->getParent(); 509 510 // GC poses two hazards to inlining, which only occur when the callee has GC: 511 // 1. If the caller has no GC, then the callee's GC must be propagated to the 512 // caller. 513 // 2. If the caller has a differing GC, it is invalid to inline. 514 if (CalledFunc->hasGC()) { 515 if (!Caller->hasGC()) 516 Caller->setGC(CalledFunc->getGC()); 517 else if (CalledFunc->getGC() != Caller->getGC()) 518 return false; 519 } 520 521 // Get the personality function from the callee if it contains a landing pad. 522 Value *CalleePersonality = 0; 523 for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end(); 524 I != E; ++I) 525 if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) { 526 const BasicBlock *BB = II->getUnwindDest(); 527 const LandingPadInst *LP = BB->getLandingPadInst(); 528 CalleePersonality = LP->getPersonalityFn(); 529 break; 530 } 531 532 // Find the personality function used by the landing pads of the caller. If it 533 // exists, then check to see that it matches the personality function used in 534 // the callee. 535 if (CalleePersonality) { 536 for (Function::const_iterator I = Caller->begin(), E = Caller->end(); 537 I != E; ++I) 538 if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) { 539 const BasicBlock *BB = II->getUnwindDest(); 540 const LandingPadInst *LP = BB->getLandingPadInst(); 541 542 // If the personality functions match, then we can perform the 543 // inlining. Otherwise, we can't inline. 544 // TODO: This isn't 100% true. Some personality functions are proper 545 // supersets of others and can be used in place of the other. 546 if (LP->getPersonalityFn() != CalleePersonality) 547 return false; 548 549 break; 550 } 551 } 552 553 // Get an iterator to the last basic block in the function, which will have 554 // the new function inlined after it. 555 Function::iterator LastBlock = &Caller->back(); 556 557 // Make sure to capture all of the return instructions from the cloned 558 // function. 559 SmallVector<ReturnInst*, 8> Returns; 560 ClonedCodeInfo InlinedFunctionInfo; 561 Function::iterator FirstNewBlock; 562 563 { // Scope to destroy VMap after cloning. 564 ValueToValueMapTy VMap; 565 566 assert(CalledFunc->arg_size() == CS.arg_size() && 567 "No varargs calls can be inlined!"); 568 569 // Calculate the vector of arguments to pass into the function cloner, which 570 // matches up the formal to the actual argument values. 571 CallSite::arg_iterator AI = CS.arg_begin(); 572 unsigned ArgNo = 0; 573 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 574 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 575 Value *ActualArg = *AI; 576 577 // When byval arguments actually inlined, we need to make the copy implied 578 // by them explicit. However, we don't do this if the callee is readonly 579 // or readnone, because the copy would be unneeded: the callee doesn't 580 // modify the struct. 581 if (CS.isByValArgument(ArgNo)) { 582 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, 583 CalledFunc->getParamAlignment(ArgNo+1)); 584 585 // Calls that we inline may use the new alloca, so we need to clear 586 // their 'tail' flags if HandleByValArgument introduced a new alloca and 587 // the callee has calls. 588 MustClearTailCallFlags |= ActualArg != *AI; 589 } 590 591 VMap[I] = ActualArg; 592 } 593 594 // We want the inliner to prune the code as it copies. We would LOVE to 595 // have no dead or constant instructions leftover after inlining occurs 596 // (which can happen, e.g., because an argument was constant), but we'll be 597 // happy with whatever the cloner can do. 598 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 599 /*ModuleLevelChanges=*/false, Returns, ".i", 600 &InlinedFunctionInfo, IFI.DL, TheCall); 601 602 // Remember the first block that is newly cloned over. 603 FirstNewBlock = LastBlock; ++FirstNewBlock; 604 605 // Update the callgraph if requested. 606 if (IFI.CG) 607 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); 608 609 // Update inlined instructions' line number information. 610 fixupLineNumbers(Caller, FirstNewBlock, TheCall); 611 } 612 613 // If there are any alloca instructions in the block that used to be the entry 614 // block for the callee, move them to the entry block of the caller. First 615 // calculate which instruction they should be inserted before. We insert the 616 // instructions at the end of the current alloca list. 617 { 618 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 619 for (BasicBlock::iterator I = FirstNewBlock->begin(), 620 E = FirstNewBlock->end(); I != E; ) { 621 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 622 if (AI == 0) continue; 623 624 // If the alloca is now dead, remove it. This often occurs due to code 625 // specialization. 626 if (AI->use_empty()) { 627 AI->eraseFromParent(); 628 continue; 629 } 630 631 if (!isa<Constant>(AI->getArraySize())) 632 continue; 633 634 // Keep track of the static allocas that we inline into the caller. 635 IFI.StaticAllocas.push_back(AI); 636 637 // Scan for the block of allocas that we can move over, and move them 638 // all at once. 639 while (isa<AllocaInst>(I) && 640 isa<Constant>(cast<AllocaInst>(I)->getArraySize())) { 641 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 642 ++I; 643 } 644 645 // Transfer all of the allocas over in a block. Using splice means 646 // that the instructions aren't removed from the symbol table, then 647 // reinserted. 648 Caller->getEntryBlock().getInstList().splice(InsertPoint, 649 FirstNewBlock->getInstList(), 650 AI, I); 651 } 652 } 653 654 // Leave lifetime markers for the static alloca's, scoping them to the 655 // function we just inlined. 656 if (InsertLifetime && !IFI.StaticAllocas.empty()) { 657 IRBuilder<> builder(FirstNewBlock->begin()); 658 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 659 AllocaInst *AI = IFI.StaticAllocas[ai]; 660 661 // If the alloca is already scoped to something smaller than the whole 662 // function then there's no need to add redundant, less accurate markers. 663 if (hasLifetimeMarkers(AI)) 664 continue; 665 666 // Try to determine the size of the allocation. 667 ConstantInt *AllocaSize = 0; 668 if (ConstantInt *AIArraySize = 669 dyn_cast<ConstantInt>(AI->getArraySize())) { 670 if (IFI.DL) { 671 Type *AllocaType = AI->getAllocatedType(); 672 uint64_t AllocaTypeSize = IFI.DL->getTypeAllocSize(AllocaType); 673 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 674 assert(AllocaArraySize > 0 && "array size of AllocaInst is zero"); 675 // Check that array size doesn't saturate uint64_t and doesn't 676 // overflow when it's multiplied by type size. 677 if (AllocaArraySize != ~0ULL && 678 UINT64_MAX / AllocaArraySize >= AllocaTypeSize) { 679 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 680 AllocaArraySize * AllocaTypeSize); 681 } 682 } 683 } 684 685 builder.CreateLifetimeStart(AI, AllocaSize); 686 for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) { 687 IRBuilder<> builder(Returns[ri]); 688 builder.CreateLifetimeEnd(AI, AllocaSize); 689 } 690 } 691 } 692 693 // If the inlined code contained dynamic alloca instructions, wrap the inlined 694 // code with llvm.stacksave/llvm.stackrestore intrinsics. 695 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 696 Module *M = Caller->getParent(); 697 // Get the two intrinsics we care about. 698 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 699 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 700 701 // Insert the llvm.stacksave. 702 CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin()) 703 .CreateCall(StackSave, "savedstack"); 704 705 // Insert a call to llvm.stackrestore before any return instructions in the 706 // inlined function. 707 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 708 IRBuilder<>(Returns[i]).CreateCall(StackRestore, SavedPtr); 709 } 710 } 711 712 // If we are inlining tail call instruction through a call site that isn't 713 // marked 'tail', we must remove the tail marker for any calls in the inlined 714 // code. Also, calls inlined through a 'nounwind' call site should be marked 715 // 'nounwind'. 716 if (InlinedFunctionInfo.ContainsCalls && 717 (MustClearTailCallFlags || MarkNoUnwind)) { 718 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); 719 BB != E; ++BB) 720 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 721 if (CallInst *CI = dyn_cast<CallInst>(I)) { 722 if (MustClearTailCallFlags) 723 CI->setTailCall(false); 724 if (MarkNoUnwind) 725 CI->setDoesNotThrow(); 726 } 727 } 728 729 // If we are inlining for an invoke instruction, we must make sure to rewrite 730 // any call instructions into invoke instructions. 731 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) 732 HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo); 733 734 // If we cloned in _exactly one_ basic block, and if that block ends in a 735 // return instruction, we splice the body of the inlined callee directly into 736 // the calling basic block. 737 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 738 // Move all of the instructions right before the call. 739 OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(), 740 FirstNewBlock->begin(), FirstNewBlock->end()); 741 // Remove the cloned basic block. 742 Caller->getBasicBlockList().pop_back(); 743 744 // If the call site was an invoke instruction, add a branch to the normal 745 // destination. 746 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 747 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); 748 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 749 } 750 751 // If the return instruction returned a value, replace uses of the call with 752 // uses of the returned value. 753 if (!TheCall->use_empty()) { 754 ReturnInst *R = Returns[0]; 755 if (TheCall == R->getReturnValue()) 756 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 757 else 758 TheCall->replaceAllUsesWith(R->getReturnValue()); 759 } 760 // Since we are now done with the Call/Invoke, we can delete it. 761 TheCall->eraseFromParent(); 762 763 // Since we are now done with the return instruction, delete it also. 764 Returns[0]->eraseFromParent(); 765 766 // We are now done with the inlining. 767 return true; 768 } 769 770 // Otherwise, we have the normal case, of more than one block to inline or 771 // multiple return sites. 772 773 // We want to clone the entire callee function into the hole between the 774 // "starter" and "ender" blocks. How we accomplish this depends on whether 775 // this is an invoke instruction or a call instruction. 776 BasicBlock *AfterCallBB; 777 BranchInst *CreatedBranchToNormalDest = NULL; 778 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 779 780 // Add an unconditional branch to make this look like the CallInst case... 781 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall); 782 783 // Split the basic block. This guarantees that no PHI nodes will have to be 784 // updated due to new incoming edges, and make the invoke case more 785 // symmetric to the call case. 786 AfterCallBB = OrigBB->splitBasicBlock(CreatedBranchToNormalDest, 787 CalledFunc->getName()+".exit"); 788 789 } else { // It's a call 790 // If this is a call instruction, we need to split the basic block that 791 // the call lives in. 792 // 793 AfterCallBB = OrigBB->splitBasicBlock(TheCall, 794 CalledFunc->getName()+".exit"); 795 } 796 797 // Change the branch that used to go to AfterCallBB to branch to the first 798 // basic block of the inlined function. 799 // 800 TerminatorInst *Br = OrigBB->getTerminator(); 801 assert(Br && Br->getOpcode() == Instruction::Br && 802 "splitBasicBlock broken!"); 803 Br->setOperand(0, FirstNewBlock); 804 805 806 // Now that the function is correct, make it a little bit nicer. In 807 // particular, move the basic blocks inserted from the end of the function 808 // into the space made by splitting the source basic block. 809 Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(), 810 FirstNewBlock, Caller->end()); 811 812 // Handle all of the return instructions that we just cloned in, and eliminate 813 // any users of the original call/invoke instruction. 814 Type *RTy = CalledFunc->getReturnType(); 815 816 PHINode *PHI = 0; 817 if (Returns.size() > 1) { 818 // The PHI node should go at the front of the new basic block to merge all 819 // possible incoming values. 820 if (!TheCall->use_empty()) { 821 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), 822 AfterCallBB->begin()); 823 // Anything that used the result of the function call should now use the 824 // PHI node as their operand. 825 TheCall->replaceAllUsesWith(PHI); 826 } 827 828 // Loop over all of the return instructions adding entries to the PHI node 829 // as appropriate. 830 if (PHI) { 831 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 832 ReturnInst *RI = Returns[i]; 833 assert(RI->getReturnValue()->getType() == PHI->getType() && 834 "Ret value not consistent in function!"); 835 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 836 } 837 } 838 839 840 // Add a branch to the merge points and remove return instructions. 841 DebugLoc Loc; 842 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 843 ReturnInst *RI = Returns[i]; 844 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 845 Loc = RI->getDebugLoc(); 846 BI->setDebugLoc(Loc); 847 RI->eraseFromParent(); 848 } 849 // We need to set the debug location to *somewhere* inside the 850 // inlined function. The line number may be nonsensical, but the 851 // instruction will at least be associated with the right 852 // function. 853 if (CreatedBranchToNormalDest) 854 CreatedBranchToNormalDest->setDebugLoc(Loc); 855 } else if (!Returns.empty()) { 856 // Otherwise, if there is exactly one return value, just replace anything 857 // using the return value of the call with the computed value. 858 if (!TheCall->use_empty()) { 859 if (TheCall == Returns[0]->getReturnValue()) 860 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 861 else 862 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); 863 } 864 865 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 866 BasicBlock *ReturnBB = Returns[0]->getParent(); 867 ReturnBB->replaceAllUsesWith(AfterCallBB); 868 869 // Splice the code from the return block into the block that it will return 870 // to, which contains the code that was after the call. 871 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 872 ReturnBB->getInstList()); 873 874 if (CreatedBranchToNormalDest) 875 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 876 877 // Delete the return instruction now and empty ReturnBB now. 878 Returns[0]->eraseFromParent(); 879 ReturnBB->eraseFromParent(); 880 } else if (!TheCall->use_empty()) { 881 // No returns, but something is using the return value of the call. Just 882 // nuke the result. 883 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 884 } 885 886 // Since we are now done with the Call/Invoke, we can delete it. 887 TheCall->eraseFromParent(); 888 889 // We should always be able to fold the entry block of the function into the 890 // single predecessor of the block... 891 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 892 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 893 894 // Splice the code entry block into calling block, right before the 895 // unconditional branch. 896 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 897 OrigBB->getInstList().splice(Br, CalleeEntry->getInstList()); 898 899 // Remove the unconditional branch. 900 OrigBB->getInstList().erase(Br); 901 902 // Now we can remove the CalleeEntry block, which is now empty. 903 Caller->getBasicBlockList().erase(CalleeEntry); 904 905 // If we inserted a phi node, check to see if it has a single value (e.g. all 906 // the entries are the same or undef). If so, remove the PHI so it doesn't 907 // block other optimizations. 908 if (PHI) { 909 if (Value *V = SimplifyInstruction(PHI, IFI.DL)) { 910 PHI->replaceAllUsesWith(V); 911 PHI->eraseFromParent(); 912 } 913 } 914 915 return true; 916 } 917