1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements inlining of a function into a call site, resolving 10 // parameters and the return value as appropriate. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/BlockFrequencyInfo.h" 26 #include "llvm/Analysis/CallGraph.h" 27 #include "llvm/Analysis/CaptureTracking.h" 28 #include "llvm/Analysis/EHPersonalities.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/Analysis/VectorUtils.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/CFG.h" 37 #include "llvm/IR/CallSite.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DIBuilder.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfoMetadata.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Dominators.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/User.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 64 #include "llvm/Transforms/Utils/Cloning.h" 65 #include "llvm/Transforms/Utils/ValueMapper.h" 66 #include <algorithm> 67 #include <cassert> 68 #include <cstdint> 69 #include <iterator> 70 #include <limits> 71 #include <string> 72 #include <utility> 73 #include <vector> 74 75 using namespace llvm; 76 using ProfileCount = Function::ProfileCount; 77 78 static cl::opt<bool> 79 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), 80 cl::Hidden, 81 cl::desc("Convert noalias attributes to metadata during inlining.")); 82 83 static cl::opt<bool> 84 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", 85 cl::init(true), cl::Hidden, 86 cl::desc("Convert align attributes to assumptions during inlining.")); 87 88 static cl::opt<bool> UpdateReturnAttributes( 89 "update-return-attrs", cl::init(true), cl::Hidden, 90 cl::desc("Update return attributes on calls within inlined body")); 91 92 static cl::opt<bool> UpdateLoadMetadataDuringInlining( 93 "update-load-metadata-during-inlining", cl::init(true), cl::Hidden, 94 cl::desc("Update metadata on loads within inlined body")); 95 96 static cl::opt<unsigned> InlinerAttributeWindow( 97 "max-inst-checked-for-throw-during-inlining", cl::Hidden, 98 cl::desc("the maximum number of instructions analyzed for may throw during " 99 "attribute inference in inlined body"), 100 cl::init(4)); 101 102 llvm::InlineResult llvm::InlineFunction(CallBase *CB, InlineFunctionInfo &IFI, 103 AAResults *CalleeAAR, 104 bool InsertLifetime) { 105 return InlineFunction(CallSite(CB), IFI, CalleeAAR, InsertLifetime); 106 } 107 108 namespace { 109 110 /// A class for recording information about inlining a landing pad. 111 class LandingPadInliningInfo { 112 /// Destination of the invoke's unwind. 113 BasicBlock *OuterResumeDest; 114 115 /// Destination for the callee's resume. 116 BasicBlock *InnerResumeDest = nullptr; 117 118 /// LandingPadInst associated with the invoke. 119 LandingPadInst *CallerLPad = nullptr; 120 121 /// PHI for EH values from landingpad insts. 122 PHINode *InnerEHValuesPHI = nullptr; 123 124 SmallVector<Value*, 8> UnwindDestPHIValues; 125 126 public: 127 LandingPadInliningInfo(InvokeInst *II) 128 : OuterResumeDest(II->getUnwindDest()) { 129 // If there are PHI nodes in the unwind destination block, we need to keep 130 // track of which values came into them from the invoke before removing 131 // the edge from this block. 132 BasicBlock *InvokeBB = II->getParent(); 133 BasicBlock::iterator I = OuterResumeDest->begin(); 134 for (; isa<PHINode>(I); ++I) { 135 // Save the value to use for this edge. 136 PHINode *PHI = cast<PHINode>(I); 137 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 138 } 139 140 CallerLPad = cast<LandingPadInst>(I); 141 } 142 143 /// The outer unwind destination is the target of 144 /// unwind edges introduced for calls within the inlined function. 145 BasicBlock *getOuterResumeDest() const { 146 return OuterResumeDest; 147 } 148 149 BasicBlock *getInnerResumeDest(); 150 151 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 152 153 /// Forward the 'resume' instruction to the caller's landing pad block. 154 /// When the landing pad block has only one predecessor, this is 155 /// a simple branch. When there is more than one predecessor, we need to 156 /// split the landing pad block after the landingpad instruction and jump 157 /// to there. 158 void forwardResume(ResumeInst *RI, 159 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); 160 161 /// Add incoming-PHI values to the unwind destination block for the given 162 /// basic block, using the values for the original invoke's source block. 163 void addIncomingPHIValuesFor(BasicBlock *BB) const { 164 addIncomingPHIValuesForInto(BB, OuterResumeDest); 165 } 166 167 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 168 BasicBlock::iterator I = dest->begin(); 169 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 170 PHINode *phi = cast<PHINode>(I); 171 phi->addIncoming(UnwindDestPHIValues[i], src); 172 } 173 } 174 }; 175 176 } // end anonymous namespace 177 178 /// Get or create a target for the branch from ResumeInsts. 179 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() { 180 if (InnerResumeDest) return InnerResumeDest; 181 182 // Split the landing pad. 183 BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator(); 184 InnerResumeDest = 185 OuterResumeDest->splitBasicBlock(SplitPoint, 186 OuterResumeDest->getName() + ".body"); 187 188 // The number of incoming edges we expect to the inner landing pad. 189 const unsigned PHICapacity = 2; 190 191 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 192 Instruction *InsertPoint = &InnerResumeDest->front(); 193 BasicBlock::iterator I = OuterResumeDest->begin(); 194 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 195 PHINode *OuterPHI = cast<PHINode>(I); 196 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 197 OuterPHI->getName() + ".lpad-body", 198 InsertPoint); 199 OuterPHI->replaceAllUsesWith(InnerPHI); 200 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 201 } 202 203 // Create a PHI for the exception values. 204 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 205 "eh.lpad-body", InsertPoint); 206 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 207 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 208 209 // All done. 210 return InnerResumeDest; 211 } 212 213 /// Forward the 'resume' instruction to the caller's landing pad block. 214 /// When the landing pad block has only one predecessor, this is a simple 215 /// branch. When there is more than one predecessor, we need to split the 216 /// landing pad block after the landingpad instruction and jump to there. 217 void LandingPadInliningInfo::forwardResume( 218 ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) { 219 BasicBlock *Dest = getInnerResumeDest(); 220 BasicBlock *Src = RI->getParent(); 221 222 BranchInst::Create(Dest, Src); 223 224 // Update the PHIs in the destination. They were inserted in an order which 225 // makes this work. 226 addIncomingPHIValuesForInto(Src, Dest); 227 228 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 229 RI->eraseFromParent(); 230 } 231 232 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper. 233 static Value *getParentPad(Value *EHPad) { 234 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 235 return FPI->getParentPad(); 236 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 237 } 238 239 using UnwindDestMemoTy = DenseMap<Instruction *, Value *>; 240 241 /// Helper for getUnwindDestToken that does the descendant-ward part of 242 /// the search. 243 static Value *getUnwindDestTokenHelper(Instruction *EHPad, 244 UnwindDestMemoTy &MemoMap) { 245 SmallVector<Instruction *, 8> Worklist(1, EHPad); 246 247 while (!Worklist.empty()) { 248 Instruction *CurrentPad = Worklist.pop_back_val(); 249 // We only put pads on the worklist that aren't in the MemoMap. When 250 // we find an unwind dest for a pad we may update its ancestors, but 251 // the queue only ever contains uncles/great-uncles/etc. of CurrentPad, 252 // so they should never get updated while queued on the worklist. 253 assert(!MemoMap.count(CurrentPad)); 254 Value *UnwindDestToken = nullptr; 255 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) { 256 if (CatchSwitch->hasUnwindDest()) { 257 UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI(); 258 } else { 259 // Catchswitch doesn't have a 'nounwind' variant, and one might be 260 // annotated as "unwinds to caller" when really it's nounwind (see 261 // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the 262 // parent's unwind dest from this. We can check its catchpads' 263 // descendants, since they might include a cleanuppad with an 264 // "unwinds to caller" cleanupret, which can be trusted. 265 for (auto HI = CatchSwitch->handler_begin(), 266 HE = CatchSwitch->handler_end(); 267 HI != HE && !UnwindDestToken; ++HI) { 268 BasicBlock *HandlerBlock = *HI; 269 auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI()); 270 for (User *Child : CatchPad->users()) { 271 // Intentionally ignore invokes here -- since the catchswitch is 272 // marked "unwind to caller", it would be a verifier error if it 273 // contained an invoke which unwinds out of it, so any invoke we'd 274 // encounter must unwind to some child of the catch. 275 if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child)) 276 continue; 277 278 Instruction *ChildPad = cast<Instruction>(Child); 279 auto Memo = MemoMap.find(ChildPad); 280 if (Memo == MemoMap.end()) { 281 // Haven't figured out this child pad yet; queue it. 282 Worklist.push_back(ChildPad); 283 continue; 284 } 285 // We've already checked this child, but might have found that 286 // it offers no proof either way. 287 Value *ChildUnwindDestToken = Memo->second; 288 if (!ChildUnwindDestToken) 289 continue; 290 // We already know the child's unwind dest, which can either 291 // be ConstantTokenNone to indicate unwind to caller, or can 292 // be another child of the catchpad. Only the former indicates 293 // the unwind dest of the catchswitch. 294 if (isa<ConstantTokenNone>(ChildUnwindDestToken)) { 295 UnwindDestToken = ChildUnwindDestToken; 296 break; 297 } 298 assert(getParentPad(ChildUnwindDestToken) == CatchPad); 299 } 300 } 301 } 302 } else { 303 auto *CleanupPad = cast<CleanupPadInst>(CurrentPad); 304 for (User *U : CleanupPad->users()) { 305 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) { 306 if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest()) 307 UnwindDestToken = RetUnwindDest->getFirstNonPHI(); 308 else 309 UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext()); 310 break; 311 } 312 Value *ChildUnwindDestToken; 313 if (auto *Invoke = dyn_cast<InvokeInst>(U)) { 314 ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI(); 315 } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) { 316 Instruction *ChildPad = cast<Instruction>(U); 317 auto Memo = MemoMap.find(ChildPad); 318 if (Memo == MemoMap.end()) { 319 // Haven't resolved this child yet; queue it and keep searching. 320 Worklist.push_back(ChildPad); 321 continue; 322 } 323 // We've checked this child, but still need to ignore it if it 324 // had no proof either way. 325 ChildUnwindDestToken = Memo->second; 326 if (!ChildUnwindDestToken) 327 continue; 328 } else { 329 // Not a relevant user of the cleanuppad 330 continue; 331 } 332 // In a well-formed program, the child/invoke must either unwind to 333 // an(other) child of the cleanup, or exit the cleanup. In the 334 // first case, continue searching. 335 if (isa<Instruction>(ChildUnwindDestToken) && 336 getParentPad(ChildUnwindDestToken) == CleanupPad) 337 continue; 338 UnwindDestToken = ChildUnwindDestToken; 339 break; 340 } 341 } 342 // If we haven't found an unwind dest for CurrentPad, we may have queued its 343 // children, so move on to the next in the worklist. 344 if (!UnwindDestToken) 345 continue; 346 347 // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits 348 // any ancestors of CurrentPad up to but not including UnwindDestToken's 349 // parent pad. Record this in the memo map, and check to see if the 350 // original EHPad being queried is one of the ones exited. 351 Value *UnwindParent; 352 if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken)) 353 UnwindParent = getParentPad(UnwindPad); 354 else 355 UnwindParent = nullptr; 356 bool ExitedOriginalPad = false; 357 for (Instruction *ExitedPad = CurrentPad; 358 ExitedPad && ExitedPad != UnwindParent; 359 ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) { 360 // Skip over catchpads since they just follow their catchswitches. 361 if (isa<CatchPadInst>(ExitedPad)) 362 continue; 363 MemoMap[ExitedPad] = UnwindDestToken; 364 ExitedOriginalPad |= (ExitedPad == EHPad); 365 } 366 367 if (ExitedOriginalPad) 368 return UnwindDestToken; 369 370 // Continue the search. 371 } 372 373 // No definitive information is contained within this funclet. 374 return nullptr; 375 } 376 377 /// Given an EH pad, find where it unwinds. If it unwinds to an EH pad, 378 /// return that pad instruction. If it unwinds to caller, return 379 /// ConstantTokenNone. If it does not have a definitive unwind destination, 380 /// return nullptr. 381 /// 382 /// This routine gets invoked for calls in funclets in inlinees when inlining 383 /// an invoke. Since many funclets don't have calls inside them, it's queried 384 /// on-demand rather than building a map of pads to unwind dests up front. 385 /// Determining a funclet's unwind dest may require recursively searching its 386 /// descendants, and also ancestors and cousins if the descendants don't provide 387 /// an answer. Since most funclets will have their unwind dest immediately 388 /// available as the unwind dest of a catchswitch or cleanupret, this routine 389 /// searches top-down from the given pad and then up. To avoid worst-case 390 /// quadratic run-time given that approach, it uses a memo map to avoid 391 /// re-processing funclet trees. The callers that rewrite the IR as they go 392 /// take advantage of this, for correctness, by checking/forcing rewritten 393 /// pads' entries to match the original callee view. 394 static Value *getUnwindDestToken(Instruction *EHPad, 395 UnwindDestMemoTy &MemoMap) { 396 // Catchpads unwind to the same place as their catchswitch; 397 // redirct any queries on catchpads so the code below can 398 // deal with just catchswitches and cleanuppads. 399 if (auto *CPI = dyn_cast<CatchPadInst>(EHPad)) 400 EHPad = CPI->getCatchSwitch(); 401 402 // Check if we've already determined the unwind dest for this pad. 403 auto Memo = MemoMap.find(EHPad); 404 if (Memo != MemoMap.end()) 405 return Memo->second; 406 407 // Search EHPad and, if necessary, its descendants. 408 Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap); 409 assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0)); 410 if (UnwindDestToken) 411 return UnwindDestToken; 412 413 // No information is available for this EHPad from itself or any of its 414 // descendants. An unwind all the way out to a pad in the caller would 415 // need also to agree with the unwind dest of the parent funclet, so 416 // search up the chain to try to find a funclet with information. Put 417 // null entries in the memo map to avoid re-processing as we go up. 418 MemoMap[EHPad] = nullptr; 419 #ifndef NDEBUG 420 SmallPtrSet<Instruction *, 4> TempMemos; 421 TempMemos.insert(EHPad); 422 #endif 423 Instruction *LastUselessPad = EHPad; 424 Value *AncestorToken; 425 for (AncestorToken = getParentPad(EHPad); 426 auto *AncestorPad = dyn_cast<Instruction>(AncestorToken); 427 AncestorToken = getParentPad(AncestorToken)) { 428 // Skip over catchpads since they just follow their catchswitches. 429 if (isa<CatchPadInst>(AncestorPad)) 430 continue; 431 // If the MemoMap had an entry mapping AncestorPad to nullptr, since we 432 // haven't yet called getUnwindDestTokenHelper for AncestorPad in this 433 // call to getUnwindDestToken, that would mean that AncestorPad had no 434 // information in itself, its descendants, or its ancestors. If that 435 // were the case, then we should also have recorded the lack of information 436 // for the descendant that we're coming from. So assert that we don't 437 // find a null entry in the MemoMap for AncestorPad. 438 assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]); 439 auto AncestorMemo = MemoMap.find(AncestorPad); 440 if (AncestorMemo == MemoMap.end()) { 441 UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap); 442 } else { 443 UnwindDestToken = AncestorMemo->second; 444 } 445 if (UnwindDestToken) 446 break; 447 LastUselessPad = AncestorPad; 448 MemoMap[LastUselessPad] = nullptr; 449 #ifndef NDEBUG 450 TempMemos.insert(LastUselessPad); 451 #endif 452 } 453 454 // We know that getUnwindDestTokenHelper was called on LastUselessPad and 455 // returned nullptr (and likewise for EHPad and any of its ancestors up to 456 // LastUselessPad), so LastUselessPad has no information from below. Since 457 // getUnwindDestTokenHelper must investigate all downward paths through 458 // no-information nodes to prove that a node has no information like this, 459 // and since any time it finds information it records it in the MemoMap for 460 // not just the immediately-containing funclet but also any ancestors also 461 // exited, it must be the case that, walking downward from LastUselessPad, 462 // visiting just those nodes which have not been mapped to an unwind dest 463 // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since 464 // they are just used to keep getUnwindDestTokenHelper from repeating work), 465 // any node visited must have been exhaustively searched with no information 466 // for it found. 467 SmallVector<Instruction *, 8> Worklist(1, LastUselessPad); 468 while (!Worklist.empty()) { 469 Instruction *UselessPad = Worklist.pop_back_val(); 470 auto Memo = MemoMap.find(UselessPad); 471 if (Memo != MemoMap.end() && Memo->second) { 472 // Here the name 'UselessPad' is a bit of a misnomer, because we've found 473 // that it is a funclet that does have information about unwinding to 474 // a particular destination; its parent was a useless pad. 475 // Since its parent has no information, the unwind edge must not escape 476 // the parent, and must target a sibling of this pad. This local unwind 477 // gives us no information about EHPad. Leave it and the subtree rooted 478 // at it alone. 479 assert(getParentPad(Memo->second) == getParentPad(UselessPad)); 480 continue; 481 } 482 // We know we don't have information for UselesPad. If it has an entry in 483 // the MemoMap (mapping it to nullptr), it must be one of the TempMemos 484 // added on this invocation of getUnwindDestToken; if a previous invocation 485 // recorded nullptr, it would have had to prove that the ancestors of 486 // UselessPad, which include LastUselessPad, had no information, and that 487 // in turn would have required proving that the descendants of 488 // LastUselesPad, which include EHPad, have no information about 489 // LastUselessPad, which would imply that EHPad was mapped to nullptr in 490 // the MemoMap on that invocation, which isn't the case if we got here. 491 assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad)); 492 // Assert as we enumerate users that 'UselessPad' doesn't have any unwind 493 // information that we'd be contradicting by making a map entry for it 494 // (which is something that getUnwindDestTokenHelper must have proved for 495 // us to get here). Just assert on is direct users here; the checks in 496 // this downward walk at its descendants will verify that they don't have 497 // any unwind edges that exit 'UselessPad' either (i.e. they either have no 498 // unwind edges or unwind to a sibling). 499 MemoMap[UselessPad] = UnwindDestToken; 500 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) { 501 assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad"); 502 for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) { 503 auto *CatchPad = HandlerBlock->getFirstNonPHI(); 504 for (User *U : CatchPad->users()) { 505 assert( 506 (!isa<InvokeInst>(U) || 507 (getParentPad( 508 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 509 CatchPad)) && 510 "Expected useless pad"); 511 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 512 Worklist.push_back(cast<Instruction>(U)); 513 } 514 } 515 } else { 516 assert(isa<CleanupPadInst>(UselessPad)); 517 for (User *U : UselessPad->users()) { 518 assert(!isa<CleanupReturnInst>(U) && "Expected useless pad"); 519 assert((!isa<InvokeInst>(U) || 520 (getParentPad( 521 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 522 UselessPad)) && 523 "Expected useless pad"); 524 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 525 Worklist.push_back(cast<Instruction>(U)); 526 } 527 } 528 } 529 530 return UnwindDestToken; 531 } 532 533 /// When we inline a basic block into an invoke, 534 /// we have to turn all of the calls that can throw into invokes. 535 /// This function analyze BB to see if there are any calls, and if so, 536 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 537 /// nodes in that block with the values specified in InvokeDestPHIValues. 538 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke( 539 BasicBlock *BB, BasicBlock *UnwindEdge, 540 UnwindDestMemoTy *FuncletUnwindMap = nullptr) { 541 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 542 Instruction *I = &*BBI++; 543 544 // We only need to check for function calls: inlined invoke 545 // instructions require no special handling. 546 CallInst *CI = dyn_cast<CallInst>(I); 547 548 if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue())) 549 continue; 550 551 // We do not need to (and in fact, cannot) convert possibly throwing calls 552 // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into 553 // invokes. The caller's "segment" of the deoptimization continuation 554 // attached to the newly inlined @llvm.experimental_deoptimize 555 // (resp. @llvm.experimental.guard) call should contain the exception 556 // handling logic, if any. 557 if (auto *F = CI->getCalledFunction()) 558 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize || 559 F->getIntrinsicID() == Intrinsic::experimental_guard) 560 continue; 561 562 if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) { 563 // This call is nested inside a funclet. If that funclet has an unwind 564 // destination within the inlinee, then unwinding out of this call would 565 // be UB. Rewriting this call to an invoke which targets the inlined 566 // invoke's unwind dest would give the call's parent funclet multiple 567 // unwind destinations, which is something that subsequent EH table 568 // generation can't handle and that the veirifer rejects. So when we 569 // see such a call, leave it as a call. 570 auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]); 571 Value *UnwindDestToken = 572 getUnwindDestToken(FuncletPad, *FuncletUnwindMap); 573 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 574 continue; 575 #ifndef NDEBUG 576 Instruction *MemoKey; 577 if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad)) 578 MemoKey = CatchPad->getCatchSwitch(); 579 else 580 MemoKey = FuncletPad; 581 assert(FuncletUnwindMap->count(MemoKey) && 582 (*FuncletUnwindMap)[MemoKey] == UnwindDestToken && 583 "must get memoized to avoid confusing later searches"); 584 #endif // NDEBUG 585 } 586 587 changeToInvokeAndSplitBasicBlock(CI, UnwindEdge); 588 return BB; 589 } 590 return nullptr; 591 } 592 593 /// If we inlined an invoke site, we need to convert calls 594 /// in the body of the inlined function into invokes. 595 /// 596 /// II is the invoke instruction being inlined. FirstNewBlock is the first 597 /// block of the inlined code (the last block is the end of the function), 598 /// and InlineCodeInfo is information about the code that got inlined. 599 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock, 600 ClonedCodeInfo &InlinedCodeInfo) { 601 BasicBlock *InvokeDest = II->getUnwindDest(); 602 603 Function *Caller = FirstNewBlock->getParent(); 604 605 // The inlined code is currently at the end of the function, scan from the 606 // start of the inlined code to its end, checking for stuff we need to 607 // rewrite. 608 LandingPadInliningInfo Invoke(II); 609 610 // Get all of the inlined landing pad instructions. 611 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 612 for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end(); 613 I != E; ++I) 614 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 615 InlinedLPads.insert(II->getLandingPadInst()); 616 617 // Append the clauses from the outer landing pad instruction into the inlined 618 // landing pad instructions. 619 LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 620 for (LandingPadInst *InlinedLPad : InlinedLPads) { 621 unsigned OuterNum = OuterLPad->getNumClauses(); 622 InlinedLPad->reserveClauses(OuterNum); 623 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 624 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 625 if (OuterLPad->isCleanup()) 626 InlinedLPad->setCleanup(true); 627 } 628 629 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 630 BB != E; ++BB) { 631 if (InlinedCodeInfo.ContainsCalls) 632 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 633 &*BB, Invoke.getOuterResumeDest())) 634 // Update any PHI nodes in the exceptional block to indicate that there 635 // is now a new entry in them. 636 Invoke.addIncomingPHIValuesFor(NewBB); 637 638 // Forward any resumes that are remaining here. 639 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 640 Invoke.forwardResume(RI, InlinedLPads); 641 } 642 643 // Now that everything is happy, we have one final detail. The PHI nodes in 644 // the exception destination block still have entries due to the original 645 // invoke instruction. Eliminate these entries (which might even delete the 646 // PHI node) now. 647 InvokeDest->removePredecessor(II->getParent()); 648 } 649 650 /// If we inlined an invoke site, we need to convert calls 651 /// in the body of the inlined function into invokes. 652 /// 653 /// II is the invoke instruction being inlined. FirstNewBlock is the first 654 /// block of the inlined code (the last block is the end of the function), 655 /// and InlineCodeInfo is information about the code that got inlined. 656 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock, 657 ClonedCodeInfo &InlinedCodeInfo) { 658 BasicBlock *UnwindDest = II->getUnwindDest(); 659 Function *Caller = FirstNewBlock->getParent(); 660 661 assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!"); 662 663 // If there are PHI nodes in the unwind destination block, we need to keep 664 // track of which values came into them from the invoke before removing the 665 // edge from this block. 666 SmallVector<Value *, 8> UnwindDestPHIValues; 667 BasicBlock *InvokeBB = II->getParent(); 668 for (Instruction &I : *UnwindDest) { 669 // Save the value to use for this edge. 670 PHINode *PHI = dyn_cast<PHINode>(&I); 671 if (!PHI) 672 break; 673 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 674 } 675 676 // Add incoming-PHI values to the unwind destination block for the given basic 677 // block, using the values for the original invoke's source block. 678 auto UpdatePHINodes = [&](BasicBlock *Src) { 679 BasicBlock::iterator I = UnwindDest->begin(); 680 for (Value *V : UnwindDestPHIValues) { 681 PHINode *PHI = cast<PHINode>(I); 682 PHI->addIncoming(V, Src); 683 ++I; 684 } 685 }; 686 687 // This connects all the instructions which 'unwind to caller' to the invoke 688 // destination. 689 UnwindDestMemoTy FuncletUnwindMap; 690 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 691 BB != E; ++BB) { 692 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 693 if (CRI->unwindsToCaller()) { 694 auto *CleanupPad = CRI->getCleanupPad(); 695 CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI); 696 CRI->eraseFromParent(); 697 UpdatePHINodes(&*BB); 698 // Finding a cleanupret with an unwind destination would confuse 699 // subsequent calls to getUnwindDestToken, so map the cleanuppad 700 // to short-circuit any such calls and recognize this as an "unwind 701 // to caller" cleanup. 702 assert(!FuncletUnwindMap.count(CleanupPad) || 703 isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad])); 704 FuncletUnwindMap[CleanupPad] = 705 ConstantTokenNone::get(Caller->getContext()); 706 } 707 } 708 709 Instruction *I = BB->getFirstNonPHI(); 710 if (!I->isEHPad()) 711 continue; 712 713 Instruction *Replacement = nullptr; 714 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 715 if (CatchSwitch->unwindsToCaller()) { 716 Value *UnwindDestToken; 717 if (auto *ParentPad = 718 dyn_cast<Instruction>(CatchSwitch->getParentPad())) { 719 // This catchswitch is nested inside another funclet. If that 720 // funclet has an unwind destination within the inlinee, then 721 // unwinding out of this catchswitch would be UB. Rewriting this 722 // catchswitch to unwind to the inlined invoke's unwind dest would 723 // give the parent funclet multiple unwind destinations, which is 724 // something that subsequent EH table generation can't handle and 725 // that the veirifer rejects. So when we see such a call, leave it 726 // as "unwind to caller". 727 UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap); 728 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 729 continue; 730 } else { 731 // This catchswitch has no parent to inherit constraints from, and 732 // none of its descendants can have an unwind edge that exits it and 733 // targets another funclet in the inlinee. It may or may not have a 734 // descendant that definitively has an unwind to caller. In either 735 // case, we'll have to assume that any unwinds out of it may need to 736 // be routed to the caller, so treat it as though it has a definitive 737 // unwind to caller. 738 UnwindDestToken = ConstantTokenNone::get(Caller->getContext()); 739 } 740 auto *NewCatchSwitch = CatchSwitchInst::Create( 741 CatchSwitch->getParentPad(), UnwindDest, 742 CatchSwitch->getNumHandlers(), CatchSwitch->getName(), 743 CatchSwitch); 744 for (BasicBlock *PadBB : CatchSwitch->handlers()) 745 NewCatchSwitch->addHandler(PadBB); 746 // Propagate info for the old catchswitch over to the new one in 747 // the unwind map. This also serves to short-circuit any subsequent 748 // checks for the unwind dest of this catchswitch, which would get 749 // confused if they found the outer handler in the callee. 750 FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken; 751 Replacement = NewCatchSwitch; 752 } 753 } else if (!isa<FuncletPadInst>(I)) { 754 llvm_unreachable("unexpected EHPad!"); 755 } 756 757 if (Replacement) { 758 Replacement->takeName(I); 759 I->replaceAllUsesWith(Replacement); 760 I->eraseFromParent(); 761 UpdatePHINodes(&*BB); 762 } 763 } 764 765 if (InlinedCodeInfo.ContainsCalls) 766 for (Function::iterator BB = FirstNewBlock->getIterator(), 767 E = Caller->end(); 768 BB != E; ++BB) 769 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 770 &*BB, UnwindDest, &FuncletUnwindMap)) 771 // Update any PHI nodes in the exceptional block to indicate that there 772 // is now a new entry in them. 773 UpdatePHINodes(NewBB); 774 775 // Now that everything is happy, we have one final detail. The PHI nodes in 776 // the exception destination block still have entries due to the original 777 // invoke instruction. Eliminate these entries (which might even delete the 778 // PHI node) now. 779 UnwindDest->removePredecessor(InvokeBB); 780 } 781 782 /// When inlining a call site that has !llvm.mem.parallel_loop_access or 783 /// llvm.access.group metadata, that metadata should be propagated to all 784 /// memory-accessing cloned instructions. 785 static void PropagateParallelLoopAccessMetadata(CallSite CS, 786 ValueToValueMapTy &VMap) { 787 MDNode *M = 788 CS.getInstruction()->getMetadata(LLVMContext::MD_mem_parallel_loop_access); 789 MDNode *CallAccessGroup = 790 CS.getInstruction()->getMetadata(LLVMContext::MD_access_group); 791 if (!M && !CallAccessGroup) 792 return; 793 794 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 795 VMI != VMIE; ++VMI) { 796 if (!VMI->second) 797 continue; 798 799 Instruction *NI = dyn_cast<Instruction>(VMI->second); 800 if (!NI) 801 continue; 802 803 if (M) { 804 if (MDNode *PM = 805 NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access)) { 806 M = MDNode::concatenate(PM, M); 807 NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M); 808 } else if (NI->mayReadOrWriteMemory()) { 809 NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M); 810 } 811 } 812 813 if (NI->mayReadOrWriteMemory()) { 814 MDNode *UnitedAccGroups = uniteAccessGroups( 815 NI->getMetadata(LLVMContext::MD_access_group), CallAccessGroup); 816 NI->setMetadata(LLVMContext::MD_access_group, UnitedAccGroups); 817 } 818 } 819 } 820 821 /// When inlining a function that contains noalias scope metadata, 822 /// this metadata needs to be cloned so that the inlined blocks 823 /// have different "unique scopes" at every call site. Were this not done, then 824 /// aliasing scopes from a function inlined into a caller multiple times could 825 /// not be differentiated (and this would lead to miscompiles because the 826 /// non-aliasing property communicated by the metadata could have 827 /// call-site-specific control dependencies). 828 static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) { 829 const Function *CalledFunc = CS.getCalledFunction(); 830 SetVector<const MDNode *> MD; 831 832 // Note: We could only clone the metadata if it is already used in the 833 // caller. I'm omitting that check here because it might confuse 834 // inter-procedural alias analysis passes. We can revisit this if it becomes 835 // an efficiency or overhead problem. 836 837 for (const BasicBlock &I : *CalledFunc) 838 for (const Instruction &J : I) { 839 if (const MDNode *M = J.getMetadata(LLVMContext::MD_alias_scope)) 840 MD.insert(M); 841 if (const MDNode *M = J.getMetadata(LLVMContext::MD_noalias)) 842 MD.insert(M); 843 } 844 845 if (MD.empty()) 846 return; 847 848 // Walk the existing metadata, adding the complete (perhaps cyclic) chain to 849 // the set. 850 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end()); 851 while (!Queue.empty()) { 852 const MDNode *M = cast<MDNode>(Queue.pop_back_val()); 853 for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i) 854 if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i))) 855 if (MD.insert(M1)) 856 Queue.push_back(M1); 857 } 858 859 // Now we have a complete set of all metadata in the chains used to specify 860 // the noalias scopes and the lists of those scopes. 861 SmallVector<TempMDTuple, 16> DummyNodes; 862 DenseMap<const MDNode *, TrackingMDNodeRef> MDMap; 863 for (const MDNode *I : MD) { 864 DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None)); 865 MDMap[I].reset(DummyNodes.back().get()); 866 } 867 868 // Create new metadata nodes to replace the dummy nodes, replacing old 869 // metadata references with either a dummy node or an already-created new 870 // node. 871 for (const MDNode *I : MD) { 872 SmallVector<Metadata *, 4> NewOps; 873 for (unsigned i = 0, ie = I->getNumOperands(); i != ie; ++i) { 874 const Metadata *V = I->getOperand(i); 875 if (const MDNode *M = dyn_cast<MDNode>(V)) 876 NewOps.push_back(MDMap[M]); 877 else 878 NewOps.push_back(const_cast<Metadata *>(V)); 879 } 880 881 MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps); 882 MDTuple *TempM = cast<MDTuple>(MDMap[I]); 883 assert(TempM->isTemporary() && "Expected temporary node"); 884 885 TempM->replaceAllUsesWith(NewM); 886 } 887 888 // Now replace the metadata in the new inlined instructions with the 889 // repacements from the map. 890 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 891 VMI != VMIE; ++VMI) { 892 if (!VMI->second) 893 continue; 894 895 Instruction *NI = dyn_cast<Instruction>(VMI->second); 896 if (!NI) 897 continue; 898 899 if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) { 900 MDNode *NewMD = MDMap[M]; 901 // If the call site also had alias scope metadata (a list of scopes to 902 // which instructions inside it might belong), propagate those scopes to 903 // the inlined instructions. 904 if (MDNode *CSM = 905 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 906 NewMD = MDNode::concatenate(NewMD, CSM); 907 NI->setMetadata(LLVMContext::MD_alias_scope, NewMD); 908 } else if (NI->mayReadOrWriteMemory()) { 909 if (MDNode *M = 910 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 911 NI->setMetadata(LLVMContext::MD_alias_scope, M); 912 } 913 914 if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) { 915 MDNode *NewMD = MDMap[M]; 916 // If the call site also had noalias metadata (a list of scopes with 917 // which instructions inside it don't alias), propagate those scopes to 918 // the inlined instructions. 919 if (MDNode *CSM = 920 CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 921 NewMD = MDNode::concatenate(NewMD, CSM); 922 NI->setMetadata(LLVMContext::MD_noalias, NewMD); 923 } else if (NI->mayReadOrWriteMemory()) { 924 if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 925 NI->setMetadata(LLVMContext::MD_noalias, M); 926 } 927 } 928 } 929 930 /// If the inlined function has noalias arguments, 931 /// then add new alias scopes for each noalias argument, tag the mapped noalias 932 /// parameters with noalias metadata specifying the new scope, and tag all 933 /// non-derived loads, stores and memory intrinsics with the new alias scopes. 934 static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap, 935 const DataLayout &DL, AAResults *CalleeAAR) { 936 if (!EnableNoAliasConversion) 937 return; 938 939 const Function *CalledFunc = CS.getCalledFunction(); 940 SmallVector<const Argument *, 4> NoAliasArgs; 941 942 for (const Argument &Arg : CalledFunc->args()) 943 if (CS.paramHasAttr(Arg.getArgNo(), Attribute::NoAlias) && !Arg.use_empty()) 944 NoAliasArgs.push_back(&Arg); 945 946 if (NoAliasArgs.empty()) 947 return; 948 949 // To do a good job, if a noalias variable is captured, we need to know if 950 // the capture point dominates the particular use we're considering. 951 DominatorTree DT; 952 DT.recalculate(const_cast<Function&>(*CalledFunc)); 953 954 // noalias indicates that pointer values based on the argument do not alias 955 // pointer values which are not based on it. So we add a new "scope" for each 956 // noalias function argument. Accesses using pointers based on that argument 957 // become part of that alias scope, accesses using pointers not based on that 958 // argument are tagged as noalias with that scope. 959 960 DenseMap<const Argument *, MDNode *> NewScopes; 961 MDBuilder MDB(CalledFunc->getContext()); 962 963 // Create a new scope domain for this function. 964 MDNode *NewDomain = 965 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); 966 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { 967 const Argument *A = NoAliasArgs[i]; 968 969 std::string Name = std::string(CalledFunc->getName()); 970 if (A->hasName()) { 971 Name += ": %"; 972 Name += A->getName(); 973 } else { 974 Name += ": argument "; 975 Name += utostr(i); 976 } 977 978 // Note: We always create a new anonymous root here. This is true regardless 979 // of the linkage of the callee because the aliasing "scope" is not just a 980 // property of the callee, but also all control dependencies in the caller. 981 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); 982 NewScopes.insert(std::make_pair(A, NewScope)); 983 } 984 985 // Iterate over all new instructions in the map; for all memory-access 986 // instructions, add the alias scope metadata. 987 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 988 VMI != VMIE; ++VMI) { 989 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { 990 if (!VMI->second) 991 continue; 992 993 Instruction *NI = dyn_cast<Instruction>(VMI->second); 994 if (!NI) 995 continue; 996 997 bool IsArgMemOnlyCall = false, IsFuncCall = false; 998 SmallVector<const Value *, 2> PtrArgs; 999 1000 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 1001 PtrArgs.push_back(LI->getPointerOperand()); 1002 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 1003 PtrArgs.push_back(SI->getPointerOperand()); 1004 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) 1005 PtrArgs.push_back(VAAI->getPointerOperand()); 1006 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 1007 PtrArgs.push_back(CXI->getPointerOperand()); 1008 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 1009 PtrArgs.push_back(RMWI->getPointerOperand()); 1010 else if (const auto *Call = dyn_cast<CallBase>(I)) { 1011 // If we know that the call does not access memory, then we'll still 1012 // know that about the inlined clone of this call site, and we don't 1013 // need to add metadata. 1014 if (Call->doesNotAccessMemory()) 1015 continue; 1016 1017 IsFuncCall = true; 1018 if (CalleeAAR) { 1019 FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call); 1020 if (AAResults::onlyAccessesArgPointees(MRB)) 1021 IsArgMemOnlyCall = true; 1022 } 1023 1024 for (Value *Arg : Call->args()) { 1025 // We need to check the underlying objects of all arguments, not just 1026 // the pointer arguments, because we might be passing pointers as 1027 // integers, etc. 1028 // However, if we know that the call only accesses pointer arguments, 1029 // then we only need to check the pointer arguments. 1030 if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy()) 1031 continue; 1032 1033 PtrArgs.push_back(Arg); 1034 } 1035 } 1036 1037 // If we found no pointers, then this instruction is not suitable for 1038 // pairing with an instruction to receive aliasing metadata. 1039 // However, if this is a call, this we might just alias with none of the 1040 // noalias arguments. 1041 if (PtrArgs.empty() && !IsFuncCall) 1042 continue; 1043 1044 // It is possible that there is only one underlying object, but you 1045 // need to go through several PHIs to see it, and thus could be 1046 // repeated in the Objects list. 1047 SmallPtrSet<const Value *, 4> ObjSet; 1048 SmallVector<Metadata *, 4> Scopes, NoAliases; 1049 1050 SmallSetVector<const Argument *, 4> NAPtrArgs; 1051 for (const Value *V : PtrArgs) { 1052 SmallVector<const Value *, 4> Objects; 1053 GetUnderlyingObjects(V, Objects, DL, /* LI = */ nullptr); 1054 1055 for (const Value *O : Objects) 1056 ObjSet.insert(O); 1057 } 1058 1059 // Figure out if we're derived from anything that is not a noalias 1060 // argument. 1061 bool CanDeriveViaCapture = false, UsesAliasingPtr = false; 1062 for (const Value *V : ObjSet) { 1063 // Is this value a constant that cannot be derived from any pointer 1064 // value (we need to exclude constant expressions, for example, that 1065 // are formed from arithmetic on global symbols). 1066 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || 1067 isa<ConstantPointerNull>(V) || 1068 isa<ConstantDataVector>(V) || isa<UndefValue>(V); 1069 if (IsNonPtrConst) 1070 continue; 1071 1072 // If this is anything other than a noalias argument, then we cannot 1073 // completely describe the aliasing properties using alias.scope 1074 // metadata (and, thus, won't add any). 1075 if (const Argument *A = dyn_cast<Argument>(V)) { 1076 if (!CS.paramHasAttr(A->getArgNo(), Attribute::NoAlias)) 1077 UsesAliasingPtr = true; 1078 } else { 1079 UsesAliasingPtr = true; 1080 } 1081 1082 // If this is not some identified function-local object (which cannot 1083 // directly alias a noalias argument), or some other argument (which, 1084 // by definition, also cannot alias a noalias argument), then we could 1085 // alias a noalias argument that has been captured). 1086 if (!isa<Argument>(V) && 1087 !isIdentifiedFunctionLocal(const_cast<Value*>(V))) 1088 CanDeriveViaCapture = true; 1089 } 1090 1091 // A function call can always get captured noalias pointers (via other 1092 // parameters, globals, etc.). 1093 if (IsFuncCall && !IsArgMemOnlyCall) 1094 CanDeriveViaCapture = true; 1095 1096 // First, we want to figure out all of the sets with which we definitely 1097 // don't alias. Iterate over all noalias set, and add those for which: 1098 // 1. The noalias argument is not in the set of objects from which we 1099 // definitely derive. 1100 // 2. The noalias argument has not yet been captured. 1101 // An arbitrary function that might load pointers could see captured 1102 // noalias arguments via other noalias arguments or globals, and so we 1103 // must always check for prior capture. 1104 for (const Argument *A : NoAliasArgs) { 1105 if (!ObjSet.count(A) && (!CanDeriveViaCapture || 1106 // It might be tempting to skip the 1107 // PointerMayBeCapturedBefore check if 1108 // A->hasNoCaptureAttr() is true, but this is 1109 // incorrect because nocapture only guarantees 1110 // that no copies outlive the function, not 1111 // that the value cannot be locally captured. 1112 !PointerMayBeCapturedBefore(A, 1113 /* ReturnCaptures */ false, 1114 /* StoreCaptures */ false, I, &DT))) 1115 NoAliases.push_back(NewScopes[A]); 1116 } 1117 1118 if (!NoAliases.empty()) 1119 NI->setMetadata(LLVMContext::MD_noalias, 1120 MDNode::concatenate( 1121 NI->getMetadata(LLVMContext::MD_noalias), 1122 MDNode::get(CalledFunc->getContext(), NoAliases))); 1123 1124 // Next, we want to figure out all of the sets to which we might belong. 1125 // We might belong to a set if the noalias argument is in the set of 1126 // underlying objects. If there is some non-noalias argument in our list 1127 // of underlying objects, then we cannot add a scope because the fact 1128 // that some access does not alias with any set of our noalias arguments 1129 // cannot itself guarantee that it does not alias with this access 1130 // (because there is some pointer of unknown origin involved and the 1131 // other access might also depend on this pointer). We also cannot add 1132 // scopes to arbitrary functions unless we know they don't access any 1133 // non-parameter pointer-values. 1134 bool CanAddScopes = !UsesAliasingPtr; 1135 if (CanAddScopes && IsFuncCall) 1136 CanAddScopes = IsArgMemOnlyCall; 1137 1138 if (CanAddScopes) 1139 for (const Argument *A : NoAliasArgs) { 1140 if (ObjSet.count(A)) 1141 Scopes.push_back(NewScopes[A]); 1142 } 1143 1144 if (!Scopes.empty()) 1145 NI->setMetadata( 1146 LLVMContext::MD_alias_scope, 1147 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), 1148 MDNode::get(CalledFunc->getContext(), Scopes))); 1149 } 1150 } 1151 } 1152 1153 static bool MayContainThrowingOrExitingCall(Instruction *Begin, 1154 Instruction *End) { 1155 1156 assert(Begin->getParent() == End->getParent() && 1157 "Expected to be in same basic block!"); 1158 unsigned NumInstChecked = 0; 1159 // Check that all instructions in the range [Begin, End) are guaranteed to 1160 // transfer execution to successor. 1161 for (auto &I : make_range(Begin->getIterator(), End->getIterator())) 1162 if (NumInstChecked++ > InlinerAttributeWindow || 1163 !isGuaranteedToTransferExecutionToSuccessor(&I)) 1164 return true; 1165 return false; 1166 } 1167 1168 static AttrBuilder IdentifyValidAttributes(CallSite CS) { 1169 1170 AttrBuilder AB(CS.getAttributes(), AttributeList::ReturnIndex); 1171 if (AB.empty()) 1172 return AB; 1173 AttrBuilder Valid; 1174 // Only allow these white listed attributes to be propagated back to the 1175 // callee. This is because other attributes may only be valid on the call 1176 // itself, i.e. attributes such as signext and zeroext. 1177 if (auto DerefBytes = AB.getDereferenceableBytes()) 1178 Valid.addDereferenceableAttr(DerefBytes); 1179 if (auto DerefOrNullBytes = AB.getDereferenceableOrNullBytes()) 1180 Valid.addDereferenceableOrNullAttr(DerefOrNullBytes); 1181 if (AB.contains(Attribute::NoAlias)) 1182 Valid.addAttribute(Attribute::NoAlias); 1183 if (AB.contains(Attribute::NonNull)) 1184 Valid.addAttribute(Attribute::NonNull); 1185 return Valid; 1186 } 1187 1188 static void AddReturnAttributes(CallSite CS, ValueToValueMapTy &VMap) { 1189 if (!UpdateReturnAttributes && !UpdateLoadMetadataDuringInlining) 1190 return; 1191 1192 AttrBuilder Valid = IdentifyValidAttributes(CS); 1193 if (Valid.empty()) 1194 return; 1195 auto *CalledFunction = CS.getCalledFunction(); 1196 auto &Context = CalledFunction->getContext(); 1197 1198 auto getExpectedRV = [&](Value *V) -> Instruction * { 1199 if (UpdateReturnAttributes && isa<CallBase>(V)) 1200 return dyn_cast_or_null<CallBase>(VMap.lookup(V)); 1201 if (UpdateLoadMetadataDuringInlining && isa<LoadInst>(V)) 1202 return dyn_cast_or_null<LoadInst>(VMap.lookup(V)); 1203 return nullptr; 1204 }; 1205 1206 MDBuilder MDB(Context); 1207 auto CreateMDNode = [&](uint64_t Num) -> MDNode * { 1208 auto *Int = ConstantInt::get(Type::getInt64Ty(Context), Num); 1209 return MDNode::get(Context, MDB.createConstant(Int)); 1210 }; 1211 1212 for (auto &BB : *CalledFunction) { 1213 auto *RI = dyn_cast<ReturnInst>(BB.getTerminator()); 1214 if (!RI) 1215 continue; 1216 // Sanity check that the cloned RetVal exists and is a call, otherwise we 1217 // cannot add the attributes on the cloned RetVal. 1218 // Simplification during inlining could have transformed the cloned 1219 // instruction. 1220 auto *NewRetVal = getExpectedRV(RI->getOperand(0)); 1221 if (!NewRetVal) 1222 continue; 1223 auto *RetVal = cast<Instruction>(RI->getOperand(0)); 1224 // Backward propagation of attributes to the returned value may be incorrect 1225 // if it is control flow dependent. 1226 // Consider: 1227 // @callee { 1228 // %rv = call @foo() 1229 // %rv2 = call @bar() 1230 // if (%rv2 != null) 1231 // return %rv2 1232 // if (%rv == null) 1233 // exit() 1234 // return %rv 1235 // } 1236 // caller() { 1237 // %val = call nonnull @callee() 1238 // } 1239 // Here we cannot add the nonnull attribute on either foo or bar. So, we 1240 // limit the check to both RetVal and RI are in the same basic block and 1241 // there are no throwing/exiting instructions between these instructions. 1242 if (RI->getParent() != RetVal->getParent() || 1243 MayContainThrowingOrExitingCall(RetVal, RI)) 1244 continue; 1245 // Add to the existing attributes of NewRetVal, i.e. the cloned call 1246 // instruction. 1247 // NB! When we have the same attribute already existing on NewRetVal, but 1248 // with a differing value, the AttributeList's merge API honours the already 1249 // existing attribute value (i.e. attributes such as dereferenceable, 1250 // dereferenceable_or_null etc). See AttrBuilder::merge for more details. 1251 if (auto *CB = dyn_cast<CallBase>(NewRetVal)) { 1252 AttributeList AL = CB->getAttributes(); 1253 AttributeList NewAL = 1254 AL.addAttributes(Context, AttributeList::ReturnIndex, Valid); 1255 CB->setAttributes(NewAL); 1256 } else { 1257 auto *NewLI = cast<LoadInst>(NewRetVal); 1258 if (CS.isReturnNonNull()) 1259 NewLI->setMetadata(LLVMContext::MD_nonnull, CreateMDNode(1)); 1260 // If the load already has a dereferenceable/dereferenceable_or_null 1261 // metadata, we should honour it. 1262 if (uint64_t DerefBytes = Valid.getDereferenceableBytes()) 1263 if(!NewLI->getMetadata(LLVMContext::MD_dereferenceable)) 1264 NewLI->setMetadata(LLVMContext::MD_dereferenceable, 1265 CreateMDNode(DerefBytes)); 1266 if (uint64_t DerefOrNullBytes = Valid.getDereferenceableOrNullBytes()) 1267 if (!NewLI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) 1268 NewLI->setMetadata(LLVMContext::MD_dereferenceable_or_null, 1269 CreateMDNode(DerefOrNullBytes)); 1270 } 1271 1272 } 1273 } 1274 1275 /// If the inlined function has non-byval align arguments, then 1276 /// add @llvm.assume-based alignment assumptions to preserve this information. 1277 static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) { 1278 if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache) 1279 return; 1280 1281 AssumptionCache *AC = &(*IFI.GetAssumptionCache)(*CS.getCaller()); 1282 auto &DL = CS.getCaller()->getParent()->getDataLayout(); 1283 1284 // To avoid inserting redundant assumptions, we should check for assumptions 1285 // already in the caller. To do this, we might need a DT of the caller. 1286 DominatorTree DT; 1287 bool DTCalculated = false; 1288 1289 Function *CalledFunc = CS.getCalledFunction(); 1290 for (Argument &Arg : CalledFunc->args()) { 1291 unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0; 1292 if (Align && !Arg.hasByValOrInAllocaAttr() && !Arg.hasNUses(0)) { 1293 if (!DTCalculated) { 1294 DT.recalculate(*CS.getCaller()); 1295 DTCalculated = true; 1296 } 1297 1298 // If we can already prove the asserted alignment in the context of the 1299 // caller, then don't bother inserting the assumption. 1300 Value *ArgVal = CS.getArgument(Arg.getArgNo()); 1301 if (getKnownAlignment(ArgVal, DL, CS.getInstruction(), AC, &DT) >= Align) 1302 continue; 1303 1304 CallInst *NewAsmp = IRBuilder<>(CS.getInstruction()) 1305 .CreateAlignmentAssumption(DL, ArgVal, Align); 1306 AC->registerAssumption(NewAsmp); 1307 } 1308 } 1309 } 1310 1311 /// Once we have cloned code over from a callee into the caller, 1312 /// update the specified callgraph to reflect the changes we made. 1313 /// Note that it's possible that not all code was copied over, so only 1314 /// some edges of the callgraph may remain. 1315 static void UpdateCallGraphAfterInlining(CallSite CS, 1316 Function::iterator FirstNewBlock, 1317 ValueToValueMapTy &VMap, 1318 InlineFunctionInfo &IFI) { 1319 CallGraph &CG = *IFI.CG; 1320 const Function *Caller = CS.getCaller(); 1321 const Function *Callee = CS.getCalledFunction(); 1322 CallGraphNode *CalleeNode = CG[Callee]; 1323 CallGraphNode *CallerNode = CG[Caller]; 1324 1325 // Since we inlined some uninlined call sites in the callee into the caller, 1326 // add edges from the caller to all of the callees of the callee. 1327 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 1328 1329 // Consider the case where CalleeNode == CallerNode. 1330 CallGraphNode::CalledFunctionsVector CallCache; 1331 if (CalleeNode == CallerNode) { 1332 CallCache.assign(I, E); 1333 I = CallCache.begin(); 1334 E = CallCache.end(); 1335 } 1336 1337 for (; I != E; ++I) { 1338 const Value *OrigCall = I->first; 1339 1340 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 1341 // Only copy the edge if the call was inlined! 1342 if (VMI == VMap.end() || VMI->second == nullptr) 1343 continue; 1344 1345 // If the call was inlined, but then constant folded, there is no edge to 1346 // add. Check for this case. 1347 auto *NewCall = dyn_cast<CallBase>(VMI->second); 1348 if (!NewCall) 1349 continue; 1350 1351 // We do not treat intrinsic calls like real function calls because we 1352 // expect them to become inline code; do not add an edge for an intrinsic. 1353 if (NewCall->getCalledFunction() && 1354 NewCall->getCalledFunction()->isIntrinsic()) 1355 continue; 1356 1357 // Remember that this call site got inlined for the client of 1358 // InlineFunction. 1359 IFI.InlinedCalls.push_back(NewCall); 1360 1361 // It's possible that inlining the callsite will cause it to go from an 1362 // indirect to a direct call by resolving a function pointer. If this 1363 // happens, set the callee of the new call site to a more precise 1364 // destination. This can also happen if the call graph node of the caller 1365 // was just unnecessarily imprecise. 1366 if (!I->second->getFunction()) 1367 if (Function *F = NewCall->getCalledFunction()) { 1368 // Indirect call site resolved to direct call. 1369 CallerNode->addCalledFunction(NewCall, CG[F]); 1370 1371 continue; 1372 } 1373 1374 CallerNode->addCalledFunction(NewCall, I->second); 1375 } 1376 1377 // Update the call graph by deleting the edge from Callee to Caller. We must 1378 // do this after the loop above in case Caller and Callee are the same. 1379 CallerNode->removeCallEdgeFor(*cast<CallBase>(CS.getInstruction())); 1380 } 1381 1382 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M, 1383 BasicBlock *InsertBlock, 1384 InlineFunctionInfo &IFI) { 1385 Type *AggTy = cast<PointerType>(Src->getType())->getElementType(); 1386 IRBuilder<> Builder(InsertBlock, InsertBlock->begin()); 1387 1388 Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy)); 1389 1390 // Always generate a memcpy of alignment 1 here because we don't know 1391 // the alignment of the src pointer. Other optimizations can infer 1392 // better alignment. 1393 Builder.CreateMemCpy(Dst, /*DstAlign*/ Align(1), Src, 1394 /*SrcAlign*/ Align(1), Size); 1395 } 1396 1397 /// When inlining a call site that has a byval argument, 1398 /// we have to make the implicit memcpy explicit by adding it. 1399 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 1400 const Function *CalledFunc, 1401 InlineFunctionInfo &IFI, 1402 unsigned ByValAlignment) { 1403 PointerType *ArgTy = cast<PointerType>(Arg->getType()); 1404 Type *AggTy = ArgTy->getElementType(); 1405 1406 Function *Caller = TheCall->getFunction(); 1407 const DataLayout &DL = Caller->getParent()->getDataLayout(); 1408 1409 // If the called function is readonly, then it could not mutate the caller's 1410 // copy of the byval'd memory. In this case, it is safe to elide the copy and 1411 // temporary. 1412 if (CalledFunc->onlyReadsMemory()) { 1413 // If the byval argument has a specified alignment that is greater than the 1414 // passed in pointer, then we either have to round up the input pointer or 1415 // give up on this transformation. 1416 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 1417 return Arg; 1418 1419 AssumptionCache *AC = 1420 IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr; 1421 1422 // If the pointer is already known to be sufficiently aligned, or if we can 1423 // round it up to a larger alignment, then we don't need a temporary. 1424 if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall, AC) >= 1425 ByValAlignment) 1426 return Arg; 1427 1428 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 1429 // for code quality, but rarely happens and is required for correctness. 1430 } 1431 1432 // Create the alloca. If we have DataLayout, use nice alignment. 1433 Align Alignment(DL.getPrefTypeAlignment(AggTy)); 1434 1435 // If the byval had an alignment specified, we *must* use at least that 1436 // alignment, as it is required by the byval argument (and uses of the 1437 // pointer inside the callee). 1438 Alignment = max(Alignment, MaybeAlign(ByValAlignment)); 1439 1440 Value *NewAlloca = 1441 new AllocaInst(AggTy, DL.getAllocaAddrSpace(), nullptr, Alignment, 1442 Arg->getName(), &*Caller->begin()->begin()); 1443 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); 1444 1445 // Uses of the argument in the function should use our new alloca 1446 // instead. 1447 return NewAlloca; 1448 } 1449 1450 // Check whether this Value is used by a lifetime intrinsic. 1451 static bool isUsedByLifetimeMarker(Value *V) { 1452 for (User *U : V->users()) 1453 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) 1454 if (II->isLifetimeStartOrEnd()) 1455 return true; 1456 return false; 1457 } 1458 1459 // Check whether the given alloca already has 1460 // lifetime.start or lifetime.end intrinsics. 1461 static bool hasLifetimeMarkers(AllocaInst *AI) { 1462 Type *Ty = AI->getType(); 1463 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), 1464 Ty->getPointerAddressSpace()); 1465 if (Ty == Int8PtrTy) 1466 return isUsedByLifetimeMarker(AI); 1467 1468 // Do a scan to find all the casts to i8*. 1469 for (User *U : AI->users()) { 1470 if (U->getType() != Int8PtrTy) continue; 1471 if (U->stripPointerCasts() != AI) continue; 1472 if (isUsedByLifetimeMarker(U)) 1473 return true; 1474 } 1475 return false; 1476 } 1477 1478 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry 1479 /// block. Allocas used in inalloca calls and allocas of dynamic array size 1480 /// cannot be static. 1481 static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) { 1482 return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca(); 1483 } 1484 1485 /// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL 1486 /// inlined at \p InlinedAt. \p IANodes is an inlined-at cache. 1487 static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt, 1488 LLVMContext &Ctx, 1489 DenseMap<const MDNode *, MDNode *> &IANodes) { 1490 auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes); 1491 return DebugLoc::get(OrigDL.getLine(), OrigDL.getCol(), OrigDL.getScope(), 1492 IA); 1493 } 1494 1495 /// Update inlined instructions' line numbers to 1496 /// to encode location where these instructions are inlined. 1497 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 1498 Instruction *TheCall, bool CalleeHasDebugInfo) { 1499 const DebugLoc &TheCallDL = TheCall->getDebugLoc(); 1500 if (!TheCallDL) 1501 return; 1502 1503 auto &Ctx = Fn->getContext(); 1504 DILocation *InlinedAtNode = TheCallDL; 1505 1506 // Create a unique call site, not to be confused with any other call from the 1507 // same location. 1508 InlinedAtNode = DILocation::getDistinct( 1509 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(), 1510 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt()); 1511 1512 // Cache the inlined-at nodes as they're built so they are reused, without 1513 // this every instruction's inlined-at chain would become distinct from each 1514 // other. 1515 DenseMap<const MDNode *, MDNode *> IANodes; 1516 1517 // Check if we are not generating inline line tables and want to use 1518 // the call site location instead. 1519 bool NoInlineLineTables = Fn->hasFnAttribute("no-inline-line-tables"); 1520 1521 for (; FI != Fn->end(); ++FI) { 1522 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 1523 BI != BE; ++BI) { 1524 // Loop metadata needs to be updated so that the start and end locs 1525 // reference inlined-at locations. 1526 auto updateLoopInfoLoc = [&Ctx, &InlinedAtNode, &IANodes]( 1527 const DILocation &Loc) -> DILocation * { 1528 return inlineDebugLoc(&Loc, InlinedAtNode, Ctx, IANodes).get(); 1529 }; 1530 updateLoopMetadataDebugLocations(*BI, updateLoopInfoLoc); 1531 1532 if (!NoInlineLineTables) 1533 if (DebugLoc DL = BI->getDebugLoc()) { 1534 DebugLoc IDL = 1535 inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes); 1536 BI->setDebugLoc(IDL); 1537 continue; 1538 } 1539 1540 if (CalleeHasDebugInfo && !NoInlineLineTables) 1541 continue; 1542 1543 // If the inlined instruction has no line number, or if inline info 1544 // is not being generated, make it look as if it originates from the call 1545 // location. This is important for ((__always_inline, __nodebug__)) 1546 // functions which must use caller location for all instructions in their 1547 // function body. 1548 1549 // Don't update static allocas, as they may get moved later. 1550 if (auto *AI = dyn_cast<AllocaInst>(BI)) 1551 if (allocaWouldBeStaticInEntry(AI)) 1552 continue; 1553 1554 BI->setDebugLoc(TheCallDL); 1555 } 1556 1557 // Remove debug info intrinsics if we're not keeping inline info. 1558 if (NoInlineLineTables) { 1559 BasicBlock::iterator BI = FI->begin(); 1560 while (BI != FI->end()) { 1561 if (isa<DbgInfoIntrinsic>(BI)) { 1562 BI = BI->eraseFromParent(); 1563 continue; 1564 } 1565 ++BI; 1566 } 1567 } 1568 1569 } 1570 } 1571 1572 /// Update the block frequencies of the caller after a callee has been inlined. 1573 /// 1574 /// Each block cloned into the caller has its block frequency scaled by the 1575 /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of 1576 /// callee's entry block gets the same frequency as the callsite block and the 1577 /// relative frequencies of all cloned blocks remain the same after cloning. 1578 static void updateCallerBFI(BasicBlock *CallSiteBlock, 1579 const ValueToValueMapTy &VMap, 1580 BlockFrequencyInfo *CallerBFI, 1581 BlockFrequencyInfo *CalleeBFI, 1582 const BasicBlock &CalleeEntryBlock) { 1583 SmallPtrSet<BasicBlock *, 16> ClonedBBs; 1584 for (auto Entry : VMap) { 1585 if (!isa<BasicBlock>(Entry.first) || !Entry.second) 1586 continue; 1587 auto *OrigBB = cast<BasicBlock>(Entry.first); 1588 auto *ClonedBB = cast<BasicBlock>(Entry.second); 1589 uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency(); 1590 if (!ClonedBBs.insert(ClonedBB).second) { 1591 // Multiple blocks in the callee might get mapped to one cloned block in 1592 // the caller since we prune the callee as we clone it. When that happens, 1593 // we want to use the maximum among the original blocks' frequencies. 1594 uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency(); 1595 if (NewFreq > Freq) 1596 Freq = NewFreq; 1597 } 1598 CallerBFI->setBlockFreq(ClonedBB, Freq); 1599 } 1600 BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock)); 1601 CallerBFI->setBlockFreqAndScale( 1602 EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(), 1603 ClonedBBs); 1604 } 1605 1606 /// Update the branch metadata for cloned call instructions. 1607 static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap, 1608 const ProfileCount &CalleeEntryCount, 1609 const Instruction *TheCall, 1610 ProfileSummaryInfo *PSI, 1611 BlockFrequencyInfo *CallerBFI) { 1612 if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() || 1613 CalleeEntryCount.getCount() < 1) 1614 return; 1615 auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None; 1616 int64_t CallCount = 1617 std::min(CallSiteCount.hasValue() ? CallSiteCount.getValue() : 0, 1618 CalleeEntryCount.getCount()); 1619 updateProfileCallee(Callee, -CallCount, &VMap); 1620 } 1621 1622 void llvm::updateProfileCallee( 1623 Function *Callee, int64_t entryDelta, 1624 const ValueMap<const Value *, WeakTrackingVH> *VMap) { 1625 auto CalleeCount = Callee->getEntryCount(); 1626 if (!CalleeCount.hasValue()) 1627 return; 1628 1629 uint64_t priorEntryCount = CalleeCount.getCount(); 1630 uint64_t newEntryCount; 1631 1632 // Since CallSiteCount is an estimate, it could exceed the original callee 1633 // count and has to be set to 0 so guard against underflow. 1634 if (entryDelta < 0 && static_cast<uint64_t>(-entryDelta) > priorEntryCount) 1635 newEntryCount = 0; 1636 else 1637 newEntryCount = priorEntryCount + entryDelta; 1638 1639 // During inlining ? 1640 if (VMap) { 1641 uint64_t cloneEntryCount = priorEntryCount - newEntryCount; 1642 for (auto Entry : *VMap) 1643 if (isa<CallInst>(Entry.first)) 1644 if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second)) 1645 CI->updateProfWeight(cloneEntryCount, priorEntryCount); 1646 } 1647 1648 if (entryDelta) { 1649 Callee->setEntryCount(newEntryCount); 1650 1651 for (BasicBlock &BB : *Callee) 1652 // No need to update the callsite if it is pruned during inlining. 1653 if (!VMap || VMap->count(&BB)) 1654 for (Instruction &I : BB) 1655 if (CallInst *CI = dyn_cast<CallInst>(&I)) 1656 CI->updateProfWeight(newEntryCount, priorEntryCount); 1657 } 1658 } 1659 1660 /// This function inlines the called function into the basic block of the 1661 /// caller. This returns false if it is not possible to inline this call. 1662 /// The program is still in a well defined state if this occurs though. 1663 /// 1664 /// Note that this only does one level of inlining. For example, if the 1665 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 1666 /// exists in the instruction stream. Similarly this will inline a recursive 1667 /// function by one level. 1668 llvm::InlineResult llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI, 1669 AAResults *CalleeAAR, 1670 bool InsertLifetime, 1671 Function *ForwardVarArgsTo) { 1672 Instruction *TheCall = CS.getInstruction(); 1673 assert(TheCall->getParent() && TheCall->getFunction() 1674 && "Instruction not in function!"); 1675 1676 // FIXME: we don't inline callbr yet. 1677 if (isa<CallBrInst>(TheCall)) 1678 return InlineResult::failure("We don't inline callbr yet."); 1679 1680 // If IFI has any state in it, zap it before we fill it in. 1681 IFI.reset(); 1682 1683 Function *CalledFunc = CS.getCalledFunction(); 1684 if (!CalledFunc || // Can't inline external function or indirect 1685 CalledFunc->isDeclaration()) // call! 1686 return InlineResult::failure("external or indirect"); 1687 1688 // The inliner does not know how to inline through calls with operand bundles 1689 // in general ... 1690 if (CS.hasOperandBundles()) { 1691 for (int i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 1692 uint32_t Tag = CS.getOperandBundleAt(i).getTagID(); 1693 // ... but it knows how to inline through "deopt" operand bundles ... 1694 if (Tag == LLVMContext::OB_deopt) 1695 continue; 1696 // ... and "funclet" operand bundles. 1697 if (Tag == LLVMContext::OB_funclet) 1698 continue; 1699 1700 return InlineResult::failure("unsupported operand bundle"); 1701 } 1702 } 1703 1704 // If the call to the callee cannot throw, set the 'nounwind' flag on any 1705 // calls that we inline. 1706 bool MarkNoUnwind = CS.doesNotThrow(); 1707 1708 BasicBlock *OrigBB = TheCall->getParent(); 1709 Function *Caller = OrigBB->getParent(); 1710 1711 // GC poses two hazards to inlining, which only occur when the callee has GC: 1712 // 1. If the caller has no GC, then the callee's GC must be propagated to the 1713 // caller. 1714 // 2. If the caller has a differing GC, it is invalid to inline. 1715 if (CalledFunc->hasGC()) { 1716 if (!Caller->hasGC()) 1717 Caller->setGC(CalledFunc->getGC()); 1718 else if (CalledFunc->getGC() != Caller->getGC()) 1719 return InlineResult::failure("incompatible GC"); 1720 } 1721 1722 // Get the personality function from the callee if it contains a landing pad. 1723 Constant *CalledPersonality = 1724 CalledFunc->hasPersonalityFn() 1725 ? CalledFunc->getPersonalityFn()->stripPointerCasts() 1726 : nullptr; 1727 1728 // Find the personality function used by the landing pads of the caller. If it 1729 // exists, then check to see that it matches the personality function used in 1730 // the callee. 1731 Constant *CallerPersonality = 1732 Caller->hasPersonalityFn() 1733 ? Caller->getPersonalityFn()->stripPointerCasts() 1734 : nullptr; 1735 if (CalledPersonality) { 1736 if (!CallerPersonality) 1737 Caller->setPersonalityFn(CalledPersonality); 1738 // If the personality functions match, then we can perform the 1739 // inlining. Otherwise, we can't inline. 1740 // TODO: This isn't 100% true. Some personality functions are proper 1741 // supersets of others and can be used in place of the other. 1742 else if (CalledPersonality != CallerPersonality) 1743 return InlineResult::failure("incompatible personality"); 1744 } 1745 1746 // We need to figure out which funclet the callsite was in so that we may 1747 // properly nest the callee. 1748 Instruction *CallSiteEHPad = nullptr; 1749 if (CallerPersonality) { 1750 EHPersonality Personality = classifyEHPersonality(CallerPersonality); 1751 if (isScopedEHPersonality(Personality)) { 1752 Optional<OperandBundleUse> ParentFunclet = 1753 CS.getOperandBundle(LLVMContext::OB_funclet); 1754 if (ParentFunclet) 1755 CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front()); 1756 1757 // OK, the inlining site is legal. What about the target function? 1758 1759 if (CallSiteEHPad) { 1760 if (Personality == EHPersonality::MSVC_CXX) { 1761 // The MSVC personality cannot tolerate catches getting inlined into 1762 // cleanup funclets. 1763 if (isa<CleanupPadInst>(CallSiteEHPad)) { 1764 // Ok, the call site is within a cleanuppad. Let's check the callee 1765 // for catchpads. 1766 for (const BasicBlock &CalledBB : *CalledFunc) { 1767 if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI())) 1768 return InlineResult::failure("catch in cleanup funclet"); 1769 } 1770 } 1771 } else if (isAsynchronousEHPersonality(Personality)) { 1772 // SEH is even less tolerant, there may not be any sort of exceptional 1773 // funclet in the callee. 1774 for (const BasicBlock &CalledBB : *CalledFunc) { 1775 if (CalledBB.isEHPad()) 1776 return InlineResult::failure("SEH in cleanup funclet"); 1777 } 1778 } 1779 } 1780 } 1781 } 1782 1783 // Determine if we are dealing with a call in an EHPad which does not unwind 1784 // to caller. 1785 bool EHPadForCallUnwindsLocally = false; 1786 if (CallSiteEHPad && CS.isCall()) { 1787 UnwindDestMemoTy FuncletUnwindMap; 1788 Value *CallSiteUnwindDestToken = 1789 getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap); 1790 1791 EHPadForCallUnwindsLocally = 1792 CallSiteUnwindDestToken && 1793 !isa<ConstantTokenNone>(CallSiteUnwindDestToken); 1794 } 1795 1796 // Get an iterator to the last basic block in the function, which will have 1797 // the new function inlined after it. 1798 Function::iterator LastBlock = --Caller->end(); 1799 1800 // Make sure to capture all of the return instructions from the cloned 1801 // function. 1802 SmallVector<ReturnInst*, 8> Returns; 1803 ClonedCodeInfo InlinedFunctionInfo; 1804 Function::iterator FirstNewBlock; 1805 1806 { // Scope to destroy VMap after cloning. 1807 ValueToValueMapTy VMap; 1808 // Keep a list of pair (dst, src) to emit byval initializations. 1809 SmallVector<std::pair<Value*, Value*>, 4> ByValInit; 1810 1811 auto &DL = Caller->getParent()->getDataLayout(); 1812 1813 // Calculate the vector of arguments to pass into the function cloner, which 1814 // matches up the formal to the actual argument values. 1815 CallSite::arg_iterator AI = CS.arg_begin(); 1816 unsigned ArgNo = 0; 1817 for (Function::arg_iterator I = CalledFunc->arg_begin(), 1818 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 1819 Value *ActualArg = *AI; 1820 1821 // When byval arguments actually inlined, we need to make the copy implied 1822 // by them explicit. However, we don't do this if the callee is readonly 1823 // or readnone, because the copy would be unneeded: the callee doesn't 1824 // modify the struct. 1825 if (CS.isByValArgument(ArgNo)) { 1826 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, 1827 CalledFunc->getParamAlignment(ArgNo)); 1828 if (ActualArg != *AI) 1829 ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI)); 1830 } 1831 1832 VMap[&*I] = ActualArg; 1833 } 1834 1835 // TODO: Remove this when users have been updated to the assume bundles. 1836 // Add alignment assumptions if necessary. We do this before the inlined 1837 // instructions are actually cloned into the caller so that we can easily 1838 // check what will be known at the start of the inlined code. 1839 AddAlignmentAssumptions(CS, IFI); 1840 1841 /// Preserve all attributes on of the call and its parameters. 1842 if (Instruction *Assume = buildAssumeFromInst(CS.getInstruction())) 1843 Assume->insertBefore(CS.getInstruction()); 1844 1845 // We want the inliner to prune the code as it copies. We would LOVE to 1846 // have no dead or constant instructions leftover after inlining occurs 1847 // (which can happen, e.g., because an argument was constant), but we'll be 1848 // happy with whatever the cloner can do. 1849 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 1850 /*ModuleLevelChanges=*/false, Returns, ".i", 1851 &InlinedFunctionInfo, TheCall); 1852 // Remember the first block that is newly cloned over. 1853 FirstNewBlock = LastBlock; ++FirstNewBlock; 1854 1855 if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr) 1856 // Update the BFI of blocks cloned into the caller. 1857 updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI, 1858 CalledFunc->front()); 1859 1860 updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), TheCall, 1861 IFI.PSI, IFI.CallerBFI); 1862 1863 // Inject byval arguments initialization. 1864 for (std::pair<Value*, Value*> &Init : ByValInit) 1865 HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(), 1866 &*FirstNewBlock, IFI); 1867 1868 Optional<OperandBundleUse> ParentDeopt = 1869 CS.getOperandBundle(LLVMContext::OB_deopt); 1870 if (ParentDeopt) { 1871 SmallVector<OperandBundleDef, 2> OpDefs; 1872 1873 for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) { 1874 Instruction *I = dyn_cast_or_null<Instruction>(VH); 1875 if (!I) continue; // instruction was DCE'd or RAUW'ed to undef 1876 1877 OpDefs.clear(); 1878 1879 CallSite ICS(I); 1880 OpDefs.reserve(ICS.getNumOperandBundles()); 1881 1882 for (unsigned i = 0, e = ICS.getNumOperandBundles(); i < e; ++i) { 1883 auto ChildOB = ICS.getOperandBundleAt(i); 1884 if (ChildOB.getTagID() != LLVMContext::OB_deopt) { 1885 // If the inlined call has other operand bundles, let them be 1886 OpDefs.emplace_back(ChildOB); 1887 continue; 1888 } 1889 1890 // It may be useful to separate this logic (of handling operand 1891 // bundles) out to a separate "policy" component if this gets crowded. 1892 // Prepend the parent's deoptimization continuation to the newly 1893 // inlined call's deoptimization continuation. 1894 std::vector<Value *> MergedDeoptArgs; 1895 MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() + 1896 ChildOB.Inputs.size()); 1897 1898 MergedDeoptArgs.insert(MergedDeoptArgs.end(), 1899 ParentDeopt->Inputs.begin(), 1900 ParentDeopt->Inputs.end()); 1901 MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(), 1902 ChildOB.Inputs.end()); 1903 1904 OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs)); 1905 } 1906 1907 Instruction *NewI = nullptr; 1908 if (isa<CallInst>(I)) 1909 NewI = CallInst::Create(cast<CallInst>(I), OpDefs, I); 1910 else if (isa<CallBrInst>(I)) 1911 NewI = CallBrInst::Create(cast<CallBrInst>(I), OpDefs, I); 1912 else 1913 NewI = InvokeInst::Create(cast<InvokeInst>(I), OpDefs, I); 1914 1915 // Note: the RAUW does the appropriate fixup in VMap, so we need to do 1916 // this even if the call returns void. 1917 I->replaceAllUsesWith(NewI); 1918 1919 VH = nullptr; 1920 I->eraseFromParent(); 1921 } 1922 } 1923 1924 // Update the callgraph if requested. 1925 if (IFI.CG) 1926 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); 1927 1928 // For 'nodebug' functions, the associated DISubprogram is always null. 1929 // Conservatively avoid propagating the callsite debug location to 1930 // instructions inlined from a function whose DISubprogram is not null. 1931 fixupLineNumbers(Caller, FirstNewBlock, TheCall, 1932 CalledFunc->getSubprogram() != nullptr); 1933 1934 // Clone existing noalias metadata if necessary. 1935 CloneAliasScopeMetadata(CS, VMap); 1936 1937 // Add noalias metadata if necessary. 1938 AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR); 1939 1940 // Clone return attributes on the callsite into the calls within the inlined 1941 // function which feed into its return value. 1942 AddReturnAttributes(CS, VMap); 1943 1944 // Propagate llvm.mem.parallel_loop_access if necessary. 1945 PropagateParallelLoopAccessMetadata(CS, VMap); 1946 1947 // Register any cloned assumptions. 1948 if (IFI.GetAssumptionCache) 1949 for (BasicBlock &NewBlock : 1950 make_range(FirstNewBlock->getIterator(), Caller->end())) 1951 for (Instruction &I : NewBlock) { 1952 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 1953 if (II->getIntrinsicID() == Intrinsic::assume) 1954 (*IFI.GetAssumptionCache)(*Caller).registerAssumption(II); 1955 } 1956 } 1957 1958 // If there are any alloca instructions in the block that used to be the entry 1959 // block for the callee, move them to the entry block of the caller. First 1960 // calculate which instruction they should be inserted before. We insert the 1961 // instructions at the end of the current alloca list. 1962 { 1963 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 1964 for (BasicBlock::iterator I = FirstNewBlock->begin(), 1965 E = FirstNewBlock->end(); I != E; ) { 1966 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 1967 if (!AI) continue; 1968 1969 // If the alloca is now dead, remove it. This often occurs due to code 1970 // specialization. 1971 if (AI->use_empty()) { 1972 AI->eraseFromParent(); 1973 continue; 1974 } 1975 1976 if (!allocaWouldBeStaticInEntry(AI)) 1977 continue; 1978 1979 // Keep track of the static allocas that we inline into the caller. 1980 IFI.StaticAllocas.push_back(AI); 1981 1982 // Scan for the block of allocas that we can move over, and move them 1983 // all at once. 1984 while (isa<AllocaInst>(I) && 1985 !cast<AllocaInst>(I)->use_empty() && 1986 allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) { 1987 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 1988 ++I; 1989 } 1990 1991 // Transfer all of the allocas over in a block. Using splice means 1992 // that the instructions aren't removed from the symbol table, then 1993 // reinserted. 1994 Caller->getEntryBlock().getInstList().splice( 1995 InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I); 1996 } 1997 } 1998 1999 SmallVector<Value*,4> VarArgsToForward; 2000 SmallVector<AttributeSet, 4> VarArgsAttrs; 2001 for (unsigned i = CalledFunc->getFunctionType()->getNumParams(); 2002 i < CS.getNumArgOperands(); i++) { 2003 VarArgsToForward.push_back(CS.getArgOperand(i)); 2004 VarArgsAttrs.push_back(CS.getAttributes().getParamAttributes(i)); 2005 } 2006 2007 bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false; 2008 if (InlinedFunctionInfo.ContainsCalls) { 2009 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; 2010 if (CallInst *CI = dyn_cast<CallInst>(TheCall)) 2011 CallSiteTailKind = CI->getTailCallKind(); 2012 2013 // For inlining purposes, the "notail" marker is the same as no marker. 2014 if (CallSiteTailKind == CallInst::TCK_NoTail) 2015 CallSiteTailKind = CallInst::TCK_None; 2016 2017 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 2018 ++BB) { 2019 for (auto II = BB->begin(); II != BB->end();) { 2020 Instruction &I = *II++; 2021 CallInst *CI = dyn_cast<CallInst>(&I); 2022 if (!CI) 2023 continue; 2024 2025 // Forward varargs from inlined call site to calls to the 2026 // ForwardVarArgsTo function, if requested, and to musttail calls. 2027 if (!VarArgsToForward.empty() && 2028 ((ForwardVarArgsTo && 2029 CI->getCalledFunction() == ForwardVarArgsTo) || 2030 CI->isMustTailCall())) { 2031 // Collect attributes for non-vararg parameters. 2032 AttributeList Attrs = CI->getAttributes(); 2033 SmallVector<AttributeSet, 8> ArgAttrs; 2034 if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) { 2035 for (unsigned ArgNo = 0; 2036 ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo) 2037 ArgAttrs.push_back(Attrs.getParamAttributes(ArgNo)); 2038 } 2039 2040 // Add VarArg attributes. 2041 ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end()); 2042 Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttributes(), 2043 Attrs.getRetAttributes(), ArgAttrs); 2044 // Add VarArgs to existing parameters. 2045 SmallVector<Value *, 6> Params(CI->arg_operands()); 2046 Params.append(VarArgsToForward.begin(), VarArgsToForward.end()); 2047 CallInst *NewCI = CallInst::Create( 2048 CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI); 2049 NewCI->setDebugLoc(CI->getDebugLoc()); 2050 NewCI->setAttributes(Attrs); 2051 NewCI->setCallingConv(CI->getCallingConv()); 2052 CI->replaceAllUsesWith(NewCI); 2053 CI->eraseFromParent(); 2054 CI = NewCI; 2055 } 2056 2057 if (Function *F = CI->getCalledFunction()) 2058 InlinedDeoptimizeCalls |= 2059 F->getIntrinsicID() == Intrinsic::experimental_deoptimize; 2060 2061 // We need to reduce the strength of any inlined tail calls. For 2062 // musttail, we have to avoid introducing potential unbounded stack 2063 // growth. For example, if functions 'f' and 'g' are mutually recursive 2064 // with musttail, we can inline 'g' into 'f' so long as we preserve 2065 // musttail on the cloned call to 'f'. If either the inlined call site 2066 // or the cloned call site is *not* musttail, the program already has 2067 // one frame of stack growth, so it's safe to remove musttail. Here is 2068 // a table of example transformations: 2069 // 2070 // f -> musttail g -> musttail f ==> f -> musttail f 2071 // f -> musttail g -> tail f ==> f -> tail f 2072 // f -> g -> musttail f ==> f -> f 2073 // f -> g -> tail f ==> f -> f 2074 // 2075 // Inlined notail calls should remain notail calls. 2076 CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); 2077 if (ChildTCK != CallInst::TCK_NoTail) 2078 ChildTCK = std::min(CallSiteTailKind, ChildTCK); 2079 CI->setTailCallKind(ChildTCK); 2080 InlinedMustTailCalls |= CI->isMustTailCall(); 2081 2082 // Calls inlined through a 'nounwind' call site should be marked 2083 // 'nounwind'. 2084 if (MarkNoUnwind) 2085 CI->setDoesNotThrow(); 2086 } 2087 } 2088 } 2089 2090 // Leave lifetime markers for the static alloca's, scoping them to the 2091 // function we just inlined. 2092 if (InsertLifetime && !IFI.StaticAllocas.empty()) { 2093 IRBuilder<> builder(&FirstNewBlock->front()); 2094 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 2095 AllocaInst *AI = IFI.StaticAllocas[ai]; 2096 // Don't mark swifterror allocas. They can't have bitcast uses. 2097 if (AI->isSwiftError()) 2098 continue; 2099 2100 // If the alloca is already scoped to something smaller than the whole 2101 // function then there's no need to add redundant, less accurate markers. 2102 if (hasLifetimeMarkers(AI)) 2103 continue; 2104 2105 // Try to determine the size of the allocation. 2106 ConstantInt *AllocaSize = nullptr; 2107 if (ConstantInt *AIArraySize = 2108 dyn_cast<ConstantInt>(AI->getArraySize())) { 2109 auto &DL = Caller->getParent()->getDataLayout(); 2110 Type *AllocaType = AI->getAllocatedType(); 2111 uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType); 2112 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 2113 2114 // Don't add markers for zero-sized allocas. 2115 if (AllocaArraySize == 0) 2116 continue; 2117 2118 // Check that array size doesn't saturate uint64_t and doesn't 2119 // overflow when it's multiplied by type size. 2120 if (AllocaArraySize != std::numeric_limits<uint64_t>::max() && 2121 std::numeric_limits<uint64_t>::max() / AllocaArraySize >= 2122 AllocaTypeSize) { 2123 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 2124 AllocaArraySize * AllocaTypeSize); 2125 } 2126 } 2127 2128 builder.CreateLifetimeStart(AI, AllocaSize); 2129 for (ReturnInst *RI : Returns) { 2130 // Don't insert llvm.lifetime.end calls between a musttail or deoptimize 2131 // call and a return. The return kills all local allocas. 2132 if (InlinedMustTailCalls && 2133 RI->getParent()->getTerminatingMustTailCall()) 2134 continue; 2135 if (InlinedDeoptimizeCalls && 2136 RI->getParent()->getTerminatingDeoptimizeCall()) 2137 continue; 2138 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); 2139 } 2140 } 2141 } 2142 2143 // If the inlined code contained dynamic alloca instructions, wrap the inlined 2144 // code with llvm.stacksave/llvm.stackrestore intrinsics. 2145 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 2146 Module *M = Caller->getParent(); 2147 // Get the two intrinsics we care about. 2148 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 2149 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 2150 2151 // Insert the llvm.stacksave. 2152 CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin()) 2153 .CreateCall(StackSave, {}, "savedstack"); 2154 2155 // Insert a call to llvm.stackrestore before any return instructions in the 2156 // inlined function. 2157 for (ReturnInst *RI : Returns) { 2158 // Don't insert llvm.stackrestore calls between a musttail or deoptimize 2159 // call and a return. The return will restore the stack pointer. 2160 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) 2161 continue; 2162 if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall()) 2163 continue; 2164 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); 2165 } 2166 } 2167 2168 // If we are inlining for an invoke instruction, we must make sure to rewrite 2169 // any call instructions into invoke instructions. This is sensitive to which 2170 // funclet pads were top-level in the inlinee, so must be done before 2171 // rewriting the "parent pad" links. 2172 if (auto *II = dyn_cast<InvokeInst>(TheCall)) { 2173 BasicBlock *UnwindDest = II->getUnwindDest(); 2174 Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI(); 2175 if (isa<LandingPadInst>(FirstNonPHI)) { 2176 HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo); 2177 } else { 2178 HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo); 2179 } 2180 } 2181 2182 // Update the lexical scopes of the new funclets and callsites. 2183 // Anything that had 'none' as its parent is now nested inside the callsite's 2184 // EHPad. 2185 2186 if (CallSiteEHPad) { 2187 for (Function::iterator BB = FirstNewBlock->getIterator(), 2188 E = Caller->end(); 2189 BB != E; ++BB) { 2190 // Add bundle operands to any top-level call sites. 2191 SmallVector<OperandBundleDef, 1> OpBundles; 2192 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) { 2193 Instruction *I = &*BBI++; 2194 CallSite CS(I); 2195 if (!CS) 2196 continue; 2197 2198 // Skip call sites which are nounwind intrinsics. 2199 auto *CalledFn = 2200 dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts()); 2201 if (CalledFn && CalledFn->isIntrinsic() && CS.doesNotThrow()) 2202 continue; 2203 2204 // Skip call sites which already have a "funclet" bundle. 2205 if (CS.getOperandBundle(LLVMContext::OB_funclet)) 2206 continue; 2207 2208 CS.getOperandBundlesAsDefs(OpBundles); 2209 OpBundles.emplace_back("funclet", CallSiteEHPad); 2210 2211 Instruction *NewInst; 2212 if (CS.isCall()) 2213 NewInst = CallInst::Create(cast<CallInst>(I), OpBundles, I); 2214 else if (CS.isCallBr()) 2215 NewInst = CallBrInst::Create(cast<CallBrInst>(I), OpBundles, I); 2216 else 2217 NewInst = InvokeInst::Create(cast<InvokeInst>(I), OpBundles, I); 2218 NewInst->takeName(I); 2219 I->replaceAllUsesWith(NewInst); 2220 I->eraseFromParent(); 2221 2222 OpBundles.clear(); 2223 } 2224 2225 // It is problematic if the inlinee has a cleanupret which unwinds to 2226 // caller and we inline it into a call site which doesn't unwind but into 2227 // an EH pad that does. Such an edge must be dynamically unreachable. 2228 // As such, we replace the cleanupret with unreachable. 2229 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator())) 2230 if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally) 2231 changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false); 2232 2233 Instruction *I = BB->getFirstNonPHI(); 2234 if (!I->isEHPad()) 2235 continue; 2236 2237 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 2238 if (isa<ConstantTokenNone>(CatchSwitch->getParentPad())) 2239 CatchSwitch->setParentPad(CallSiteEHPad); 2240 } else { 2241 auto *FPI = cast<FuncletPadInst>(I); 2242 if (isa<ConstantTokenNone>(FPI->getParentPad())) 2243 FPI->setParentPad(CallSiteEHPad); 2244 } 2245 } 2246 } 2247 2248 if (InlinedDeoptimizeCalls) { 2249 // We need to at least remove the deoptimizing returns from the Return set, 2250 // so that the control flow from those returns does not get merged into the 2251 // caller (but terminate it instead). If the caller's return type does not 2252 // match the callee's return type, we also need to change the return type of 2253 // the intrinsic. 2254 if (Caller->getReturnType() == TheCall->getType()) { 2255 auto NewEnd = llvm::remove_if(Returns, [](ReturnInst *RI) { 2256 return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr; 2257 }); 2258 Returns.erase(NewEnd, Returns.end()); 2259 } else { 2260 SmallVector<ReturnInst *, 8> NormalReturns; 2261 Function *NewDeoptIntrinsic = Intrinsic::getDeclaration( 2262 Caller->getParent(), Intrinsic::experimental_deoptimize, 2263 {Caller->getReturnType()}); 2264 2265 for (ReturnInst *RI : Returns) { 2266 CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall(); 2267 if (!DeoptCall) { 2268 NormalReturns.push_back(RI); 2269 continue; 2270 } 2271 2272 // The calling convention on the deoptimize call itself may be bogus, 2273 // since the code we're inlining may have undefined behavior (and may 2274 // never actually execute at runtime); but all 2275 // @llvm.experimental.deoptimize declarations have to have the same 2276 // calling convention in a well-formed module. 2277 auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv(); 2278 NewDeoptIntrinsic->setCallingConv(CallingConv); 2279 auto *CurBB = RI->getParent(); 2280 RI->eraseFromParent(); 2281 2282 SmallVector<Value *, 4> CallArgs(DeoptCall->arg_begin(), 2283 DeoptCall->arg_end()); 2284 2285 SmallVector<OperandBundleDef, 1> OpBundles; 2286 DeoptCall->getOperandBundlesAsDefs(OpBundles); 2287 DeoptCall->eraseFromParent(); 2288 assert(!OpBundles.empty() && 2289 "Expected at least the deopt operand bundle"); 2290 2291 IRBuilder<> Builder(CurBB); 2292 CallInst *NewDeoptCall = 2293 Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles); 2294 NewDeoptCall->setCallingConv(CallingConv); 2295 if (NewDeoptCall->getType()->isVoidTy()) 2296 Builder.CreateRetVoid(); 2297 else 2298 Builder.CreateRet(NewDeoptCall); 2299 } 2300 2301 // Leave behind the normal returns so we can merge control flow. 2302 std::swap(Returns, NormalReturns); 2303 } 2304 } 2305 2306 // Handle any inlined musttail call sites. In order for a new call site to be 2307 // musttail, the source of the clone and the inlined call site must have been 2308 // musttail. Therefore it's safe to return without merging control into the 2309 // phi below. 2310 if (InlinedMustTailCalls) { 2311 // Check if we need to bitcast the result of any musttail calls. 2312 Type *NewRetTy = Caller->getReturnType(); 2313 bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy; 2314 2315 // Handle the returns preceded by musttail calls separately. 2316 SmallVector<ReturnInst *, 8> NormalReturns; 2317 for (ReturnInst *RI : Returns) { 2318 CallInst *ReturnedMustTail = 2319 RI->getParent()->getTerminatingMustTailCall(); 2320 if (!ReturnedMustTail) { 2321 NormalReturns.push_back(RI); 2322 continue; 2323 } 2324 if (!NeedBitCast) 2325 continue; 2326 2327 // Delete the old return and any preceding bitcast. 2328 BasicBlock *CurBB = RI->getParent(); 2329 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); 2330 RI->eraseFromParent(); 2331 if (OldCast) 2332 OldCast->eraseFromParent(); 2333 2334 // Insert a new bitcast and return with the right type. 2335 IRBuilder<> Builder(CurBB); 2336 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); 2337 } 2338 2339 // Leave behind the normal returns so we can merge control flow. 2340 std::swap(Returns, NormalReturns); 2341 } 2342 2343 // Now that all of the transforms on the inlined code have taken place but 2344 // before we splice the inlined code into the CFG and lose track of which 2345 // blocks were actually inlined, collect the call sites. We only do this if 2346 // call graph updates weren't requested, as those provide value handle based 2347 // tracking of inlined call sites instead. 2348 if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) { 2349 // Otherwise just collect the raw call sites that were inlined. 2350 for (BasicBlock &NewBB : 2351 make_range(FirstNewBlock->getIterator(), Caller->end())) 2352 for (Instruction &I : NewBB) 2353 if (auto CS = CallSite(&I)) 2354 IFI.InlinedCallSites.push_back(CS); 2355 } 2356 2357 // If we cloned in _exactly one_ basic block, and if that block ends in a 2358 // return instruction, we splice the body of the inlined callee directly into 2359 // the calling basic block. 2360 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 2361 // Move all of the instructions right before the call. 2362 OrigBB->getInstList().splice(TheCall->getIterator(), 2363 FirstNewBlock->getInstList(), 2364 FirstNewBlock->begin(), FirstNewBlock->end()); 2365 // Remove the cloned basic block. 2366 Caller->getBasicBlockList().pop_back(); 2367 2368 // If the call site was an invoke instruction, add a branch to the normal 2369 // destination. 2370 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 2371 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); 2372 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 2373 } 2374 2375 // If the return instruction returned a value, replace uses of the call with 2376 // uses of the returned value. 2377 if (!TheCall->use_empty()) { 2378 ReturnInst *R = Returns[0]; 2379 if (TheCall == R->getReturnValue()) 2380 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 2381 else 2382 TheCall->replaceAllUsesWith(R->getReturnValue()); 2383 } 2384 // Since we are now done with the Call/Invoke, we can delete it. 2385 TheCall->eraseFromParent(); 2386 2387 // Since we are now done with the return instruction, delete it also. 2388 Returns[0]->eraseFromParent(); 2389 2390 // We are now done with the inlining. 2391 return InlineResult::success(); 2392 } 2393 2394 // Otherwise, we have the normal case, of more than one block to inline or 2395 // multiple return sites. 2396 2397 // We want to clone the entire callee function into the hole between the 2398 // "starter" and "ender" blocks. How we accomplish this depends on whether 2399 // this is an invoke instruction or a call instruction. 2400 BasicBlock *AfterCallBB; 2401 BranchInst *CreatedBranchToNormalDest = nullptr; 2402 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 2403 2404 // Add an unconditional branch to make this look like the CallInst case... 2405 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall); 2406 2407 // Split the basic block. This guarantees that no PHI nodes will have to be 2408 // updated due to new incoming edges, and make the invoke case more 2409 // symmetric to the call case. 2410 AfterCallBB = 2411 OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(), 2412 CalledFunc->getName() + ".exit"); 2413 2414 } else { // It's a call 2415 // If this is a call instruction, we need to split the basic block that 2416 // the call lives in. 2417 // 2418 AfterCallBB = OrigBB->splitBasicBlock(TheCall->getIterator(), 2419 CalledFunc->getName() + ".exit"); 2420 } 2421 2422 if (IFI.CallerBFI) { 2423 // Copy original BB's block frequency to AfterCallBB 2424 IFI.CallerBFI->setBlockFreq( 2425 AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency()); 2426 } 2427 2428 // Change the branch that used to go to AfterCallBB to branch to the first 2429 // basic block of the inlined function. 2430 // 2431 Instruction *Br = OrigBB->getTerminator(); 2432 assert(Br && Br->getOpcode() == Instruction::Br && 2433 "splitBasicBlock broken!"); 2434 Br->setOperand(0, &*FirstNewBlock); 2435 2436 // Now that the function is correct, make it a little bit nicer. In 2437 // particular, move the basic blocks inserted from the end of the function 2438 // into the space made by splitting the source basic block. 2439 Caller->getBasicBlockList().splice(AfterCallBB->getIterator(), 2440 Caller->getBasicBlockList(), FirstNewBlock, 2441 Caller->end()); 2442 2443 // Handle all of the return instructions that we just cloned in, and eliminate 2444 // any users of the original call/invoke instruction. 2445 Type *RTy = CalledFunc->getReturnType(); 2446 2447 PHINode *PHI = nullptr; 2448 if (Returns.size() > 1) { 2449 // The PHI node should go at the front of the new basic block to merge all 2450 // possible incoming values. 2451 if (!TheCall->use_empty()) { 2452 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), 2453 &AfterCallBB->front()); 2454 // Anything that used the result of the function call should now use the 2455 // PHI node as their operand. 2456 TheCall->replaceAllUsesWith(PHI); 2457 } 2458 2459 // Loop over all of the return instructions adding entries to the PHI node 2460 // as appropriate. 2461 if (PHI) { 2462 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2463 ReturnInst *RI = Returns[i]; 2464 assert(RI->getReturnValue()->getType() == PHI->getType() && 2465 "Ret value not consistent in function!"); 2466 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 2467 } 2468 } 2469 2470 // Add a branch to the merge points and remove return instructions. 2471 DebugLoc Loc; 2472 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2473 ReturnInst *RI = Returns[i]; 2474 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 2475 Loc = RI->getDebugLoc(); 2476 BI->setDebugLoc(Loc); 2477 RI->eraseFromParent(); 2478 } 2479 // We need to set the debug location to *somewhere* inside the 2480 // inlined function. The line number may be nonsensical, but the 2481 // instruction will at least be associated with the right 2482 // function. 2483 if (CreatedBranchToNormalDest) 2484 CreatedBranchToNormalDest->setDebugLoc(Loc); 2485 } else if (!Returns.empty()) { 2486 // Otherwise, if there is exactly one return value, just replace anything 2487 // using the return value of the call with the computed value. 2488 if (!TheCall->use_empty()) { 2489 if (TheCall == Returns[0]->getReturnValue()) 2490 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 2491 else 2492 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); 2493 } 2494 2495 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 2496 BasicBlock *ReturnBB = Returns[0]->getParent(); 2497 ReturnBB->replaceAllUsesWith(AfterCallBB); 2498 2499 // Splice the code from the return block into the block that it will return 2500 // to, which contains the code that was after the call. 2501 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 2502 ReturnBB->getInstList()); 2503 2504 if (CreatedBranchToNormalDest) 2505 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 2506 2507 // Delete the return instruction now and empty ReturnBB now. 2508 Returns[0]->eraseFromParent(); 2509 ReturnBB->eraseFromParent(); 2510 } else if (!TheCall->use_empty()) { 2511 // No returns, but something is using the return value of the call. Just 2512 // nuke the result. 2513 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 2514 } 2515 2516 // Since we are now done with the Call/Invoke, we can delete it. 2517 TheCall->eraseFromParent(); 2518 2519 // If we inlined any musttail calls and the original return is now 2520 // unreachable, delete it. It can only contain a bitcast and ret. 2521 if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB)) 2522 AfterCallBB->eraseFromParent(); 2523 2524 // We should always be able to fold the entry block of the function into the 2525 // single predecessor of the block... 2526 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 2527 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 2528 2529 // Splice the code entry block into calling block, right before the 2530 // unconditional branch. 2531 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 2532 OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList()); 2533 2534 // Remove the unconditional branch. 2535 OrigBB->getInstList().erase(Br); 2536 2537 // Now we can remove the CalleeEntry block, which is now empty. 2538 Caller->getBasicBlockList().erase(CalleeEntry); 2539 2540 // If we inserted a phi node, check to see if it has a single value (e.g. all 2541 // the entries are the same or undef). If so, remove the PHI so it doesn't 2542 // block other optimizations. 2543 if (PHI) { 2544 AssumptionCache *AC = 2545 IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr; 2546 auto &DL = Caller->getParent()->getDataLayout(); 2547 if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) { 2548 PHI->replaceAllUsesWith(V); 2549 PHI->eraseFromParent(); 2550 } 2551 } 2552 2553 return InlineResult::success(); 2554 } 2555