1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements inlining of a function into a call site, resolving 11 // parameters and the return value as appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Cloning.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/CallGraph.h" 22 #include "llvm/Analysis/CaptureTracking.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/CallSite.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DebugInfo.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/Transforms/Utils/Local.h" 40 #include "llvm/Support/CommandLine.h" 41 #include <algorithm> 42 using namespace llvm; 43 44 static cl::opt<bool> 45 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(false), 46 cl::Hidden, 47 cl::desc("Convert noalias attributes to metadata during inlining.")); 48 49 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI, 50 bool InsertLifetime) { 51 return InlineFunction(CallSite(CI), IFI, InsertLifetime); 52 } 53 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI, 54 bool InsertLifetime) { 55 return InlineFunction(CallSite(II), IFI, InsertLifetime); 56 } 57 58 namespace { 59 /// A class for recording information about inlining through an invoke. 60 class InvokeInliningInfo { 61 BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind. 62 BasicBlock *InnerResumeDest; ///< Destination for the callee's resume. 63 LandingPadInst *CallerLPad; ///< LandingPadInst associated with the invoke. 64 PHINode *InnerEHValuesPHI; ///< PHI for EH values from landingpad insts. 65 SmallVector<Value*, 8> UnwindDestPHIValues; 66 67 public: 68 InvokeInliningInfo(InvokeInst *II) 69 : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr), 70 CallerLPad(nullptr), InnerEHValuesPHI(nullptr) { 71 // If there are PHI nodes in the unwind destination block, we need to keep 72 // track of which values came into them from the invoke before removing 73 // the edge from this block. 74 llvm::BasicBlock *InvokeBB = II->getParent(); 75 BasicBlock::iterator I = OuterResumeDest->begin(); 76 for (; isa<PHINode>(I); ++I) { 77 // Save the value to use for this edge. 78 PHINode *PHI = cast<PHINode>(I); 79 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 80 } 81 82 CallerLPad = cast<LandingPadInst>(I); 83 } 84 85 /// getOuterResumeDest - The outer unwind destination is the target of 86 /// unwind edges introduced for calls within the inlined function. 87 BasicBlock *getOuterResumeDest() const { 88 return OuterResumeDest; 89 } 90 91 BasicBlock *getInnerResumeDest(); 92 93 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 94 95 /// forwardResume - Forward the 'resume' instruction to the caller's landing 96 /// pad block. When the landing pad block has only one predecessor, this is 97 /// a simple branch. When there is more than one predecessor, we need to 98 /// split the landing pad block after the landingpad instruction and jump 99 /// to there. 100 void forwardResume(ResumeInst *RI, 101 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); 102 103 /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind 104 /// destination block for the given basic block, using the values for the 105 /// original invoke's source block. 106 void addIncomingPHIValuesFor(BasicBlock *BB) const { 107 addIncomingPHIValuesForInto(BB, OuterResumeDest); 108 } 109 110 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 111 BasicBlock::iterator I = dest->begin(); 112 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 113 PHINode *phi = cast<PHINode>(I); 114 phi->addIncoming(UnwindDestPHIValues[i], src); 115 } 116 } 117 }; 118 } 119 120 /// getInnerResumeDest - Get or create a target for the branch from ResumeInsts. 121 BasicBlock *InvokeInliningInfo::getInnerResumeDest() { 122 if (InnerResumeDest) return InnerResumeDest; 123 124 // Split the landing pad. 125 BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint; 126 InnerResumeDest = 127 OuterResumeDest->splitBasicBlock(SplitPoint, 128 OuterResumeDest->getName() + ".body"); 129 130 // The number of incoming edges we expect to the inner landing pad. 131 const unsigned PHICapacity = 2; 132 133 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 134 BasicBlock::iterator InsertPoint = InnerResumeDest->begin(); 135 BasicBlock::iterator I = OuterResumeDest->begin(); 136 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 137 PHINode *OuterPHI = cast<PHINode>(I); 138 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 139 OuterPHI->getName() + ".lpad-body", 140 InsertPoint); 141 OuterPHI->replaceAllUsesWith(InnerPHI); 142 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 143 } 144 145 // Create a PHI for the exception values. 146 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 147 "eh.lpad-body", InsertPoint); 148 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 149 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 150 151 // All done. 152 return InnerResumeDest; 153 } 154 155 /// forwardResume - Forward the 'resume' instruction to the caller's landing pad 156 /// block. When the landing pad block has only one predecessor, this is a simple 157 /// branch. When there is more than one predecessor, we need to split the 158 /// landing pad block after the landingpad instruction and jump to there. 159 void InvokeInliningInfo::forwardResume(ResumeInst *RI, 160 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads) { 161 BasicBlock *Dest = getInnerResumeDest(); 162 BasicBlock *Src = RI->getParent(); 163 164 BranchInst::Create(Dest, Src); 165 166 // Update the PHIs in the destination. They were inserted in an order which 167 // makes this work. 168 addIncomingPHIValuesForInto(Src, Dest); 169 170 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 171 RI->eraseFromParent(); 172 } 173 174 /// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into 175 /// an invoke, we have to turn all of the calls that can throw into 176 /// invokes. This function analyze BB to see if there are any calls, and if so, 177 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 178 /// nodes in that block with the values specified in InvokeDestPHIValues. 179 static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, 180 InvokeInliningInfo &Invoke) { 181 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 182 Instruction *I = BBI++; 183 184 // We only need to check for function calls: inlined invoke 185 // instructions require no special handling. 186 CallInst *CI = dyn_cast<CallInst>(I); 187 188 // If this call cannot unwind, don't convert it to an invoke. 189 // Inline asm calls cannot throw. 190 if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue())) 191 continue; 192 193 // Convert this function call into an invoke instruction. First, split the 194 // basic block. 195 BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); 196 197 // Delete the unconditional branch inserted by splitBasicBlock 198 BB->getInstList().pop_back(); 199 200 // Create the new invoke instruction. 201 ImmutableCallSite CS(CI); 202 SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end()); 203 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, 204 Invoke.getOuterResumeDest(), 205 InvokeArgs, CI->getName(), BB); 206 II->setDebugLoc(CI->getDebugLoc()); 207 II->setCallingConv(CI->getCallingConv()); 208 II->setAttributes(CI->getAttributes()); 209 210 // Make sure that anything using the call now uses the invoke! This also 211 // updates the CallGraph if present, because it uses a WeakVH. 212 CI->replaceAllUsesWith(II); 213 214 // Delete the original call 215 Split->getInstList().pop_front(); 216 217 // Update any PHI nodes in the exceptional block to indicate that there is 218 // now a new entry in them. 219 Invoke.addIncomingPHIValuesFor(BB); 220 return; 221 } 222 } 223 224 /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls 225 /// in the body of the inlined function into invokes. 226 /// 227 /// II is the invoke instruction being inlined. FirstNewBlock is the first 228 /// block of the inlined code (the last block is the end of the function), 229 /// and InlineCodeInfo is information about the code that got inlined. 230 static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock, 231 ClonedCodeInfo &InlinedCodeInfo) { 232 BasicBlock *InvokeDest = II->getUnwindDest(); 233 234 Function *Caller = FirstNewBlock->getParent(); 235 236 // The inlined code is currently at the end of the function, scan from the 237 // start of the inlined code to its end, checking for stuff we need to 238 // rewrite. 239 InvokeInliningInfo Invoke(II); 240 241 // Get all of the inlined landing pad instructions. 242 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 243 for (Function::iterator I = FirstNewBlock, E = Caller->end(); I != E; ++I) 244 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 245 InlinedLPads.insert(II->getLandingPadInst()); 246 247 // Append the clauses from the outer landing pad instruction into the inlined 248 // landing pad instructions. 249 LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 250 for (SmallPtrSet<LandingPadInst*, 16>::iterator I = InlinedLPads.begin(), 251 E = InlinedLPads.end(); I != E; ++I) { 252 LandingPadInst *InlinedLPad = *I; 253 unsigned OuterNum = OuterLPad->getNumClauses(); 254 InlinedLPad->reserveClauses(OuterNum); 255 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 256 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 257 if (OuterLPad->isCleanup()) 258 InlinedLPad->setCleanup(true); 259 } 260 261 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){ 262 if (InlinedCodeInfo.ContainsCalls) 263 HandleCallsInBlockInlinedThroughInvoke(BB, Invoke); 264 265 // Forward any resumes that are remaining here. 266 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 267 Invoke.forwardResume(RI, InlinedLPads); 268 } 269 270 // Now that everything is happy, we have one final detail. The PHI nodes in 271 // the exception destination block still have entries due to the original 272 // invoke instruction. Eliminate these entries (which might even delete the 273 // PHI node) now. 274 InvokeDest->removePredecessor(II->getParent()); 275 } 276 277 /// CloneAliasScopeMetadata - When inlining a function that contains noalias 278 /// scope metadata, this metadata needs to be cloned so that the inlined blocks 279 /// have different "unqiue scopes" at every call site. Were this not done, then 280 /// aliasing scopes from a function inlined into a caller multiple times could 281 /// not be differentiated (and this would lead to miscompiles because the 282 /// non-aliasing property communicated by the metadata could have 283 /// call-site-specific control dependencies). 284 static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) { 285 const Function *CalledFunc = CS.getCalledFunction(); 286 SetVector<const MDNode *> MD; 287 288 // Note: We could only clone the metadata if it is already used in the 289 // caller. I'm omitting that check here because it might confuse 290 // inter-procedural alias analysis passes. We can revisit this if it becomes 291 // an efficiency or overhead problem. 292 293 for (Function::const_iterator I = CalledFunc->begin(), IE = CalledFunc->end(); 294 I != IE; ++I) 295 for (BasicBlock::const_iterator J = I->begin(), JE = I->end(); J != JE; ++J) { 296 if (const MDNode *M = J->getMetadata(LLVMContext::MD_alias_scope)) 297 MD.insert(M); 298 if (const MDNode *M = J->getMetadata(LLVMContext::MD_noalias)) 299 MD.insert(M); 300 } 301 302 if (MD.empty()) 303 return; 304 305 // Walk the existing metadata, adding the complete (perhaps cyclic) chain to 306 // the set. 307 SmallVector<const Value *, 16> Queue(MD.begin(), MD.end()); 308 while (!Queue.empty()) { 309 const MDNode *M = cast<MDNode>(Queue.pop_back_val()); 310 for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i) 311 if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i))) 312 if (MD.insert(M1)) 313 Queue.push_back(M1); 314 } 315 316 // Now we have a complete set of all metadata in the chains used to specify 317 // the noalias scopes and the lists of those scopes. 318 SmallVector<MDNode *, 16> DummyNodes; 319 DenseMap<const MDNode *, TrackingVH<MDNode> > MDMap; 320 for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); 321 I != IE; ++I) { 322 MDNode *Dummy = MDNode::getTemporary(CalledFunc->getContext(), 323 ArrayRef<Value*>()); 324 DummyNodes.push_back(Dummy); 325 MDMap[*I] = Dummy; 326 } 327 328 // Create new metadata nodes to replace the dummy nodes, replacing old 329 // metadata references with either a dummy node or an already-created new 330 // node. 331 for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); 332 I != IE; ++I) { 333 SmallVector<Value *, 4> NewOps; 334 for (unsigned i = 0, ie = (*I)->getNumOperands(); i != ie; ++i) { 335 const Value *V = (*I)->getOperand(i); 336 if (const MDNode *M = dyn_cast<MDNode>(V)) 337 NewOps.push_back(MDMap[M]); 338 else 339 NewOps.push_back(const_cast<Value *>(V)); 340 } 341 342 MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps), 343 *TempM = MDMap[*I]; 344 345 TempM->replaceAllUsesWith(NewM); 346 } 347 348 // Now replace the metadata in the new inlined instructions with the 349 // repacements from the map. 350 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 351 VMI != VMIE; ++VMI) { 352 if (!VMI->second) 353 continue; 354 355 Instruction *NI = dyn_cast<Instruction>(VMI->second); 356 if (!NI) 357 continue; 358 359 if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) { 360 MDNode *NewMD = MDMap[M]; 361 // If the call site also had alias scope metadata (a list of scopes to 362 // which instructions inside it might belong), propagate those scopes to 363 // the inlined instructions. 364 if (MDNode *CSM = 365 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 366 NewMD = MDNode::concatenate(NewMD, CSM); 367 NI->setMetadata(LLVMContext::MD_alias_scope, NewMD); 368 } else if (NI->mayReadOrWriteMemory()) { 369 if (MDNode *M = 370 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 371 NI->setMetadata(LLVMContext::MD_alias_scope, M); 372 } 373 374 if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) { 375 MDNode *NewMD = MDMap[M]; 376 // If the call site also had noalias metadata (a list of scopes with 377 // which instructions inside it don't alias), propagate those scopes to 378 // the inlined instructions. 379 if (MDNode *CSM = 380 CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 381 NewMD = MDNode::concatenate(NewMD, CSM); 382 NI->setMetadata(LLVMContext::MD_noalias, NewMD); 383 } else if (NI->mayReadOrWriteMemory()) { 384 if (MDNode *M = 385 CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 386 NI->setMetadata(LLVMContext::MD_noalias, M); 387 } 388 } 389 390 // Now that everything has been replaced, delete the dummy nodes. 391 for (unsigned i = 0, ie = DummyNodes.size(); i != ie; ++i) 392 MDNode::deleteTemporary(DummyNodes[i]); 393 } 394 395 /// AddAliasScopeMetadata - If the inlined function has noalias arguments, then 396 /// add new alias scopes for each noalias argument, tag the mapped noalias 397 /// parameters with noalias metadata specifying the new scope, and tag all 398 /// non-derived loads, stores and memory intrinsics with the new alias scopes. 399 static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap, 400 const DataLayout *DL) { 401 if (!EnableNoAliasConversion) 402 return; 403 404 const Function *CalledFunc = CS.getCalledFunction(); 405 SmallVector<const Argument *, 4> NoAliasArgs; 406 407 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 408 E = CalledFunc->arg_end(); I != E; ++I) { 409 if (I->hasNoAliasAttr() && !I->hasNUses(0)) 410 NoAliasArgs.push_back(I); 411 } 412 413 if (NoAliasArgs.empty()) 414 return; 415 416 // To do a good job, if a noalias variable is captured, we need to know if 417 // the capture point dominates the particular use we're considering. 418 DominatorTree DT; 419 DT.recalculate(const_cast<Function&>(*CalledFunc)); 420 421 // noalias indicates that pointer values based on the argument do not alias 422 // pointer values which are not based on it. So we add a new "scope" for each 423 // noalias function argument. Accesses using pointers based on that argument 424 // become part of that alias scope, accesses using pointers not based on that 425 // argument are tagged as noalias with that scope. 426 427 DenseMap<const Argument *, MDNode *> NewScopes; 428 MDBuilder MDB(CalledFunc->getContext()); 429 430 // Create a new scope domain for this function. 431 MDNode *NewDomain = 432 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); 433 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { 434 const Argument *A = NoAliasArgs[i]; 435 436 std::string Name = CalledFunc->getName(); 437 if (A->hasName()) { 438 Name += ": %"; 439 Name += A->getName(); 440 } else { 441 Name += ": argument "; 442 Name += utostr(i); 443 } 444 445 // Note: We always create a new anonymous root here. This is true regardless 446 // of the linkage of the callee because the aliasing "scope" is not just a 447 // property of the callee, but also all control dependencies in the caller. 448 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); 449 NewScopes.insert(std::make_pair(A, NewScope)); 450 } 451 452 // Iterate over all new instructions in the map; for all memory-access 453 // instructions, add the alias scope metadata. 454 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 455 VMI != VMIE; ++VMI) { 456 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { 457 if (!VMI->second) 458 continue; 459 460 Instruction *NI = dyn_cast<Instruction>(VMI->second); 461 if (!NI) 462 continue; 463 464 SmallVector<const Value *, 2> PtrArgs; 465 466 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 467 PtrArgs.push_back(LI->getPointerOperand()); 468 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 469 PtrArgs.push_back(SI->getPointerOperand()); 470 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) 471 PtrArgs.push_back(VAAI->getPointerOperand()); 472 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 473 PtrArgs.push_back(CXI->getPointerOperand()); 474 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 475 PtrArgs.push_back(RMWI->getPointerOperand()); 476 else if (ImmutableCallSite ICS = ImmutableCallSite(I)) { 477 // If we know that the call does not access memory, then we'll still 478 // know that about the inlined clone of this call site, and we don't 479 // need to add metadata. 480 if (ICS.doesNotAccessMemory()) 481 continue; 482 483 for (ImmutableCallSite::arg_iterator AI = ICS.arg_begin(), 484 AE = ICS.arg_end(); AI != AE; ++AI) 485 // We need to check the underlying objects of all arguments, not just 486 // the pointer arguments, because we might be passing pointers as 487 // integers, etc. 488 // FIXME: If we know that the call only accesses pointer arguments, 489 // then we only need to check the pointer arguments. 490 PtrArgs.push_back(*AI); 491 } 492 493 // If we found no pointers, then this instruction is not suitable for 494 // pairing with an instruction to receive aliasing metadata. 495 // However, if this is a call, this we might just alias with none of the 496 // noalias arguments. 497 if (PtrArgs.empty() && !isa<CallInst>(I) && !isa<InvokeInst>(I)) 498 continue; 499 500 // It is possible that there is only one underlying object, but you 501 // need to go through several PHIs to see it, and thus could be 502 // repeated in the Objects list. 503 SmallPtrSet<const Value *, 4> ObjSet; 504 SmallVector<Value *, 4> Scopes, NoAliases; 505 506 SmallSetVector<const Argument *, 4> NAPtrArgs; 507 for (unsigned i = 0, ie = PtrArgs.size(); i != ie; ++i) { 508 SmallVector<Value *, 4> Objects; 509 GetUnderlyingObjects(const_cast<Value*>(PtrArgs[i]), 510 Objects, DL, /* MaxLookup = */ 0); 511 512 for (Value *O : Objects) 513 ObjSet.insert(O); 514 } 515 516 // Figure out if we're derived from anyhing that is not a noalias 517 // argument. 518 bool CanDeriveViaCapture = false; 519 for (const Value *V : ObjSet) 520 if (!isIdentifiedFunctionLocal(const_cast<Value*>(V))) { 521 CanDeriveViaCapture = true; 522 break; 523 } 524 525 // First, we want to figure out all of the sets with which we definitely 526 // don't alias. Iterate over all noalias set, and add those for which: 527 // 1. The noalias argument is not in the set of objects from which we 528 // definitely derive. 529 // 2. The noalias argument has not yet been captured. 530 for (const Argument *A : NoAliasArgs) { 531 if (!ObjSet.count(A) && (!CanDeriveViaCapture || 532 A->hasNoCaptureAttr() || 533 !PointerMayBeCapturedBefore(A, 534 /* ReturnCaptures */ false, 535 /* StoreCaptures */ false, I, &DT))) 536 NoAliases.push_back(NewScopes[A]); 537 } 538 539 if (!NoAliases.empty()) 540 NI->setMetadata(LLVMContext::MD_noalias, MDNode::concatenate( 541 NI->getMetadata(LLVMContext::MD_noalias), 542 MDNode::get(CalledFunc->getContext(), NoAliases))); 543 // Next, we want to figure out all of the sets to which we might belong. 544 // We might below to a set if: 545 // 1. The noalias argument is in the set of underlying objects 546 // or 547 // 2. There is some non-noalias argument in our list and the no-alias 548 // argument has been captured. 549 550 for (const Argument *A : NoAliasArgs) { 551 if (ObjSet.count(A) || (CanDeriveViaCapture && 552 PointerMayBeCapturedBefore(A, 553 /* ReturnCaptures */ false, 554 /* StoreCaptures */ false, 555 I, &DT))) 556 Scopes.push_back(NewScopes[A]); 557 } 558 559 if (!Scopes.empty()) 560 NI->setMetadata(LLVMContext::MD_alias_scope, MDNode::concatenate( 561 NI->getMetadata(LLVMContext::MD_alias_scope), 562 MDNode::get(CalledFunc->getContext(), Scopes))); 563 } 564 } 565 } 566 567 /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee 568 /// into the caller, update the specified callgraph to reflect the changes we 569 /// made. Note that it's possible that not all code was copied over, so only 570 /// some edges of the callgraph may remain. 571 static void UpdateCallGraphAfterInlining(CallSite CS, 572 Function::iterator FirstNewBlock, 573 ValueToValueMapTy &VMap, 574 InlineFunctionInfo &IFI) { 575 CallGraph &CG = *IFI.CG; 576 const Function *Caller = CS.getInstruction()->getParent()->getParent(); 577 const Function *Callee = CS.getCalledFunction(); 578 CallGraphNode *CalleeNode = CG[Callee]; 579 CallGraphNode *CallerNode = CG[Caller]; 580 581 // Since we inlined some uninlined call sites in the callee into the caller, 582 // add edges from the caller to all of the callees of the callee. 583 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 584 585 // Consider the case where CalleeNode == CallerNode. 586 CallGraphNode::CalledFunctionsVector CallCache; 587 if (CalleeNode == CallerNode) { 588 CallCache.assign(I, E); 589 I = CallCache.begin(); 590 E = CallCache.end(); 591 } 592 593 for (; I != E; ++I) { 594 const Value *OrigCall = I->first; 595 596 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 597 // Only copy the edge if the call was inlined! 598 if (VMI == VMap.end() || VMI->second == nullptr) 599 continue; 600 601 // If the call was inlined, but then constant folded, there is no edge to 602 // add. Check for this case. 603 Instruction *NewCall = dyn_cast<Instruction>(VMI->second); 604 if (!NewCall) continue; 605 606 // Remember that this call site got inlined for the client of 607 // InlineFunction. 608 IFI.InlinedCalls.push_back(NewCall); 609 610 // It's possible that inlining the callsite will cause it to go from an 611 // indirect to a direct call by resolving a function pointer. If this 612 // happens, set the callee of the new call site to a more precise 613 // destination. This can also happen if the call graph node of the caller 614 // was just unnecessarily imprecise. 615 if (!I->second->getFunction()) 616 if (Function *F = CallSite(NewCall).getCalledFunction()) { 617 // Indirect call site resolved to direct call. 618 CallerNode->addCalledFunction(CallSite(NewCall), CG[F]); 619 620 continue; 621 } 622 623 CallerNode->addCalledFunction(CallSite(NewCall), I->second); 624 } 625 626 // Update the call graph by deleting the edge from Callee to Caller. We must 627 // do this after the loop above in case Caller and Callee are the same. 628 CallerNode->removeCallEdgeFor(CS); 629 } 630 631 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M, 632 BasicBlock *InsertBlock, 633 InlineFunctionInfo &IFI) { 634 LLVMContext &Context = Src->getContext(); 635 Type *VoidPtrTy = Type::getInt8PtrTy(Context); 636 Type *AggTy = cast<PointerType>(Src->getType())->getElementType(); 637 Type *Tys[3] = { VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context) }; 638 Function *MemCpyFn = Intrinsic::getDeclaration(M, Intrinsic::memcpy, Tys); 639 IRBuilder<> builder(InsertBlock->begin()); 640 Value *DstCast = builder.CreateBitCast(Dst, VoidPtrTy, "tmp"); 641 Value *SrcCast = builder.CreateBitCast(Src, VoidPtrTy, "tmp"); 642 643 Value *Size; 644 if (IFI.DL == nullptr) 645 Size = ConstantExpr::getSizeOf(AggTy); 646 else 647 Size = ConstantInt::get(Type::getInt64Ty(Context), 648 IFI.DL->getTypeStoreSize(AggTy)); 649 650 // Always generate a memcpy of alignment 1 here because we don't know 651 // the alignment of the src pointer. Other optimizations can infer 652 // better alignment. 653 Value *CallArgs[] = { 654 DstCast, SrcCast, Size, 655 ConstantInt::get(Type::getInt32Ty(Context), 1), 656 ConstantInt::getFalse(Context) // isVolatile 657 }; 658 builder.CreateCall(MemCpyFn, CallArgs); 659 } 660 661 /// HandleByValArgument - When inlining a call site that has a byval argument, 662 /// we have to make the implicit memcpy explicit by adding it. 663 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 664 const Function *CalledFunc, 665 InlineFunctionInfo &IFI, 666 unsigned ByValAlignment) { 667 PointerType *ArgTy = cast<PointerType>(Arg->getType()); 668 Type *AggTy = ArgTy->getElementType(); 669 670 // If the called function is readonly, then it could not mutate the caller's 671 // copy of the byval'd memory. In this case, it is safe to elide the copy and 672 // temporary. 673 if (CalledFunc->onlyReadsMemory()) { 674 // If the byval argument has a specified alignment that is greater than the 675 // passed in pointer, then we either have to round up the input pointer or 676 // give up on this transformation. 677 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 678 return Arg; 679 680 // If the pointer is already known to be sufficiently aligned, or if we can 681 // round it up to a larger alignment, then we don't need a temporary. 682 if (getOrEnforceKnownAlignment(Arg, ByValAlignment, 683 IFI.DL) >= ByValAlignment) 684 return Arg; 685 686 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 687 // for code quality, but rarely happens and is required for correctness. 688 } 689 690 // Create the alloca. If we have DataLayout, use nice alignment. 691 unsigned Align = 1; 692 if (IFI.DL) 693 Align = IFI.DL->getPrefTypeAlignment(AggTy); 694 695 // If the byval had an alignment specified, we *must* use at least that 696 // alignment, as it is required by the byval argument (and uses of the 697 // pointer inside the callee). 698 Align = std::max(Align, ByValAlignment); 699 700 Function *Caller = TheCall->getParent()->getParent(); 701 702 Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(), 703 &*Caller->begin()->begin()); 704 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); 705 706 // Uses of the argument in the function should use our new alloca 707 // instead. 708 return NewAlloca; 709 } 710 711 // isUsedByLifetimeMarker - Check whether this Value is used by a lifetime 712 // intrinsic. 713 static bool isUsedByLifetimeMarker(Value *V) { 714 for (User *U : V->users()) { 715 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 716 switch (II->getIntrinsicID()) { 717 default: break; 718 case Intrinsic::lifetime_start: 719 case Intrinsic::lifetime_end: 720 return true; 721 } 722 } 723 } 724 return false; 725 } 726 727 // hasLifetimeMarkers - Check whether the given alloca already has 728 // lifetime.start or lifetime.end intrinsics. 729 static bool hasLifetimeMarkers(AllocaInst *AI) { 730 Type *Ty = AI->getType(); 731 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), 732 Ty->getPointerAddressSpace()); 733 if (Ty == Int8PtrTy) 734 return isUsedByLifetimeMarker(AI); 735 736 // Do a scan to find all the casts to i8*. 737 for (User *U : AI->users()) { 738 if (U->getType() != Int8PtrTy) continue; 739 if (U->stripPointerCasts() != AI) continue; 740 if (isUsedByLifetimeMarker(U)) 741 return true; 742 } 743 return false; 744 } 745 746 /// updateInlinedAtInfo - Helper function used by fixupLineNumbers to 747 /// recursively update InlinedAtEntry of a DebugLoc. 748 static DebugLoc updateInlinedAtInfo(const DebugLoc &DL, 749 const DebugLoc &InlinedAtDL, 750 LLVMContext &Ctx) { 751 if (MDNode *IA = DL.getInlinedAt(Ctx)) { 752 DebugLoc NewInlinedAtDL 753 = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx); 754 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), 755 NewInlinedAtDL.getAsMDNode(Ctx)); 756 } 757 758 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), 759 InlinedAtDL.getAsMDNode(Ctx)); 760 } 761 762 /// fixupLineNumbers - Update inlined instructions' line numbers to 763 /// to encode location where these instructions are inlined. 764 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 765 Instruction *TheCall) { 766 DebugLoc TheCallDL = TheCall->getDebugLoc(); 767 if (TheCallDL.isUnknown()) 768 return; 769 770 for (; FI != Fn->end(); ++FI) { 771 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 772 BI != BE; ++BI) { 773 DebugLoc DL = BI->getDebugLoc(); 774 if (DL.isUnknown()) { 775 // If the inlined instruction has no line number, make it look as if it 776 // originates from the call location. This is important for 777 // ((__always_inline__, __nodebug__)) functions which must use caller 778 // location for all instructions in their function body. 779 BI->setDebugLoc(TheCallDL); 780 } else { 781 BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext())); 782 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) { 783 LLVMContext &Ctx = BI->getContext(); 784 MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx); 785 DVI->setOperand(2, createInlinedVariable(DVI->getVariable(), 786 InlinedAt, Ctx)); 787 } 788 } 789 } 790 } 791 } 792 793 /// InlineFunction - This function inlines the called function into the basic 794 /// block of the caller. This returns false if it is not possible to inline 795 /// this call. The program is still in a well defined state if this occurs 796 /// though. 797 /// 798 /// Note that this only does one level of inlining. For example, if the 799 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 800 /// exists in the instruction stream. Similarly this will inline a recursive 801 /// function by one level. 802 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI, 803 bool InsertLifetime) { 804 Instruction *TheCall = CS.getInstruction(); 805 assert(TheCall->getParent() && TheCall->getParent()->getParent() && 806 "Instruction not in function!"); 807 808 // If IFI has any state in it, zap it before we fill it in. 809 IFI.reset(); 810 811 const Function *CalledFunc = CS.getCalledFunction(); 812 if (!CalledFunc || // Can't inline external function or indirect 813 CalledFunc->isDeclaration() || // call, or call to a vararg function! 814 CalledFunc->getFunctionType()->isVarArg()) return false; 815 816 // If the call to the callee cannot throw, set the 'nounwind' flag on any 817 // calls that we inline. 818 bool MarkNoUnwind = CS.doesNotThrow(); 819 820 BasicBlock *OrigBB = TheCall->getParent(); 821 Function *Caller = OrigBB->getParent(); 822 823 // GC poses two hazards to inlining, which only occur when the callee has GC: 824 // 1. If the caller has no GC, then the callee's GC must be propagated to the 825 // caller. 826 // 2. If the caller has a differing GC, it is invalid to inline. 827 if (CalledFunc->hasGC()) { 828 if (!Caller->hasGC()) 829 Caller->setGC(CalledFunc->getGC()); 830 else if (CalledFunc->getGC() != Caller->getGC()) 831 return false; 832 } 833 834 // Get the personality function from the callee if it contains a landing pad. 835 Value *CalleePersonality = nullptr; 836 for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end(); 837 I != E; ++I) 838 if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) { 839 const BasicBlock *BB = II->getUnwindDest(); 840 const LandingPadInst *LP = BB->getLandingPadInst(); 841 CalleePersonality = LP->getPersonalityFn(); 842 break; 843 } 844 845 // Find the personality function used by the landing pads of the caller. If it 846 // exists, then check to see that it matches the personality function used in 847 // the callee. 848 if (CalleePersonality) { 849 for (Function::const_iterator I = Caller->begin(), E = Caller->end(); 850 I != E; ++I) 851 if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) { 852 const BasicBlock *BB = II->getUnwindDest(); 853 const LandingPadInst *LP = BB->getLandingPadInst(); 854 855 // If the personality functions match, then we can perform the 856 // inlining. Otherwise, we can't inline. 857 // TODO: This isn't 100% true. Some personality functions are proper 858 // supersets of others and can be used in place of the other. 859 if (LP->getPersonalityFn() != CalleePersonality) 860 return false; 861 862 break; 863 } 864 } 865 866 // Get an iterator to the last basic block in the function, which will have 867 // the new function inlined after it. 868 Function::iterator LastBlock = &Caller->back(); 869 870 // Make sure to capture all of the return instructions from the cloned 871 // function. 872 SmallVector<ReturnInst*, 8> Returns; 873 ClonedCodeInfo InlinedFunctionInfo; 874 Function::iterator FirstNewBlock; 875 876 { // Scope to destroy VMap after cloning. 877 ValueToValueMapTy VMap; 878 // Keep a list of pair (dst, src) to emit byval initializations. 879 SmallVector<std::pair<Value*, Value*>, 4> ByValInit; 880 881 assert(CalledFunc->arg_size() == CS.arg_size() && 882 "No varargs calls can be inlined!"); 883 884 // Calculate the vector of arguments to pass into the function cloner, which 885 // matches up the formal to the actual argument values. 886 CallSite::arg_iterator AI = CS.arg_begin(); 887 unsigned ArgNo = 0; 888 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 889 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 890 Value *ActualArg = *AI; 891 892 // When byval arguments actually inlined, we need to make the copy implied 893 // by them explicit. However, we don't do this if the callee is readonly 894 // or readnone, because the copy would be unneeded: the callee doesn't 895 // modify the struct. 896 if (CS.isByValArgument(ArgNo)) { 897 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, 898 CalledFunc->getParamAlignment(ArgNo+1)); 899 if (ActualArg != *AI) 900 ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI)); 901 } 902 903 VMap[I] = ActualArg; 904 } 905 906 // We want the inliner to prune the code as it copies. We would LOVE to 907 // have no dead or constant instructions leftover after inlining occurs 908 // (which can happen, e.g., because an argument was constant), but we'll be 909 // happy with whatever the cloner can do. 910 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 911 /*ModuleLevelChanges=*/false, Returns, ".i", 912 &InlinedFunctionInfo, IFI.DL, TheCall); 913 914 // Remember the first block that is newly cloned over. 915 FirstNewBlock = LastBlock; ++FirstNewBlock; 916 917 // Inject byval arguments initialization. 918 for (std::pair<Value*, Value*> &Init : ByValInit) 919 HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(), 920 FirstNewBlock, IFI); 921 922 // Update the callgraph if requested. 923 if (IFI.CG) 924 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); 925 926 // Update inlined instructions' line number information. 927 fixupLineNumbers(Caller, FirstNewBlock, TheCall); 928 929 // Clone existing noalias metadata if necessary. 930 CloneAliasScopeMetadata(CS, VMap); 931 932 // Add noalias metadata if necessary. 933 AddAliasScopeMetadata(CS, VMap, IFI.DL); 934 } 935 936 // If there are any alloca instructions in the block that used to be the entry 937 // block for the callee, move them to the entry block of the caller. First 938 // calculate which instruction they should be inserted before. We insert the 939 // instructions at the end of the current alloca list. 940 { 941 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 942 for (BasicBlock::iterator I = FirstNewBlock->begin(), 943 E = FirstNewBlock->end(); I != E; ) { 944 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 945 if (!AI) continue; 946 947 // If the alloca is now dead, remove it. This often occurs due to code 948 // specialization. 949 if (AI->use_empty()) { 950 AI->eraseFromParent(); 951 continue; 952 } 953 954 if (!isa<Constant>(AI->getArraySize())) 955 continue; 956 957 // Keep track of the static allocas that we inline into the caller. 958 IFI.StaticAllocas.push_back(AI); 959 960 // Scan for the block of allocas that we can move over, and move them 961 // all at once. 962 while (isa<AllocaInst>(I) && 963 isa<Constant>(cast<AllocaInst>(I)->getArraySize())) { 964 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 965 ++I; 966 } 967 968 // Transfer all of the allocas over in a block. Using splice means 969 // that the instructions aren't removed from the symbol table, then 970 // reinserted. 971 Caller->getEntryBlock().getInstList().splice(InsertPoint, 972 FirstNewBlock->getInstList(), 973 AI, I); 974 } 975 } 976 977 bool InlinedMustTailCalls = false; 978 if (InlinedFunctionInfo.ContainsCalls) { 979 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; 980 if (CallInst *CI = dyn_cast<CallInst>(TheCall)) 981 CallSiteTailKind = CI->getTailCallKind(); 982 983 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 984 ++BB) { 985 for (Instruction &I : *BB) { 986 CallInst *CI = dyn_cast<CallInst>(&I); 987 if (!CI) 988 continue; 989 990 // We need to reduce the strength of any inlined tail calls. For 991 // musttail, we have to avoid introducing potential unbounded stack 992 // growth. For example, if functions 'f' and 'g' are mutually recursive 993 // with musttail, we can inline 'g' into 'f' so long as we preserve 994 // musttail on the cloned call to 'f'. If either the inlined call site 995 // or the cloned call site is *not* musttail, the program already has 996 // one frame of stack growth, so it's safe to remove musttail. Here is 997 // a table of example transformations: 998 // 999 // f -> musttail g -> musttail f ==> f -> musttail f 1000 // f -> musttail g -> tail f ==> f -> tail f 1001 // f -> g -> musttail f ==> f -> f 1002 // f -> g -> tail f ==> f -> f 1003 CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); 1004 ChildTCK = std::min(CallSiteTailKind, ChildTCK); 1005 CI->setTailCallKind(ChildTCK); 1006 InlinedMustTailCalls |= CI->isMustTailCall(); 1007 1008 // Calls inlined through a 'nounwind' call site should be marked 1009 // 'nounwind'. 1010 if (MarkNoUnwind) 1011 CI->setDoesNotThrow(); 1012 } 1013 } 1014 } 1015 1016 // Leave lifetime markers for the static alloca's, scoping them to the 1017 // function we just inlined. 1018 if (InsertLifetime && !IFI.StaticAllocas.empty()) { 1019 IRBuilder<> builder(FirstNewBlock->begin()); 1020 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 1021 AllocaInst *AI = IFI.StaticAllocas[ai]; 1022 1023 // If the alloca is already scoped to something smaller than the whole 1024 // function then there's no need to add redundant, less accurate markers. 1025 if (hasLifetimeMarkers(AI)) 1026 continue; 1027 1028 // Try to determine the size of the allocation. 1029 ConstantInt *AllocaSize = nullptr; 1030 if (ConstantInt *AIArraySize = 1031 dyn_cast<ConstantInt>(AI->getArraySize())) { 1032 if (IFI.DL) { 1033 Type *AllocaType = AI->getAllocatedType(); 1034 uint64_t AllocaTypeSize = IFI.DL->getTypeAllocSize(AllocaType); 1035 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 1036 assert(AllocaArraySize > 0 && "array size of AllocaInst is zero"); 1037 // Check that array size doesn't saturate uint64_t and doesn't 1038 // overflow when it's multiplied by type size. 1039 if (AllocaArraySize != ~0ULL && 1040 UINT64_MAX / AllocaArraySize >= AllocaTypeSize) { 1041 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 1042 AllocaArraySize * AllocaTypeSize); 1043 } 1044 } 1045 } 1046 1047 builder.CreateLifetimeStart(AI, AllocaSize); 1048 for (ReturnInst *RI : Returns) { 1049 // Don't insert llvm.lifetime.end calls between a musttail call and a 1050 // return. The return kills all local allocas. 1051 if (InlinedMustTailCalls && 1052 RI->getParent()->getTerminatingMustTailCall()) 1053 continue; 1054 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); 1055 } 1056 } 1057 } 1058 1059 // If the inlined code contained dynamic alloca instructions, wrap the inlined 1060 // code with llvm.stacksave/llvm.stackrestore intrinsics. 1061 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 1062 Module *M = Caller->getParent(); 1063 // Get the two intrinsics we care about. 1064 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 1065 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 1066 1067 // Insert the llvm.stacksave. 1068 CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin()) 1069 .CreateCall(StackSave, "savedstack"); 1070 1071 // Insert a call to llvm.stackrestore before any return instructions in the 1072 // inlined function. 1073 for (ReturnInst *RI : Returns) { 1074 // Don't insert llvm.stackrestore calls between a musttail call and a 1075 // return. The return will restore the stack pointer. 1076 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) 1077 continue; 1078 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); 1079 } 1080 } 1081 1082 // If we are inlining for an invoke instruction, we must make sure to rewrite 1083 // any call instructions into invoke instructions. 1084 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) 1085 HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo); 1086 1087 // Handle any inlined musttail call sites. In order for a new call site to be 1088 // musttail, the source of the clone and the inlined call site must have been 1089 // musttail. Therefore it's safe to return without merging control into the 1090 // phi below. 1091 if (InlinedMustTailCalls) { 1092 // Check if we need to bitcast the result of any musttail calls. 1093 Type *NewRetTy = Caller->getReturnType(); 1094 bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy; 1095 1096 // Handle the returns preceded by musttail calls separately. 1097 SmallVector<ReturnInst *, 8> NormalReturns; 1098 for (ReturnInst *RI : Returns) { 1099 CallInst *ReturnedMustTail = 1100 RI->getParent()->getTerminatingMustTailCall(); 1101 if (!ReturnedMustTail) { 1102 NormalReturns.push_back(RI); 1103 continue; 1104 } 1105 if (!NeedBitCast) 1106 continue; 1107 1108 // Delete the old return and any preceding bitcast. 1109 BasicBlock *CurBB = RI->getParent(); 1110 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); 1111 RI->eraseFromParent(); 1112 if (OldCast) 1113 OldCast->eraseFromParent(); 1114 1115 // Insert a new bitcast and return with the right type. 1116 IRBuilder<> Builder(CurBB); 1117 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); 1118 } 1119 1120 // Leave behind the normal returns so we can merge control flow. 1121 std::swap(Returns, NormalReturns); 1122 } 1123 1124 // If we cloned in _exactly one_ basic block, and if that block ends in a 1125 // return instruction, we splice the body of the inlined callee directly into 1126 // the calling basic block. 1127 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 1128 // Move all of the instructions right before the call. 1129 OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(), 1130 FirstNewBlock->begin(), FirstNewBlock->end()); 1131 // Remove the cloned basic block. 1132 Caller->getBasicBlockList().pop_back(); 1133 1134 // If the call site was an invoke instruction, add a branch to the normal 1135 // destination. 1136 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 1137 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); 1138 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 1139 } 1140 1141 // If the return instruction returned a value, replace uses of the call with 1142 // uses of the returned value. 1143 if (!TheCall->use_empty()) { 1144 ReturnInst *R = Returns[0]; 1145 if (TheCall == R->getReturnValue()) 1146 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1147 else 1148 TheCall->replaceAllUsesWith(R->getReturnValue()); 1149 } 1150 // Since we are now done with the Call/Invoke, we can delete it. 1151 TheCall->eraseFromParent(); 1152 1153 // Since we are now done with the return instruction, delete it also. 1154 Returns[0]->eraseFromParent(); 1155 1156 // We are now done with the inlining. 1157 return true; 1158 } 1159 1160 // Otherwise, we have the normal case, of more than one block to inline or 1161 // multiple return sites. 1162 1163 // We want to clone the entire callee function into the hole between the 1164 // "starter" and "ender" blocks. How we accomplish this depends on whether 1165 // this is an invoke instruction or a call instruction. 1166 BasicBlock *AfterCallBB; 1167 BranchInst *CreatedBranchToNormalDest = nullptr; 1168 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 1169 1170 // Add an unconditional branch to make this look like the CallInst case... 1171 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall); 1172 1173 // Split the basic block. This guarantees that no PHI nodes will have to be 1174 // updated due to new incoming edges, and make the invoke case more 1175 // symmetric to the call case. 1176 AfterCallBB = OrigBB->splitBasicBlock(CreatedBranchToNormalDest, 1177 CalledFunc->getName()+".exit"); 1178 1179 } else { // It's a call 1180 // If this is a call instruction, we need to split the basic block that 1181 // the call lives in. 1182 // 1183 AfterCallBB = OrigBB->splitBasicBlock(TheCall, 1184 CalledFunc->getName()+".exit"); 1185 } 1186 1187 // Change the branch that used to go to AfterCallBB to branch to the first 1188 // basic block of the inlined function. 1189 // 1190 TerminatorInst *Br = OrigBB->getTerminator(); 1191 assert(Br && Br->getOpcode() == Instruction::Br && 1192 "splitBasicBlock broken!"); 1193 Br->setOperand(0, FirstNewBlock); 1194 1195 1196 // Now that the function is correct, make it a little bit nicer. In 1197 // particular, move the basic blocks inserted from the end of the function 1198 // into the space made by splitting the source basic block. 1199 Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(), 1200 FirstNewBlock, Caller->end()); 1201 1202 // Handle all of the return instructions that we just cloned in, and eliminate 1203 // any users of the original call/invoke instruction. 1204 Type *RTy = CalledFunc->getReturnType(); 1205 1206 PHINode *PHI = nullptr; 1207 if (Returns.size() > 1) { 1208 // The PHI node should go at the front of the new basic block to merge all 1209 // possible incoming values. 1210 if (!TheCall->use_empty()) { 1211 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), 1212 AfterCallBB->begin()); 1213 // Anything that used the result of the function call should now use the 1214 // PHI node as their operand. 1215 TheCall->replaceAllUsesWith(PHI); 1216 } 1217 1218 // Loop over all of the return instructions adding entries to the PHI node 1219 // as appropriate. 1220 if (PHI) { 1221 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1222 ReturnInst *RI = Returns[i]; 1223 assert(RI->getReturnValue()->getType() == PHI->getType() && 1224 "Ret value not consistent in function!"); 1225 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 1226 } 1227 } 1228 1229 1230 // Add a branch to the merge points and remove return instructions. 1231 DebugLoc Loc; 1232 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1233 ReturnInst *RI = Returns[i]; 1234 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 1235 Loc = RI->getDebugLoc(); 1236 BI->setDebugLoc(Loc); 1237 RI->eraseFromParent(); 1238 } 1239 // We need to set the debug location to *somewhere* inside the 1240 // inlined function. The line number may be nonsensical, but the 1241 // instruction will at least be associated with the right 1242 // function. 1243 if (CreatedBranchToNormalDest) 1244 CreatedBranchToNormalDest->setDebugLoc(Loc); 1245 } else if (!Returns.empty()) { 1246 // Otherwise, if there is exactly one return value, just replace anything 1247 // using the return value of the call with the computed value. 1248 if (!TheCall->use_empty()) { 1249 if (TheCall == Returns[0]->getReturnValue()) 1250 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1251 else 1252 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); 1253 } 1254 1255 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 1256 BasicBlock *ReturnBB = Returns[0]->getParent(); 1257 ReturnBB->replaceAllUsesWith(AfterCallBB); 1258 1259 // Splice the code from the return block into the block that it will return 1260 // to, which contains the code that was after the call. 1261 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 1262 ReturnBB->getInstList()); 1263 1264 if (CreatedBranchToNormalDest) 1265 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 1266 1267 // Delete the return instruction now and empty ReturnBB now. 1268 Returns[0]->eraseFromParent(); 1269 ReturnBB->eraseFromParent(); 1270 } else if (!TheCall->use_empty()) { 1271 // No returns, but something is using the return value of the call. Just 1272 // nuke the result. 1273 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1274 } 1275 1276 // Since we are now done with the Call/Invoke, we can delete it. 1277 TheCall->eraseFromParent(); 1278 1279 // If we inlined any musttail calls and the original return is now 1280 // unreachable, delete it. It can only contain a bitcast and ret. 1281 if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB)) 1282 AfterCallBB->eraseFromParent(); 1283 1284 // We should always be able to fold the entry block of the function into the 1285 // single predecessor of the block... 1286 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 1287 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 1288 1289 // Splice the code entry block into calling block, right before the 1290 // unconditional branch. 1291 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 1292 OrigBB->getInstList().splice(Br, CalleeEntry->getInstList()); 1293 1294 // Remove the unconditional branch. 1295 OrigBB->getInstList().erase(Br); 1296 1297 // Now we can remove the CalleeEntry block, which is now empty. 1298 Caller->getBasicBlockList().erase(CalleeEntry); 1299 1300 // If we inserted a phi node, check to see if it has a single value (e.g. all 1301 // the entries are the same or undef). If so, remove the PHI so it doesn't 1302 // block other optimizations. 1303 if (PHI) { 1304 if (Value *V = SimplifyInstruction(PHI, IFI.DL)) { 1305 PHI->replaceAllUsesWith(V); 1306 PHI->eraseFromParent(); 1307 } 1308 } 1309 1310 return true; 1311 } 1312