1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements inlining of a function into a call site, resolving 11 // parameters and the return value as appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Cloning.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/Analysis/CallGraph.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/DebugInfo.h" 21 #include "llvm/IR/Attributes.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Support/CallSite.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 using namespace llvm; 33 34 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI, 35 bool InsertLifetime) { 36 return InlineFunction(CallSite(CI), IFI, InsertLifetime); 37 } 38 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI, 39 bool InsertLifetime) { 40 return InlineFunction(CallSite(II), IFI, InsertLifetime); 41 } 42 43 namespace { 44 /// A class for recording information about inlining through an invoke. 45 class InvokeInliningInfo { 46 BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind. 47 BasicBlock *InnerResumeDest; ///< Destination for the callee's resume. 48 LandingPadInst *CallerLPad; ///< LandingPadInst associated with the invoke. 49 PHINode *InnerEHValuesPHI; ///< PHI for EH values from landingpad insts. 50 SmallVector<Value*, 8> UnwindDestPHIValues; 51 52 public: 53 InvokeInliningInfo(InvokeInst *II) 54 : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(0), 55 CallerLPad(0), InnerEHValuesPHI(0) { 56 // If there are PHI nodes in the unwind destination block, we need to keep 57 // track of which values came into them from the invoke before removing 58 // the edge from this block. 59 llvm::BasicBlock *InvokeBB = II->getParent(); 60 BasicBlock::iterator I = OuterResumeDest->begin(); 61 for (; isa<PHINode>(I); ++I) { 62 // Save the value to use for this edge. 63 PHINode *PHI = cast<PHINode>(I); 64 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 65 } 66 67 CallerLPad = cast<LandingPadInst>(I); 68 } 69 70 /// getOuterResumeDest - The outer unwind destination is the target of 71 /// unwind edges introduced for calls within the inlined function. 72 BasicBlock *getOuterResumeDest() const { 73 return OuterResumeDest; 74 } 75 76 BasicBlock *getInnerResumeDest(); 77 78 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 79 80 /// forwardResume - Forward the 'resume' instruction to the caller's landing 81 /// pad block. When the landing pad block has only one predecessor, this is 82 /// a simple branch. When there is more than one predecessor, we need to 83 /// split the landing pad block after the landingpad instruction and jump 84 /// to there. 85 void forwardResume(ResumeInst *RI, 86 SmallPtrSet<LandingPadInst*, 16> &InlinedLPads); 87 88 /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind 89 /// destination block for the given basic block, using the values for the 90 /// original invoke's source block. 91 void addIncomingPHIValuesFor(BasicBlock *BB) const { 92 addIncomingPHIValuesForInto(BB, OuterResumeDest); 93 } 94 95 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 96 BasicBlock::iterator I = dest->begin(); 97 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 98 PHINode *phi = cast<PHINode>(I); 99 phi->addIncoming(UnwindDestPHIValues[i], src); 100 } 101 } 102 }; 103 } 104 105 /// getInnerResumeDest - Get or create a target for the branch from ResumeInsts. 106 BasicBlock *InvokeInliningInfo::getInnerResumeDest() { 107 if (InnerResumeDest) return InnerResumeDest; 108 109 // Split the landing pad. 110 BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint; 111 InnerResumeDest = 112 OuterResumeDest->splitBasicBlock(SplitPoint, 113 OuterResumeDest->getName() + ".body"); 114 115 // The number of incoming edges we expect to the inner landing pad. 116 const unsigned PHICapacity = 2; 117 118 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 119 BasicBlock::iterator InsertPoint = InnerResumeDest->begin(); 120 BasicBlock::iterator I = OuterResumeDest->begin(); 121 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 122 PHINode *OuterPHI = cast<PHINode>(I); 123 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 124 OuterPHI->getName() + ".lpad-body", 125 InsertPoint); 126 OuterPHI->replaceAllUsesWith(InnerPHI); 127 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 128 } 129 130 // Create a PHI for the exception values. 131 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 132 "eh.lpad-body", InsertPoint); 133 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 134 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 135 136 // All done. 137 return InnerResumeDest; 138 } 139 140 /// forwardResume - Forward the 'resume' instruction to the caller's landing pad 141 /// block. When the landing pad block has only one predecessor, this is a simple 142 /// branch. When there is more than one predecessor, we need to split the 143 /// landing pad block after the landingpad instruction and jump to there. 144 void InvokeInliningInfo::forwardResume(ResumeInst *RI, 145 SmallPtrSet<LandingPadInst*, 16> &InlinedLPads) { 146 BasicBlock *Dest = getInnerResumeDest(); 147 BasicBlock *Src = RI->getParent(); 148 149 BranchInst::Create(Dest, Src); 150 151 // Update the PHIs in the destination. They were inserted in an order which 152 // makes this work. 153 addIncomingPHIValuesForInto(Src, Dest); 154 155 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 156 RI->eraseFromParent(); 157 } 158 159 /// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into 160 /// an invoke, we have to turn all of the calls that can throw into 161 /// invokes. This function analyze BB to see if there are any calls, and if so, 162 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 163 /// nodes in that block with the values specified in InvokeDestPHIValues. 164 static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, 165 InvokeInliningInfo &Invoke) { 166 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 167 Instruction *I = BBI++; 168 169 // We only need to check for function calls: inlined invoke 170 // instructions require no special handling. 171 CallInst *CI = dyn_cast<CallInst>(I); 172 173 // If this call cannot unwind, don't convert it to an invoke. 174 // Inline asm calls cannot throw. 175 if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue())) 176 continue; 177 178 // Convert this function call into an invoke instruction. First, split the 179 // basic block. 180 BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); 181 182 // Delete the unconditional branch inserted by splitBasicBlock 183 BB->getInstList().pop_back(); 184 185 // Create the new invoke instruction. 186 ImmutableCallSite CS(CI); 187 SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end()); 188 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, 189 Invoke.getOuterResumeDest(), 190 InvokeArgs, CI->getName(), BB); 191 II->setCallingConv(CI->getCallingConv()); 192 II->setAttributes(CI->getAttributes()); 193 194 // Make sure that anything using the call now uses the invoke! This also 195 // updates the CallGraph if present, because it uses a WeakVH. 196 CI->replaceAllUsesWith(II); 197 198 // Delete the original call 199 Split->getInstList().pop_front(); 200 201 // Update any PHI nodes in the exceptional block to indicate that there is 202 // now a new entry in them. 203 Invoke.addIncomingPHIValuesFor(BB); 204 return; 205 } 206 } 207 208 /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls 209 /// in the body of the inlined function into invokes. 210 /// 211 /// II is the invoke instruction being inlined. FirstNewBlock is the first 212 /// block of the inlined code (the last block is the end of the function), 213 /// and InlineCodeInfo is information about the code that got inlined. 214 static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock, 215 ClonedCodeInfo &InlinedCodeInfo) { 216 BasicBlock *InvokeDest = II->getUnwindDest(); 217 218 Function *Caller = FirstNewBlock->getParent(); 219 220 // The inlined code is currently at the end of the function, scan from the 221 // start of the inlined code to its end, checking for stuff we need to 222 // rewrite. 223 InvokeInliningInfo Invoke(II); 224 225 // Get all of the inlined landing pad instructions. 226 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 227 for (Function::iterator I = FirstNewBlock, E = Caller->end(); I != E; ++I) 228 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 229 InlinedLPads.insert(II->getLandingPadInst()); 230 231 // Append the clauses from the outer landing pad instruction into the inlined 232 // landing pad instructions. 233 LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 234 for (SmallPtrSet<LandingPadInst*, 16>::iterator I = InlinedLPads.begin(), 235 E = InlinedLPads.end(); I != E; ++I) { 236 LandingPadInst *InlinedLPad = *I; 237 unsigned OuterNum = OuterLPad->getNumClauses(); 238 InlinedLPad->reserveClauses(OuterNum); 239 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 240 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 241 if (OuterLPad->isCleanup()) 242 InlinedLPad->setCleanup(true); 243 } 244 245 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){ 246 if (InlinedCodeInfo.ContainsCalls) 247 HandleCallsInBlockInlinedThroughInvoke(BB, Invoke); 248 249 // Forward any resumes that are remaining here. 250 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 251 Invoke.forwardResume(RI, InlinedLPads); 252 } 253 254 // Now that everything is happy, we have one final detail. The PHI nodes in 255 // the exception destination block still have entries due to the original 256 // invoke instruction. Eliminate these entries (which might even delete the 257 // PHI node) now. 258 InvokeDest->removePredecessor(II->getParent()); 259 } 260 261 /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee 262 /// into the caller, update the specified callgraph to reflect the changes we 263 /// made. Note that it's possible that not all code was copied over, so only 264 /// some edges of the callgraph may remain. 265 static void UpdateCallGraphAfterInlining(CallSite CS, 266 Function::iterator FirstNewBlock, 267 ValueToValueMapTy &VMap, 268 InlineFunctionInfo &IFI) { 269 CallGraph &CG = *IFI.CG; 270 const Function *Caller = CS.getInstruction()->getParent()->getParent(); 271 const Function *Callee = CS.getCalledFunction(); 272 CallGraphNode *CalleeNode = CG[Callee]; 273 CallGraphNode *CallerNode = CG[Caller]; 274 275 // Since we inlined some uninlined call sites in the callee into the caller, 276 // add edges from the caller to all of the callees of the callee. 277 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 278 279 // Consider the case where CalleeNode == CallerNode. 280 CallGraphNode::CalledFunctionsVector CallCache; 281 if (CalleeNode == CallerNode) { 282 CallCache.assign(I, E); 283 I = CallCache.begin(); 284 E = CallCache.end(); 285 } 286 287 for (; I != E; ++I) { 288 const Value *OrigCall = I->first; 289 290 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 291 // Only copy the edge if the call was inlined! 292 if (VMI == VMap.end() || VMI->second == 0) 293 continue; 294 295 // If the call was inlined, but then constant folded, there is no edge to 296 // add. Check for this case. 297 Instruction *NewCall = dyn_cast<Instruction>(VMI->second); 298 if (NewCall == 0) continue; 299 300 // Remember that this call site got inlined for the client of 301 // InlineFunction. 302 IFI.InlinedCalls.push_back(NewCall); 303 304 // It's possible that inlining the callsite will cause it to go from an 305 // indirect to a direct call by resolving a function pointer. If this 306 // happens, set the callee of the new call site to a more precise 307 // destination. This can also happen if the call graph node of the caller 308 // was just unnecessarily imprecise. 309 if (I->second->getFunction() == 0) 310 if (Function *F = CallSite(NewCall).getCalledFunction()) { 311 // Indirect call site resolved to direct call. 312 CallerNode->addCalledFunction(CallSite(NewCall), CG[F]); 313 314 continue; 315 } 316 317 CallerNode->addCalledFunction(CallSite(NewCall), I->second); 318 } 319 320 // Update the call graph by deleting the edge from Callee to Caller. We must 321 // do this after the loop above in case Caller and Callee are the same. 322 CallerNode->removeCallEdgeFor(CS); 323 } 324 325 /// HandleByValArgument - When inlining a call site that has a byval argument, 326 /// we have to make the implicit memcpy explicit by adding it. 327 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 328 const Function *CalledFunc, 329 InlineFunctionInfo &IFI, 330 unsigned ByValAlignment) { 331 Type *AggTy = cast<PointerType>(Arg->getType())->getElementType(); 332 333 // If the called function is readonly, then it could not mutate the caller's 334 // copy of the byval'd memory. In this case, it is safe to elide the copy and 335 // temporary. 336 if (CalledFunc->onlyReadsMemory()) { 337 // If the byval argument has a specified alignment that is greater than the 338 // passed in pointer, then we either have to round up the input pointer or 339 // give up on this transformation. 340 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 341 return Arg; 342 343 // If the pointer is already known to be sufficiently aligned, or if we can 344 // round it up to a larger alignment, then we don't need a temporary. 345 if (getOrEnforceKnownAlignment(Arg, ByValAlignment, 346 IFI.TD) >= ByValAlignment) 347 return Arg; 348 349 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 350 // for code quality, but rarely happens and is required for correctness. 351 } 352 353 LLVMContext &Context = Arg->getContext(); 354 355 Type *VoidPtrTy = Type::getInt8PtrTy(Context); 356 357 // Create the alloca. If we have DataLayout, use nice alignment. 358 unsigned Align = 1; 359 if (IFI.TD) 360 Align = IFI.TD->getPrefTypeAlignment(AggTy); 361 362 // If the byval had an alignment specified, we *must* use at least that 363 // alignment, as it is required by the byval argument (and uses of the 364 // pointer inside the callee). 365 Align = std::max(Align, ByValAlignment); 366 367 Function *Caller = TheCall->getParent()->getParent(); 368 369 Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(), 370 &*Caller->begin()->begin()); 371 // Emit a memcpy. 372 Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)}; 373 Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(), 374 Intrinsic::memcpy, 375 Tys); 376 Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall); 377 Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall); 378 379 Value *Size; 380 if (IFI.TD == 0) 381 Size = ConstantExpr::getSizeOf(AggTy); 382 else 383 Size = ConstantInt::get(Type::getInt64Ty(Context), 384 IFI.TD->getTypeStoreSize(AggTy)); 385 386 // Always generate a memcpy of alignment 1 here because we don't know 387 // the alignment of the src pointer. Other optimizations can infer 388 // better alignment. 389 Value *CallArgs[] = { 390 DestCast, SrcCast, Size, 391 ConstantInt::get(Type::getInt32Ty(Context), 1), 392 ConstantInt::getFalse(Context) // isVolatile 393 }; 394 IRBuilder<>(TheCall).CreateCall(MemCpyFn, CallArgs); 395 396 // Uses of the argument in the function should use our new alloca 397 // instead. 398 return NewAlloca; 399 } 400 401 // isUsedByLifetimeMarker - Check whether this Value is used by a lifetime 402 // intrinsic. 403 static bool isUsedByLifetimeMarker(Value *V) { 404 for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE; 405 ++UI) { 406 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI)) { 407 switch (II->getIntrinsicID()) { 408 default: break; 409 case Intrinsic::lifetime_start: 410 case Intrinsic::lifetime_end: 411 return true; 412 } 413 } 414 } 415 return false; 416 } 417 418 // hasLifetimeMarkers - Check whether the given alloca already has 419 // lifetime.start or lifetime.end intrinsics. 420 static bool hasLifetimeMarkers(AllocaInst *AI) { 421 Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext()); 422 if (AI->getType() == Int8PtrTy) 423 return isUsedByLifetimeMarker(AI); 424 425 // Do a scan to find all the casts to i8*. 426 for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E; 427 ++I) { 428 if (I->getType() != Int8PtrTy) continue; 429 if (I->stripPointerCasts() != AI) continue; 430 if (isUsedByLifetimeMarker(*I)) 431 return true; 432 } 433 return false; 434 } 435 436 /// updateInlinedAtInfo - Helper function used by fixupLineNumbers to 437 /// recursively update InlinedAtEntry of a DebugLoc. 438 static DebugLoc updateInlinedAtInfo(const DebugLoc &DL, 439 const DebugLoc &InlinedAtDL, 440 LLVMContext &Ctx) { 441 if (MDNode *IA = DL.getInlinedAt(Ctx)) { 442 DebugLoc NewInlinedAtDL 443 = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx); 444 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), 445 NewInlinedAtDL.getAsMDNode(Ctx)); 446 } 447 448 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), 449 InlinedAtDL.getAsMDNode(Ctx)); 450 } 451 452 /// fixupLineNumbers - Update inlined instructions' line numbers to 453 /// to encode location where these instructions are inlined. 454 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 455 Instruction *TheCall) { 456 DebugLoc TheCallDL = TheCall->getDebugLoc(); 457 if (TheCallDL.isUnknown()) 458 return; 459 460 for (; FI != Fn->end(); ++FI) { 461 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 462 BI != BE; ++BI) { 463 DebugLoc DL = BI->getDebugLoc(); 464 if (!DL.isUnknown()) { 465 BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext())); 466 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) { 467 LLVMContext &Ctx = BI->getContext(); 468 MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx); 469 DVI->setOperand(2, createInlinedVariable(DVI->getVariable(), 470 InlinedAt, Ctx)); 471 } 472 } 473 } 474 } 475 } 476 477 /// InlineFunction - This function inlines the called function into the basic 478 /// block of the caller. This returns false if it is not possible to inline 479 /// this call. The program is still in a well defined state if this occurs 480 /// though. 481 /// 482 /// Note that this only does one level of inlining. For example, if the 483 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 484 /// exists in the instruction stream. Similarly this will inline a recursive 485 /// function by one level. 486 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI, 487 bool InsertLifetime) { 488 Instruction *TheCall = CS.getInstruction(); 489 assert(TheCall->getParent() && TheCall->getParent()->getParent() && 490 "Instruction not in function!"); 491 492 // If IFI has any state in it, zap it before we fill it in. 493 IFI.reset(); 494 495 const Function *CalledFunc = CS.getCalledFunction(); 496 if (CalledFunc == 0 || // Can't inline external function or indirect 497 CalledFunc->isDeclaration() || // call, or call to a vararg function! 498 CalledFunc->getFunctionType()->isVarArg()) return false; 499 500 // If the call to the callee is not a tail call, we must clear the 'tail' 501 // flags on any calls that we inline. 502 bool MustClearTailCallFlags = 503 !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall()); 504 505 // If the call to the callee cannot throw, set the 'nounwind' flag on any 506 // calls that we inline. 507 bool MarkNoUnwind = CS.doesNotThrow(); 508 509 BasicBlock *OrigBB = TheCall->getParent(); 510 Function *Caller = OrigBB->getParent(); 511 512 // GC poses two hazards to inlining, which only occur when the callee has GC: 513 // 1. If the caller has no GC, then the callee's GC must be propagated to the 514 // caller. 515 // 2. If the caller has a differing GC, it is invalid to inline. 516 if (CalledFunc->hasGC()) { 517 if (!Caller->hasGC()) 518 Caller->setGC(CalledFunc->getGC()); 519 else if (CalledFunc->getGC() != Caller->getGC()) 520 return false; 521 } 522 523 // Get the personality function from the callee if it contains a landing pad. 524 Value *CalleePersonality = 0; 525 for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end(); 526 I != E; ++I) 527 if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) { 528 const BasicBlock *BB = II->getUnwindDest(); 529 const LandingPadInst *LP = BB->getLandingPadInst(); 530 CalleePersonality = LP->getPersonalityFn(); 531 break; 532 } 533 534 // Find the personality function used by the landing pads of the caller. If it 535 // exists, then check to see that it matches the personality function used in 536 // the callee. 537 if (CalleePersonality) { 538 for (Function::const_iterator I = Caller->begin(), E = Caller->end(); 539 I != E; ++I) 540 if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) { 541 const BasicBlock *BB = II->getUnwindDest(); 542 const LandingPadInst *LP = BB->getLandingPadInst(); 543 544 // If the personality functions match, then we can perform the 545 // inlining. Otherwise, we can't inline. 546 // TODO: This isn't 100% true. Some personality functions are proper 547 // supersets of others and can be used in place of the other. 548 if (LP->getPersonalityFn() != CalleePersonality) 549 return false; 550 551 break; 552 } 553 } 554 555 // Get an iterator to the last basic block in the function, which will have 556 // the new function inlined after it. 557 Function::iterator LastBlock = &Caller->back(); 558 559 // Make sure to capture all of the return instructions from the cloned 560 // function. 561 SmallVector<ReturnInst*, 8> Returns; 562 ClonedCodeInfo InlinedFunctionInfo; 563 Function::iterator FirstNewBlock; 564 565 { // Scope to destroy VMap after cloning. 566 ValueToValueMapTy VMap; 567 568 assert(CalledFunc->arg_size() == CS.arg_size() && 569 "No varargs calls can be inlined!"); 570 571 // Calculate the vector of arguments to pass into the function cloner, which 572 // matches up the formal to the actual argument values. 573 CallSite::arg_iterator AI = CS.arg_begin(); 574 unsigned ArgNo = 0; 575 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 576 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 577 Value *ActualArg = *AI; 578 579 // When byval arguments actually inlined, we need to make the copy implied 580 // by them explicit. However, we don't do this if the callee is readonly 581 // or readnone, because the copy would be unneeded: the callee doesn't 582 // modify the struct. 583 if (CS.isByValArgument(ArgNo)) { 584 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, 585 CalledFunc->getParamAlignment(ArgNo+1)); 586 587 // Calls that we inline may use the new alloca, so we need to clear 588 // their 'tail' flags if HandleByValArgument introduced a new alloca and 589 // the callee has calls. 590 MustClearTailCallFlags |= ActualArg != *AI; 591 } 592 593 VMap[I] = ActualArg; 594 } 595 596 // We want the inliner to prune the code as it copies. We would LOVE to 597 // have no dead or constant instructions leftover after inlining occurs 598 // (which can happen, e.g., because an argument was constant), but we'll be 599 // happy with whatever the cloner can do. 600 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 601 /*ModuleLevelChanges=*/false, Returns, ".i", 602 &InlinedFunctionInfo, IFI.TD, TheCall); 603 604 // Remember the first block that is newly cloned over. 605 FirstNewBlock = LastBlock; ++FirstNewBlock; 606 607 // Update the callgraph if requested. 608 if (IFI.CG) 609 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); 610 611 // Update inlined instructions' line number information. 612 fixupLineNumbers(Caller, FirstNewBlock, TheCall); 613 } 614 615 // If there are any alloca instructions in the block that used to be the entry 616 // block for the callee, move them to the entry block of the caller. First 617 // calculate which instruction they should be inserted before. We insert the 618 // instructions at the end of the current alloca list. 619 { 620 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 621 for (BasicBlock::iterator I = FirstNewBlock->begin(), 622 E = FirstNewBlock->end(); I != E; ) { 623 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 624 if (AI == 0) continue; 625 626 // If the alloca is now dead, remove it. This often occurs due to code 627 // specialization. 628 if (AI->use_empty()) { 629 AI->eraseFromParent(); 630 continue; 631 } 632 633 if (!isa<Constant>(AI->getArraySize())) 634 continue; 635 636 // Keep track of the static allocas that we inline into the caller. 637 IFI.StaticAllocas.push_back(AI); 638 639 // Scan for the block of allocas that we can move over, and move them 640 // all at once. 641 while (isa<AllocaInst>(I) && 642 isa<Constant>(cast<AllocaInst>(I)->getArraySize())) { 643 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 644 ++I; 645 } 646 647 // Transfer all of the allocas over in a block. Using splice means 648 // that the instructions aren't removed from the symbol table, then 649 // reinserted. 650 Caller->getEntryBlock().getInstList().splice(InsertPoint, 651 FirstNewBlock->getInstList(), 652 AI, I); 653 } 654 } 655 656 // Leave lifetime markers for the static alloca's, scoping them to the 657 // function we just inlined. 658 if (InsertLifetime && !IFI.StaticAllocas.empty()) { 659 IRBuilder<> builder(FirstNewBlock->begin()); 660 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 661 AllocaInst *AI = IFI.StaticAllocas[ai]; 662 663 // If the alloca is already scoped to something smaller than the whole 664 // function then there's no need to add redundant, less accurate markers. 665 if (hasLifetimeMarkers(AI)) 666 continue; 667 668 // Try to determine the size of the allocation. 669 ConstantInt *AllocaSize = 0; 670 if (ConstantInt *AIArraySize = 671 dyn_cast<ConstantInt>(AI->getArraySize())) { 672 if (IFI.TD) { 673 Type *AllocaType = AI->getAllocatedType(); 674 uint64_t AllocaTypeSize = IFI.TD->getTypeAllocSize(AllocaType); 675 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 676 assert(AllocaArraySize > 0 && "array size of AllocaInst is zero"); 677 // Check that array size doesn't saturate uint64_t and doesn't 678 // overflow when it's multiplied by type size. 679 if (AllocaArraySize != ~0ULL && 680 UINT64_MAX / AllocaArraySize >= AllocaTypeSize) { 681 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 682 AllocaArraySize * AllocaTypeSize); 683 } 684 } 685 } 686 687 builder.CreateLifetimeStart(AI, AllocaSize); 688 for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) { 689 IRBuilder<> builder(Returns[ri]); 690 builder.CreateLifetimeEnd(AI, AllocaSize); 691 } 692 } 693 } 694 695 // If the inlined code contained dynamic alloca instructions, wrap the inlined 696 // code with llvm.stacksave/llvm.stackrestore intrinsics. 697 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 698 Module *M = Caller->getParent(); 699 // Get the two intrinsics we care about. 700 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 701 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 702 703 // Insert the llvm.stacksave. 704 CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin()) 705 .CreateCall(StackSave, "savedstack"); 706 707 // Insert a call to llvm.stackrestore before any return instructions in the 708 // inlined function. 709 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 710 IRBuilder<>(Returns[i]).CreateCall(StackRestore, SavedPtr); 711 } 712 } 713 714 // If we are inlining tail call instruction through a call site that isn't 715 // marked 'tail', we must remove the tail marker for any calls in the inlined 716 // code. Also, calls inlined through a 'nounwind' call site should be marked 717 // 'nounwind'. 718 if (InlinedFunctionInfo.ContainsCalls && 719 (MustClearTailCallFlags || MarkNoUnwind)) { 720 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); 721 BB != E; ++BB) 722 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 723 if (CallInst *CI = dyn_cast<CallInst>(I)) { 724 if (MustClearTailCallFlags) 725 CI->setTailCall(false); 726 if (MarkNoUnwind) 727 CI->setDoesNotThrow(); 728 } 729 } 730 731 // If we are inlining for an invoke instruction, we must make sure to rewrite 732 // any call instructions into invoke instructions. 733 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) 734 HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo); 735 736 // If we cloned in _exactly one_ basic block, and if that block ends in a 737 // return instruction, we splice the body of the inlined callee directly into 738 // the calling basic block. 739 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 740 // Move all of the instructions right before the call. 741 OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(), 742 FirstNewBlock->begin(), FirstNewBlock->end()); 743 // Remove the cloned basic block. 744 Caller->getBasicBlockList().pop_back(); 745 746 // If the call site was an invoke instruction, add a branch to the normal 747 // destination. 748 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 749 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); 750 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 751 } 752 753 // If the return instruction returned a value, replace uses of the call with 754 // uses of the returned value. 755 if (!TheCall->use_empty()) { 756 ReturnInst *R = Returns[0]; 757 if (TheCall == R->getReturnValue()) 758 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 759 else 760 TheCall->replaceAllUsesWith(R->getReturnValue()); 761 } 762 // Since we are now done with the Call/Invoke, we can delete it. 763 TheCall->eraseFromParent(); 764 765 // Since we are now done with the return instruction, delete it also. 766 Returns[0]->eraseFromParent(); 767 768 // We are now done with the inlining. 769 return true; 770 } 771 772 // Otherwise, we have the normal case, of more than one block to inline or 773 // multiple return sites. 774 775 // We want to clone the entire callee function into the hole between the 776 // "starter" and "ender" blocks. How we accomplish this depends on whether 777 // this is an invoke instruction or a call instruction. 778 BasicBlock *AfterCallBB; 779 BranchInst *CreatedBranchToNormalDest = NULL; 780 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 781 782 // Add an unconditional branch to make this look like the CallInst case... 783 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall); 784 785 // Split the basic block. This guarantees that no PHI nodes will have to be 786 // updated due to new incoming edges, and make the invoke case more 787 // symmetric to the call case. 788 AfterCallBB = OrigBB->splitBasicBlock(CreatedBranchToNormalDest, 789 CalledFunc->getName()+".exit"); 790 791 } else { // It's a call 792 // If this is a call instruction, we need to split the basic block that 793 // the call lives in. 794 // 795 AfterCallBB = OrigBB->splitBasicBlock(TheCall, 796 CalledFunc->getName()+".exit"); 797 } 798 799 // Change the branch that used to go to AfterCallBB to branch to the first 800 // basic block of the inlined function. 801 // 802 TerminatorInst *Br = OrigBB->getTerminator(); 803 assert(Br && Br->getOpcode() == Instruction::Br && 804 "splitBasicBlock broken!"); 805 Br->setOperand(0, FirstNewBlock); 806 807 808 // Now that the function is correct, make it a little bit nicer. In 809 // particular, move the basic blocks inserted from the end of the function 810 // into the space made by splitting the source basic block. 811 Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(), 812 FirstNewBlock, Caller->end()); 813 814 // Handle all of the return instructions that we just cloned in, and eliminate 815 // any users of the original call/invoke instruction. 816 Type *RTy = CalledFunc->getReturnType(); 817 818 PHINode *PHI = 0; 819 if (Returns.size() > 1) { 820 // The PHI node should go at the front of the new basic block to merge all 821 // possible incoming values. 822 if (!TheCall->use_empty()) { 823 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), 824 AfterCallBB->begin()); 825 // Anything that used the result of the function call should now use the 826 // PHI node as their operand. 827 TheCall->replaceAllUsesWith(PHI); 828 } 829 830 // Loop over all of the return instructions adding entries to the PHI node 831 // as appropriate. 832 if (PHI) { 833 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 834 ReturnInst *RI = Returns[i]; 835 assert(RI->getReturnValue()->getType() == PHI->getType() && 836 "Ret value not consistent in function!"); 837 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 838 } 839 } 840 841 842 // Add a branch to the merge points and remove return instructions. 843 DebugLoc Loc; 844 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 845 ReturnInst *RI = Returns[i]; 846 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 847 Loc = RI->getDebugLoc(); 848 BI->setDebugLoc(Loc); 849 RI->eraseFromParent(); 850 } 851 // We need to set the debug location to *somewhere* inside the 852 // inlined function. The line number may be nonsensical, but the 853 // instruction will at least be associated with the right 854 // function. 855 if (CreatedBranchToNormalDest) 856 CreatedBranchToNormalDest->setDebugLoc(Loc); 857 } else if (!Returns.empty()) { 858 // Otherwise, if there is exactly one return value, just replace anything 859 // using the return value of the call with the computed value. 860 if (!TheCall->use_empty()) { 861 if (TheCall == Returns[0]->getReturnValue()) 862 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 863 else 864 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); 865 } 866 867 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 868 BasicBlock *ReturnBB = Returns[0]->getParent(); 869 ReturnBB->replaceAllUsesWith(AfterCallBB); 870 871 // Splice the code from the return block into the block that it will return 872 // to, which contains the code that was after the call. 873 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 874 ReturnBB->getInstList()); 875 876 if (CreatedBranchToNormalDest) 877 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 878 879 // Delete the return instruction now and empty ReturnBB now. 880 Returns[0]->eraseFromParent(); 881 ReturnBB->eraseFromParent(); 882 } else if (!TheCall->use_empty()) { 883 // No returns, but something is using the return value of the call. Just 884 // nuke the result. 885 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 886 } 887 888 // Since we are now done with the Call/Invoke, we can delete it. 889 TheCall->eraseFromParent(); 890 891 // We should always be able to fold the entry block of the function into the 892 // single predecessor of the block... 893 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 894 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 895 896 // Splice the code entry block into calling block, right before the 897 // unconditional branch. 898 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 899 OrigBB->getInstList().splice(Br, CalleeEntry->getInstList()); 900 901 // Remove the unconditional branch. 902 OrigBB->getInstList().erase(Br); 903 904 // Now we can remove the CalleeEntry block, which is now empty. 905 Caller->getBasicBlockList().erase(CalleeEntry); 906 907 // If we inserted a phi node, check to see if it has a single value (e.g. all 908 // the entries are the same or undef). If so, remove the PHI so it doesn't 909 // block other optimizations. 910 if (PHI) { 911 if (Value *V = SimplifyInstruction(PHI, IFI.TD)) { 912 PHI->replaceAllUsesWith(V); 913 PHI->eraseFromParent(); 914 } 915 } 916 917 return true; 918 } 919