1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements inlining of a function into a call site, resolving 11 // parameters and the return value as appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Cloning.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/CallGraph.h" 22 #include "llvm/Analysis/CaptureTracking.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/CallSite.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DebugInfo.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/Transforms/Utils/Local.h" 40 #include "llvm/Support/CommandLine.h" 41 #include <algorithm> 42 using namespace llvm; 43 44 static cl::opt<bool> 45 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(false), 46 cl::Hidden, 47 cl::desc("Convert noalias attributes to metadata during inlining.")); 48 49 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI, 50 bool InsertLifetime) { 51 return InlineFunction(CallSite(CI), IFI, InsertLifetime); 52 } 53 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI, 54 bool InsertLifetime) { 55 return InlineFunction(CallSite(II), IFI, InsertLifetime); 56 } 57 58 namespace { 59 /// A class for recording information about inlining through an invoke. 60 class InvokeInliningInfo { 61 BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind. 62 BasicBlock *InnerResumeDest; ///< Destination for the callee's resume. 63 LandingPadInst *CallerLPad; ///< LandingPadInst associated with the invoke. 64 PHINode *InnerEHValuesPHI; ///< PHI for EH values from landingpad insts. 65 SmallVector<Value*, 8> UnwindDestPHIValues; 66 67 public: 68 InvokeInliningInfo(InvokeInst *II) 69 : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr), 70 CallerLPad(nullptr), InnerEHValuesPHI(nullptr) { 71 // If there are PHI nodes in the unwind destination block, we need to keep 72 // track of which values came into them from the invoke before removing 73 // the edge from this block. 74 llvm::BasicBlock *InvokeBB = II->getParent(); 75 BasicBlock::iterator I = OuterResumeDest->begin(); 76 for (; isa<PHINode>(I); ++I) { 77 // Save the value to use for this edge. 78 PHINode *PHI = cast<PHINode>(I); 79 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 80 } 81 82 CallerLPad = cast<LandingPadInst>(I); 83 } 84 85 /// getOuterResumeDest - The outer unwind destination is the target of 86 /// unwind edges introduced for calls within the inlined function. 87 BasicBlock *getOuterResumeDest() const { 88 return OuterResumeDest; 89 } 90 91 BasicBlock *getInnerResumeDest(); 92 93 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 94 95 /// forwardResume - Forward the 'resume' instruction to the caller's landing 96 /// pad block. When the landing pad block has only one predecessor, this is 97 /// a simple branch. When there is more than one predecessor, we need to 98 /// split the landing pad block after the landingpad instruction and jump 99 /// to there. 100 void forwardResume(ResumeInst *RI, 101 SmallPtrSet<LandingPadInst*, 16> &InlinedLPads); 102 103 /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind 104 /// destination block for the given basic block, using the values for the 105 /// original invoke's source block. 106 void addIncomingPHIValuesFor(BasicBlock *BB) const { 107 addIncomingPHIValuesForInto(BB, OuterResumeDest); 108 } 109 110 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 111 BasicBlock::iterator I = dest->begin(); 112 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 113 PHINode *phi = cast<PHINode>(I); 114 phi->addIncoming(UnwindDestPHIValues[i], src); 115 } 116 } 117 }; 118 } 119 120 /// getInnerResumeDest - Get or create a target for the branch from ResumeInsts. 121 BasicBlock *InvokeInliningInfo::getInnerResumeDest() { 122 if (InnerResumeDest) return InnerResumeDest; 123 124 // Split the landing pad. 125 BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint; 126 InnerResumeDest = 127 OuterResumeDest->splitBasicBlock(SplitPoint, 128 OuterResumeDest->getName() + ".body"); 129 130 // The number of incoming edges we expect to the inner landing pad. 131 const unsigned PHICapacity = 2; 132 133 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 134 BasicBlock::iterator InsertPoint = InnerResumeDest->begin(); 135 BasicBlock::iterator I = OuterResumeDest->begin(); 136 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 137 PHINode *OuterPHI = cast<PHINode>(I); 138 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 139 OuterPHI->getName() + ".lpad-body", 140 InsertPoint); 141 OuterPHI->replaceAllUsesWith(InnerPHI); 142 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 143 } 144 145 // Create a PHI for the exception values. 146 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 147 "eh.lpad-body", InsertPoint); 148 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 149 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 150 151 // All done. 152 return InnerResumeDest; 153 } 154 155 /// forwardResume - Forward the 'resume' instruction to the caller's landing pad 156 /// block. When the landing pad block has only one predecessor, this is a simple 157 /// branch. When there is more than one predecessor, we need to split the 158 /// landing pad block after the landingpad instruction and jump to there. 159 void InvokeInliningInfo::forwardResume(ResumeInst *RI, 160 SmallPtrSet<LandingPadInst*, 16> &InlinedLPads) { 161 BasicBlock *Dest = getInnerResumeDest(); 162 BasicBlock *Src = RI->getParent(); 163 164 BranchInst::Create(Dest, Src); 165 166 // Update the PHIs in the destination. They were inserted in an order which 167 // makes this work. 168 addIncomingPHIValuesForInto(Src, Dest); 169 170 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 171 RI->eraseFromParent(); 172 } 173 174 /// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into 175 /// an invoke, we have to turn all of the calls that can throw into 176 /// invokes. This function analyze BB to see if there are any calls, and if so, 177 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 178 /// nodes in that block with the values specified in InvokeDestPHIValues. 179 static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, 180 InvokeInliningInfo &Invoke) { 181 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 182 Instruction *I = BBI++; 183 184 // We only need to check for function calls: inlined invoke 185 // instructions require no special handling. 186 CallInst *CI = dyn_cast<CallInst>(I); 187 188 // If this call cannot unwind, don't convert it to an invoke. 189 // Inline asm calls cannot throw. 190 if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue())) 191 continue; 192 193 // Convert this function call into an invoke instruction. First, split the 194 // basic block. 195 BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); 196 197 // Delete the unconditional branch inserted by splitBasicBlock 198 BB->getInstList().pop_back(); 199 200 // Create the new invoke instruction. 201 ImmutableCallSite CS(CI); 202 SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end()); 203 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, 204 Invoke.getOuterResumeDest(), 205 InvokeArgs, CI->getName(), BB); 206 II->setDebugLoc(CI->getDebugLoc()); 207 II->setCallingConv(CI->getCallingConv()); 208 II->setAttributes(CI->getAttributes()); 209 210 // Make sure that anything using the call now uses the invoke! This also 211 // updates the CallGraph if present, because it uses a WeakVH. 212 CI->replaceAllUsesWith(II); 213 214 // Delete the original call 215 Split->getInstList().pop_front(); 216 217 // Update any PHI nodes in the exceptional block to indicate that there is 218 // now a new entry in them. 219 Invoke.addIncomingPHIValuesFor(BB); 220 return; 221 } 222 } 223 224 /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls 225 /// in the body of the inlined function into invokes. 226 /// 227 /// II is the invoke instruction being inlined. FirstNewBlock is the first 228 /// block of the inlined code (the last block is the end of the function), 229 /// and InlineCodeInfo is information about the code that got inlined. 230 static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock, 231 ClonedCodeInfo &InlinedCodeInfo) { 232 BasicBlock *InvokeDest = II->getUnwindDest(); 233 234 Function *Caller = FirstNewBlock->getParent(); 235 236 // The inlined code is currently at the end of the function, scan from the 237 // start of the inlined code to its end, checking for stuff we need to 238 // rewrite. 239 InvokeInliningInfo Invoke(II); 240 241 // Get all of the inlined landing pad instructions. 242 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 243 for (Function::iterator I = FirstNewBlock, E = Caller->end(); I != E; ++I) 244 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 245 InlinedLPads.insert(II->getLandingPadInst()); 246 247 // Append the clauses from the outer landing pad instruction into the inlined 248 // landing pad instructions. 249 LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 250 for (SmallPtrSet<LandingPadInst*, 16>::iterator I = InlinedLPads.begin(), 251 E = InlinedLPads.end(); I != E; ++I) { 252 LandingPadInst *InlinedLPad = *I; 253 unsigned OuterNum = OuterLPad->getNumClauses(); 254 InlinedLPad->reserveClauses(OuterNum); 255 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 256 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 257 if (OuterLPad->isCleanup()) 258 InlinedLPad->setCleanup(true); 259 } 260 261 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){ 262 if (InlinedCodeInfo.ContainsCalls) 263 HandleCallsInBlockInlinedThroughInvoke(BB, Invoke); 264 265 // Forward any resumes that are remaining here. 266 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 267 Invoke.forwardResume(RI, InlinedLPads); 268 } 269 270 // Now that everything is happy, we have one final detail. The PHI nodes in 271 // the exception destination block still have entries due to the original 272 // invoke instruction. Eliminate these entries (which might even delete the 273 // PHI node) now. 274 InvokeDest->removePredecessor(II->getParent()); 275 } 276 277 /// CloneAliasScopeMetadata - When inlining a function that contains noalias 278 /// scope metadata, this metadata needs to be cloned so that the inlined blocks 279 /// have different "unqiue scopes" at every call site. Were this not done, then 280 /// aliasing scopes from a function inlined into a caller multiple times could 281 /// not be differentiated (and this would lead to miscompiles because the 282 /// non-aliasing property communicated by the metadata could have 283 /// call-site-specific control dependencies). 284 static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) { 285 const Function *CalledFunc = CS.getCalledFunction(); 286 SetVector<const MDNode *> MD; 287 288 // Note: We could only clone the metadata if it is already used in the 289 // caller. I'm omitting that check here because it might confuse 290 // inter-procedural alias analysis passes. We can revisit this if it becomes 291 // an efficiency or overhead problem. 292 293 for (Function::const_iterator I = CalledFunc->begin(), IE = CalledFunc->end(); 294 I != IE; ++I) 295 for (BasicBlock::const_iterator J = I->begin(), JE = I->end(); J != JE; ++J) { 296 if (const MDNode *M = J->getMetadata(LLVMContext::MD_alias_scope)) 297 MD.insert(M); 298 if (const MDNode *M = J->getMetadata(LLVMContext::MD_noalias)) 299 MD.insert(M); 300 } 301 302 if (MD.empty()) 303 return; 304 305 // Walk the existing metadata, adding the complete (perhaps cyclic) chain to 306 // the set. 307 SmallVector<const Value *, 16> Queue(MD.begin(), MD.end()); 308 while (!Queue.empty()) { 309 const MDNode *M = cast<MDNode>(Queue.pop_back_val()); 310 for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i) 311 if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i))) 312 if (MD.insert(M1)) 313 Queue.push_back(M1); 314 } 315 316 // Now we have a complete set of all metadata in the chains used to specify 317 // the noalias scopes and the lists of those scopes. 318 SmallVector<MDNode *, 16> DummyNodes; 319 DenseMap<const MDNode *, TrackingVH<MDNode> > MDMap; 320 for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); 321 I != IE; ++I) { 322 MDNode *Dummy = MDNode::getTemporary(CalledFunc->getContext(), 323 ArrayRef<Value*>()); 324 DummyNodes.push_back(Dummy); 325 MDMap[*I] = Dummy; 326 } 327 328 // Create new metadata nodes to replace the dummy nodes, replacing old 329 // metadata references with either a dummy node or an already-created new 330 // node. 331 for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); 332 I != IE; ++I) { 333 SmallVector<Value *, 4> NewOps; 334 for (unsigned i = 0, ie = (*I)->getNumOperands(); i != ie; ++i) { 335 const Value *V = (*I)->getOperand(i); 336 if (const MDNode *M = dyn_cast<MDNode>(V)) 337 NewOps.push_back(MDMap[M]); 338 else 339 NewOps.push_back(const_cast<Value *>(V)); 340 } 341 342 MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps), 343 *TempM = MDMap[*I]; 344 345 TempM->replaceAllUsesWith(NewM); 346 } 347 348 // Now replace the metadata in the new inlined instructions with the 349 // repacements from the map. 350 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 351 VMI != VMIE; ++VMI) { 352 if (!VMI->second) 353 continue; 354 355 Instruction *NI = dyn_cast<Instruction>(VMI->second); 356 if (!NI) 357 continue; 358 359 if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) 360 NI->setMetadata(LLVMContext::MD_alias_scope, MDMap[M]); 361 362 if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) 363 NI->setMetadata(LLVMContext::MD_noalias, MDMap[M]); 364 } 365 366 // Now that everything has been replaced, delete the dummy nodes. 367 for (unsigned i = 0, ie = DummyNodes.size(); i != ie; ++i) 368 MDNode::deleteTemporary(DummyNodes[i]); 369 } 370 371 /// AddAliasScopeMetadata - If the inlined function has noalias arguments, then 372 /// add new alias scopes for each noalias argument, tag the mapped noalias 373 /// parameters with noalias metadata specifying the new scope, and tag all 374 /// non-derived loads, stores and memory intrinsics with the new alias scopes. 375 static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap, 376 const DataLayout *DL) { 377 if (!EnableNoAliasConversion) 378 return; 379 380 const Function *CalledFunc = CS.getCalledFunction(); 381 SmallVector<const Argument *, 4> NoAliasArgs; 382 383 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 384 E = CalledFunc->arg_end(); I != E; ++I) { 385 if (I->hasNoAliasAttr() && !I->hasNUses(0)) 386 NoAliasArgs.push_back(I); 387 } 388 389 if (NoAliasArgs.empty()) 390 return; 391 392 // To do a good job, if a noalias variable is captured, we need to know if 393 // the capture point dominates the particular use we're considering. 394 DominatorTree DT; 395 DT.recalculate(const_cast<Function&>(*CalledFunc)); 396 397 // noalias indicates that pointer values based on the argument do not alias 398 // pointer values which are not based on it. So we add a new "scope" for each 399 // noalias function argument. Accesses using pointers based on that argument 400 // become part of that alias scope, accesses using pointers not based on that 401 // argument are tagged as noalias with that scope. 402 403 DenseMap<const Argument *, MDNode *> NewScopes; 404 MDBuilder MDB(CalledFunc->getContext()); 405 406 // Create a new scope domain for this function. 407 MDNode *NewDomain = 408 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); 409 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { 410 const Argument *A = NoAliasArgs[i]; 411 412 std::string Name = CalledFunc->getName(); 413 if (A->hasName()) { 414 Name += ": %"; 415 Name += A->getName(); 416 } else { 417 Name += ": argument "; 418 Name += utostr(i); 419 } 420 421 // Note: We always create a new anonymous root here. This is true regardless 422 // of the linkage of the callee because the aliasing "scope" is not just a 423 // property of the callee, but also all control dependencies in the caller. 424 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); 425 NewScopes.insert(std::make_pair(A, NewScope)); 426 } 427 428 // Iterate over all new instructions in the map; for all memory-access 429 // instructions, add the alias scope metadata. 430 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 431 VMI != VMIE; ++VMI) { 432 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { 433 if (!VMI->second) 434 continue; 435 436 Instruction *NI = dyn_cast<Instruction>(VMI->second); 437 if (!NI) 438 continue; 439 440 SmallVector<const Value *, 2> PtrArgs; 441 442 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 443 PtrArgs.push_back(LI->getPointerOperand()); 444 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 445 PtrArgs.push_back(SI->getPointerOperand()); 446 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) 447 PtrArgs.push_back(VAAI->getPointerOperand()); 448 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 449 PtrArgs.push_back(CXI->getPointerOperand()); 450 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 451 PtrArgs.push_back(RMWI->getPointerOperand()); 452 else if (const MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { 453 PtrArgs.push_back(MI->getRawDest()); 454 if (const MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 455 PtrArgs.push_back(MTI->getRawSource()); 456 } 457 458 // If we found no pointers, then this instruction is not suitable for 459 // pairing with an instruction to receive aliasing metadata. 460 // Simplification during cloning could make this happen, and skip these 461 // cases for now. 462 if (PtrArgs.empty()) 463 continue; 464 465 // It is possible that there is only one underlying object, but you 466 // need to go through several PHIs to see it, and thus could be 467 // repeated in the Objects list. 468 SmallPtrSet<const Value *, 4> ObjSet; 469 SmallVector<Value *, 4> Scopes, NoAliases; 470 471 SmallSetVector<const Argument *, 4> NAPtrArgs; 472 for (unsigned i = 0, ie = PtrArgs.size(); i != ie; ++i) { 473 SmallVector<Value *, 4> Objects; 474 GetUnderlyingObjects(const_cast<Value*>(PtrArgs[i]), 475 Objects, DL, /* MaxLookup = */ 0); 476 477 for (Value *O : Objects) 478 ObjSet.insert(O); 479 } 480 481 // Figure out if we're derived from anyhing that is not a noalias 482 // argument. 483 bool CanDeriveViaCapture = false; 484 for (const Value *V : ObjSet) 485 if (!isIdentifiedFunctionLocal(const_cast<Value*>(V))) { 486 CanDeriveViaCapture = true; 487 break; 488 } 489 490 // First, we want to figure out all of the sets with which we definitely 491 // don't alias. Iterate over all noalias set, and add those for which: 492 // 1. The noalias argument is not in the set of objects from which we 493 // definitely derive. 494 // 2. The noalias argument has not yet been captured. 495 for (const Argument *A : NoAliasArgs) { 496 if (!ObjSet.count(A) && (!CanDeriveViaCapture || 497 A->hasNoCaptureAttr() || 498 !PointerMayBeCapturedBefore(A, 499 /* ReturnCaptures */ false, 500 /* StoreCaptures */ false, I, &DT))) 501 NoAliases.push_back(NewScopes[A]); 502 } 503 504 if (!NoAliases.empty()) 505 NI->setMetadata(LLVMContext::MD_noalias, MDNode::concatenate( 506 NI->getMetadata(LLVMContext::MD_noalias), 507 MDNode::get(CalledFunc->getContext(), NoAliases))); 508 // Next, we want to figure out all of the sets to which we might belong. 509 // We might below to a set if: 510 // 1. The noalias argument is in the set of underlying objects 511 // or 512 // 2. There is some non-noalias argument in our list and the no-alias 513 // argument has been captured. 514 515 for (const Argument *A : NoAliasArgs) { 516 if (ObjSet.count(A) || (CanDeriveViaCapture && 517 PointerMayBeCapturedBefore(A, 518 /* ReturnCaptures */ false, 519 /* StoreCaptures */ false, 520 I, &DT))) 521 Scopes.push_back(NewScopes[A]); 522 } 523 524 if (!Scopes.empty()) 525 NI->setMetadata(LLVMContext::MD_alias_scope, MDNode::concatenate( 526 NI->getMetadata(LLVMContext::MD_alias_scope), 527 MDNode::get(CalledFunc->getContext(), Scopes))); 528 } 529 } 530 } 531 532 /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee 533 /// into the caller, update the specified callgraph to reflect the changes we 534 /// made. Note that it's possible that not all code was copied over, so only 535 /// some edges of the callgraph may remain. 536 static void UpdateCallGraphAfterInlining(CallSite CS, 537 Function::iterator FirstNewBlock, 538 ValueToValueMapTy &VMap, 539 InlineFunctionInfo &IFI) { 540 CallGraph &CG = *IFI.CG; 541 const Function *Caller = CS.getInstruction()->getParent()->getParent(); 542 const Function *Callee = CS.getCalledFunction(); 543 CallGraphNode *CalleeNode = CG[Callee]; 544 CallGraphNode *CallerNode = CG[Caller]; 545 546 // Since we inlined some uninlined call sites in the callee into the caller, 547 // add edges from the caller to all of the callees of the callee. 548 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 549 550 // Consider the case where CalleeNode == CallerNode. 551 CallGraphNode::CalledFunctionsVector CallCache; 552 if (CalleeNode == CallerNode) { 553 CallCache.assign(I, E); 554 I = CallCache.begin(); 555 E = CallCache.end(); 556 } 557 558 for (; I != E; ++I) { 559 const Value *OrigCall = I->first; 560 561 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 562 // Only copy the edge if the call was inlined! 563 if (VMI == VMap.end() || VMI->second == nullptr) 564 continue; 565 566 // If the call was inlined, but then constant folded, there is no edge to 567 // add. Check for this case. 568 Instruction *NewCall = dyn_cast<Instruction>(VMI->second); 569 if (!NewCall) continue; 570 571 // Remember that this call site got inlined for the client of 572 // InlineFunction. 573 IFI.InlinedCalls.push_back(NewCall); 574 575 // It's possible that inlining the callsite will cause it to go from an 576 // indirect to a direct call by resolving a function pointer. If this 577 // happens, set the callee of the new call site to a more precise 578 // destination. This can also happen if the call graph node of the caller 579 // was just unnecessarily imprecise. 580 if (!I->second->getFunction()) 581 if (Function *F = CallSite(NewCall).getCalledFunction()) { 582 // Indirect call site resolved to direct call. 583 CallerNode->addCalledFunction(CallSite(NewCall), CG[F]); 584 585 continue; 586 } 587 588 CallerNode->addCalledFunction(CallSite(NewCall), I->second); 589 } 590 591 // Update the call graph by deleting the edge from Callee to Caller. We must 592 // do this after the loop above in case Caller and Callee are the same. 593 CallerNode->removeCallEdgeFor(CS); 594 } 595 596 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M, 597 BasicBlock *InsertBlock, 598 InlineFunctionInfo &IFI) { 599 LLVMContext &Context = Src->getContext(); 600 Type *VoidPtrTy = Type::getInt8PtrTy(Context); 601 Type *AggTy = cast<PointerType>(Src->getType())->getElementType(); 602 Type *Tys[3] = { VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context) }; 603 Function *MemCpyFn = Intrinsic::getDeclaration(M, Intrinsic::memcpy, Tys); 604 IRBuilder<> builder(InsertBlock->begin()); 605 Value *DstCast = builder.CreateBitCast(Dst, VoidPtrTy, "tmp"); 606 Value *SrcCast = builder.CreateBitCast(Src, VoidPtrTy, "tmp"); 607 608 Value *Size; 609 if (IFI.DL == nullptr) 610 Size = ConstantExpr::getSizeOf(AggTy); 611 else 612 Size = ConstantInt::get(Type::getInt64Ty(Context), 613 IFI.DL->getTypeStoreSize(AggTy)); 614 615 // Always generate a memcpy of alignment 1 here because we don't know 616 // the alignment of the src pointer. Other optimizations can infer 617 // better alignment. 618 Value *CallArgs[] = { 619 DstCast, SrcCast, Size, 620 ConstantInt::get(Type::getInt32Ty(Context), 1), 621 ConstantInt::getFalse(Context) // isVolatile 622 }; 623 builder.CreateCall(MemCpyFn, CallArgs); 624 } 625 626 /// HandleByValArgument - When inlining a call site that has a byval argument, 627 /// we have to make the implicit memcpy explicit by adding it. 628 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 629 const Function *CalledFunc, 630 InlineFunctionInfo &IFI, 631 unsigned ByValAlignment) { 632 PointerType *ArgTy = cast<PointerType>(Arg->getType()); 633 Type *AggTy = ArgTy->getElementType(); 634 635 // If the called function is readonly, then it could not mutate the caller's 636 // copy of the byval'd memory. In this case, it is safe to elide the copy and 637 // temporary. 638 if (CalledFunc->onlyReadsMemory()) { 639 // If the byval argument has a specified alignment that is greater than the 640 // passed in pointer, then we either have to round up the input pointer or 641 // give up on this transformation. 642 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 643 return Arg; 644 645 // If the pointer is already known to be sufficiently aligned, or if we can 646 // round it up to a larger alignment, then we don't need a temporary. 647 if (getOrEnforceKnownAlignment(Arg, ByValAlignment, 648 IFI.DL) >= ByValAlignment) 649 return Arg; 650 651 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 652 // for code quality, but rarely happens and is required for correctness. 653 } 654 655 // Create the alloca. If we have DataLayout, use nice alignment. 656 unsigned Align = 1; 657 if (IFI.DL) 658 Align = IFI.DL->getPrefTypeAlignment(AggTy); 659 660 // If the byval had an alignment specified, we *must* use at least that 661 // alignment, as it is required by the byval argument (and uses of the 662 // pointer inside the callee). 663 Align = std::max(Align, ByValAlignment); 664 665 Function *Caller = TheCall->getParent()->getParent(); 666 667 Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(), 668 &*Caller->begin()->begin()); 669 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); 670 671 // Uses of the argument in the function should use our new alloca 672 // instead. 673 return NewAlloca; 674 } 675 676 // isUsedByLifetimeMarker - Check whether this Value is used by a lifetime 677 // intrinsic. 678 static bool isUsedByLifetimeMarker(Value *V) { 679 for (User *U : V->users()) { 680 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 681 switch (II->getIntrinsicID()) { 682 default: break; 683 case Intrinsic::lifetime_start: 684 case Intrinsic::lifetime_end: 685 return true; 686 } 687 } 688 } 689 return false; 690 } 691 692 // hasLifetimeMarkers - Check whether the given alloca already has 693 // lifetime.start or lifetime.end intrinsics. 694 static bool hasLifetimeMarkers(AllocaInst *AI) { 695 Type *Ty = AI->getType(); 696 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), 697 Ty->getPointerAddressSpace()); 698 if (Ty == Int8PtrTy) 699 return isUsedByLifetimeMarker(AI); 700 701 // Do a scan to find all the casts to i8*. 702 for (User *U : AI->users()) { 703 if (U->getType() != Int8PtrTy) continue; 704 if (U->stripPointerCasts() != AI) continue; 705 if (isUsedByLifetimeMarker(U)) 706 return true; 707 } 708 return false; 709 } 710 711 /// updateInlinedAtInfo - Helper function used by fixupLineNumbers to 712 /// recursively update InlinedAtEntry of a DebugLoc. 713 static DebugLoc updateInlinedAtInfo(const DebugLoc &DL, 714 const DebugLoc &InlinedAtDL, 715 LLVMContext &Ctx) { 716 if (MDNode *IA = DL.getInlinedAt(Ctx)) { 717 DebugLoc NewInlinedAtDL 718 = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx); 719 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), 720 NewInlinedAtDL.getAsMDNode(Ctx)); 721 } 722 723 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), 724 InlinedAtDL.getAsMDNode(Ctx)); 725 } 726 727 /// fixupLineNumbers - Update inlined instructions' line numbers to 728 /// to encode location where these instructions are inlined. 729 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 730 Instruction *TheCall) { 731 DebugLoc TheCallDL = TheCall->getDebugLoc(); 732 if (TheCallDL.isUnknown()) 733 return; 734 735 for (; FI != Fn->end(); ++FI) { 736 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 737 BI != BE; ++BI) { 738 DebugLoc DL = BI->getDebugLoc(); 739 if (DL.isUnknown()) { 740 // If the inlined instruction has no line number, make it look as if it 741 // originates from the call location. This is important for 742 // ((__always_inline__, __nodebug__)) functions which must use caller 743 // location for all instructions in their function body. 744 BI->setDebugLoc(TheCallDL); 745 } else { 746 BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext())); 747 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) { 748 LLVMContext &Ctx = BI->getContext(); 749 MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx); 750 DVI->setOperand(2, createInlinedVariable(DVI->getVariable(), 751 InlinedAt, Ctx)); 752 } 753 } 754 } 755 } 756 } 757 758 /// InlineFunction - This function inlines the called function into the basic 759 /// block of the caller. This returns false if it is not possible to inline 760 /// this call. The program is still in a well defined state if this occurs 761 /// though. 762 /// 763 /// Note that this only does one level of inlining. For example, if the 764 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 765 /// exists in the instruction stream. Similarly this will inline a recursive 766 /// function by one level. 767 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI, 768 bool InsertLifetime) { 769 Instruction *TheCall = CS.getInstruction(); 770 assert(TheCall->getParent() && TheCall->getParent()->getParent() && 771 "Instruction not in function!"); 772 773 // If IFI has any state in it, zap it before we fill it in. 774 IFI.reset(); 775 776 const Function *CalledFunc = CS.getCalledFunction(); 777 if (!CalledFunc || // Can't inline external function or indirect 778 CalledFunc->isDeclaration() || // call, or call to a vararg function! 779 CalledFunc->getFunctionType()->isVarArg()) return false; 780 781 // If the call to the callee cannot throw, set the 'nounwind' flag on any 782 // calls that we inline. 783 bool MarkNoUnwind = CS.doesNotThrow(); 784 785 BasicBlock *OrigBB = TheCall->getParent(); 786 Function *Caller = OrigBB->getParent(); 787 788 // GC poses two hazards to inlining, which only occur when the callee has GC: 789 // 1. If the caller has no GC, then the callee's GC must be propagated to the 790 // caller. 791 // 2. If the caller has a differing GC, it is invalid to inline. 792 if (CalledFunc->hasGC()) { 793 if (!Caller->hasGC()) 794 Caller->setGC(CalledFunc->getGC()); 795 else if (CalledFunc->getGC() != Caller->getGC()) 796 return false; 797 } 798 799 // Get the personality function from the callee if it contains a landing pad. 800 Value *CalleePersonality = nullptr; 801 for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end(); 802 I != E; ++I) 803 if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) { 804 const BasicBlock *BB = II->getUnwindDest(); 805 const LandingPadInst *LP = BB->getLandingPadInst(); 806 CalleePersonality = LP->getPersonalityFn(); 807 break; 808 } 809 810 // Find the personality function used by the landing pads of the caller. If it 811 // exists, then check to see that it matches the personality function used in 812 // the callee. 813 if (CalleePersonality) { 814 for (Function::const_iterator I = Caller->begin(), E = Caller->end(); 815 I != E; ++I) 816 if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) { 817 const BasicBlock *BB = II->getUnwindDest(); 818 const LandingPadInst *LP = BB->getLandingPadInst(); 819 820 // If the personality functions match, then we can perform the 821 // inlining. Otherwise, we can't inline. 822 // TODO: This isn't 100% true. Some personality functions are proper 823 // supersets of others and can be used in place of the other. 824 if (LP->getPersonalityFn() != CalleePersonality) 825 return false; 826 827 break; 828 } 829 } 830 831 // Get an iterator to the last basic block in the function, which will have 832 // the new function inlined after it. 833 Function::iterator LastBlock = &Caller->back(); 834 835 // Make sure to capture all of the return instructions from the cloned 836 // function. 837 SmallVector<ReturnInst*, 8> Returns; 838 ClonedCodeInfo InlinedFunctionInfo; 839 Function::iterator FirstNewBlock; 840 841 { // Scope to destroy VMap after cloning. 842 ValueToValueMapTy VMap; 843 // Keep a list of pair (dst, src) to emit byval initializations. 844 SmallVector<std::pair<Value*, Value*>, 4> ByValInit; 845 846 assert(CalledFunc->arg_size() == CS.arg_size() && 847 "No varargs calls can be inlined!"); 848 849 // Calculate the vector of arguments to pass into the function cloner, which 850 // matches up the formal to the actual argument values. 851 CallSite::arg_iterator AI = CS.arg_begin(); 852 unsigned ArgNo = 0; 853 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 854 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 855 Value *ActualArg = *AI; 856 857 // When byval arguments actually inlined, we need to make the copy implied 858 // by them explicit. However, we don't do this if the callee is readonly 859 // or readnone, because the copy would be unneeded: the callee doesn't 860 // modify the struct. 861 if (CS.isByValArgument(ArgNo)) { 862 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, 863 CalledFunc->getParamAlignment(ArgNo+1)); 864 if (ActualArg != *AI) 865 ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI)); 866 } 867 868 VMap[I] = ActualArg; 869 } 870 871 // We want the inliner to prune the code as it copies. We would LOVE to 872 // have no dead or constant instructions leftover after inlining occurs 873 // (which can happen, e.g., because an argument was constant), but we'll be 874 // happy with whatever the cloner can do. 875 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 876 /*ModuleLevelChanges=*/false, Returns, ".i", 877 &InlinedFunctionInfo, IFI.DL, TheCall); 878 879 // Remember the first block that is newly cloned over. 880 FirstNewBlock = LastBlock; ++FirstNewBlock; 881 882 // Inject byval arguments initialization. 883 for (std::pair<Value*, Value*> &Init : ByValInit) 884 HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(), 885 FirstNewBlock, IFI); 886 887 // Update the callgraph if requested. 888 if (IFI.CG) 889 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); 890 891 // Update inlined instructions' line number information. 892 fixupLineNumbers(Caller, FirstNewBlock, TheCall); 893 894 // Clone existing noalias metadata if necessary. 895 CloneAliasScopeMetadata(CS, VMap); 896 897 // Add noalias metadata if necessary. 898 AddAliasScopeMetadata(CS, VMap, IFI.DL); 899 } 900 901 // If there are any alloca instructions in the block that used to be the entry 902 // block for the callee, move them to the entry block of the caller. First 903 // calculate which instruction they should be inserted before. We insert the 904 // instructions at the end of the current alloca list. 905 { 906 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 907 for (BasicBlock::iterator I = FirstNewBlock->begin(), 908 E = FirstNewBlock->end(); I != E; ) { 909 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 910 if (!AI) continue; 911 912 // If the alloca is now dead, remove it. This often occurs due to code 913 // specialization. 914 if (AI->use_empty()) { 915 AI->eraseFromParent(); 916 continue; 917 } 918 919 if (!isa<Constant>(AI->getArraySize())) 920 continue; 921 922 // Keep track of the static allocas that we inline into the caller. 923 IFI.StaticAllocas.push_back(AI); 924 925 // Scan for the block of allocas that we can move over, and move them 926 // all at once. 927 while (isa<AllocaInst>(I) && 928 isa<Constant>(cast<AllocaInst>(I)->getArraySize())) { 929 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 930 ++I; 931 } 932 933 // Transfer all of the allocas over in a block. Using splice means 934 // that the instructions aren't removed from the symbol table, then 935 // reinserted. 936 Caller->getEntryBlock().getInstList().splice(InsertPoint, 937 FirstNewBlock->getInstList(), 938 AI, I); 939 } 940 } 941 942 bool InlinedMustTailCalls = false; 943 if (InlinedFunctionInfo.ContainsCalls) { 944 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; 945 if (CallInst *CI = dyn_cast<CallInst>(TheCall)) 946 CallSiteTailKind = CI->getTailCallKind(); 947 948 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 949 ++BB) { 950 for (Instruction &I : *BB) { 951 CallInst *CI = dyn_cast<CallInst>(&I); 952 if (!CI) 953 continue; 954 955 // We need to reduce the strength of any inlined tail calls. For 956 // musttail, we have to avoid introducing potential unbounded stack 957 // growth. For example, if functions 'f' and 'g' are mutually recursive 958 // with musttail, we can inline 'g' into 'f' so long as we preserve 959 // musttail on the cloned call to 'f'. If either the inlined call site 960 // or the cloned call site is *not* musttail, the program already has 961 // one frame of stack growth, so it's safe to remove musttail. Here is 962 // a table of example transformations: 963 // 964 // f -> musttail g -> musttail f ==> f -> musttail f 965 // f -> musttail g -> tail f ==> f -> tail f 966 // f -> g -> musttail f ==> f -> f 967 // f -> g -> tail f ==> f -> f 968 CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); 969 ChildTCK = std::min(CallSiteTailKind, ChildTCK); 970 CI->setTailCallKind(ChildTCK); 971 InlinedMustTailCalls |= CI->isMustTailCall(); 972 973 // Calls inlined through a 'nounwind' call site should be marked 974 // 'nounwind'. 975 if (MarkNoUnwind) 976 CI->setDoesNotThrow(); 977 } 978 } 979 } 980 981 // Leave lifetime markers for the static alloca's, scoping them to the 982 // function we just inlined. 983 if (InsertLifetime && !IFI.StaticAllocas.empty()) { 984 IRBuilder<> builder(FirstNewBlock->begin()); 985 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 986 AllocaInst *AI = IFI.StaticAllocas[ai]; 987 988 // If the alloca is already scoped to something smaller than the whole 989 // function then there's no need to add redundant, less accurate markers. 990 if (hasLifetimeMarkers(AI)) 991 continue; 992 993 // Try to determine the size of the allocation. 994 ConstantInt *AllocaSize = nullptr; 995 if (ConstantInt *AIArraySize = 996 dyn_cast<ConstantInt>(AI->getArraySize())) { 997 if (IFI.DL) { 998 Type *AllocaType = AI->getAllocatedType(); 999 uint64_t AllocaTypeSize = IFI.DL->getTypeAllocSize(AllocaType); 1000 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 1001 assert(AllocaArraySize > 0 && "array size of AllocaInst is zero"); 1002 // Check that array size doesn't saturate uint64_t and doesn't 1003 // overflow when it's multiplied by type size. 1004 if (AllocaArraySize != ~0ULL && 1005 UINT64_MAX / AllocaArraySize >= AllocaTypeSize) { 1006 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 1007 AllocaArraySize * AllocaTypeSize); 1008 } 1009 } 1010 } 1011 1012 builder.CreateLifetimeStart(AI, AllocaSize); 1013 for (ReturnInst *RI : Returns) { 1014 // Don't insert llvm.lifetime.end calls between a musttail call and a 1015 // return. The return kills all local allocas. 1016 if (InlinedMustTailCalls && 1017 RI->getParent()->getTerminatingMustTailCall()) 1018 continue; 1019 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); 1020 } 1021 } 1022 } 1023 1024 // If the inlined code contained dynamic alloca instructions, wrap the inlined 1025 // code with llvm.stacksave/llvm.stackrestore intrinsics. 1026 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 1027 Module *M = Caller->getParent(); 1028 // Get the two intrinsics we care about. 1029 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 1030 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 1031 1032 // Insert the llvm.stacksave. 1033 CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin()) 1034 .CreateCall(StackSave, "savedstack"); 1035 1036 // Insert a call to llvm.stackrestore before any return instructions in the 1037 // inlined function. 1038 for (ReturnInst *RI : Returns) { 1039 // Don't insert llvm.stackrestore calls between a musttail call and a 1040 // return. The return will restore the stack pointer. 1041 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) 1042 continue; 1043 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); 1044 } 1045 } 1046 1047 // If we are inlining for an invoke instruction, we must make sure to rewrite 1048 // any call instructions into invoke instructions. 1049 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) 1050 HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo); 1051 1052 // Handle any inlined musttail call sites. In order for a new call site to be 1053 // musttail, the source of the clone and the inlined call site must have been 1054 // musttail. Therefore it's safe to return without merging control into the 1055 // phi below. 1056 if (InlinedMustTailCalls) { 1057 // Check if we need to bitcast the result of any musttail calls. 1058 Type *NewRetTy = Caller->getReturnType(); 1059 bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy; 1060 1061 // Handle the returns preceded by musttail calls separately. 1062 SmallVector<ReturnInst *, 8> NormalReturns; 1063 for (ReturnInst *RI : Returns) { 1064 CallInst *ReturnedMustTail = 1065 RI->getParent()->getTerminatingMustTailCall(); 1066 if (!ReturnedMustTail) { 1067 NormalReturns.push_back(RI); 1068 continue; 1069 } 1070 if (!NeedBitCast) 1071 continue; 1072 1073 // Delete the old return and any preceding bitcast. 1074 BasicBlock *CurBB = RI->getParent(); 1075 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); 1076 RI->eraseFromParent(); 1077 if (OldCast) 1078 OldCast->eraseFromParent(); 1079 1080 // Insert a new bitcast and return with the right type. 1081 IRBuilder<> Builder(CurBB); 1082 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); 1083 } 1084 1085 // Leave behind the normal returns so we can merge control flow. 1086 std::swap(Returns, NormalReturns); 1087 } 1088 1089 // If we cloned in _exactly one_ basic block, and if that block ends in a 1090 // return instruction, we splice the body of the inlined callee directly into 1091 // the calling basic block. 1092 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 1093 // Move all of the instructions right before the call. 1094 OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(), 1095 FirstNewBlock->begin(), FirstNewBlock->end()); 1096 // Remove the cloned basic block. 1097 Caller->getBasicBlockList().pop_back(); 1098 1099 // If the call site was an invoke instruction, add a branch to the normal 1100 // destination. 1101 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 1102 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); 1103 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 1104 } 1105 1106 // If the return instruction returned a value, replace uses of the call with 1107 // uses of the returned value. 1108 if (!TheCall->use_empty()) { 1109 ReturnInst *R = Returns[0]; 1110 if (TheCall == R->getReturnValue()) 1111 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1112 else 1113 TheCall->replaceAllUsesWith(R->getReturnValue()); 1114 } 1115 // Since we are now done with the Call/Invoke, we can delete it. 1116 TheCall->eraseFromParent(); 1117 1118 // Since we are now done with the return instruction, delete it also. 1119 Returns[0]->eraseFromParent(); 1120 1121 // We are now done with the inlining. 1122 return true; 1123 } 1124 1125 // Otherwise, we have the normal case, of more than one block to inline or 1126 // multiple return sites. 1127 1128 // We want to clone the entire callee function into the hole between the 1129 // "starter" and "ender" blocks. How we accomplish this depends on whether 1130 // this is an invoke instruction or a call instruction. 1131 BasicBlock *AfterCallBB; 1132 BranchInst *CreatedBranchToNormalDest = nullptr; 1133 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 1134 1135 // Add an unconditional branch to make this look like the CallInst case... 1136 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall); 1137 1138 // Split the basic block. This guarantees that no PHI nodes will have to be 1139 // updated due to new incoming edges, and make the invoke case more 1140 // symmetric to the call case. 1141 AfterCallBB = OrigBB->splitBasicBlock(CreatedBranchToNormalDest, 1142 CalledFunc->getName()+".exit"); 1143 1144 } else { // It's a call 1145 // If this is a call instruction, we need to split the basic block that 1146 // the call lives in. 1147 // 1148 AfterCallBB = OrigBB->splitBasicBlock(TheCall, 1149 CalledFunc->getName()+".exit"); 1150 } 1151 1152 // Change the branch that used to go to AfterCallBB to branch to the first 1153 // basic block of the inlined function. 1154 // 1155 TerminatorInst *Br = OrigBB->getTerminator(); 1156 assert(Br && Br->getOpcode() == Instruction::Br && 1157 "splitBasicBlock broken!"); 1158 Br->setOperand(0, FirstNewBlock); 1159 1160 1161 // Now that the function is correct, make it a little bit nicer. In 1162 // particular, move the basic blocks inserted from the end of the function 1163 // into the space made by splitting the source basic block. 1164 Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(), 1165 FirstNewBlock, Caller->end()); 1166 1167 // Handle all of the return instructions that we just cloned in, and eliminate 1168 // any users of the original call/invoke instruction. 1169 Type *RTy = CalledFunc->getReturnType(); 1170 1171 PHINode *PHI = nullptr; 1172 if (Returns.size() > 1) { 1173 // The PHI node should go at the front of the new basic block to merge all 1174 // possible incoming values. 1175 if (!TheCall->use_empty()) { 1176 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), 1177 AfterCallBB->begin()); 1178 // Anything that used the result of the function call should now use the 1179 // PHI node as their operand. 1180 TheCall->replaceAllUsesWith(PHI); 1181 } 1182 1183 // Loop over all of the return instructions adding entries to the PHI node 1184 // as appropriate. 1185 if (PHI) { 1186 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1187 ReturnInst *RI = Returns[i]; 1188 assert(RI->getReturnValue()->getType() == PHI->getType() && 1189 "Ret value not consistent in function!"); 1190 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 1191 } 1192 } 1193 1194 1195 // Add a branch to the merge points and remove return instructions. 1196 DebugLoc Loc; 1197 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1198 ReturnInst *RI = Returns[i]; 1199 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 1200 Loc = RI->getDebugLoc(); 1201 BI->setDebugLoc(Loc); 1202 RI->eraseFromParent(); 1203 } 1204 // We need to set the debug location to *somewhere* inside the 1205 // inlined function. The line number may be nonsensical, but the 1206 // instruction will at least be associated with the right 1207 // function. 1208 if (CreatedBranchToNormalDest) 1209 CreatedBranchToNormalDest->setDebugLoc(Loc); 1210 } else if (!Returns.empty()) { 1211 // Otherwise, if there is exactly one return value, just replace anything 1212 // using the return value of the call with the computed value. 1213 if (!TheCall->use_empty()) { 1214 if (TheCall == Returns[0]->getReturnValue()) 1215 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1216 else 1217 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); 1218 } 1219 1220 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 1221 BasicBlock *ReturnBB = Returns[0]->getParent(); 1222 ReturnBB->replaceAllUsesWith(AfterCallBB); 1223 1224 // Splice the code from the return block into the block that it will return 1225 // to, which contains the code that was after the call. 1226 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 1227 ReturnBB->getInstList()); 1228 1229 if (CreatedBranchToNormalDest) 1230 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 1231 1232 // Delete the return instruction now and empty ReturnBB now. 1233 Returns[0]->eraseFromParent(); 1234 ReturnBB->eraseFromParent(); 1235 } else if (!TheCall->use_empty()) { 1236 // No returns, but something is using the return value of the call. Just 1237 // nuke the result. 1238 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1239 } 1240 1241 // Since we are now done with the Call/Invoke, we can delete it. 1242 TheCall->eraseFromParent(); 1243 1244 // If we inlined any musttail calls and the original return is now 1245 // unreachable, delete it. It can only contain a bitcast and ret. 1246 if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB)) 1247 AfterCallBB->eraseFromParent(); 1248 1249 // We should always be able to fold the entry block of the function into the 1250 // single predecessor of the block... 1251 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 1252 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 1253 1254 // Splice the code entry block into calling block, right before the 1255 // unconditional branch. 1256 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 1257 OrigBB->getInstList().splice(Br, CalleeEntry->getInstList()); 1258 1259 // Remove the unconditional branch. 1260 OrigBB->getInstList().erase(Br); 1261 1262 // Now we can remove the CalleeEntry block, which is now empty. 1263 Caller->getBasicBlockList().erase(CalleeEntry); 1264 1265 // If we inserted a phi node, check to see if it has a single value (e.g. all 1266 // the entries are the same or undef). If so, remove the PHI so it doesn't 1267 // block other optimizations. 1268 if (PHI) { 1269 if (Value *V = SimplifyInstruction(PHI, IFI.DL)) { 1270 PHI->replaceAllUsesWith(V); 1271 PHI->eraseFromParent(); 1272 } 1273 } 1274 1275 return true; 1276 } 1277