1 //===- InlineFunction.cpp - Code to perform function inlining -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements inlining of a function into a call site, resolving
11 // parameters and the return value as appropriate.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/Cloning.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/CallGraph.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/EHPersonalities.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/CallSite.h"
30 #include "llvm/IR/CFG.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DebugInfo.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/DIBuilder.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/IRBuilder.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include "llvm/Support/CommandLine.h"
45 #include <algorithm>
46 
47 using namespace llvm;
48 
49 static cl::opt<bool>
50 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
51   cl::Hidden,
52   cl::desc("Convert noalias attributes to metadata during inlining."));
53 
54 static cl::opt<bool>
55 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
56   cl::init(true), cl::Hidden,
57   cl::desc("Convert align attributes to assumptions during inlining."));
58 
59 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI,
60                           AAResults *CalleeAAR, bool InsertLifetime) {
61   return InlineFunction(CallSite(CI), IFI, CalleeAAR, InsertLifetime);
62 }
63 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
64                           AAResults *CalleeAAR, bool InsertLifetime) {
65   return InlineFunction(CallSite(II), IFI, CalleeAAR, InsertLifetime);
66 }
67 
68 namespace {
69   /// A class for recording information about inlining a landing pad.
70   class LandingPadInliningInfo {
71     BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind.
72     BasicBlock *InnerResumeDest; ///< Destination for the callee's resume.
73     LandingPadInst *CallerLPad;  ///< LandingPadInst associated with the invoke.
74     PHINode *InnerEHValuesPHI;   ///< PHI for EH values from landingpad insts.
75     SmallVector<Value*, 8> UnwindDestPHIValues;
76 
77   public:
78     LandingPadInliningInfo(InvokeInst *II)
79       : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr),
80         CallerLPad(nullptr), InnerEHValuesPHI(nullptr) {
81       // If there are PHI nodes in the unwind destination block, we need to keep
82       // track of which values came into them from the invoke before removing
83       // the edge from this block.
84       llvm::BasicBlock *InvokeBB = II->getParent();
85       BasicBlock::iterator I = OuterResumeDest->begin();
86       for (; isa<PHINode>(I); ++I) {
87         // Save the value to use for this edge.
88         PHINode *PHI = cast<PHINode>(I);
89         UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
90       }
91 
92       CallerLPad = cast<LandingPadInst>(I);
93     }
94 
95     /// The outer unwind destination is the target of
96     /// unwind edges introduced for calls within the inlined function.
97     BasicBlock *getOuterResumeDest() const {
98       return OuterResumeDest;
99     }
100 
101     BasicBlock *getInnerResumeDest();
102 
103     LandingPadInst *getLandingPadInst() const { return CallerLPad; }
104 
105     /// Forward the 'resume' instruction to the caller's landing pad block.
106     /// When the landing pad block has only one predecessor, this is
107     /// a simple branch. When there is more than one predecessor, we need to
108     /// split the landing pad block after the landingpad instruction and jump
109     /// to there.
110     void forwardResume(ResumeInst *RI,
111                        SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
112 
113     /// Add incoming-PHI values to the unwind destination block for the given
114     /// basic block, using the values for the original invoke's source block.
115     void addIncomingPHIValuesFor(BasicBlock *BB) const {
116       addIncomingPHIValuesForInto(BB, OuterResumeDest);
117     }
118 
119     void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
120       BasicBlock::iterator I = dest->begin();
121       for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
122         PHINode *phi = cast<PHINode>(I);
123         phi->addIncoming(UnwindDestPHIValues[i], src);
124       }
125     }
126   };
127 } // anonymous namespace
128 
129 /// Get or create a target for the branch from ResumeInsts.
130 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
131   if (InnerResumeDest) return InnerResumeDest;
132 
133   // Split the landing pad.
134   BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
135   InnerResumeDest =
136     OuterResumeDest->splitBasicBlock(SplitPoint,
137                                      OuterResumeDest->getName() + ".body");
138 
139   // The number of incoming edges we expect to the inner landing pad.
140   const unsigned PHICapacity = 2;
141 
142   // Create corresponding new PHIs for all the PHIs in the outer landing pad.
143   Instruction *InsertPoint = &InnerResumeDest->front();
144   BasicBlock::iterator I = OuterResumeDest->begin();
145   for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
146     PHINode *OuterPHI = cast<PHINode>(I);
147     PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
148                                         OuterPHI->getName() + ".lpad-body",
149                                         InsertPoint);
150     OuterPHI->replaceAllUsesWith(InnerPHI);
151     InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
152   }
153 
154   // Create a PHI for the exception values.
155   InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
156                                      "eh.lpad-body", InsertPoint);
157   CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
158   InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
159 
160   // All done.
161   return InnerResumeDest;
162 }
163 
164 /// Forward the 'resume' instruction to the caller's landing pad block.
165 /// When the landing pad block has only one predecessor, this is a simple
166 /// branch. When there is more than one predecessor, we need to split the
167 /// landing pad block after the landingpad instruction and jump to there.
168 void LandingPadInliningInfo::forwardResume(
169     ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
170   BasicBlock *Dest = getInnerResumeDest();
171   BasicBlock *Src = RI->getParent();
172 
173   BranchInst::Create(Dest, Src);
174 
175   // Update the PHIs in the destination. They were inserted in an order which
176   // makes this work.
177   addIncomingPHIValuesForInto(Src, Dest);
178 
179   InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
180   RI->eraseFromParent();
181 }
182 
183 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
184 static Value *getParentPad(Value *EHPad) {
185   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
186     return FPI->getParentPad();
187   return cast<CatchSwitchInst>(EHPad)->getParentPad();
188 }
189 
190 typedef DenseMap<Instruction *, Value *> UnwindDestMemoTy;
191 
192 /// Helper for getUnwindDestToken that does the descendant-ward part of
193 /// the search.
194 static Value *getUnwindDestTokenHelper(Instruction *EHPad,
195                                        UnwindDestMemoTy &MemoMap) {
196   SmallVector<Instruction *, 8> Worklist(1, EHPad);
197 
198   while (!Worklist.empty()) {
199     Instruction *CurrentPad = Worklist.pop_back_val();
200     // We only put pads on the worklist that aren't in the MemoMap.  When
201     // we find an unwind dest for a pad we may update its ancestors, but
202     // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
203     // so they should never get updated while queued on the worklist.
204     assert(!MemoMap.count(CurrentPad));
205     Value *UnwindDestToken = nullptr;
206     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
207       if (CatchSwitch->hasUnwindDest()) {
208         UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
209       } else {
210         // Catchswitch doesn't have a 'nounwind' variant, and one might be
211         // annotated as "unwinds to caller" when really it's nounwind (see
212         // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
213         // parent's unwind dest from this.  We can check its catchpads'
214         // descendants, since they might include a cleanuppad with an
215         // "unwinds to caller" cleanupret, which can be trusted.
216         for (auto HI = CatchSwitch->handler_begin(),
217                   HE = CatchSwitch->handler_end();
218              HI != HE && !UnwindDestToken; ++HI) {
219           BasicBlock *HandlerBlock = *HI;
220           auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
221           for (User *Child : CatchPad->users()) {
222             // Intentionally ignore invokes here -- since the catchswitch is
223             // marked "unwind to caller", it would be a verifier error if it
224             // contained an invoke which unwinds out of it, so any invoke we'd
225             // encounter must unwind to some child of the catch.
226             if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
227               continue;
228 
229             Instruction *ChildPad = cast<Instruction>(Child);
230             auto Memo = MemoMap.find(ChildPad);
231             if (Memo == MemoMap.end()) {
232               // Haven't figured out this child pad yet; queue it.
233               Worklist.push_back(ChildPad);
234               continue;
235             }
236             // We've already checked this child, but might have found that
237             // it offers no proof either way.
238             Value *ChildUnwindDestToken = Memo->second;
239             if (!ChildUnwindDestToken)
240               continue;
241             // We already know the child's unwind dest, which can either
242             // be ConstantTokenNone to indicate unwind to caller, or can
243             // be another child of the catchpad.  Only the former indicates
244             // the unwind dest of the catchswitch.
245             if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
246               UnwindDestToken = ChildUnwindDestToken;
247               break;
248             }
249             assert(getParentPad(ChildUnwindDestToken) == CatchPad);
250           }
251         }
252       }
253     } else {
254       auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
255       for (User *U : CleanupPad->users()) {
256         if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
257           if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
258             UnwindDestToken = RetUnwindDest->getFirstNonPHI();
259           else
260             UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
261           break;
262         }
263         Value *ChildUnwindDestToken;
264         if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
265           ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
266         } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
267           Instruction *ChildPad = cast<Instruction>(U);
268           auto Memo = MemoMap.find(ChildPad);
269           if (Memo == MemoMap.end()) {
270             // Haven't resolved this child yet; queue it and keep searching.
271             Worklist.push_back(ChildPad);
272             continue;
273           }
274           // We've checked this child, but still need to ignore it if it
275           // had no proof either way.
276           ChildUnwindDestToken = Memo->second;
277           if (!ChildUnwindDestToken)
278             continue;
279         } else {
280           // Not a relevant user of the cleanuppad
281           continue;
282         }
283         // In a well-formed program, the child/invoke must either unwind to
284         // an(other) child of the cleanup, or exit the cleanup.  In the
285         // first case, continue searching.
286         if (isa<Instruction>(ChildUnwindDestToken) &&
287             getParentPad(ChildUnwindDestToken) == CleanupPad)
288           continue;
289         UnwindDestToken = ChildUnwindDestToken;
290         break;
291       }
292     }
293     // If we haven't found an unwind dest for CurrentPad, we may have queued its
294     // children, so move on to the next in the worklist.
295     if (!UnwindDestToken)
296       continue;
297 
298     // Now we know that CurrentPad unwinds to UnwindDestToken.  It also exits
299     // any ancestors of CurrentPad up to but not including UnwindDestToken's
300     // parent pad.  Record this in the memo map, and check to see if the
301     // original EHPad being queried is one of the ones exited.
302     Value *UnwindParent;
303     if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
304       UnwindParent = getParentPad(UnwindPad);
305     else
306       UnwindParent = nullptr;
307     bool ExitedOriginalPad = false;
308     for (Instruction *ExitedPad = CurrentPad;
309          ExitedPad && ExitedPad != UnwindParent;
310          ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
311       // Skip over catchpads since they just follow their catchswitches.
312       if (isa<CatchPadInst>(ExitedPad))
313         continue;
314       MemoMap[ExitedPad] = UnwindDestToken;
315       ExitedOriginalPad |= (ExitedPad == EHPad);
316     }
317 
318     if (ExitedOriginalPad)
319       return UnwindDestToken;
320 
321     // Continue the search.
322   }
323 
324   // No definitive information is contained within this funclet.
325   return nullptr;
326 }
327 
328 /// Given an EH pad, find where it unwinds.  If it unwinds to an EH pad,
329 /// return that pad instruction.  If it unwinds to caller, return
330 /// ConstantTokenNone.  If it does not have a definitive unwind destination,
331 /// return nullptr.
332 ///
333 /// This routine gets invoked for calls in funclets in inlinees when inlining
334 /// an invoke.  Since many funclets don't have calls inside them, it's queried
335 /// on-demand rather than building a map of pads to unwind dests up front.
336 /// Determining a funclet's unwind dest may require recursively searching its
337 /// descendants, and also ancestors and cousins if the descendants don't provide
338 /// an answer.  Since most funclets will have their unwind dest immediately
339 /// available as the unwind dest of a catchswitch or cleanupret, this routine
340 /// searches top-down from the given pad and then up. To avoid worst-case
341 /// quadratic run-time given that approach, it uses a memo map to avoid
342 /// re-processing funclet trees.  The callers that rewrite the IR as they go
343 /// take advantage of this, for correctness, by checking/forcing rewritten
344 /// pads' entries to match the original callee view.
345 static Value *getUnwindDestToken(Instruction *EHPad,
346                                  UnwindDestMemoTy &MemoMap) {
347   // Catchpads unwind to the same place as their catchswitch;
348   // redirct any queries on catchpads so the code below can
349   // deal with just catchswitches and cleanuppads.
350   if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
351     EHPad = CPI->getCatchSwitch();
352 
353   // Check if we've already determined the unwind dest for this pad.
354   auto Memo = MemoMap.find(EHPad);
355   if (Memo != MemoMap.end())
356     return Memo->second;
357 
358   // Search EHPad and, if necessary, its descendants.
359   Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
360   assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
361   if (UnwindDestToken)
362     return UnwindDestToken;
363 
364   // No information is available for this EHPad from itself or any of its
365   // descendants.  An unwind all the way out to a pad in the caller would
366   // need also to agree with the unwind dest of the parent funclet, so
367   // search up the chain to try to find a funclet with information.  Put
368   // null entries in the memo map to avoid re-processing as we go up.
369   MemoMap[EHPad] = nullptr;
370 #ifndef NDEBUG
371   SmallPtrSet<Instruction *, 4> TempMemos;
372   TempMemos.insert(EHPad);
373 #endif
374   Instruction *LastUselessPad = EHPad;
375   Value *AncestorToken;
376   for (AncestorToken = getParentPad(EHPad);
377        auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
378        AncestorToken = getParentPad(AncestorToken)) {
379     // Skip over catchpads since they just follow their catchswitches.
380     if (isa<CatchPadInst>(AncestorPad))
381       continue;
382     // If the MemoMap had an entry mapping AncestorPad to nullptr, since we
383     // haven't yet called getUnwindDestTokenHelper for AncestorPad in this
384     // call to getUnwindDestToken, that would mean that AncestorPad had no
385     // information in itself, its descendants, or its ancestors.  If that
386     // were the case, then we should also have recorded the lack of information
387     // for the descendant that we're coming from.  So assert that we don't
388     // find a null entry in the MemoMap for AncestorPad.
389     assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
390     auto AncestorMemo = MemoMap.find(AncestorPad);
391     if (AncestorMemo == MemoMap.end()) {
392       UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
393     } else {
394       UnwindDestToken = AncestorMemo->second;
395     }
396     if (UnwindDestToken)
397       break;
398     LastUselessPad = AncestorPad;
399     MemoMap[LastUselessPad] = nullptr;
400 #ifndef NDEBUG
401     TempMemos.insert(LastUselessPad);
402 #endif
403   }
404 
405   // We know that getUnwindDestTokenHelper was called on LastUselessPad and
406   // returned nullptr (and likewise for EHPad and any of its ancestors up to
407   // LastUselessPad), so LastUselessPad has no information from below.  Since
408   // getUnwindDestTokenHelper must investigate all downward paths through
409   // no-information nodes to prove that a node has no information like this,
410   // and since any time it finds information it records it in the MemoMap for
411   // not just the immediately-containing funclet but also any ancestors also
412   // exited, it must be the case that, walking downward from LastUselessPad,
413   // visiting just those nodes which have not been mapped to an unwind dest
414   // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since
415   // they are just used to keep getUnwindDestTokenHelper from repeating work),
416   // any node visited must have been exhaustively searched with no information
417   // for it found.
418   SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
419   while (!Worklist.empty()) {
420     Instruction *UselessPad = Worklist.pop_back_val();
421     auto Memo = MemoMap.find(UselessPad);
422     if (Memo != MemoMap.end() && Memo->second) {
423       // Here the name 'UselessPad' is a bit of a misnomer, because we've found
424       // that it is a funclet that does have information about unwinding to
425       // a particular destination; its parent was a useless pad.
426       // Since its parent has no information, the unwind edge must not escape
427       // the parent, and must target a sibling of this pad.  This local unwind
428       // gives us no information about EHPad.  Leave it and the subtree rooted
429       // at it alone.
430       assert(getParentPad(Memo->second) == getParentPad(UselessPad));
431       continue;
432     }
433     // We know we don't have information for UselesPad.  If it has an entry in
434     // the MemoMap (mapping it to nullptr), it must be one of the TempMemos
435     // added on this invocation of getUnwindDestToken; if a previous invocation
436     // recorded nullptr, it would have had to prove that the ancestors of
437     // UselessPad, which include LastUselessPad, had no information, and that
438     // in turn would have required proving that the descendants of
439     // LastUselesPad, which include EHPad, have no information about
440     // LastUselessPad, which would imply that EHPad was mapped to nullptr in
441     // the MemoMap on that invocation, which isn't the case if we got here.
442     assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad));
443     // Assert as we enumerate users that 'UselessPad' doesn't have any unwind
444     // information that we'd be contradicting by making a map entry for it
445     // (which is something that getUnwindDestTokenHelper must have proved for
446     // us to get here).  Just assert on is direct users here; the checks in
447     // this downward walk at its descendants will verify that they don't have
448     // any unwind edges that exit 'UselessPad' either (i.e. they either have no
449     // unwind edges or unwind to a sibling).
450     MemoMap[UselessPad] = UnwindDestToken;
451     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
452       assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad");
453       for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) {
454         auto *CatchPad = HandlerBlock->getFirstNonPHI();
455         for (User *U : CatchPad->users()) {
456           assert(
457               (!isa<InvokeInst>(U) ||
458                (getParentPad(
459                     cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
460                 CatchPad)) &&
461               "Expected useless pad");
462           if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
463             Worklist.push_back(cast<Instruction>(U));
464         }
465       }
466     } else {
467       assert(isa<CleanupPadInst>(UselessPad));
468       for (User *U : UselessPad->users()) {
469         assert(!isa<CleanupReturnInst>(U) && "Expected useless pad");
470         assert((!isa<InvokeInst>(U) ||
471                 (getParentPad(
472                      cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
473                  UselessPad)) &&
474                "Expected useless pad");
475         if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
476           Worklist.push_back(cast<Instruction>(U));
477       }
478     }
479   }
480 
481   return UnwindDestToken;
482 }
483 
484 /// When we inline a basic block into an invoke,
485 /// we have to turn all of the calls that can throw into invokes.
486 /// This function analyze BB to see if there are any calls, and if so,
487 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
488 /// nodes in that block with the values specified in InvokeDestPHIValues.
489 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
490     BasicBlock *BB, BasicBlock *UnwindEdge,
491     UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
492   for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
493     Instruction *I = &*BBI++;
494 
495     // We only need to check for function calls: inlined invoke
496     // instructions require no special handling.
497     CallInst *CI = dyn_cast<CallInst>(I);
498 
499     if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue()))
500       continue;
501 
502     // We do not need to (and in fact, cannot) convert possibly throwing calls
503     // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
504     // invokes.  The caller's "segment" of the deoptimization continuation
505     // attached to the newly inlined @llvm.experimental_deoptimize
506     // (resp. @llvm.experimental.guard) call should contain the exception
507     // handling logic, if any.
508     if (auto *F = CI->getCalledFunction())
509       if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize ||
510           F->getIntrinsicID() == Intrinsic::experimental_guard)
511         continue;
512 
513     if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
514       // This call is nested inside a funclet.  If that funclet has an unwind
515       // destination within the inlinee, then unwinding out of this call would
516       // be UB.  Rewriting this call to an invoke which targets the inlined
517       // invoke's unwind dest would give the call's parent funclet multiple
518       // unwind destinations, which is something that subsequent EH table
519       // generation can't handle and that the veirifer rejects.  So when we
520       // see such a call, leave it as a call.
521       auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
522       Value *UnwindDestToken =
523           getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
524       if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
525         continue;
526 #ifndef NDEBUG
527       Instruction *MemoKey;
528       if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
529         MemoKey = CatchPad->getCatchSwitch();
530       else
531         MemoKey = FuncletPad;
532       assert(FuncletUnwindMap->count(MemoKey) &&
533              (*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
534              "must get memoized to avoid confusing later searches");
535 #endif // NDEBUG
536     }
537 
538     // Convert this function call into an invoke instruction.  First, split the
539     // basic block.
540     BasicBlock *Split =
541         BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
542 
543     // Delete the unconditional branch inserted by splitBasicBlock
544     BB->getInstList().pop_back();
545 
546     // Create the new invoke instruction.
547     SmallVector<Value*, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
548     SmallVector<OperandBundleDef, 1> OpBundles;
549 
550     CI->getOperandBundlesAsDefs(OpBundles);
551 
552     // Note: we're round tripping operand bundles through memory here, and that
553     // can potentially be avoided with a cleverer API design that we do not have
554     // as of this time.
555 
556     InvokeInst *II =
557         InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, InvokeArgs,
558                            OpBundles, CI->getName(), BB);
559     II->setDebugLoc(CI->getDebugLoc());
560     II->setCallingConv(CI->getCallingConv());
561     II->setAttributes(CI->getAttributes());
562 
563     // Make sure that anything using the call now uses the invoke!  This also
564     // updates the CallGraph if present, because it uses a WeakVH.
565     CI->replaceAllUsesWith(II);
566 
567     // Delete the original call
568     Split->getInstList().pop_front();
569     return BB;
570   }
571   return nullptr;
572 }
573 
574 /// If we inlined an invoke site, we need to convert calls
575 /// in the body of the inlined function into invokes.
576 ///
577 /// II is the invoke instruction being inlined.  FirstNewBlock is the first
578 /// block of the inlined code (the last block is the end of the function),
579 /// and InlineCodeInfo is information about the code that got inlined.
580 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
581                                     ClonedCodeInfo &InlinedCodeInfo) {
582   BasicBlock *InvokeDest = II->getUnwindDest();
583 
584   Function *Caller = FirstNewBlock->getParent();
585 
586   // The inlined code is currently at the end of the function, scan from the
587   // start of the inlined code to its end, checking for stuff we need to
588   // rewrite.
589   LandingPadInliningInfo Invoke(II);
590 
591   // Get all of the inlined landing pad instructions.
592   SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
593   for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
594        I != E; ++I)
595     if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
596       InlinedLPads.insert(II->getLandingPadInst());
597 
598   // Append the clauses from the outer landing pad instruction into the inlined
599   // landing pad instructions.
600   LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
601   for (LandingPadInst *InlinedLPad : InlinedLPads) {
602     unsigned OuterNum = OuterLPad->getNumClauses();
603     InlinedLPad->reserveClauses(OuterNum);
604     for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
605       InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
606     if (OuterLPad->isCleanup())
607       InlinedLPad->setCleanup(true);
608   }
609 
610   for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
611        BB != E; ++BB) {
612     if (InlinedCodeInfo.ContainsCalls)
613       if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
614               &*BB, Invoke.getOuterResumeDest()))
615         // Update any PHI nodes in the exceptional block to indicate that there
616         // is now a new entry in them.
617         Invoke.addIncomingPHIValuesFor(NewBB);
618 
619     // Forward any resumes that are remaining here.
620     if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
621       Invoke.forwardResume(RI, InlinedLPads);
622   }
623 
624   // Now that everything is happy, we have one final detail.  The PHI nodes in
625   // the exception destination block still have entries due to the original
626   // invoke instruction. Eliminate these entries (which might even delete the
627   // PHI node) now.
628   InvokeDest->removePredecessor(II->getParent());
629 }
630 
631 /// If we inlined an invoke site, we need to convert calls
632 /// in the body of the inlined function into invokes.
633 ///
634 /// II is the invoke instruction being inlined.  FirstNewBlock is the first
635 /// block of the inlined code (the last block is the end of the function),
636 /// and InlineCodeInfo is information about the code that got inlined.
637 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
638                                ClonedCodeInfo &InlinedCodeInfo) {
639   BasicBlock *UnwindDest = II->getUnwindDest();
640   Function *Caller = FirstNewBlock->getParent();
641 
642   assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");
643 
644   // If there are PHI nodes in the unwind destination block, we need to keep
645   // track of which values came into them from the invoke before removing the
646   // edge from this block.
647   SmallVector<Value *, 8> UnwindDestPHIValues;
648   llvm::BasicBlock *InvokeBB = II->getParent();
649   for (Instruction &I : *UnwindDest) {
650     // Save the value to use for this edge.
651     PHINode *PHI = dyn_cast<PHINode>(&I);
652     if (!PHI)
653       break;
654     UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
655   }
656 
657   // Add incoming-PHI values to the unwind destination block for the given basic
658   // block, using the values for the original invoke's source block.
659   auto UpdatePHINodes = [&](BasicBlock *Src) {
660     BasicBlock::iterator I = UnwindDest->begin();
661     for (Value *V : UnwindDestPHIValues) {
662       PHINode *PHI = cast<PHINode>(I);
663       PHI->addIncoming(V, Src);
664       ++I;
665     }
666   };
667 
668   // This connects all the instructions which 'unwind to caller' to the invoke
669   // destination.
670   UnwindDestMemoTy FuncletUnwindMap;
671   for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
672        BB != E; ++BB) {
673     if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
674       if (CRI->unwindsToCaller()) {
675         auto *CleanupPad = CRI->getCleanupPad();
676         CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
677         CRI->eraseFromParent();
678         UpdatePHINodes(&*BB);
679         // Finding a cleanupret with an unwind destination would confuse
680         // subsequent calls to getUnwindDestToken, so map the cleanuppad
681         // to short-circuit any such calls and recognize this as an "unwind
682         // to caller" cleanup.
683         assert(!FuncletUnwindMap.count(CleanupPad) ||
684                isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
685         FuncletUnwindMap[CleanupPad] =
686             ConstantTokenNone::get(Caller->getContext());
687       }
688     }
689 
690     Instruction *I = BB->getFirstNonPHI();
691     if (!I->isEHPad())
692       continue;
693 
694     Instruction *Replacement = nullptr;
695     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
696       if (CatchSwitch->unwindsToCaller()) {
697         Value *UnwindDestToken;
698         if (auto *ParentPad =
699                 dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
700           // This catchswitch is nested inside another funclet.  If that
701           // funclet has an unwind destination within the inlinee, then
702           // unwinding out of this catchswitch would be UB.  Rewriting this
703           // catchswitch to unwind to the inlined invoke's unwind dest would
704           // give the parent funclet multiple unwind destinations, which is
705           // something that subsequent EH table generation can't handle and
706           // that the veirifer rejects.  So when we see such a call, leave it
707           // as "unwind to caller".
708           UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
709           if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
710             continue;
711         } else {
712           // This catchswitch has no parent to inherit constraints from, and
713           // none of its descendants can have an unwind edge that exits it and
714           // targets another funclet in the inlinee.  It may or may not have a
715           // descendant that definitively has an unwind to caller.  In either
716           // case, we'll have to assume that any unwinds out of it may need to
717           // be routed to the caller, so treat it as though it has a definitive
718           // unwind to caller.
719           UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
720         }
721         auto *NewCatchSwitch = CatchSwitchInst::Create(
722             CatchSwitch->getParentPad(), UnwindDest,
723             CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
724             CatchSwitch);
725         for (BasicBlock *PadBB : CatchSwitch->handlers())
726           NewCatchSwitch->addHandler(PadBB);
727         // Propagate info for the old catchswitch over to the new one in
728         // the unwind map.  This also serves to short-circuit any subsequent
729         // checks for the unwind dest of this catchswitch, which would get
730         // confused if they found the outer handler in the callee.
731         FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
732         Replacement = NewCatchSwitch;
733       }
734     } else if (!isa<FuncletPadInst>(I)) {
735       llvm_unreachable("unexpected EHPad!");
736     }
737 
738     if (Replacement) {
739       Replacement->takeName(I);
740       I->replaceAllUsesWith(Replacement);
741       I->eraseFromParent();
742       UpdatePHINodes(&*BB);
743     }
744   }
745 
746   if (InlinedCodeInfo.ContainsCalls)
747     for (Function::iterator BB = FirstNewBlock->getIterator(),
748                             E = Caller->end();
749          BB != E; ++BB)
750       if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
751               &*BB, UnwindDest, &FuncletUnwindMap))
752         // Update any PHI nodes in the exceptional block to indicate that there
753         // is now a new entry in them.
754         UpdatePHINodes(NewBB);
755 
756   // Now that everything is happy, we have one final detail.  The PHI nodes in
757   // the exception destination block still have entries due to the original
758   // invoke instruction. Eliminate these entries (which might even delete the
759   // PHI node) now.
760   UnwindDest->removePredecessor(InvokeBB);
761 }
762 
763 /// When inlining a call site that has !llvm.mem.parallel_loop_access metadata,
764 /// that metadata should be propagated to all memory-accessing cloned
765 /// instructions.
766 static void PropagateParallelLoopAccessMetadata(CallSite CS,
767                                                 ValueToValueMapTy &VMap) {
768   MDNode *M =
769     CS.getInstruction()->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
770   if (!M)
771     return;
772 
773   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
774        VMI != VMIE; ++VMI) {
775     if (!VMI->second)
776       continue;
777 
778     Instruction *NI = dyn_cast<Instruction>(VMI->second);
779     if (!NI)
780       continue;
781 
782     if (MDNode *PM = NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access)) {
783         M = MDNode::concatenate(PM, M);
784       NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
785     } else if (NI->mayReadOrWriteMemory()) {
786       NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
787     }
788   }
789 }
790 
791 /// When inlining a function that contains noalias scope metadata,
792 /// this metadata needs to be cloned so that the inlined blocks
793 /// have different "unqiue scopes" at every call site. Were this not done, then
794 /// aliasing scopes from a function inlined into a caller multiple times could
795 /// not be differentiated (and this would lead to miscompiles because the
796 /// non-aliasing property communicated by the metadata could have
797 /// call-site-specific control dependencies).
798 static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) {
799   const Function *CalledFunc = CS.getCalledFunction();
800   SetVector<const MDNode *> MD;
801 
802   // Note: We could only clone the metadata if it is already used in the
803   // caller. I'm omitting that check here because it might confuse
804   // inter-procedural alias analysis passes. We can revisit this if it becomes
805   // an efficiency or overhead problem.
806 
807   for (const BasicBlock &I : *CalledFunc)
808     for (const Instruction &J : I) {
809       if (const MDNode *M = J.getMetadata(LLVMContext::MD_alias_scope))
810         MD.insert(M);
811       if (const MDNode *M = J.getMetadata(LLVMContext::MD_noalias))
812         MD.insert(M);
813     }
814 
815   if (MD.empty())
816     return;
817 
818   // Walk the existing metadata, adding the complete (perhaps cyclic) chain to
819   // the set.
820   SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
821   while (!Queue.empty()) {
822     const MDNode *M = cast<MDNode>(Queue.pop_back_val());
823     for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i)
824       if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i)))
825         if (MD.insert(M1))
826           Queue.push_back(M1);
827   }
828 
829   // Now we have a complete set of all metadata in the chains used to specify
830   // the noalias scopes and the lists of those scopes.
831   SmallVector<TempMDTuple, 16> DummyNodes;
832   DenseMap<const MDNode *, TrackingMDNodeRef> MDMap;
833   for (const MDNode *I : MD) {
834     DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None));
835     MDMap[I].reset(DummyNodes.back().get());
836   }
837 
838   // Create new metadata nodes to replace the dummy nodes, replacing old
839   // metadata references with either a dummy node or an already-created new
840   // node.
841   for (const MDNode *I : MD) {
842     SmallVector<Metadata *, 4> NewOps;
843     for (unsigned i = 0, ie = I->getNumOperands(); i != ie; ++i) {
844       const Metadata *V = I->getOperand(i);
845       if (const MDNode *M = dyn_cast<MDNode>(V))
846         NewOps.push_back(MDMap[M]);
847       else
848         NewOps.push_back(const_cast<Metadata *>(V));
849     }
850 
851     MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps);
852     MDTuple *TempM = cast<MDTuple>(MDMap[I]);
853     assert(TempM->isTemporary() && "Expected temporary node");
854 
855     TempM->replaceAllUsesWith(NewM);
856   }
857 
858   // Now replace the metadata in the new inlined instructions with the
859   // repacements from the map.
860   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
861        VMI != VMIE; ++VMI) {
862     if (!VMI->second)
863       continue;
864 
865     Instruction *NI = dyn_cast<Instruction>(VMI->second);
866     if (!NI)
867       continue;
868 
869     if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) {
870       MDNode *NewMD = MDMap[M];
871       // If the call site also had alias scope metadata (a list of scopes to
872       // which instructions inside it might belong), propagate those scopes to
873       // the inlined instructions.
874       if (MDNode *CSM =
875               CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
876         NewMD = MDNode::concatenate(NewMD, CSM);
877       NI->setMetadata(LLVMContext::MD_alias_scope, NewMD);
878     } else if (NI->mayReadOrWriteMemory()) {
879       if (MDNode *M =
880               CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
881         NI->setMetadata(LLVMContext::MD_alias_scope, M);
882     }
883 
884     if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) {
885       MDNode *NewMD = MDMap[M];
886       // If the call site also had noalias metadata (a list of scopes with
887       // which instructions inside it don't alias), propagate those scopes to
888       // the inlined instructions.
889       if (MDNode *CSM =
890               CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
891         NewMD = MDNode::concatenate(NewMD, CSM);
892       NI->setMetadata(LLVMContext::MD_noalias, NewMD);
893     } else if (NI->mayReadOrWriteMemory()) {
894       if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
895         NI->setMetadata(LLVMContext::MD_noalias, M);
896     }
897   }
898 }
899 
900 /// If the inlined function has noalias arguments,
901 /// then add new alias scopes for each noalias argument, tag the mapped noalias
902 /// parameters with noalias metadata specifying the new scope, and tag all
903 /// non-derived loads, stores and memory intrinsics with the new alias scopes.
904 static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap,
905                                   const DataLayout &DL, AAResults *CalleeAAR) {
906   if (!EnableNoAliasConversion)
907     return;
908 
909   const Function *CalledFunc = CS.getCalledFunction();
910   SmallVector<const Argument *, 4> NoAliasArgs;
911 
912   for (const Argument &Arg : CalledFunc->args())
913     if (Arg.hasNoAliasAttr() && !Arg.use_empty())
914       NoAliasArgs.push_back(&Arg);
915 
916   if (NoAliasArgs.empty())
917     return;
918 
919   // To do a good job, if a noalias variable is captured, we need to know if
920   // the capture point dominates the particular use we're considering.
921   DominatorTree DT;
922   DT.recalculate(const_cast<Function&>(*CalledFunc));
923 
924   // noalias indicates that pointer values based on the argument do not alias
925   // pointer values which are not based on it. So we add a new "scope" for each
926   // noalias function argument. Accesses using pointers based on that argument
927   // become part of that alias scope, accesses using pointers not based on that
928   // argument are tagged as noalias with that scope.
929 
930   DenseMap<const Argument *, MDNode *> NewScopes;
931   MDBuilder MDB(CalledFunc->getContext());
932 
933   // Create a new scope domain for this function.
934   MDNode *NewDomain =
935     MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
936   for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
937     const Argument *A = NoAliasArgs[i];
938 
939     std::string Name = CalledFunc->getName();
940     if (A->hasName()) {
941       Name += ": %";
942       Name += A->getName();
943     } else {
944       Name += ": argument ";
945       Name += utostr(i);
946     }
947 
948     // Note: We always create a new anonymous root here. This is true regardless
949     // of the linkage of the callee because the aliasing "scope" is not just a
950     // property of the callee, but also all control dependencies in the caller.
951     MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
952     NewScopes.insert(std::make_pair(A, NewScope));
953   }
954 
955   // Iterate over all new instructions in the map; for all memory-access
956   // instructions, add the alias scope metadata.
957   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
958        VMI != VMIE; ++VMI) {
959     if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
960       if (!VMI->second)
961         continue;
962 
963       Instruction *NI = dyn_cast<Instruction>(VMI->second);
964       if (!NI)
965         continue;
966 
967       bool IsArgMemOnlyCall = false, IsFuncCall = false;
968       SmallVector<const Value *, 2> PtrArgs;
969 
970       if (const LoadInst *LI = dyn_cast<LoadInst>(I))
971         PtrArgs.push_back(LI->getPointerOperand());
972       else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
973         PtrArgs.push_back(SI->getPointerOperand());
974       else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
975         PtrArgs.push_back(VAAI->getPointerOperand());
976       else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
977         PtrArgs.push_back(CXI->getPointerOperand());
978       else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
979         PtrArgs.push_back(RMWI->getPointerOperand());
980       else if (ImmutableCallSite ICS = ImmutableCallSite(I)) {
981         // If we know that the call does not access memory, then we'll still
982         // know that about the inlined clone of this call site, and we don't
983         // need to add metadata.
984         if (ICS.doesNotAccessMemory())
985           continue;
986 
987         IsFuncCall = true;
988         if (CalleeAAR) {
989           FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(ICS);
990           if (MRB == FMRB_OnlyAccessesArgumentPointees ||
991               MRB == FMRB_OnlyReadsArgumentPointees)
992             IsArgMemOnlyCall = true;
993         }
994 
995         for (Value *Arg : ICS.args()) {
996           // We need to check the underlying objects of all arguments, not just
997           // the pointer arguments, because we might be passing pointers as
998           // integers, etc.
999           // However, if we know that the call only accesses pointer arguments,
1000           // then we only need to check the pointer arguments.
1001           if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy())
1002             continue;
1003 
1004           PtrArgs.push_back(Arg);
1005         }
1006       }
1007 
1008       // If we found no pointers, then this instruction is not suitable for
1009       // pairing with an instruction to receive aliasing metadata.
1010       // However, if this is a call, this we might just alias with none of the
1011       // noalias arguments.
1012       if (PtrArgs.empty() && !IsFuncCall)
1013         continue;
1014 
1015       // It is possible that there is only one underlying object, but you
1016       // need to go through several PHIs to see it, and thus could be
1017       // repeated in the Objects list.
1018       SmallPtrSet<const Value *, 4> ObjSet;
1019       SmallVector<Metadata *, 4> Scopes, NoAliases;
1020 
1021       SmallSetVector<const Argument *, 4> NAPtrArgs;
1022       for (const Value *V : PtrArgs) {
1023         SmallVector<Value *, 4> Objects;
1024         GetUnderlyingObjects(const_cast<Value*>(V),
1025                              Objects, DL, /* LI = */ nullptr);
1026 
1027         for (Value *O : Objects)
1028           ObjSet.insert(O);
1029       }
1030 
1031       // Figure out if we're derived from anything that is not a noalias
1032       // argument.
1033       bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
1034       for (const Value *V : ObjSet) {
1035         // Is this value a constant that cannot be derived from any pointer
1036         // value (we need to exclude constant expressions, for example, that
1037         // are formed from arithmetic on global symbols).
1038         bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
1039                              isa<ConstantPointerNull>(V) ||
1040                              isa<ConstantDataVector>(V) || isa<UndefValue>(V);
1041         if (IsNonPtrConst)
1042           continue;
1043 
1044         // If this is anything other than a noalias argument, then we cannot
1045         // completely describe the aliasing properties using alias.scope
1046         // metadata (and, thus, won't add any).
1047         if (const Argument *A = dyn_cast<Argument>(V)) {
1048           if (!A->hasNoAliasAttr())
1049             UsesAliasingPtr = true;
1050         } else {
1051           UsesAliasingPtr = true;
1052         }
1053 
1054         // If this is not some identified function-local object (which cannot
1055         // directly alias a noalias argument), or some other argument (which,
1056         // by definition, also cannot alias a noalias argument), then we could
1057         // alias a noalias argument that has been captured).
1058         if (!isa<Argument>(V) &&
1059             !isIdentifiedFunctionLocal(const_cast<Value*>(V)))
1060           CanDeriveViaCapture = true;
1061       }
1062 
1063       // A function call can always get captured noalias pointers (via other
1064       // parameters, globals, etc.).
1065       if (IsFuncCall && !IsArgMemOnlyCall)
1066         CanDeriveViaCapture = true;
1067 
1068       // First, we want to figure out all of the sets with which we definitely
1069       // don't alias. Iterate over all noalias set, and add those for which:
1070       //   1. The noalias argument is not in the set of objects from which we
1071       //      definitely derive.
1072       //   2. The noalias argument has not yet been captured.
1073       // An arbitrary function that might load pointers could see captured
1074       // noalias arguments via other noalias arguments or globals, and so we
1075       // must always check for prior capture.
1076       for (const Argument *A : NoAliasArgs) {
1077         if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
1078                                  // It might be tempting to skip the
1079                                  // PointerMayBeCapturedBefore check if
1080                                  // A->hasNoCaptureAttr() is true, but this is
1081                                  // incorrect because nocapture only guarantees
1082                                  // that no copies outlive the function, not
1083                                  // that the value cannot be locally captured.
1084                                  !PointerMayBeCapturedBefore(A,
1085                                    /* ReturnCaptures */ false,
1086                                    /* StoreCaptures */ false, I, &DT)))
1087           NoAliases.push_back(NewScopes[A]);
1088       }
1089 
1090       if (!NoAliases.empty())
1091         NI->setMetadata(LLVMContext::MD_noalias,
1092                         MDNode::concatenate(
1093                             NI->getMetadata(LLVMContext::MD_noalias),
1094                             MDNode::get(CalledFunc->getContext(), NoAliases)));
1095 
1096       // Next, we want to figure out all of the sets to which we might belong.
1097       // We might belong to a set if the noalias argument is in the set of
1098       // underlying objects. If there is some non-noalias argument in our list
1099       // of underlying objects, then we cannot add a scope because the fact
1100       // that some access does not alias with any set of our noalias arguments
1101       // cannot itself guarantee that it does not alias with this access
1102       // (because there is some pointer of unknown origin involved and the
1103       // other access might also depend on this pointer). We also cannot add
1104       // scopes to arbitrary functions unless we know they don't access any
1105       // non-parameter pointer-values.
1106       bool CanAddScopes = !UsesAliasingPtr;
1107       if (CanAddScopes && IsFuncCall)
1108         CanAddScopes = IsArgMemOnlyCall;
1109 
1110       if (CanAddScopes)
1111         for (const Argument *A : NoAliasArgs) {
1112           if (ObjSet.count(A))
1113             Scopes.push_back(NewScopes[A]);
1114         }
1115 
1116       if (!Scopes.empty())
1117         NI->setMetadata(
1118             LLVMContext::MD_alias_scope,
1119             MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
1120                                 MDNode::get(CalledFunc->getContext(), Scopes)));
1121     }
1122   }
1123 }
1124 
1125 /// If the inlined function has non-byval align arguments, then
1126 /// add @llvm.assume-based alignment assumptions to preserve this information.
1127 static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) {
1128   if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache)
1129     return;
1130   AssumptionCache *AC = IFI.GetAssumptionCache
1131                             ? &(*IFI.GetAssumptionCache)(*CS.getCaller())
1132                             : nullptr;
1133   auto &DL = CS.getCaller()->getParent()->getDataLayout();
1134 
1135   // To avoid inserting redundant assumptions, we should check for assumptions
1136   // already in the caller. To do this, we might need a DT of the caller.
1137   DominatorTree DT;
1138   bool DTCalculated = false;
1139 
1140   Function *CalledFunc = CS.getCalledFunction();
1141   for (Function::arg_iterator I = CalledFunc->arg_begin(),
1142                               E = CalledFunc->arg_end();
1143        I != E; ++I) {
1144     unsigned Align = I->getType()->isPointerTy() ? I->getParamAlignment() : 0;
1145     if (Align && !I->hasByValOrInAllocaAttr() && !I->hasNUses(0)) {
1146       if (!DTCalculated) {
1147         DT.recalculate(const_cast<Function&>(*CS.getInstruction()->getParent()
1148                                                ->getParent()));
1149         DTCalculated = true;
1150       }
1151 
1152       // If we can already prove the asserted alignment in the context of the
1153       // caller, then don't bother inserting the assumption.
1154       Value *Arg = CS.getArgument(I->getArgNo());
1155       if (getKnownAlignment(Arg, DL, CS.getInstruction(), AC, &DT) >= Align)
1156         continue;
1157 
1158       CallInst *NewAssumption = IRBuilder<>(CS.getInstruction())
1159                                     .CreateAlignmentAssumption(DL, Arg, Align);
1160       if (AC)
1161         AC->registerAssumption(NewAssumption);
1162     }
1163   }
1164 }
1165 
1166 /// Once we have cloned code over from a callee into the caller,
1167 /// update the specified callgraph to reflect the changes we made.
1168 /// Note that it's possible that not all code was copied over, so only
1169 /// some edges of the callgraph may remain.
1170 static void UpdateCallGraphAfterInlining(CallSite CS,
1171                                          Function::iterator FirstNewBlock,
1172                                          ValueToValueMapTy &VMap,
1173                                          InlineFunctionInfo &IFI) {
1174   CallGraph &CG = *IFI.CG;
1175   const Function *Caller = CS.getInstruction()->getParent()->getParent();
1176   const Function *Callee = CS.getCalledFunction();
1177   CallGraphNode *CalleeNode = CG[Callee];
1178   CallGraphNode *CallerNode = CG[Caller];
1179 
1180   // Since we inlined some uninlined call sites in the callee into the caller,
1181   // add edges from the caller to all of the callees of the callee.
1182   CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
1183 
1184   // Consider the case where CalleeNode == CallerNode.
1185   CallGraphNode::CalledFunctionsVector CallCache;
1186   if (CalleeNode == CallerNode) {
1187     CallCache.assign(I, E);
1188     I = CallCache.begin();
1189     E = CallCache.end();
1190   }
1191 
1192   for (; I != E; ++I) {
1193     const Value *OrigCall = I->first;
1194 
1195     ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
1196     // Only copy the edge if the call was inlined!
1197     if (VMI == VMap.end() || VMI->second == nullptr)
1198       continue;
1199 
1200     // If the call was inlined, but then constant folded, there is no edge to
1201     // add.  Check for this case.
1202     Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
1203     if (!NewCall)
1204       continue;
1205 
1206     // We do not treat intrinsic calls like real function calls because we
1207     // expect them to become inline code; do not add an edge for an intrinsic.
1208     CallSite CS = CallSite(NewCall);
1209     if (CS && CS.getCalledFunction() && CS.getCalledFunction()->isIntrinsic())
1210       continue;
1211 
1212     // Remember that this call site got inlined for the client of
1213     // InlineFunction.
1214     IFI.InlinedCalls.push_back(NewCall);
1215 
1216     // It's possible that inlining the callsite will cause it to go from an
1217     // indirect to a direct call by resolving a function pointer.  If this
1218     // happens, set the callee of the new call site to a more precise
1219     // destination.  This can also happen if the call graph node of the caller
1220     // was just unnecessarily imprecise.
1221     if (!I->second->getFunction())
1222       if (Function *F = CallSite(NewCall).getCalledFunction()) {
1223         // Indirect call site resolved to direct call.
1224         CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
1225 
1226         continue;
1227       }
1228 
1229     CallerNode->addCalledFunction(CallSite(NewCall), I->second);
1230   }
1231 
1232   // Update the call graph by deleting the edge from Callee to Caller.  We must
1233   // do this after the loop above in case Caller and Callee are the same.
1234   CallerNode->removeCallEdgeFor(CS);
1235 }
1236 
1237 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
1238                                     BasicBlock *InsertBlock,
1239                                     InlineFunctionInfo &IFI) {
1240   Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
1241   IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
1242 
1243   Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy));
1244 
1245   // Always generate a memcpy of alignment 1 here because we don't know
1246   // the alignment of the src pointer.  Other optimizations can infer
1247   // better alignment.
1248   Builder.CreateMemCpy(Dst, Src, Size, /*Align=*/1);
1249 }
1250 
1251 /// When inlining a call site that has a byval argument,
1252 /// we have to make the implicit memcpy explicit by adding it.
1253 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
1254                                   const Function *CalledFunc,
1255                                   InlineFunctionInfo &IFI,
1256                                   unsigned ByValAlignment) {
1257   PointerType *ArgTy = cast<PointerType>(Arg->getType());
1258   Type *AggTy = ArgTy->getElementType();
1259 
1260   Function *Caller = TheCall->getParent()->getParent();
1261 
1262   // If the called function is readonly, then it could not mutate the caller's
1263   // copy of the byval'd memory.  In this case, it is safe to elide the copy and
1264   // temporary.
1265   if (CalledFunc->onlyReadsMemory()) {
1266     // If the byval argument has a specified alignment that is greater than the
1267     // passed in pointer, then we either have to round up the input pointer or
1268     // give up on this transformation.
1269     if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
1270       return Arg;
1271 
1272     AssumptionCache *AC =
1273         IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr;
1274     const DataLayout &DL = Caller->getParent()->getDataLayout();
1275 
1276     // If the pointer is already known to be sufficiently aligned, or if we can
1277     // round it up to a larger alignment, then we don't need a temporary.
1278     if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall, AC) >=
1279         ByValAlignment)
1280       return Arg;
1281 
1282     // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
1283     // for code quality, but rarely happens and is required for correctness.
1284   }
1285 
1286   // Create the alloca.  If we have DataLayout, use nice alignment.
1287   unsigned Align =
1288       Caller->getParent()->getDataLayout().getPrefTypeAlignment(AggTy);
1289 
1290   // If the byval had an alignment specified, we *must* use at least that
1291   // alignment, as it is required by the byval argument (and uses of the
1292   // pointer inside the callee).
1293   Align = std::max(Align, ByValAlignment);
1294 
1295   Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(),
1296                                     &*Caller->begin()->begin());
1297   IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
1298 
1299   // Uses of the argument in the function should use our new alloca
1300   // instead.
1301   return NewAlloca;
1302 }
1303 
1304 // Check whether this Value is used by a lifetime intrinsic.
1305 static bool isUsedByLifetimeMarker(Value *V) {
1306   for (User *U : V->users()) {
1307     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
1308       switch (II->getIntrinsicID()) {
1309       default: break;
1310       case Intrinsic::lifetime_start:
1311       case Intrinsic::lifetime_end:
1312         return true;
1313       }
1314     }
1315   }
1316   return false;
1317 }
1318 
1319 // Check whether the given alloca already has
1320 // lifetime.start or lifetime.end intrinsics.
1321 static bool hasLifetimeMarkers(AllocaInst *AI) {
1322   Type *Ty = AI->getType();
1323   Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
1324                                        Ty->getPointerAddressSpace());
1325   if (Ty == Int8PtrTy)
1326     return isUsedByLifetimeMarker(AI);
1327 
1328   // Do a scan to find all the casts to i8*.
1329   for (User *U : AI->users()) {
1330     if (U->getType() != Int8PtrTy) continue;
1331     if (U->stripPointerCasts() != AI) continue;
1332     if (isUsedByLifetimeMarker(U))
1333       return true;
1334   }
1335   return false;
1336 }
1337 
1338 /// Rebuild the entire inlined-at chain for this instruction so that the top of
1339 /// the chain now is inlined-at the new call site.
1340 static DebugLoc
1341 updateInlinedAtInfo(const DebugLoc &DL, DILocation *InlinedAtNode,
1342                     LLVMContext &Ctx,
1343                     DenseMap<const DILocation *, DILocation *> &IANodes) {
1344   SmallVector<DILocation *, 3> InlinedAtLocations;
1345   DILocation *Last = InlinedAtNode;
1346   DILocation *CurInlinedAt = DL;
1347 
1348   // Gather all the inlined-at nodes
1349   while (DILocation *IA = CurInlinedAt->getInlinedAt()) {
1350     // Skip any we've already built nodes for
1351     if (DILocation *Found = IANodes[IA]) {
1352       Last = Found;
1353       break;
1354     }
1355 
1356     InlinedAtLocations.push_back(IA);
1357     CurInlinedAt = IA;
1358   }
1359 
1360   // Starting from the top, rebuild the nodes to point to the new inlined-at
1361   // location (then rebuilding the rest of the chain behind it) and update the
1362   // map of already-constructed inlined-at nodes.
1363   for (const DILocation *MD : reverse(InlinedAtLocations)) {
1364     Last = IANodes[MD] = DILocation::getDistinct(
1365         Ctx, MD->getLine(), MD->getColumn(), MD->getScope(), Last);
1366   }
1367 
1368   // And finally create the normal location for this instruction, referring to
1369   // the new inlined-at chain.
1370   return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(), Last);
1371 }
1372 
1373 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry
1374 /// block. Allocas used in inalloca calls and allocas of dynamic array size
1375 /// cannot be static.
1376 static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) {
1377   return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca();
1378 }
1379 
1380 /// Update inlined instructions' line numbers to
1381 /// to encode location where these instructions are inlined.
1382 static void fixupLineNumbers(Function *Fn, Function::iterator FI,
1383                              Instruction *TheCall) {
1384   const DebugLoc &TheCallDL = TheCall->getDebugLoc();
1385   if (!TheCallDL)
1386     return;
1387 
1388   auto &Ctx = Fn->getContext();
1389   DILocation *InlinedAtNode = TheCallDL;
1390 
1391   // Create a unique call site, not to be confused with any other call from the
1392   // same location.
1393   InlinedAtNode = DILocation::getDistinct(
1394       Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
1395       InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
1396 
1397   // Cache the inlined-at nodes as they're built so they are reused, without
1398   // this every instruction's inlined-at chain would become distinct from each
1399   // other.
1400   DenseMap<const DILocation *, DILocation *> IANodes;
1401 
1402   for (; FI != Fn->end(); ++FI) {
1403     for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
1404          BI != BE; ++BI) {
1405       DebugLoc DL = BI->getDebugLoc();
1406       if (!DL) {
1407         // If the inlined instruction has no line number, make it look as if it
1408         // originates from the call location. This is important for
1409         // ((__always_inline__, __nodebug__)) functions which must use caller
1410         // location for all instructions in their function body.
1411 
1412         // Don't update static allocas, as they may get moved later.
1413         if (auto *AI = dyn_cast<AllocaInst>(BI))
1414           if (allocaWouldBeStaticInEntry(AI))
1415             continue;
1416 
1417         BI->setDebugLoc(TheCallDL);
1418       } else {
1419         BI->setDebugLoc(updateInlinedAtInfo(DL, InlinedAtNode, BI->getContext(), IANodes));
1420       }
1421     }
1422   }
1423 }
1424 
1425 /// This function inlines the called function into the basic block of the
1426 /// caller. This returns false if it is not possible to inline this call.
1427 /// The program is still in a well defined state if this occurs though.
1428 ///
1429 /// Note that this only does one level of inlining.  For example, if the
1430 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
1431 /// exists in the instruction stream.  Similarly this will inline a recursive
1432 /// function by one level.
1433 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
1434                           AAResults *CalleeAAR, bool InsertLifetime) {
1435   Instruction *TheCall = CS.getInstruction();
1436   assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
1437          "Instruction not in function!");
1438 
1439   // If IFI has any state in it, zap it before we fill it in.
1440   IFI.reset();
1441 
1442   const Function *CalledFunc = CS.getCalledFunction();
1443   if (!CalledFunc ||              // Can't inline external function or indirect
1444       CalledFunc->isDeclaration() || // call, or call to a vararg function!
1445       CalledFunc->getFunctionType()->isVarArg()) return false;
1446 
1447   // The inliner does not know how to inline through calls with operand bundles
1448   // in general ...
1449   if (CS.hasOperandBundles()) {
1450     for (int i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
1451       uint32_t Tag = CS.getOperandBundleAt(i).getTagID();
1452       // ... but it knows how to inline through "deopt" operand bundles ...
1453       if (Tag == LLVMContext::OB_deopt)
1454         continue;
1455       // ... and "funclet" operand bundles.
1456       if (Tag == LLVMContext::OB_funclet)
1457         continue;
1458 
1459       return false;
1460     }
1461   }
1462 
1463   // If the call to the callee cannot throw, set the 'nounwind' flag on any
1464   // calls that we inline.
1465   bool MarkNoUnwind = CS.doesNotThrow();
1466 
1467   BasicBlock *OrigBB = TheCall->getParent();
1468   Function *Caller = OrigBB->getParent();
1469 
1470   // GC poses two hazards to inlining, which only occur when the callee has GC:
1471   //  1. If the caller has no GC, then the callee's GC must be propagated to the
1472   //     caller.
1473   //  2. If the caller has a differing GC, it is invalid to inline.
1474   if (CalledFunc->hasGC()) {
1475     if (!Caller->hasGC())
1476       Caller->setGC(CalledFunc->getGC());
1477     else if (CalledFunc->getGC() != Caller->getGC())
1478       return false;
1479   }
1480 
1481   // Get the personality function from the callee if it contains a landing pad.
1482   Constant *CalledPersonality =
1483       CalledFunc->hasPersonalityFn()
1484           ? CalledFunc->getPersonalityFn()->stripPointerCasts()
1485           : nullptr;
1486 
1487   // Find the personality function used by the landing pads of the caller. If it
1488   // exists, then check to see that it matches the personality function used in
1489   // the callee.
1490   Constant *CallerPersonality =
1491       Caller->hasPersonalityFn()
1492           ? Caller->getPersonalityFn()->stripPointerCasts()
1493           : nullptr;
1494   if (CalledPersonality) {
1495     if (!CallerPersonality)
1496       Caller->setPersonalityFn(CalledPersonality);
1497     // If the personality functions match, then we can perform the
1498     // inlining. Otherwise, we can't inline.
1499     // TODO: This isn't 100% true. Some personality functions are proper
1500     //       supersets of others and can be used in place of the other.
1501     else if (CalledPersonality != CallerPersonality)
1502       return false;
1503   }
1504 
1505   // We need to figure out which funclet the callsite was in so that we may
1506   // properly nest the callee.
1507   Instruction *CallSiteEHPad = nullptr;
1508   if (CallerPersonality) {
1509     EHPersonality Personality = classifyEHPersonality(CallerPersonality);
1510     if (isFuncletEHPersonality(Personality)) {
1511       Optional<OperandBundleUse> ParentFunclet =
1512           CS.getOperandBundle(LLVMContext::OB_funclet);
1513       if (ParentFunclet)
1514         CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
1515 
1516       // OK, the inlining site is legal.  What about the target function?
1517 
1518       if (CallSiteEHPad) {
1519         if (Personality == EHPersonality::MSVC_CXX) {
1520           // The MSVC personality cannot tolerate catches getting inlined into
1521           // cleanup funclets.
1522           if (isa<CleanupPadInst>(CallSiteEHPad)) {
1523             // Ok, the call site is within a cleanuppad.  Let's check the callee
1524             // for catchpads.
1525             for (const BasicBlock &CalledBB : *CalledFunc) {
1526               if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
1527                 return false;
1528             }
1529           }
1530         } else if (isAsynchronousEHPersonality(Personality)) {
1531           // SEH is even less tolerant, there may not be any sort of exceptional
1532           // funclet in the callee.
1533           for (const BasicBlock &CalledBB : *CalledFunc) {
1534             if (CalledBB.isEHPad())
1535               return false;
1536           }
1537         }
1538       }
1539     }
1540   }
1541 
1542   // Determine if we are dealing with a call in an EHPad which does not unwind
1543   // to caller.
1544   bool EHPadForCallUnwindsLocally = false;
1545   if (CallSiteEHPad && CS.isCall()) {
1546     UnwindDestMemoTy FuncletUnwindMap;
1547     Value *CallSiteUnwindDestToken =
1548         getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap);
1549 
1550     EHPadForCallUnwindsLocally =
1551         CallSiteUnwindDestToken &&
1552         !isa<ConstantTokenNone>(CallSiteUnwindDestToken);
1553   }
1554 
1555   // Get an iterator to the last basic block in the function, which will have
1556   // the new function inlined after it.
1557   Function::iterator LastBlock = --Caller->end();
1558 
1559   // Make sure to capture all of the return instructions from the cloned
1560   // function.
1561   SmallVector<ReturnInst*, 8> Returns;
1562   ClonedCodeInfo InlinedFunctionInfo;
1563   Function::iterator FirstNewBlock;
1564 
1565   { // Scope to destroy VMap after cloning.
1566     ValueToValueMapTy VMap;
1567     // Keep a list of pair (dst, src) to emit byval initializations.
1568     SmallVector<std::pair<Value*, Value*>, 4> ByValInit;
1569 
1570     auto &DL = Caller->getParent()->getDataLayout();
1571 
1572     assert(CalledFunc->arg_size() == CS.arg_size() &&
1573            "No varargs calls can be inlined!");
1574 
1575     // Calculate the vector of arguments to pass into the function cloner, which
1576     // matches up the formal to the actual argument values.
1577     CallSite::arg_iterator AI = CS.arg_begin();
1578     unsigned ArgNo = 0;
1579     for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
1580          E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
1581       Value *ActualArg = *AI;
1582 
1583       // When byval arguments actually inlined, we need to make the copy implied
1584       // by them explicit.  However, we don't do this if the callee is readonly
1585       // or readnone, because the copy would be unneeded: the callee doesn't
1586       // modify the struct.
1587       if (CS.isByValArgument(ArgNo)) {
1588         ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
1589                                         CalledFunc->getParamAlignment(ArgNo+1));
1590         if (ActualArg != *AI)
1591           ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
1592       }
1593 
1594       VMap[&*I] = ActualArg;
1595     }
1596 
1597     // Add alignment assumptions if necessary. We do this before the inlined
1598     // instructions are actually cloned into the caller so that we can easily
1599     // check what will be known at the start of the inlined code.
1600     AddAlignmentAssumptions(CS, IFI);
1601 
1602     // We want the inliner to prune the code as it copies.  We would LOVE to
1603     // have no dead or constant instructions leftover after inlining occurs
1604     // (which can happen, e.g., because an argument was constant), but we'll be
1605     // happy with whatever the cloner can do.
1606     CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
1607                               /*ModuleLevelChanges=*/false, Returns, ".i",
1608                               &InlinedFunctionInfo, TheCall);
1609 
1610     // Remember the first block that is newly cloned over.
1611     FirstNewBlock = LastBlock; ++FirstNewBlock;
1612 
1613     // Inject byval arguments initialization.
1614     for (std::pair<Value*, Value*> &Init : ByValInit)
1615       HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
1616                               &*FirstNewBlock, IFI);
1617 
1618     Optional<OperandBundleUse> ParentDeopt =
1619         CS.getOperandBundle(LLVMContext::OB_deopt);
1620     if (ParentDeopt) {
1621       SmallVector<OperandBundleDef, 2> OpDefs;
1622 
1623       for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
1624         Instruction *I = dyn_cast_or_null<Instruction>(VH);
1625         if (!I) continue;  // instruction was DCE'd or RAUW'ed to undef
1626 
1627         OpDefs.clear();
1628 
1629         CallSite ICS(I);
1630         OpDefs.reserve(ICS.getNumOperandBundles());
1631 
1632         for (unsigned i = 0, e = ICS.getNumOperandBundles(); i < e; ++i) {
1633           auto ChildOB = ICS.getOperandBundleAt(i);
1634           if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
1635             // If the inlined call has other operand bundles, let them be
1636             OpDefs.emplace_back(ChildOB);
1637             continue;
1638           }
1639 
1640           // It may be useful to separate this logic (of handling operand
1641           // bundles) out to a separate "policy" component if this gets crowded.
1642           // Prepend the parent's deoptimization continuation to the newly
1643           // inlined call's deoptimization continuation.
1644           std::vector<Value *> MergedDeoptArgs;
1645           MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
1646                                   ChildOB.Inputs.size());
1647 
1648           MergedDeoptArgs.insert(MergedDeoptArgs.end(),
1649                                  ParentDeopt->Inputs.begin(),
1650                                  ParentDeopt->Inputs.end());
1651           MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(),
1652                                  ChildOB.Inputs.end());
1653 
1654           OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
1655         }
1656 
1657         Instruction *NewI = nullptr;
1658         if (isa<CallInst>(I))
1659           NewI = CallInst::Create(cast<CallInst>(I), OpDefs, I);
1660         else
1661           NewI = InvokeInst::Create(cast<InvokeInst>(I), OpDefs, I);
1662 
1663         // Note: the RAUW does the appropriate fixup in VMap, so we need to do
1664         // this even if the call returns void.
1665         I->replaceAllUsesWith(NewI);
1666 
1667         VH = nullptr;
1668         I->eraseFromParent();
1669       }
1670     }
1671 
1672     // Update the callgraph if requested.
1673     if (IFI.CG)
1674       UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
1675 
1676     // Update inlined instructions' line number information.
1677     fixupLineNumbers(Caller, FirstNewBlock, TheCall);
1678 
1679     // Clone existing noalias metadata if necessary.
1680     CloneAliasScopeMetadata(CS, VMap);
1681 
1682     // Add noalias metadata if necessary.
1683     AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR);
1684 
1685     // Propagate llvm.mem.parallel_loop_access if necessary.
1686     PropagateParallelLoopAccessMetadata(CS, VMap);
1687 
1688     // Register any cloned assumptions.
1689     if (IFI.GetAssumptionCache)
1690       for (BasicBlock &NewBlock :
1691            make_range(FirstNewBlock->getIterator(), Caller->end()))
1692         for (Instruction &I : NewBlock) {
1693           if (auto *II = dyn_cast<IntrinsicInst>(&I))
1694             if (II->getIntrinsicID() == Intrinsic::assume)
1695               (*IFI.GetAssumptionCache)(*Caller).registerAssumption(II);
1696         }
1697   }
1698 
1699   // If there are any alloca instructions in the block that used to be the entry
1700   // block for the callee, move them to the entry block of the caller.  First
1701   // calculate which instruction they should be inserted before.  We insert the
1702   // instructions at the end of the current alloca list.
1703   {
1704     BasicBlock::iterator InsertPoint = Caller->begin()->begin();
1705     for (BasicBlock::iterator I = FirstNewBlock->begin(),
1706          E = FirstNewBlock->end(); I != E; ) {
1707       AllocaInst *AI = dyn_cast<AllocaInst>(I++);
1708       if (!AI) continue;
1709 
1710       // If the alloca is now dead, remove it.  This often occurs due to code
1711       // specialization.
1712       if (AI->use_empty()) {
1713         AI->eraseFromParent();
1714         continue;
1715       }
1716 
1717       if (!allocaWouldBeStaticInEntry(AI))
1718         continue;
1719 
1720       // Keep track of the static allocas that we inline into the caller.
1721       IFI.StaticAllocas.push_back(AI);
1722 
1723       // Scan for the block of allocas that we can move over, and move them
1724       // all at once.
1725       while (isa<AllocaInst>(I) &&
1726              allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) {
1727         IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
1728         ++I;
1729       }
1730 
1731       // Transfer all of the allocas over in a block.  Using splice means
1732       // that the instructions aren't removed from the symbol table, then
1733       // reinserted.
1734       Caller->getEntryBlock().getInstList().splice(
1735           InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I);
1736     }
1737     // Move any dbg.declares describing the allocas into the entry basic block.
1738     DIBuilder DIB(*Caller->getParent());
1739     for (auto &AI : IFI.StaticAllocas)
1740       replaceDbgDeclareForAlloca(AI, AI, DIB, /*Deref=*/false);
1741   }
1742 
1743   bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false;
1744   if (InlinedFunctionInfo.ContainsCalls) {
1745     CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
1746     if (CallInst *CI = dyn_cast<CallInst>(TheCall))
1747       CallSiteTailKind = CI->getTailCallKind();
1748 
1749     for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
1750          ++BB) {
1751       for (Instruction &I : *BB) {
1752         CallInst *CI = dyn_cast<CallInst>(&I);
1753         if (!CI)
1754           continue;
1755 
1756         if (Function *F = CI->getCalledFunction())
1757           InlinedDeoptimizeCalls |=
1758               F->getIntrinsicID() == Intrinsic::experimental_deoptimize;
1759 
1760         // We need to reduce the strength of any inlined tail calls.  For
1761         // musttail, we have to avoid introducing potential unbounded stack
1762         // growth.  For example, if functions 'f' and 'g' are mutually recursive
1763         // with musttail, we can inline 'g' into 'f' so long as we preserve
1764         // musttail on the cloned call to 'f'.  If either the inlined call site
1765         // or the cloned call site is *not* musttail, the program already has
1766         // one frame of stack growth, so it's safe to remove musttail.  Here is
1767         // a table of example transformations:
1768         //
1769         //    f -> musttail g -> musttail f  ==>  f -> musttail f
1770         //    f -> musttail g ->     tail f  ==>  f ->     tail f
1771         //    f ->          g -> musttail f  ==>  f ->          f
1772         //    f ->          g ->     tail f  ==>  f ->          f
1773         CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
1774         ChildTCK = std::min(CallSiteTailKind, ChildTCK);
1775         CI->setTailCallKind(ChildTCK);
1776         InlinedMustTailCalls |= CI->isMustTailCall();
1777 
1778         // Calls inlined through a 'nounwind' call site should be marked
1779         // 'nounwind'.
1780         if (MarkNoUnwind)
1781           CI->setDoesNotThrow();
1782       }
1783     }
1784   }
1785 
1786   // Leave lifetime markers for the static alloca's, scoping them to the
1787   // function we just inlined.
1788   if (InsertLifetime && !IFI.StaticAllocas.empty()) {
1789     IRBuilder<> builder(&FirstNewBlock->front());
1790     for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
1791       AllocaInst *AI = IFI.StaticAllocas[ai];
1792       // Don't mark swifterror allocas. They can't have bitcast uses.
1793       if (AI->isSwiftError())
1794         continue;
1795 
1796       // If the alloca is already scoped to something smaller than the whole
1797       // function then there's no need to add redundant, less accurate markers.
1798       if (hasLifetimeMarkers(AI))
1799         continue;
1800 
1801       // Try to determine the size of the allocation.
1802       ConstantInt *AllocaSize = nullptr;
1803       if (ConstantInt *AIArraySize =
1804           dyn_cast<ConstantInt>(AI->getArraySize())) {
1805         auto &DL = Caller->getParent()->getDataLayout();
1806         Type *AllocaType = AI->getAllocatedType();
1807         uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
1808         uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
1809 
1810         // Don't add markers for zero-sized allocas.
1811         if (AllocaArraySize == 0)
1812           continue;
1813 
1814         // Check that array size doesn't saturate uint64_t and doesn't
1815         // overflow when it's multiplied by type size.
1816         if (AllocaArraySize != ~0ULL &&
1817             UINT64_MAX / AllocaArraySize >= AllocaTypeSize) {
1818           AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
1819                                         AllocaArraySize * AllocaTypeSize);
1820         }
1821       }
1822 
1823       builder.CreateLifetimeStart(AI, AllocaSize);
1824       for (ReturnInst *RI : Returns) {
1825         // Don't insert llvm.lifetime.end calls between a musttail or deoptimize
1826         // call and a return.  The return kills all local allocas.
1827         if (InlinedMustTailCalls &&
1828             RI->getParent()->getTerminatingMustTailCall())
1829           continue;
1830         if (InlinedDeoptimizeCalls &&
1831             RI->getParent()->getTerminatingDeoptimizeCall())
1832           continue;
1833         IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
1834       }
1835     }
1836   }
1837 
1838   // If the inlined code contained dynamic alloca instructions, wrap the inlined
1839   // code with llvm.stacksave/llvm.stackrestore intrinsics.
1840   if (InlinedFunctionInfo.ContainsDynamicAllocas) {
1841     Module *M = Caller->getParent();
1842     // Get the two intrinsics we care about.
1843     Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
1844     Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
1845 
1846     // Insert the llvm.stacksave.
1847     CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
1848                              .CreateCall(StackSave, {}, "savedstack");
1849 
1850     // Insert a call to llvm.stackrestore before any return instructions in the
1851     // inlined function.
1852     for (ReturnInst *RI : Returns) {
1853       // Don't insert llvm.stackrestore calls between a musttail or deoptimize
1854       // call and a return.  The return will restore the stack pointer.
1855       if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
1856         continue;
1857       if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall())
1858         continue;
1859       IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
1860     }
1861   }
1862 
1863   // If we are inlining for an invoke instruction, we must make sure to rewrite
1864   // any call instructions into invoke instructions.  This is sensitive to which
1865   // funclet pads were top-level in the inlinee, so must be done before
1866   // rewriting the "parent pad" links.
1867   if (auto *II = dyn_cast<InvokeInst>(TheCall)) {
1868     BasicBlock *UnwindDest = II->getUnwindDest();
1869     Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
1870     if (isa<LandingPadInst>(FirstNonPHI)) {
1871       HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
1872     } else {
1873       HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
1874     }
1875   }
1876 
1877   // Update the lexical scopes of the new funclets and callsites.
1878   // Anything that had 'none' as its parent is now nested inside the callsite's
1879   // EHPad.
1880 
1881   if (CallSiteEHPad) {
1882     for (Function::iterator BB = FirstNewBlock->getIterator(),
1883                             E = Caller->end();
1884          BB != E; ++BB) {
1885       // Add bundle operands to any top-level call sites.
1886       SmallVector<OperandBundleDef, 1> OpBundles;
1887       for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) {
1888         Instruction *I = &*BBI++;
1889         CallSite CS(I);
1890         if (!CS)
1891           continue;
1892 
1893         // Skip call sites which are nounwind intrinsics.
1894         auto *CalledFn =
1895             dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
1896         if (CalledFn && CalledFn->isIntrinsic() && CS.doesNotThrow())
1897           continue;
1898 
1899         // Skip call sites which already have a "funclet" bundle.
1900         if (CS.getOperandBundle(LLVMContext::OB_funclet))
1901           continue;
1902 
1903         CS.getOperandBundlesAsDefs(OpBundles);
1904         OpBundles.emplace_back("funclet", CallSiteEHPad);
1905 
1906         Instruction *NewInst;
1907         if (CS.isCall())
1908           NewInst = CallInst::Create(cast<CallInst>(I), OpBundles, I);
1909         else
1910           NewInst = InvokeInst::Create(cast<InvokeInst>(I), OpBundles, I);
1911         NewInst->takeName(I);
1912         I->replaceAllUsesWith(NewInst);
1913         I->eraseFromParent();
1914 
1915         OpBundles.clear();
1916       }
1917 
1918       // It is problematic if the inlinee has a cleanupret which unwinds to
1919       // caller and we inline it into a call site which doesn't unwind but into
1920       // an EH pad that does.  Such an edge must be dynamically unreachable.
1921       // As such, we replace the cleanupret with unreachable.
1922       if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
1923         if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
1924           changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false);
1925 
1926       Instruction *I = BB->getFirstNonPHI();
1927       if (!I->isEHPad())
1928         continue;
1929 
1930       if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
1931         if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
1932           CatchSwitch->setParentPad(CallSiteEHPad);
1933       } else {
1934         auto *FPI = cast<FuncletPadInst>(I);
1935         if (isa<ConstantTokenNone>(FPI->getParentPad()))
1936           FPI->setParentPad(CallSiteEHPad);
1937       }
1938     }
1939   }
1940 
1941   if (InlinedDeoptimizeCalls) {
1942     // We need to at least remove the deoptimizing returns from the Return set,
1943     // so that the control flow from those returns does not get merged into the
1944     // caller (but terminate it instead).  If the caller's return type does not
1945     // match the callee's return type, we also need to change the return type of
1946     // the intrinsic.
1947     if (Caller->getReturnType() == TheCall->getType()) {
1948       auto NewEnd = remove_if(Returns, [](ReturnInst *RI) {
1949         return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr;
1950       });
1951       Returns.erase(NewEnd, Returns.end());
1952     } else {
1953       SmallVector<ReturnInst *, 8> NormalReturns;
1954       Function *NewDeoptIntrinsic = Intrinsic::getDeclaration(
1955           Caller->getParent(), Intrinsic::experimental_deoptimize,
1956           {Caller->getReturnType()});
1957 
1958       for (ReturnInst *RI : Returns) {
1959         CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall();
1960         if (!DeoptCall) {
1961           NormalReturns.push_back(RI);
1962           continue;
1963         }
1964 
1965         // The calling convention on the deoptimize call itself may be bogus,
1966         // since the code we're inlining may have undefined behavior (and may
1967         // never actually execute at runtime); but all
1968         // @llvm.experimental.deoptimize declarations have to have the same
1969         // calling convention in a well-formed module.
1970         auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv();
1971         NewDeoptIntrinsic->setCallingConv(CallingConv);
1972         auto *CurBB = RI->getParent();
1973         RI->eraseFromParent();
1974 
1975         SmallVector<Value *, 4> CallArgs(DeoptCall->arg_begin(),
1976                                          DeoptCall->arg_end());
1977 
1978         SmallVector<OperandBundleDef, 1> OpBundles;
1979         DeoptCall->getOperandBundlesAsDefs(OpBundles);
1980         DeoptCall->eraseFromParent();
1981         assert(!OpBundles.empty() &&
1982                "Expected at least the deopt operand bundle");
1983 
1984         IRBuilder<> Builder(CurBB);
1985         CallInst *NewDeoptCall =
1986             Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles);
1987         NewDeoptCall->setCallingConv(CallingConv);
1988         if (NewDeoptCall->getType()->isVoidTy())
1989           Builder.CreateRetVoid();
1990         else
1991           Builder.CreateRet(NewDeoptCall);
1992       }
1993 
1994       // Leave behind the normal returns so we can merge control flow.
1995       std::swap(Returns, NormalReturns);
1996     }
1997   }
1998 
1999   // Handle any inlined musttail call sites.  In order for a new call site to be
2000   // musttail, the source of the clone and the inlined call site must have been
2001   // musttail.  Therefore it's safe to return without merging control into the
2002   // phi below.
2003   if (InlinedMustTailCalls) {
2004     // Check if we need to bitcast the result of any musttail calls.
2005     Type *NewRetTy = Caller->getReturnType();
2006     bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy;
2007 
2008     // Handle the returns preceded by musttail calls separately.
2009     SmallVector<ReturnInst *, 8> NormalReturns;
2010     for (ReturnInst *RI : Returns) {
2011       CallInst *ReturnedMustTail =
2012           RI->getParent()->getTerminatingMustTailCall();
2013       if (!ReturnedMustTail) {
2014         NormalReturns.push_back(RI);
2015         continue;
2016       }
2017       if (!NeedBitCast)
2018         continue;
2019 
2020       // Delete the old return and any preceding bitcast.
2021       BasicBlock *CurBB = RI->getParent();
2022       auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
2023       RI->eraseFromParent();
2024       if (OldCast)
2025         OldCast->eraseFromParent();
2026 
2027       // Insert a new bitcast and return with the right type.
2028       IRBuilder<> Builder(CurBB);
2029       Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
2030     }
2031 
2032     // Leave behind the normal returns so we can merge control flow.
2033     std::swap(Returns, NormalReturns);
2034   }
2035 
2036   // If we cloned in _exactly one_ basic block, and if that block ends in a
2037   // return instruction, we splice the body of the inlined callee directly into
2038   // the calling basic block.
2039   if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
2040     // Move all of the instructions right before the call.
2041     OrigBB->getInstList().splice(TheCall->getIterator(),
2042                                  FirstNewBlock->getInstList(),
2043                                  FirstNewBlock->begin(), FirstNewBlock->end());
2044     // Remove the cloned basic block.
2045     Caller->getBasicBlockList().pop_back();
2046 
2047     // If the call site was an invoke instruction, add a branch to the normal
2048     // destination.
2049     if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
2050       BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
2051       NewBr->setDebugLoc(Returns[0]->getDebugLoc());
2052     }
2053 
2054     // If the return instruction returned a value, replace uses of the call with
2055     // uses of the returned value.
2056     if (!TheCall->use_empty()) {
2057       ReturnInst *R = Returns[0];
2058       if (TheCall == R->getReturnValue())
2059         TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
2060       else
2061         TheCall->replaceAllUsesWith(R->getReturnValue());
2062     }
2063     // Since we are now done with the Call/Invoke, we can delete it.
2064     TheCall->eraseFromParent();
2065 
2066     // Since we are now done with the return instruction, delete it also.
2067     Returns[0]->eraseFromParent();
2068 
2069     // We are now done with the inlining.
2070     return true;
2071   }
2072 
2073   // Otherwise, we have the normal case, of more than one block to inline or
2074   // multiple return sites.
2075 
2076   // We want to clone the entire callee function into the hole between the
2077   // "starter" and "ender" blocks.  How we accomplish this depends on whether
2078   // this is an invoke instruction or a call instruction.
2079   BasicBlock *AfterCallBB;
2080   BranchInst *CreatedBranchToNormalDest = nullptr;
2081   if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
2082 
2083     // Add an unconditional branch to make this look like the CallInst case...
2084     CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall);
2085 
2086     // Split the basic block.  This guarantees that no PHI nodes will have to be
2087     // updated due to new incoming edges, and make the invoke case more
2088     // symmetric to the call case.
2089     AfterCallBB =
2090         OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
2091                                 CalledFunc->getName() + ".exit");
2092 
2093   } else {  // It's a call
2094     // If this is a call instruction, we need to split the basic block that
2095     // the call lives in.
2096     //
2097     AfterCallBB = OrigBB->splitBasicBlock(TheCall->getIterator(),
2098                                           CalledFunc->getName() + ".exit");
2099   }
2100 
2101   // Change the branch that used to go to AfterCallBB to branch to the first
2102   // basic block of the inlined function.
2103   //
2104   TerminatorInst *Br = OrigBB->getTerminator();
2105   assert(Br && Br->getOpcode() == Instruction::Br &&
2106          "splitBasicBlock broken!");
2107   Br->setOperand(0, &*FirstNewBlock);
2108 
2109   // Now that the function is correct, make it a little bit nicer.  In
2110   // particular, move the basic blocks inserted from the end of the function
2111   // into the space made by splitting the source basic block.
2112   Caller->getBasicBlockList().splice(AfterCallBB->getIterator(),
2113                                      Caller->getBasicBlockList(), FirstNewBlock,
2114                                      Caller->end());
2115 
2116   // Handle all of the return instructions that we just cloned in, and eliminate
2117   // any users of the original call/invoke instruction.
2118   Type *RTy = CalledFunc->getReturnType();
2119 
2120   PHINode *PHI = nullptr;
2121   if (Returns.size() > 1) {
2122     // The PHI node should go at the front of the new basic block to merge all
2123     // possible incoming values.
2124     if (!TheCall->use_empty()) {
2125       PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
2126                             &AfterCallBB->front());
2127       // Anything that used the result of the function call should now use the
2128       // PHI node as their operand.
2129       TheCall->replaceAllUsesWith(PHI);
2130     }
2131 
2132     // Loop over all of the return instructions adding entries to the PHI node
2133     // as appropriate.
2134     if (PHI) {
2135       for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2136         ReturnInst *RI = Returns[i];
2137         assert(RI->getReturnValue()->getType() == PHI->getType() &&
2138                "Ret value not consistent in function!");
2139         PHI->addIncoming(RI->getReturnValue(), RI->getParent());
2140       }
2141     }
2142 
2143     // Add a branch to the merge points and remove return instructions.
2144     DebugLoc Loc;
2145     for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2146       ReturnInst *RI = Returns[i];
2147       BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
2148       Loc = RI->getDebugLoc();
2149       BI->setDebugLoc(Loc);
2150       RI->eraseFromParent();
2151     }
2152     // We need to set the debug location to *somewhere* inside the
2153     // inlined function. The line number may be nonsensical, but the
2154     // instruction will at least be associated with the right
2155     // function.
2156     if (CreatedBranchToNormalDest)
2157       CreatedBranchToNormalDest->setDebugLoc(Loc);
2158   } else if (!Returns.empty()) {
2159     // Otherwise, if there is exactly one return value, just replace anything
2160     // using the return value of the call with the computed value.
2161     if (!TheCall->use_empty()) {
2162       if (TheCall == Returns[0]->getReturnValue())
2163         TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
2164       else
2165         TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
2166     }
2167 
2168     // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
2169     BasicBlock *ReturnBB = Returns[0]->getParent();
2170     ReturnBB->replaceAllUsesWith(AfterCallBB);
2171 
2172     // Splice the code from the return block into the block that it will return
2173     // to, which contains the code that was after the call.
2174     AfterCallBB->getInstList().splice(AfterCallBB->begin(),
2175                                       ReturnBB->getInstList());
2176 
2177     if (CreatedBranchToNormalDest)
2178       CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
2179 
2180     // Delete the return instruction now and empty ReturnBB now.
2181     Returns[0]->eraseFromParent();
2182     ReturnBB->eraseFromParent();
2183   } else if (!TheCall->use_empty()) {
2184     // No returns, but something is using the return value of the call.  Just
2185     // nuke the result.
2186     TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
2187   }
2188 
2189   // Since we are now done with the Call/Invoke, we can delete it.
2190   TheCall->eraseFromParent();
2191 
2192   // If we inlined any musttail calls and the original return is now
2193   // unreachable, delete it.  It can only contain a bitcast and ret.
2194   if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB))
2195     AfterCallBB->eraseFromParent();
2196 
2197   // We should always be able to fold the entry block of the function into the
2198   // single predecessor of the block...
2199   assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
2200   BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
2201 
2202   // Splice the code entry block into calling block, right before the
2203   // unconditional branch.
2204   CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
2205   OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList());
2206 
2207   // Remove the unconditional branch.
2208   OrigBB->getInstList().erase(Br);
2209 
2210   // Now we can remove the CalleeEntry block, which is now empty.
2211   Caller->getBasicBlockList().erase(CalleeEntry);
2212 
2213   // If we inserted a phi node, check to see if it has a single value (e.g. all
2214   // the entries are the same or undef).  If so, remove the PHI so it doesn't
2215   // block other optimizations.
2216   if (PHI) {
2217     AssumptionCache *AC =
2218         IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr;
2219     auto &DL = Caller->getParent()->getDataLayout();
2220     if (Value *V = SimplifyInstruction(PHI, DL, nullptr, nullptr, AC)) {
2221       PHI->replaceAllUsesWith(V);
2222       PHI->eraseFromParent();
2223     }
2224   }
2225 
2226   return true;
2227 }
2228