1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements inlining of a function into a call site, resolving 11 // parameters and the return value as appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Cloning.h" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/Module.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/IntrinsicInst.h" 21 #include "llvm/Intrinsics.h" 22 #include "llvm/Attributes.h" 23 #include "llvm/Analysis/CallGraph.h" 24 #include "llvm/Analysis/DebugInfo.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Target/TargetData.h" 27 #include "llvm/Transforms/Utils/Local.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/StringExtras.h" 30 #include "llvm/Support/CallSite.h" 31 #include "llvm/Support/IRBuilder.h" 32 using namespace llvm; 33 34 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI) { 35 return InlineFunction(CallSite(CI), IFI); 36 } 37 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI) { 38 return InlineFunction(CallSite(II), IFI); 39 } 40 41 namespace { 42 /// A class for recording information about inlining through an invoke. 43 class InvokeInliningInfo { 44 BasicBlock *OuterResumeDest; //< Destination of the invoke's unwind. 45 BasicBlock *InnerResumeDest; //< Destination for the callee's resume. 46 LandingPadInst *CallerLPad; //< LandingPadInst associated with the invoke. 47 PHINode *InnerEHValuesPHI; //< PHI for EH values from landingpad insts. 48 SmallVector<Value*, 8> UnwindDestPHIValues; 49 50 public: 51 InvokeInliningInfo(InvokeInst *II) 52 : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(0), 53 CallerLPad(0), InnerEHValuesPHI(0) { 54 // If there are PHI nodes in the unwind destination block, we need to keep 55 // track of which values came into them from the invoke before removing 56 // the edge from this block. 57 llvm::BasicBlock *InvokeBB = II->getParent(); 58 BasicBlock::iterator I = OuterResumeDest->begin(); 59 for (; isa<PHINode>(I); ++I) { 60 // Save the value to use for this edge. 61 PHINode *PHI = cast<PHINode>(I); 62 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 63 } 64 65 CallerLPad = cast<LandingPadInst>(I); 66 } 67 68 /// getOuterResumeDest - The outer unwind destination is the target of 69 /// unwind edges introduced for calls within the inlined function. 70 BasicBlock *getOuterResumeDest() const { 71 return OuterResumeDest; 72 } 73 74 BasicBlock *getInnerResumeDest(); 75 76 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 77 78 /// forwardResume - Forward the 'resume' instruction to the caller's landing 79 /// pad block. When the landing pad block has only one predecessor, this is 80 /// a simple branch. When there is more than one predecessor, we need to 81 /// split the landing pad block after the landingpad instruction and jump 82 /// to there. 83 void forwardResume(ResumeInst *RI); 84 85 /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind 86 /// destination block for the given basic block, using the values for the 87 /// original invoke's source block. 88 void addIncomingPHIValuesFor(BasicBlock *BB) const { 89 addIncomingPHIValuesForInto(BB, OuterResumeDest); 90 } 91 92 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 93 BasicBlock::iterator I = dest->begin(); 94 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 95 PHINode *phi = cast<PHINode>(I); 96 phi->addIncoming(UnwindDestPHIValues[i], src); 97 } 98 } 99 }; 100 } 101 102 /// getInnerResumeDest - Get or create a target for the branch from ResumeInsts. 103 BasicBlock *InvokeInliningInfo::getInnerResumeDest() { 104 if (InnerResumeDest) return InnerResumeDest; 105 106 // Split the landing pad. 107 BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint; 108 InnerResumeDest = 109 OuterResumeDest->splitBasicBlock(SplitPoint, 110 OuterResumeDest->getName() + ".body"); 111 112 // The number of incoming edges we expect to the inner landing pad. 113 const unsigned PHICapacity = 2; 114 115 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 116 BasicBlock::iterator InsertPoint = InnerResumeDest->begin(); 117 BasicBlock::iterator I = OuterResumeDest->begin(); 118 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 119 PHINode *OuterPHI = cast<PHINode>(I); 120 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 121 OuterPHI->getName() + ".lpad-body", 122 InsertPoint); 123 OuterPHI->replaceAllUsesWith(InnerPHI); 124 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 125 } 126 127 // Create a PHI for the exception values. 128 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 129 "eh.lpad-body", InsertPoint); 130 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 131 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 132 133 // All done. 134 return InnerResumeDest; 135 } 136 137 /// forwardResume - Forward the 'resume' instruction to the caller's landing pad 138 /// block. When the landing pad block has only one predecessor, this is a simple 139 /// branch. When there is more than one predecessor, we need to split the 140 /// landing pad block after the landingpad instruction and jump to there. 141 void InvokeInliningInfo::forwardResume(ResumeInst *RI) { 142 BasicBlock *Dest = getInnerResumeDest(); 143 BasicBlock *Src = RI->getParent(); 144 145 BranchInst::Create(Dest, Src); 146 147 // Update the PHIs in the destination. They were inserted in an order which 148 // makes this work. 149 addIncomingPHIValuesForInto(Src, Dest); 150 151 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 152 RI->eraseFromParent(); 153 } 154 155 /// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into 156 /// an invoke, we have to turn all of the calls that can throw into 157 /// invokes. This function analyze BB to see if there are any calls, and if so, 158 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 159 /// nodes in that block with the values specified in InvokeDestPHIValues. 160 /// 161 /// Returns true to indicate that the next block should be skipped. 162 static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, 163 InvokeInliningInfo &Invoke) { 164 LandingPadInst *LPI = Invoke.getLandingPadInst(); 165 166 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 167 Instruction *I = BBI++; 168 169 if (LandingPadInst *L = dyn_cast<LandingPadInst>(I)) { 170 unsigned NumClauses = LPI->getNumClauses(); 171 L->reserveClauses(NumClauses); 172 for (unsigned i = 0; i != NumClauses; ++i) 173 L->addClause(LPI->getClause(i)); 174 } 175 176 // We only need to check for function calls: inlined invoke 177 // instructions require no special handling. 178 CallInst *CI = dyn_cast<CallInst>(I); 179 180 // If this call cannot unwind, don't convert it to an invoke. 181 if (!CI || CI->doesNotThrow()) 182 continue; 183 184 // Convert this function call into an invoke instruction. First, split the 185 // basic block. 186 BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); 187 188 // Delete the unconditional branch inserted by splitBasicBlock 189 BB->getInstList().pop_back(); 190 191 // Create the new invoke instruction. 192 ImmutableCallSite CS(CI); 193 SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end()); 194 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, 195 Invoke.getOuterResumeDest(), 196 InvokeArgs, CI->getName(), BB); 197 II->setCallingConv(CI->getCallingConv()); 198 II->setAttributes(CI->getAttributes()); 199 200 // Make sure that anything using the call now uses the invoke! This also 201 // updates the CallGraph if present, because it uses a WeakVH. 202 CI->replaceAllUsesWith(II); 203 204 // Delete the original call 205 Split->getInstList().pop_front(); 206 207 // Update any PHI nodes in the exceptional block to indicate that there is 208 // now a new entry in them. 209 Invoke.addIncomingPHIValuesFor(BB); 210 return false; 211 } 212 213 return false; 214 } 215 216 /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls 217 /// in the body of the inlined function into invokes and turn unwind 218 /// instructions into branches to the invoke unwind dest. 219 /// 220 /// II is the invoke instruction being inlined. FirstNewBlock is the first 221 /// block of the inlined code (the last block is the end of the function), 222 /// and InlineCodeInfo is information about the code that got inlined. 223 static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock, 224 ClonedCodeInfo &InlinedCodeInfo) { 225 BasicBlock *InvokeDest = II->getUnwindDest(); 226 227 Function *Caller = FirstNewBlock->getParent(); 228 229 // The inlined code is currently at the end of the function, scan from the 230 // start of the inlined code to its end, checking for stuff we need to 231 // rewrite. If the code doesn't have calls or unwinds, we know there is 232 // nothing to rewrite. 233 if (!InlinedCodeInfo.ContainsCalls && !InlinedCodeInfo.ContainsUnwinds) { 234 // Now that everything is happy, we have one final detail. The PHI nodes in 235 // the exception destination block still have entries due to the original 236 // invoke instruction. Eliminate these entries (which might even delete the 237 // PHI node) now. 238 InvokeDest->removePredecessor(II->getParent()); 239 return; 240 } 241 242 InvokeInliningInfo Invoke(II); 243 244 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){ 245 if (InlinedCodeInfo.ContainsCalls) 246 if (HandleCallsInBlockInlinedThroughInvoke(BB, Invoke)) { 247 // Honor a request to skip the next block. We don't need to 248 // consider UnwindInsts in this case either. 249 ++BB; 250 continue; 251 } 252 253 if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { 254 // An UnwindInst requires special handling when it gets inlined into an 255 // invoke site. Once this happens, we know that the unwind would cause 256 // a control transfer to the invoke exception destination, so we can 257 // transform it into a direct branch to the exception destination. 258 BranchInst::Create(InvokeDest, UI); 259 260 // Delete the unwind instruction! 261 UI->eraseFromParent(); 262 263 // Update any PHI nodes in the exceptional block to indicate that 264 // there is now a new entry in them. 265 Invoke.addIncomingPHIValuesFor(BB); 266 } 267 268 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 269 Invoke.forwardResume(RI); 270 } 271 272 // Now that everything is happy, we have one final detail. The PHI nodes in 273 // the exception destination block still have entries due to the original 274 // invoke instruction. Eliminate these entries (which might even delete the 275 // PHI node) now. 276 InvokeDest->removePredecessor(II->getParent()); 277 } 278 279 /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee 280 /// into the caller, update the specified callgraph to reflect the changes we 281 /// made. Note that it's possible that not all code was copied over, so only 282 /// some edges of the callgraph may remain. 283 static void UpdateCallGraphAfterInlining(CallSite CS, 284 Function::iterator FirstNewBlock, 285 ValueToValueMapTy &VMap, 286 InlineFunctionInfo &IFI) { 287 CallGraph &CG = *IFI.CG; 288 const Function *Caller = CS.getInstruction()->getParent()->getParent(); 289 const Function *Callee = CS.getCalledFunction(); 290 CallGraphNode *CalleeNode = CG[Callee]; 291 CallGraphNode *CallerNode = CG[Caller]; 292 293 // Since we inlined some uninlined call sites in the callee into the caller, 294 // add edges from the caller to all of the callees of the callee. 295 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 296 297 // Consider the case where CalleeNode == CallerNode. 298 CallGraphNode::CalledFunctionsVector CallCache; 299 if (CalleeNode == CallerNode) { 300 CallCache.assign(I, E); 301 I = CallCache.begin(); 302 E = CallCache.end(); 303 } 304 305 for (; I != E; ++I) { 306 const Value *OrigCall = I->first; 307 308 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 309 // Only copy the edge if the call was inlined! 310 if (VMI == VMap.end() || VMI->second == 0) 311 continue; 312 313 // If the call was inlined, but then constant folded, there is no edge to 314 // add. Check for this case. 315 Instruction *NewCall = dyn_cast<Instruction>(VMI->second); 316 if (NewCall == 0) continue; 317 318 // Remember that this call site got inlined for the client of 319 // InlineFunction. 320 IFI.InlinedCalls.push_back(NewCall); 321 322 // It's possible that inlining the callsite will cause it to go from an 323 // indirect to a direct call by resolving a function pointer. If this 324 // happens, set the callee of the new call site to a more precise 325 // destination. This can also happen if the call graph node of the caller 326 // was just unnecessarily imprecise. 327 if (I->second->getFunction() == 0) 328 if (Function *F = CallSite(NewCall).getCalledFunction()) { 329 // Indirect call site resolved to direct call. 330 CallerNode->addCalledFunction(CallSite(NewCall), CG[F]); 331 332 continue; 333 } 334 335 CallerNode->addCalledFunction(CallSite(NewCall), I->second); 336 } 337 338 // Update the call graph by deleting the edge from Callee to Caller. We must 339 // do this after the loop above in case Caller and Callee are the same. 340 CallerNode->removeCallEdgeFor(CS); 341 } 342 343 /// HandleByValArgument - When inlining a call site that has a byval argument, 344 /// we have to make the implicit memcpy explicit by adding it. 345 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 346 const Function *CalledFunc, 347 InlineFunctionInfo &IFI, 348 unsigned ByValAlignment) { 349 Type *AggTy = cast<PointerType>(Arg->getType())->getElementType(); 350 351 // If the called function is readonly, then it could not mutate the caller's 352 // copy of the byval'd memory. In this case, it is safe to elide the copy and 353 // temporary. 354 if (CalledFunc->onlyReadsMemory()) { 355 // If the byval argument has a specified alignment that is greater than the 356 // passed in pointer, then we either have to round up the input pointer or 357 // give up on this transformation. 358 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 359 return Arg; 360 361 // If the pointer is already known to be sufficiently aligned, or if we can 362 // round it up to a larger alignment, then we don't need a temporary. 363 if (getOrEnforceKnownAlignment(Arg, ByValAlignment, 364 IFI.TD) >= ByValAlignment) 365 return Arg; 366 367 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 368 // for code quality, but rarely happens and is required for correctness. 369 } 370 371 LLVMContext &Context = Arg->getContext(); 372 373 Type *VoidPtrTy = Type::getInt8PtrTy(Context); 374 375 // Create the alloca. If we have TargetData, use nice alignment. 376 unsigned Align = 1; 377 if (IFI.TD) 378 Align = IFI.TD->getPrefTypeAlignment(AggTy); 379 380 // If the byval had an alignment specified, we *must* use at least that 381 // alignment, as it is required by the byval argument (and uses of the 382 // pointer inside the callee). 383 Align = std::max(Align, ByValAlignment); 384 385 Function *Caller = TheCall->getParent()->getParent(); 386 387 Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(), 388 &*Caller->begin()->begin()); 389 // Emit a memcpy. 390 Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)}; 391 Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(), 392 Intrinsic::memcpy, 393 Tys); 394 Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall); 395 Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall); 396 397 Value *Size; 398 if (IFI.TD == 0) 399 Size = ConstantExpr::getSizeOf(AggTy); 400 else 401 Size = ConstantInt::get(Type::getInt64Ty(Context), 402 IFI.TD->getTypeStoreSize(AggTy)); 403 404 // Always generate a memcpy of alignment 1 here because we don't know 405 // the alignment of the src pointer. Other optimizations can infer 406 // better alignment. 407 Value *CallArgs[] = { 408 DestCast, SrcCast, Size, 409 ConstantInt::get(Type::getInt32Ty(Context), 1), 410 ConstantInt::getFalse(Context) // isVolatile 411 }; 412 IRBuilder<>(TheCall).CreateCall(MemCpyFn, CallArgs); 413 414 // Uses of the argument in the function should use our new alloca 415 // instead. 416 return NewAlloca; 417 } 418 419 // isUsedByLifetimeMarker - Check whether this Value is used by a lifetime 420 // intrinsic. 421 static bool isUsedByLifetimeMarker(Value *V) { 422 for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE; 423 ++UI) { 424 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI)) { 425 switch (II->getIntrinsicID()) { 426 default: break; 427 case Intrinsic::lifetime_start: 428 case Intrinsic::lifetime_end: 429 return true; 430 } 431 } 432 } 433 return false; 434 } 435 436 // hasLifetimeMarkers - Check whether the given alloca already has 437 // lifetime.start or lifetime.end intrinsics. 438 static bool hasLifetimeMarkers(AllocaInst *AI) { 439 Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext()); 440 if (AI->getType() == Int8PtrTy) 441 return isUsedByLifetimeMarker(AI); 442 443 // Do a scan to find all the casts to i8*. 444 for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E; 445 ++I) { 446 if (I->getType() != Int8PtrTy) continue; 447 if (I->stripPointerCasts() != AI) continue; 448 if (isUsedByLifetimeMarker(*I)) 449 return true; 450 } 451 return false; 452 } 453 454 /// updateInlinedAtInfo - Helper function used by fixupLineNumbers to recursively 455 /// update InlinedAtEntry of a DebugLoc. 456 static DebugLoc updateInlinedAtInfo(const DebugLoc &DL, 457 const DebugLoc &InlinedAtDL, 458 LLVMContext &Ctx) { 459 if (MDNode *IA = DL.getInlinedAt(Ctx)) { 460 DebugLoc NewInlinedAtDL 461 = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx); 462 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), 463 NewInlinedAtDL.getAsMDNode(Ctx)); 464 } 465 466 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), 467 InlinedAtDL.getAsMDNode(Ctx)); 468 } 469 470 /// fixupLineNumbers - Update inlined instructions' line numbers to 471 /// to encode location where these instructions are inlined. 472 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 473 Instruction *TheCall) { 474 DebugLoc TheCallDL = TheCall->getDebugLoc(); 475 if (TheCallDL.isUnknown()) 476 return; 477 478 for (; FI != Fn->end(); ++FI) { 479 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 480 BI != BE; ++BI) { 481 DebugLoc DL = BI->getDebugLoc(); 482 if (!DL.isUnknown()) { 483 BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext())); 484 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) { 485 LLVMContext &Ctx = BI->getContext(); 486 MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx); 487 DVI->setOperand(2, createInlinedVariable(DVI->getVariable(), 488 InlinedAt, Ctx)); 489 } 490 } 491 } 492 } 493 } 494 495 /// InlineFunction - This function inlines the called function into the basic 496 /// block of the caller. This returns false if it is not possible to inline 497 /// this call. The program is still in a well defined state if this occurs 498 /// though. 499 /// 500 /// Note that this only does one level of inlining. For example, if the 501 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 502 /// exists in the instruction stream. Similarly this will inline a recursive 503 /// function by one level. 504 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) { 505 Instruction *TheCall = CS.getInstruction(); 506 LLVMContext &Context = TheCall->getContext(); 507 assert(TheCall->getParent() && TheCall->getParent()->getParent() && 508 "Instruction not in function!"); 509 510 // If IFI has any state in it, zap it before we fill it in. 511 IFI.reset(); 512 513 const Function *CalledFunc = CS.getCalledFunction(); 514 if (CalledFunc == 0 || // Can't inline external function or indirect 515 CalledFunc->isDeclaration() || // call, or call to a vararg function! 516 CalledFunc->getFunctionType()->isVarArg()) return false; 517 518 // If the call to the callee is not a tail call, we must clear the 'tail' 519 // flags on any calls that we inline. 520 bool MustClearTailCallFlags = 521 !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall()); 522 523 // If the call to the callee cannot throw, set the 'nounwind' flag on any 524 // calls that we inline. 525 bool MarkNoUnwind = CS.doesNotThrow(); 526 527 BasicBlock *OrigBB = TheCall->getParent(); 528 Function *Caller = OrigBB->getParent(); 529 530 // GC poses two hazards to inlining, which only occur when the callee has GC: 531 // 1. If the caller has no GC, then the callee's GC must be propagated to the 532 // caller. 533 // 2. If the caller has a differing GC, it is invalid to inline. 534 if (CalledFunc->hasGC()) { 535 if (!Caller->hasGC()) 536 Caller->setGC(CalledFunc->getGC()); 537 else if (CalledFunc->getGC() != Caller->getGC()) 538 return false; 539 } 540 541 // Get the personality function from the callee if it contains a landing pad. 542 Value *CalleePersonality = 0; 543 for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end(); 544 I != E; ++I) 545 if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) { 546 const BasicBlock *BB = II->getUnwindDest(); 547 const LandingPadInst *LP = BB->getLandingPadInst(); 548 CalleePersonality = LP->getPersonalityFn(); 549 break; 550 } 551 552 // Find the personality function used by the landing pads of the caller. If it 553 // exists, then check to see that it matches the personality function used in 554 // the callee. 555 if (CalleePersonality) { 556 for (Function::const_iterator I = Caller->begin(), E = Caller->end(); 557 I != E; ++I) 558 if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) { 559 const BasicBlock *BB = II->getUnwindDest(); 560 const LandingPadInst *LP = BB->getLandingPadInst(); 561 562 // If the personality functions match, then we can perform the 563 // inlining. Otherwise, we can't inline. 564 // TODO: This isn't 100% true. Some personality functions are proper 565 // supersets of others and can be used in place of the other. 566 if (LP->getPersonalityFn() != CalleePersonality) 567 return false; 568 569 break; 570 } 571 } 572 573 // Get an iterator to the last basic block in the function, which will have 574 // the new function inlined after it. 575 Function::iterator LastBlock = &Caller->back(); 576 577 // Make sure to capture all of the return instructions from the cloned 578 // function. 579 SmallVector<ReturnInst*, 8> Returns; 580 ClonedCodeInfo InlinedFunctionInfo; 581 Function::iterator FirstNewBlock; 582 583 { // Scope to destroy VMap after cloning. 584 ValueToValueMapTy VMap; 585 586 assert(CalledFunc->arg_size() == CS.arg_size() && 587 "No varargs calls can be inlined!"); 588 589 // Calculate the vector of arguments to pass into the function cloner, which 590 // matches up the formal to the actual argument values. 591 CallSite::arg_iterator AI = CS.arg_begin(); 592 unsigned ArgNo = 0; 593 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 594 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 595 Value *ActualArg = *AI; 596 597 // When byval arguments actually inlined, we need to make the copy implied 598 // by them explicit. However, we don't do this if the callee is readonly 599 // or readnone, because the copy would be unneeded: the callee doesn't 600 // modify the struct. 601 if (CS.isByValArgument(ArgNo)) { 602 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, 603 CalledFunc->getParamAlignment(ArgNo+1)); 604 605 // Calls that we inline may use the new alloca, so we need to clear 606 // their 'tail' flags if HandleByValArgument introduced a new alloca and 607 // the callee has calls. 608 MustClearTailCallFlags |= ActualArg != *AI; 609 } 610 611 VMap[I] = ActualArg; 612 } 613 614 // We want the inliner to prune the code as it copies. We would LOVE to 615 // have no dead or constant instructions leftover after inlining occurs 616 // (which can happen, e.g., because an argument was constant), but we'll be 617 // happy with whatever the cloner can do. 618 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 619 /*ModuleLevelChanges=*/false, Returns, ".i", 620 &InlinedFunctionInfo, IFI.TD, TheCall); 621 622 // Remember the first block that is newly cloned over. 623 FirstNewBlock = LastBlock; ++FirstNewBlock; 624 625 // Update the callgraph if requested. 626 if (IFI.CG) 627 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); 628 629 // Update inlined instructions' line number information. 630 fixupLineNumbers(Caller, FirstNewBlock, TheCall); 631 } 632 633 // If there are any alloca instructions in the block that used to be the entry 634 // block for the callee, move them to the entry block of the caller. First 635 // calculate which instruction they should be inserted before. We insert the 636 // instructions at the end of the current alloca list. 637 { 638 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 639 for (BasicBlock::iterator I = FirstNewBlock->begin(), 640 E = FirstNewBlock->end(); I != E; ) { 641 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 642 if (AI == 0) continue; 643 644 // If the alloca is now dead, remove it. This often occurs due to code 645 // specialization. 646 if (AI->use_empty()) { 647 AI->eraseFromParent(); 648 continue; 649 } 650 651 if (!isa<Constant>(AI->getArraySize())) 652 continue; 653 654 // Keep track of the static allocas that we inline into the caller. 655 IFI.StaticAllocas.push_back(AI); 656 657 // Scan for the block of allocas that we can move over, and move them 658 // all at once. 659 while (isa<AllocaInst>(I) && 660 isa<Constant>(cast<AllocaInst>(I)->getArraySize())) { 661 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 662 ++I; 663 } 664 665 // Transfer all of the allocas over in a block. Using splice means 666 // that the instructions aren't removed from the symbol table, then 667 // reinserted. 668 Caller->getEntryBlock().getInstList().splice(InsertPoint, 669 FirstNewBlock->getInstList(), 670 AI, I); 671 } 672 } 673 674 // Leave lifetime markers for the static alloca's, scoping them to the 675 // function we just inlined. 676 if (!IFI.StaticAllocas.empty()) { 677 IRBuilder<> builder(FirstNewBlock->begin()); 678 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 679 AllocaInst *AI = IFI.StaticAllocas[ai]; 680 681 // If the alloca is already scoped to something smaller than the whole 682 // function then there's no need to add redundant, less accurate markers. 683 if (hasLifetimeMarkers(AI)) 684 continue; 685 686 builder.CreateLifetimeStart(AI); 687 for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) { 688 IRBuilder<> builder(Returns[ri]); 689 builder.CreateLifetimeEnd(AI); 690 } 691 } 692 } 693 694 // If the inlined code contained dynamic alloca instructions, wrap the inlined 695 // code with llvm.stacksave/llvm.stackrestore intrinsics. 696 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 697 Module *M = Caller->getParent(); 698 // Get the two intrinsics we care about. 699 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 700 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 701 702 // Insert the llvm.stacksave. 703 CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin()) 704 .CreateCall(StackSave, "savedstack"); 705 706 // Insert a call to llvm.stackrestore before any return instructions in the 707 // inlined function. 708 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 709 IRBuilder<>(Returns[i]).CreateCall(StackRestore, SavedPtr); 710 } 711 712 // Count the number of StackRestore calls we insert. 713 unsigned NumStackRestores = Returns.size(); 714 715 // If we are inlining an invoke instruction, insert restores before each 716 // unwind. These unwinds will be rewritten into branches later. 717 if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) { 718 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); 719 BB != E; ++BB) 720 if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { 721 IRBuilder<>(UI).CreateCall(StackRestore, SavedPtr); 722 ++NumStackRestores; 723 } 724 } 725 } 726 727 // If we are inlining tail call instruction through a call site that isn't 728 // marked 'tail', we must remove the tail marker for any calls in the inlined 729 // code. Also, calls inlined through a 'nounwind' call site should be marked 730 // 'nounwind'. 731 if (InlinedFunctionInfo.ContainsCalls && 732 (MustClearTailCallFlags || MarkNoUnwind)) { 733 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); 734 BB != E; ++BB) 735 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 736 if (CallInst *CI = dyn_cast<CallInst>(I)) { 737 if (MustClearTailCallFlags) 738 CI->setTailCall(false); 739 if (MarkNoUnwind) 740 CI->setDoesNotThrow(); 741 } 742 } 743 744 // If we are inlining through a 'nounwind' call site then any inlined 'unwind' 745 // instructions are unreachable. 746 if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind) 747 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); 748 BB != E; ++BB) { 749 TerminatorInst *Term = BB->getTerminator(); 750 if (isa<UnwindInst>(Term)) { 751 new UnreachableInst(Context, Term); 752 BB->getInstList().erase(Term); 753 } 754 } 755 756 // If we are inlining for an invoke instruction, we must make sure to rewrite 757 // any inlined 'unwind' instructions into branches to the invoke exception 758 // destination, and call instructions into invoke instructions. 759 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) 760 HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo); 761 762 // If we cloned in _exactly one_ basic block, and if that block ends in a 763 // return instruction, we splice the body of the inlined callee directly into 764 // the calling basic block. 765 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 766 // Move all of the instructions right before the call. 767 OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(), 768 FirstNewBlock->begin(), FirstNewBlock->end()); 769 // Remove the cloned basic block. 770 Caller->getBasicBlockList().pop_back(); 771 772 // If the call site was an invoke instruction, add a branch to the normal 773 // destination. 774 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) 775 BranchInst::Create(II->getNormalDest(), TheCall); 776 777 // If the return instruction returned a value, replace uses of the call with 778 // uses of the returned value. 779 if (!TheCall->use_empty()) { 780 ReturnInst *R = Returns[0]; 781 if (TheCall == R->getReturnValue()) 782 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 783 else 784 TheCall->replaceAllUsesWith(R->getReturnValue()); 785 } 786 // Since we are now done with the Call/Invoke, we can delete it. 787 TheCall->eraseFromParent(); 788 789 // Since we are now done with the return instruction, delete it also. 790 Returns[0]->eraseFromParent(); 791 792 // We are now done with the inlining. 793 return true; 794 } 795 796 // Otherwise, we have the normal case, of more than one block to inline or 797 // multiple return sites. 798 799 // We want to clone the entire callee function into the hole between the 800 // "starter" and "ender" blocks. How we accomplish this depends on whether 801 // this is an invoke instruction or a call instruction. 802 BasicBlock *AfterCallBB; 803 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 804 805 // Add an unconditional branch to make this look like the CallInst case... 806 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); 807 808 // Split the basic block. This guarantees that no PHI nodes will have to be 809 // updated due to new incoming edges, and make the invoke case more 810 // symmetric to the call case. 811 AfterCallBB = OrigBB->splitBasicBlock(NewBr, 812 CalledFunc->getName()+".exit"); 813 814 } else { // It's a call 815 // If this is a call instruction, we need to split the basic block that 816 // the call lives in. 817 // 818 AfterCallBB = OrigBB->splitBasicBlock(TheCall, 819 CalledFunc->getName()+".exit"); 820 } 821 822 // Change the branch that used to go to AfterCallBB to branch to the first 823 // basic block of the inlined function. 824 // 825 TerminatorInst *Br = OrigBB->getTerminator(); 826 assert(Br && Br->getOpcode() == Instruction::Br && 827 "splitBasicBlock broken!"); 828 Br->setOperand(0, FirstNewBlock); 829 830 831 // Now that the function is correct, make it a little bit nicer. In 832 // particular, move the basic blocks inserted from the end of the function 833 // into the space made by splitting the source basic block. 834 Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(), 835 FirstNewBlock, Caller->end()); 836 837 // Handle all of the return instructions that we just cloned in, and eliminate 838 // any users of the original call/invoke instruction. 839 Type *RTy = CalledFunc->getReturnType(); 840 841 PHINode *PHI = 0; 842 if (Returns.size() > 1) { 843 // The PHI node should go at the front of the new basic block to merge all 844 // possible incoming values. 845 if (!TheCall->use_empty()) { 846 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), 847 AfterCallBB->begin()); 848 // Anything that used the result of the function call should now use the 849 // PHI node as their operand. 850 TheCall->replaceAllUsesWith(PHI); 851 } 852 853 // Loop over all of the return instructions adding entries to the PHI node 854 // as appropriate. 855 if (PHI) { 856 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 857 ReturnInst *RI = Returns[i]; 858 assert(RI->getReturnValue()->getType() == PHI->getType() && 859 "Ret value not consistent in function!"); 860 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 861 } 862 } 863 864 865 // Add a branch to the merge points and remove return instructions. 866 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 867 ReturnInst *RI = Returns[i]; 868 BranchInst::Create(AfterCallBB, RI); 869 RI->eraseFromParent(); 870 } 871 } else if (!Returns.empty()) { 872 // Otherwise, if there is exactly one return value, just replace anything 873 // using the return value of the call with the computed value. 874 if (!TheCall->use_empty()) { 875 if (TheCall == Returns[0]->getReturnValue()) 876 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 877 else 878 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); 879 } 880 881 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 882 BasicBlock *ReturnBB = Returns[0]->getParent(); 883 ReturnBB->replaceAllUsesWith(AfterCallBB); 884 885 // Splice the code from the return block into the block that it will return 886 // to, which contains the code that was after the call. 887 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 888 ReturnBB->getInstList()); 889 890 // Delete the return instruction now and empty ReturnBB now. 891 Returns[0]->eraseFromParent(); 892 ReturnBB->eraseFromParent(); 893 } else if (!TheCall->use_empty()) { 894 // No returns, but something is using the return value of the call. Just 895 // nuke the result. 896 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 897 } 898 899 // Since we are now done with the Call/Invoke, we can delete it. 900 TheCall->eraseFromParent(); 901 902 // We should always be able to fold the entry block of the function into the 903 // single predecessor of the block... 904 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 905 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 906 907 // Splice the code entry block into calling block, right before the 908 // unconditional branch. 909 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 910 OrigBB->getInstList().splice(Br, CalleeEntry->getInstList()); 911 912 // Remove the unconditional branch. 913 OrigBB->getInstList().erase(Br); 914 915 // Now we can remove the CalleeEntry block, which is now empty. 916 Caller->getBasicBlockList().erase(CalleeEntry); 917 918 // If we inserted a phi node, check to see if it has a single value (e.g. all 919 // the entries are the same or undef). If so, remove the PHI so it doesn't 920 // block other optimizations. 921 if (PHI) { 922 if (Value *V = SimplifyInstruction(PHI, IFI.TD)) { 923 PHI->replaceAllUsesWith(V); 924 PHI->eraseFromParent(); 925 } 926 } 927 928 return true; 929 } 930