1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements inlining of a function into a call site, resolving 11 // parameters and the return value as appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/ADT/iterator_range.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/BlockFrequencyInfo.h" 27 #include "llvm/Analysis/CallGraph.h" 28 #include "llvm/Analysis/CaptureTracking.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/ProfileSummaryInfo.h" 32 #include "llvm/Transforms/Utils/Local.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/CallSite.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DIBuilder.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DebugInfoMetadata.h" 44 #include "llvm/IR/DebugLoc.h" 45 #include "llvm/IR/DerivedTypes.h" 46 #include "llvm/IR/Dominators.h" 47 #include "llvm/IR/Function.h" 48 #include "llvm/IR/IRBuilder.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/MDBuilder.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Transforms/Utils/Cloning.h" 65 #include "llvm/Transforms/Utils/ValueMapper.h" 66 #include <algorithm> 67 #include <cassert> 68 #include <cstdint> 69 #include <iterator> 70 #include <limits> 71 #include <string> 72 #include <utility> 73 #include <vector> 74 75 using namespace llvm; 76 using ProfileCount = Function::ProfileCount; 77 78 static cl::opt<bool> 79 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), 80 cl::Hidden, 81 cl::desc("Convert noalias attributes to metadata during inlining.")); 82 83 static cl::opt<bool> 84 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", 85 cl::init(true), cl::Hidden, 86 cl::desc("Convert align attributes to assumptions during inlining.")); 87 88 llvm::InlineResult llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI, 89 AAResults *CalleeAAR, 90 bool InsertLifetime) { 91 return InlineFunction(CallSite(CI), IFI, CalleeAAR, InsertLifetime); 92 } 93 94 llvm::InlineResult llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI, 95 AAResults *CalleeAAR, 96 bool InsertLifetime) { 97 return InlineFunction(CallSite(II), IFI, CalleeAAR, InsertLifetime); 98 } 99 100 namespace { 101 102 /// A class for recording information about inlining a landing pad. 103 class LandingPadInliningInfo { 104 /// Destination of the invoke's unwind. 105 BasicBlock *OuterResumeDest; 106 107 /// Destination for the callee's resume. 108 BasicBlock *InnerResumeDest = nullptr; 109 110 /// LandingPadInst associated with the invoke. 111 LandingPadInst *CallerLPad = nullptr; 112 113 /// PHI for EH values from landingpad insts. 114 PHINode *InnerEHValuesPHI = nullptr; 115 116 SmallVector<Value*, 8> UnwindDestPHIValues; 117 118 public: 119 LandingPadInliningInfo(InvokeInst *II) 120 : OuterResumeDest(II->getUnwindDest()) { 121 // If there are PHI nodes in the unwind destination block, we need to keep 122 // track of which values came into them from the invoke before removing 123 // the edge from this block. 124 BasicBlock *InvokeBB = II->getParent(); 125 BasicBlock::iterator I = OuterResumeDest->begin(); 126 for (; isa<PHINode>(I); ++I) { 127 // Save the value to use for this edge. 128 PHINode *PHI = cast<PHINode>(I); 129 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 130 } 131 132 CallerLPad = cast<LandingPadInst>(I); 133 } 134 135 /// The outer unwind destination is the target of 136 /// unwind edges introduced for calls within the inlined function. 137 BasicBlock *getOuterResumeDest() const { 138 return OuterResumeDest; 139 } 140 141 BasicBlock *getInnerResumeDest(); 142 143 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 144 145 /// Forward the 'resume' instruction to the caller's landing pad block. 146 /// When the landing pad block has only one predecessor, this is 147 /// a simple branch. When there is more than one predecessor, we need to 148 /// split the landing pad block after the landingpad instruction and jump 149 /// to there. 150 void forwardResume(ResumeInst *RI, 151 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); 152 153 /// Add incoming-PHI values to the unwind destination block for the given 154 /// basic block, using the values for the original invoke's source block. 155 void addIncomingPHIValuesFor(BasicBlock *BB) const { 156 addIncomingPHIValuesForInto(BB, OuterResumeDest); 157 } 158 159 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 160 BasicBlock::iterator I = dest->begin(); 161 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 162 PHINode *phi = cast<PHINode>(I); 163 phi->addIncoming(UnwindDestPHIValues[i], src); 164 } 165 } 166 }; 167 168 } // end anonymous namespace 169 170 /// Get or create a target for the branch from ResumeInsts. 171 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() { 172 if (InnerResumeDest) return InnerResumeDest; 173 174 // Split the landing pad. 175 BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator(); 176 InnerResumeDest = 177 OuterResumeDest->splitBasicBlock(SplitPoint, 178 OuterResumeDest->getName() + ".body"); 179 180 // The number of incoming edges we expect to the inner landing pad. 181 const unsigned PHICapacity = 2; 182 183 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 184 Instruction *InsertPoint = &InnerResumeDest->front(); 185 BasicBlock::iterator I = OuterResumeDest->begin(); 186 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 187 PHINode *OuterPHI = cast<PHINode>(I); 188 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 189 OuterPHI->getName() + ".lpad-body", 190 InsertPoint); 191 OuterPHI->replaceAllUsesWith(InnerPHI); 192 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 193 } 194 195 // Create a PHI for the exception values. 196 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 197 "eh.lpad-body", InsertPoint); 198 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 199 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 200 201 // All done. 202 return InnerResumeDest; 203 } 204 205 /// Forward the 'resume' instruction to the caller's landing pad block. 206 /// When the landing pad block has only one predecessor, this is a simple 207 /// branch. When there is more than one predecessor, we need to split the 208 /// landing pad block after the landingpad instruction and jump to there. 209 void LandingPadInliningInfo::forwardResume( 210 ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) { 211 BasicBlock *Dest = getInnerResumeDest(); 212 BasicBlock *Src = RI->getParent(); 213 214 BranchInst::Create(Dest, Src); 215 216 // Update the PHIs in the destination. They were inserted in an order which 217 // makes this work. 218 addIncomingPHIValuesForInto(Src, Dest); 219 220 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 221 RI->eraseFromParent(); 222 } 223 224 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper. 225 static Value *getParentPad(Value *EHPad) { 226 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 227 return FPI->getParentPad(); 228 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 229 } 230 231 using UnwindDestMemoTy = DenseMap<Instruction *, Value *>; 232 233 /// Helper for getUnwindDestToken that does the descendant-ward part of 234 /// the search. 235 static Value *getUnwindDestTokenHelper(Instruction *EHPad, 236 UnwindDestMemoTy &MemoMap) { 237 SmallVector<Instruction *, 8> Worklist(1, EHPad); 238 239 while (!Worklist.empty()) { 240 Instruction *CurrentPad = Worklist.pop_back_val(); 241 // We only put pads on the worklist that aren't in the MemoMap. When 242 // we find an unwind dest for a pad we may update its ancestors, but 243 // the queue only ever contains uncles/great-uncles/etc. of CurrentPad, 244 // so they should never get updated while queued on the worklist. 245 assert(!MemoMap.count(CurrentPad)); 246 Value *UnwindDestToken = nullptr; 247 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) { 248 if (CatchSwitch->hasUnwindDest()) { 249 UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI(); 250 } else { 251 // Catchswitch doesn't have a 'nounwind' variant, and one might be 252 // annotated as "unwinds to caller" when really it's nounwind (see 253 // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the 254 // parent's unwind dest from this. We can check its catchpads' 255 // descendants, since they might include a cleanuppad with an 256 // "unwinds to caller" cleanupret, which can be trusted. 257 for (auto HI = CatchSwitch->handler_begin(), 258 HE = CatchSwitch->handler_end(); 259 HI != HE && !UnwindDestToken; ++HI) { 260 BasicBlock *HandlerBlock = *HI; 261 auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI()); 262 for (User *Child : CatchPad->users()) { 263 // Intentionally ignore invokes here -- since the catchswitch is 264 // marked "unwind to caller", it would be a verifier error if it 265 // contained an invoke which unwinds out of it, so any invoke we'd 266 // encounter must unwind to some child of the catch. 267 if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child)) 268 continue; 269 270 Instruction *ChildPad = cast<Instruction>(Child); 271 auto Memo = MemoMap.find(ChildPad); 272 if (Memo == MemoMap.end()) { 273 // Haven't figured out this child pad yet; queue it. 274 Worklist.push_back(ChildPad); 275 continue; 276 } 277 // We've already checked this child, but might have found that 278 // it offers no proof either way. 279 Value *ChildUnwindDestToken = Memo->second; 280 if (!ChildUnwindDestToken) 281 continue; 282 // We already know the child's unwind dest, which can either 283 // be ConstantTokenNone to indicate unwind to caller, or can 284 // be another child of the catchpad. Only the former indicates 285 // the unwind dest of the catchswitch. 286 if (isa<ConstantTokenNone>(ChildUnwindDestToken)) { 287 UnwindDestToken = ChildUnwindDestToken; 288 break; 289 } 290 assert(getParentPad(ChildUnwindDestToken) == CatchPad); 291 } 292 } 293 } 294 } else { 295 auto *CleanupPad = cast<CleanupPadInst>(CurrentPad); 296 for (User *U : CleanupPad->users()) { 297 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) { 298 if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest()) 299 UnwindDestToken = RetUnwindDest->getFirstNonPHI(); 300 else 301 UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext()); 302 break; 303 } 304 Value *ChildUnwindDestToken; 305 if (auto *Invoke = dyn_cast<InvokeInst>(U)) { 306 ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI(); 307 } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) { 308 Instruction *ChildPad = cast<Instruction>(U); 309 auto Memo = MemoMap.find(ChildPad); 310 if (Memo == MemoMap.end()) { 311 // Haven't resolved this child yet; queue it and keep searching. 312 Worklist.push_back(ChildPad); 313 continue; 314 } 315 // We've checked this child, but still need to ignore it if it 316 // had no proof either way. 317 ChildUnwindDestToken = Memo->second; 318 if (!ChildUnwindDestToken) 319 continue; 320 } else { 321 // Not a relevant user of the cleanuppad 322 continue; 323 } 324 // In a well-formed program, the child/invoke must either unwind to 325 // an(other) child of the cleanup, or exit the cleanup. In the 326 // first case, continue searching. 327 if (isa<Instruction>(ChildUnwindDestToken) && 328 getParentPad(ChildUnwindDestToken) == CleanupPad) 329 continue; 330 UnwindDestToken = ChildUnwindDestToken; 331 break; 332 } 333 } 334 // If we haven't found an unwind dest for CurrentPad, we may have queued its 335 // children, so move on to the next in the worklist. 336 if (!UnwindDestToken) 337 continue; 338 339 // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits 340 // any ancestors of CurrentPad up to but not including UnwindDestToken's 341 // parent pad. Record this in the memo map, and check to see if the 342 // original EHPad being queried is one of the ones exited. 343 Value *UnwindParent; 344 if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken)) 345 UnwindParent = getParentPad(UnwindPad); 346 else 347 UnwindParent = nullptr; 348 bool ExitedOriginalPad = false; 349 for (Instruction *ExitedPad = CurrentPad; 350 ExitedPad && ExitedPad != UnwindParent; 351 ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) { 352 // Skip over catchpads since they just follow their catchswitches. 353 if (isa<CatchPadInst>(ExitedPad)) 354 continue; 355 MemoMap[ExitedPad] = UnwindDestToken; 356 ExitedOriginalPad |= (ExitedPad == EHPad); 357 } 358 359 if (ExitedOriginalPad) 360 return UnwindDestToken; 361 362 // Continue the search. 363 } 364 365 // No definitive information is contained within this funclet. 366 return nullptr; 367 } 368 369 /// Given an EH pad, find where it unwinds. If it unwinds to an EH pad, 370 /// return that pad instruction. If it unwinds to caller, return 371 /// ConstantTokenNone. If it does not have a definitive unwind destination, 372 /// return nullptr. 373 /// 374 /// This routine gets invoked for calls in funclets in inlinees when inlining 375 /// an invoke. Since many funclets don't have calls inside them, it's queried 376 /// on-demand rather than building a map of pads to unwind dests up front. 377 /// Determining a funclet's unwind dest may require recursively searching its 378 /// descendants, and also ancestors and cousins if the descendants don't provide 379 /// an answer. Since most funclets will have their unwind dest immediately 380 /// available as the unwind dest of a catchswitch or cleanupret, this routine 381 /// searches top-down from the given pad and then up. To avoid worst-case 382 /// quadratic run-time given that approach, it uses a memo map to avoid 383 /// re-processing funclet trees. The callers that rewrite the IR as they go 384 /// take advantage of this, for correctness, by checking/forcing rewritten 385 /// pads' entries to match the original callee view. 386 static Value *getUnwindDestToken(Instruction *EHPad, 387 UnwindDestMemoTy &MemoMap) { 388 // Catchpads unwind to the same place as their catchswitch; 389 // redirct any queries on catchpads so the code below can 390 // deal with just catchswitches and cleanuppads. 391 if (auto *CPI = dyn_cast<CatchPadInst>(EHPad)) 392 EHPad = CPI->getCatchSwitch(); 393 394 // Check if we've already determined the unwind dest for this pad. 395 auto Memo = MemoMap.find(EHPad); 396 if (Memo != MemoMap.end()) 397 return Memo->second; 398 399 // Search EHPad and, if necessary, its descendants. 400 Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap); 401 assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0)); 402 if (UnwindDestToken) 403 return UnwindDestToken; 404 405 // No information is available for this EHPad from itself or any of its 406 // descendants. An unwind all the way out to a pad in the caller would 407 // need also to agree with the unwind dest of the parent funclet, so 408 // search up the chain to try to find a funclet with information. Put 409 // null entries in the memo map to avoid re-processing as we go up. 410 MemoMap[EHPad] = nullptr; 411 #ifndef NDEBUG 412 SmallPtrSet<Instruction *, 4> TempMemos; 413 TempMemos.insert(EHPad); 414 #endif 415 Instruction *LastUselessPad = EHPad; 416 Value *AncestorToken; 417 for (AncestorToken = getParentPad(EHPad); 418 auto *AncestorPad = dyn_cast<Instruction>(AncestorToken); 419 AncestorToken = getParentPad(AncestorToken)) { 420 // Skip over catchpads since they just follow their catchswitches. 421 if (isa<CatchPadInst>(AncestorPad)) 422 continue; 423 // If the MemoMap had an entry mapping AncestorPad to nullptr, since we 424 // haven't yet called getUnwindDestTokenHelper for AncestorPad in this 425 // call to getUnwindDestToken, that would mean that AncestorPad had no 426 // information in itself, its descendants, or its ancestors. If that 427 // were the case, then we should also have recorded the lack of information 428 // for the descendant that we're coming from. So assert that we don't 429 // find a null entry in the MemoMap for AncestorPad. 430 assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]); 431 auto AncestorMemo = MemoMap.find(AncestorPad); 432 if (AncestorMemo == MemoMap.end()) { 433 UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap); 434 } else { 435 UnwindDestToken = AncestorMemo->second; 436 } 437 if (UnwindDestToken) 438 break; 439 LastUselessPad = AncestorPad; 440 MemoMap[LastUselessPad] = nullptr; 441 #ifndef NDEBUG 442 TempMemos.insert(LastUselessPad); 443 #endif 444 } 445 446 // We know that getUnwindDestTokenHelper was called on LastUselessPad and 447 // returned nullptr (and likewise for EHPad and any of its ancestors up to 448 // LastUselessPad), so LastUselessPad has no information from below. Since 449 // getUnwindDestTokenHelper must investigate all downward paths through 450 // no-information nodes to prove that a node has no information like this, 451 // and since any time it finds information it records it in the MemoMap for 452 // not just the immediately-containing funclet but also any ancestors also 453 // exited, it must be the case that, walking downward from LastUselessPad, 454 // visiting just those nodes which have not been mapped to an unwind dest 455 // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since 456 // they are just used to keep getUnwindDestTokenHelper from repeating work), 457 // any node visited must have been exhaustively searched with no information 458 // for it found. 459 SmallVector<Instruction *, 8> Worklist(1, LastUselessPad); 460 while (!Worklist.empty()) { 461 Instruction *UselessPad = Worklist.pop_back_val(); 462 auto Memo = MemoMap.find(UselessPad); 463 if (Memo != MemoMap.end() && Memo->second) { 464 // Here the name 'UselessPad' is a bit of a misnomer, because we've found 465 // that it is a funclet that does have information about unwinding to 466 // a particular destination; its parent was a useless pad. 467 // Since its parent has no information, the unwind edge must not escape 468 // the parent, and must target a sibling of this pad. This local unwind 469 // gives us no information about EHPad. Leave it and the subtree rooted 470 // at it alone. 471 assert(getParentPad(Memo->second) == getParentPad(UselessPad)); 472 continue; 473 } 474 // We know we don't have information for UselesPad. If it has an entry in 475 // the MemoMap (mapping it to nullptr), it must be one of the TempMemos 476 // added on this invocation of getUnwindDestToken; if a previous invocation 477 // recorded nullptr, it would have had to prove that the ancestors of 478 // UselessPad, which include LastUselessPad, had no information, and that 479 // in turn would have required proving that the descendants of 480 // LastUselesPad, which include EHPad, have no information about 481 // LastUselessPad, which would imply that EHPad was mapped to nullptr in 482 // the MemoMap on that invocation, which isn't the case if we got here. 483 assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad)); 484 // Assert as we enumerate users that 'UselessPad' doesn't have any unwind 485 // information that we'd be contradicting by making a map entry for it 486 // (which is something that getUnwindDestTokenHelper must have proved for 487 // us to get here). Just assert on is direct users here; the checks in 488 // this downward walk at its descendants will verify that they don't have 489 // any unwind edges that exit 'UselessPad' either (i.e. they either have no 490 // unwind edges or unwind to a sibling). 491 MemoMap[UselessPad] = UnwindDestToken; 492 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) { 493 assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad"); 494 for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) { 495 auto *CatchPad = HandlerBlock->getFirstNonPHI(); 496 for (User *U : CatchPad->users()) { 497 assert( 498 (!isa<InvokeInst>(U) || 499 (getParentPad( 500 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 501 CatchPad)) && 502 "Expected useless pad"); 503 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 504 Worklist.push_back(cast<Instruction>(U)); 505 } 506 } 507 } else { 508 assert(isa<CleanupPadInst>(UselessPad)); 509 for (User *U : UselessPad->users()) { 510 assert(!isa<CleanupReturnInst>(U) && "Expected useless pad"); 511 assert((!isa<InvokeInst>(U) || 512 (getParentPad( 513 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 514 UselessPad)) && 515 "Expected useless pad"); 516 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 517 Worklist.push_back(cast<Instruction>(U)); 518 } 519 } 520 } 521 522 return UnwindDestToken; 523 } 524 525 /// When we inline a basic block into an invoke, 526 /// we have to turn all of the calls that can throw into invokes. 527 /// This function analyze BB to see if there are any calls, and if so, 528 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 529 /// nodes in that block with the values specified in InvokeDestPHIValues. 530 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke( 531 BasicBlock *BB, BasicBlock *UnwindEdge, 532 UnwindDestMemoTy *FuncletUnwindMap = nullptr) { 533 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 534 Instruction *I = &*BBI++; 535 536 // We only need to check for function calls: inlined invoke 537 // instructions require no special handling. 538 CallInst *CI = dyn_cast<CallInst>(I); 539 540 if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue())) 541 continue; 542 543 // We do not need to (and in fact, cannot) convert possibly throwing calls 544 // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into 545 // invokes. The caller's "segment" of the deoptimization continuation 546 // attached to the newly inlined @llvm.experimental_deoptimize 547 // (resp. @llvm.experimental.guard) call should contain the exception 548 // handling logic, if any. 549 if (auto *F = CI->getCalledFunction()) 550 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize || 551 F->getIntrinsicID() == Intrinsic::experimental_guard) 552 continue; 553 554 if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) { 555 // This call is nested inside a funclet. If that funclet has an unwind 556 // destination within the inlinee, then unwinding out of this call would 557 // be UB. Rewriting this call to an invoke which targets the inlined 558 // invoke's unwind dest would give the call's parent funclet multiple 559 // unwind destinations, which is something that subsequent EH table 560 // generation can't handle and that the veirifer rejects. So when we 561 // see such a call, leave it as a call. 562 auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]); 563 Value *UnwindDestToken = 564 getUnwindDestToken(FuncletPad, *FuncletUnwindMap); 565 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 566 continue; 567 #ifndef NDEBUG 568 Instruction *MemoKey; 569 if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad)) 570 MemoKey = CatchPad->getCatchSwitch(); 571 else 572 MemoKey = FuncletPad; 573 assert(FuncletUnwindMap->count(MemoKey) && 574 (*FuncletUnwindMap)[MemoKey] == UnwindDestToken && 575 "must get memoized to avoid confusing later searches"); 576 #endif // NDEBUG 577 } 578 579 changeToInvokeAndSplitBasicBlock(CI, UnwindEdge); 580 return BB; 581 } 582 return nullptr; 583 } 584 585 /// If we inlined an invoke site, we need to convert calls 586 /// in the body of the inlined function into invokes. 587 /// 588 /// II is the invoke instruction being inlined. FirstNewBlock is the first 589 /// block of the inlined code (the last block is the end of the function), 590 /// and InlineCodeInfo is information about the code that got inlined. 591 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock, 592 ClonedCodeInfo &InlinedCodeInfo) { 593 BasicBlock *InvokeDest = II->getUnwindDest(); 594 595 Function *Caller = FirstNewBlock->getParent(); 596 597 // The inlined code is currently at the end of the function, scan from the 598 // start of the inlined code to its end, checking for stuff we need to 599 // rewrite. 600 LandingPadInliningInfo Invoke(II); 601 602 // Get all of the inlined landing pad instructions. 603 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 604 for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end(); 605 I != E; ++I) 606 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 607 InlinedLPads.insert(II->getLandingPadInst()); 608 609 // Append the clauses from the outer landing pad instruction into the inlined 610 // landing pad instructions. 611 LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 612 for (LandingPadInst *InlinedLPad : InlinedLPads) { 613 unsigned OuterNum = OuterLPad->getNumClauses(); 614 InlinedLPad->reserveClauses(OuterNum); 615 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 616 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 617 if (OuterLPad->isCleanup()) 618 InlinedLPad->setCleanup(true); 619 } 620 621 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 622 BB != E; ++BB) { 623 if (InlinedCodeInfo.ContainsCalls) 624 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 625 &*BB, Invoke.getOuterResumeDest())) 626 // Update any PHI nodes in the exceptional block to indicate that there 627 // is now a new entry in them. 628 Invoke.addIncomingPHIValuesFor(NewBB); 629 630 // Forward any resumes that are remaining here. 631 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 632 Invoke.forwardResume(RI, InlinedLPads); 633 } 634 635 // Now that everything is happy, we have one final detail. The PHI nodes in 636 // the exception destination block still have entries due to the original 637 // invoke instruction. Eliminate these entries (which might even delete the 638 // PHI node) now. 639 InvokeDest->removePredecessor(II->getParent()); 640 } 641 642 /// If we inlined an invoke site, we need to convert calls 643 /// in the body of the inlined function into invokes. 644 /// 645 /// II is the invoke instruction being inlined. FirstNewBlock is the first 646 /// block of the inlined code (the last block is the end of the function), 647 /// and InlineCodeInfo is information about the code that got inlined. 648 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock, 649 ClonedCodeInfo &InlinedCodeInfo) { 650 BasicBlock *UnwindDest = II->getUnwindDest(); 651 Function *Caller = FirstNewBlock->getParent(); 652 653 assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!"); 654 655 // If there are PHI nodes in the unwind destination block, we need to keep 656 // track of which values came into them from the invoke before removing the 657 // edge from this block. 658 SmallVector<Value *, 8> UnwindDestPHIValues; 659 BasicBlock *InvokeBB = II->getParent(); 660 for (Instruction &I : *UnwindDest) { 661 // Save the value to use for this edge. 662 PHINode *PHI = dyn_cast<PHINode>(&I); 663 if (!PHI) 664 break; 665 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 666 } 667 668 // Add incoming-PHI values to the unwind destination block for the given basic 669 // block, using the values for the original invoke's source block. 670 auto UpdatePHINodes = [&](BasicBlock *Src) { 671 BasicBlock::iterator I = UnwindDest->begin(); 672 for (Value *V : UnwindDestPHIValues) { 673 PHINode *PHI = cast<PHINode>(I); 674 PHI->addIncoming(V, Src); 675 ++I; 676 } 677 }; 678 679 // This connects all the instructions which 'unwind to caller' to the invoke 680 // destination. 681 UnwindDestMemoTy FuncletUnwindMap; 682 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 683 BB != E; ++BB) { 684 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 685 if (CRI->unwindsToCaller()) { 686 auto *CleanupPad = CRI->getCleanupPad(); 687 CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI); 688 CRI->eraseFromParent(); 689 UpdatePHINodes(&*BB); 690 // Finding a cleanupret with an unwind destination would confuse 691 // subsequent calls to getUnwindDestToken, so map the cleanuppad 692 // to short-circuit any such calls and recognize this as an "unwind 693 // to caller" cleanup. 694 assert(!FuncletUnwindMap.count(CleanupPad) || 695 isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad])); 696 FuncletUnwindMap[CleanupPad] = 697 ConstantTokenNone::get(Caller->getContext()); 698 } 699 } 700 701 Instruction *I = BB->getFirstNonPHI(); 702 if (!I->isEHPad()) 703 continue; 704 705 Instruction *Replacement = nullptr; 706 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 707 if (CatchSwitch->unwindsToCaller()) { 708 Value *UnwindDestToken; 709 if (auto *ParentPad = 710 dyn_cast<Instruction>(CatchSwitch->getParentPad())) { 711 // This catchswitch is nested inside another funclet. If that 712 // funclet has an unwind destination within the inlinee, then 713 // unwinding out of this catchswitch would be UB. Rewriting this 714 // catchswitch to unwind to the inlined invoke's unwind dest would 715 // give the parent funclet multiple unwind destinations, which is 716 // something that subsequent EH table generation can't handle and 717 // that the veirifer rejects. So when we see such a call, leave it 718 // as "unwind to caller". 719 UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap); 720 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 721 continue; 722 } else { 723 // This catchswitch has no parent to inherit constraints from, and 724 // none of its descendants can have an unwind edge that exits it and 725 // targets another funclet in the inlinee. It may or may not have a 726 // descendant that definitively has an unwind to caller. In either 727 // case, we'll have to assume that any unwinds out of it may need to 728 // be routed to the caller, so treat it as though it has a definitive 729 // unwind to caller. 730 UnwindDestToken = ConstantTokenNone::get(Caller->getContext()); 731 } 732 auto *NewCatchSwitch = CatchSwitchInst::Create( 733 CatchSwitch->getParentPad(), UnwindDest, 734 CatchSwitch->getNumHandlers(), CatchSwitch->getName(), 735 CatchSwitch); 736 for (BasicBlock *PadBB : CatchSwitch->handlers()) 737 NewCatchSwitch->addHandler(PadBB); 738 // Propagate info for the old catchswitch over to the new one in 739 // the unwind map. This also serves to short-circuit any subsequent 740 // checks for the unwind dest of this catchswitch, which would get 741 // confused if they found the outer handler in the callee. 742 FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken; 743 Replacement = NewCatchSwitch; 744 } 745 } else if (!isa<FuncletPadInst>(I)) { 746 llvm_unreachable("unexpected EHPad!"); 747 } 748 749 if (Replacement) { 750 Replacement->takeName(I); 751 I->replaceAllUsesWith(Replacement); 752 I->eraseFromParent(); 753 UpdatePHINodes(&*BB); 754 } 755 } 756 757 if (InlinedCodeInfo.ContainsCalls) 758 for (Function::iterator BB = FirstNewBlock->getIterator(), 759 E = Caller->end(); 760 BB != E; ++BB) 761 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 762 &*BB, UnwindDest, &FuncletUnwindMap)) 763 // Update any PHI nodes in the exceptional block to indicate that there 764 // is now a new entry in them. 765 UpdatePHINodes(NewBB); 766 767 // Now that everything is happy, we have one final detail. The PHI nodes in 768 // the exception destination block still have entries due to the original 769 // invoke instruction. Eliminate these entries (which might even delete the 770 // PHI node) now. 771 UnwindDest->removePredecessor(InvokeBB); 772 } 773 774 /// When inlining a call site that has !llvm.mem.parallel_loop_access or 775 /// llvm.access.group metadata, that metadata should be propagated to all 776 /// memory-accessing cloned instructions. 777 static void PropagateParallelLoopAccessMetadata(CallSite CS, 778 ValueToValueMapTy &VMap) { 779 MDNode *M = 780 CS.getInstruction()->getMetadata(LLVMContext::MD_mem_parallel_loop_access); 781 MDNode *CallAccessGroup = 782 CS.getInstruction()->getMetadata(LLVMContext::MD_access_group); 783 if (!M && !CallAccessGroup) 784 return; 785 786 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 787 VMI != VMIE; ++VMI) { 788 if (!VMI->second) 789 continue; 790 791 Instruction *NI = dyn_cast<Instruction>(VMI->second); 792 if (!NI) 793 continue; 794 795 if (M) { 796 if (MDNode *PM = 797 NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access)) { 798 M = MDNode::concatenate(PM, M); 799 NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M); 800 } else if (NI->mayReadOrWriteMemory()) { 801 NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M); 802 } 803 } 804 805 if (NI->mayReadOrWriteMemory()) { 806 MDNode *UnitedAccGroups = uniteAccessGroups( 807 NI->getMetadata(LLVMContext::MD_access_group), CallAccessGroup); 808 NI->setMetadata(LLVMContext::MD_access_group, UnitedAccGroups); 809 } 810 } 811 } 812 813 /// When inlining a function that contains noalias scope metadata, 814 /// this metadata needs to be cloned so that the inlined blocks 815 /// have different "unique scopes" at every call site. Were this not done, then 816 /// aliasing scopes from a function inlined into a caller multiple times could 817 /// not be differentiated (and this would lead to miscompiles because the 818 /// non-aliasing property communicated by the metadata could have 819 /// call-site-specific control dependencies). 820 static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) { 821 const Function *CalledFunc = CS.getCalledFunction(); 822 SetVector<const MDNode *> MD; 823 824 // Note: We could only clone the metadata if it is already used in the 825 // caller. I'm omitting that check here because it might confuse 826 // inter-procedural alias analysis passes. We can revisit this if it becomes 827 // an efficiency or overhead problem. 828 829 for (const BasicBlock &I : *CalledFunc) 830 for (const Instruction &J : I) { 831 if (const MDNode *M = J.getMetadata(LLVMContext::MD_alias_scope)) 832 MD.insert(M); 833 if (const MDNode *M = J.getMetadata(LLVMContext::MD_noalias)) 834 MD.insert(M); 835 } 836 837 if (MD.empty()) 838 return; 839 840 // Walk the existing metadata, adding the complete (perhaps cyclic) chain to 841 // the set. 842 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end()); 843 while (!Queue.empty()) { 844 const MDNode *M = cast<MDNode>(Queue.pop_back_val()); 845 for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i) 846 if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i))) 847 if (MD.insert(M1)) 848 Queue.push_back(M1); 849 } 850 851 // Now we have a complete set of all metadata in the chains used to specify 852 // the noalias scopes and the lists of those scopes. 853 SmallVector<TempMDTuple, 16> DummyNodes; 854 DenseMap<const MDNode *, TrackingMDNodeRef> MDMap; 855 for (const MDNode *I : MD) { 856 DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None)); 857 MDMap[I].reset(DummyNodes.back().get()); 858 } 859 860 // Create new metadata nodes to replace the dummy nodes, replacing old 861 // metadata references with either a dummy node or an already-created new 862 // node. 863 for (const MDNode *I : MD) { 864 SmallVector<Metadata *, 4> NewOps; 865 for (unsigned i = 0, ie = I->getNumOperands(); i != ie; ++i) { 866 const Metadata *V = I->getOperand(i); 867 if (const MDNode *M = dyn_cast<MDNode>(V)) 868 NewOps.push_back(MDMap[M]); 869 else 870 NewOps.push_back(const_cast<Metadata *>(V)); 871 } 872 873 MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps); 874 MDTuple *TempM = cast<MDTuple>(MDMap[I]); 875 assert(TempM->isTemporary() && "Expected temporary node"); 876 877 TempM->replaceAllUsesWith(NewM); 878 } 879 880 // Now replace the metadata in the new inlined instructions with the 881 // repacements from the map. 882 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 883 VMI != VMIE; ++VMI) { 884 if (!VMI->second) 885 continue; 886 887 Instruction *NI = dyn_cast<Instruction>(VMI->second); 888 if (!NI) 889 continue; 890 891 if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) { 892 MDNode *NewMD = MDMap[M]; 893 // If the call site also had alias scope metadata (a list of scopes to 894 // which instructions inside it might belong), propagate those scopes to 895 // the inlined instructions. 896 if (MDNode *CSM = 897 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 898 NewMD = MDNode::concatenate(NewMD, CSM); 899 NI->setMetadata(LLVMContext::MD_alias_scope, NewMD); 900 } else if (NI->mayReadOrWriteMemory()) { 901 if (MDNode *M = 902 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 903 NI->setMetadata(LLVMContext::MD_alias_scope, M); 904 } 905 906 if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) { 907 MDNode *NewMD = MDMap[M]; 908 // If the call site also had noalias metadata (a list of scopes with 909 // which instructions inside it don't alias), propagate those scopes to 910 // the inlined instructions. 911 if (MDNode *CSM = 912 CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 913 NewMD = MDNode::concatenate(NewMD, CSM); 914 NI->setMetadata(LLVMContext::MD_noalias, NewMD); 915 } else if (NI->mayReadOrWriteMemory()) { 916 if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 917 NI->setMetadata(LLVMContext::MD_noalias, M); 918 } 919 } 920 } 921 922 /// If the inlined function has noalias arguments, 923 /// then add new alias scopes for each noalias argument, tag the mapped noalias 924 /// parameters with noalias metadata specifying the new scope, and tag all 925 /// non-derived loads, stores and memory intrinsics with the new alias scopes. 926 static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap, 927 const DataLayout &DL, AAResults *CalleeAAR) { 928 if (!EnableNoAliasConversion) 929 return; 930 931 const Function *CalledFunc = CS.getCalledFunction(); 932 SmallVector<const Argument *, 4> NoAliasArgs; 933 934 for (const Argument &Arg : CalledFunc->args()) 935 if (Arg.hasNoAliasAttr() && !Arg.use_empty()) 936 NoAliasArgs.push_back(&Arg); 937 938 if (NoAliasArgs.empty()) 939 return; 940 941 // To do a good job, if a noalias variable is captured, we need to know if 942 // the capture point dominates the particular use we're considering. 943 DominatorTree DT; 944 DT.recalculate(const_cast<Function&>(*CalledFunc)); 945 946 // noalias indicates that pointer values based on the argument do not alias 947 // pointer values which are not based on it. So we add a new "scope" for each 948 // noalias function argument. Accesses using pointers based on that argument 949 // become part of that alias scope, accesses using pointers not based on that 950 // argument are tagged as noalias with that scope. 951 952 DenseMap<const Argument *, MDNode *> NewScopes; 953 MDBuilder MDB(CalledFunc->getContext()); 954 955 // Create a new scope domain for this function. 956 MDNode *NewDomain = 957 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); 958 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { 959 const Argument *A = NoAliasArgs[i]; 960 961 std::string Name = CalledFunc->getName(); 962 if (A->hasName()) { 963 Name += ": %"; 964 Name += A->getName(); 965 } else { 966 Name += ": argument "; 967 Name += utostr(i); 968 } 969 970 // Note: We always create a new anonymous root here. This is true regardless 971 // of the linkage of the callee because the aliasing "scope" is not just a 972 // property of the callee, but also all control dependencies in the caller. 973 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); 974 NewScopes.insert(std::make_pair(A, NewScope)); 975 } 976 977 // Iterate over all new instructions in the map; for all memory-access 978 // instructions, add the alias scope metadata. 979 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 980 VMI != VMIE; ++VMI) { 981 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { 982 if (!VMI->second) 983 continue; 984 985 Instruction *NI = dyn_cast<Instruction>(VMI->second); 986 if (!NI) 987 continue; 988 989 bool IsArgMemOnlyCall = false, IsFuncCall = false; 990 SmallVector<const Value *, 2> PtrArgs; 991 992 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 993 PtrArgs.push_back(LI->getPointerOperand()); 994 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 995 PtrArgs.push_back(SI->getPointerOperand()); 996 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) 997 PtrArgs.push_back(VAAI->getPointerOperand()); 998 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 999 PtrArgs.push_back(CXI->getPointerOperand()); 1000 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 1001 PtrArgs.push_back(RMWI->getPointerOperand()); 1002 else if (const auto *Call = dyn_cast<CallBase>(I)) { 1003 // If we know that the call does not access memory, then we'll still 1004 // know that about the inlined clone of this call site, and we don't 1005 // need to add metadata. 1006 if (Call->doesNotAccessMemory()) 1007 continue; 1008 1009 IsFuncCall = true; 1010 if (CalleeAAR) { 1011 FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call); 1012 if (MRB == FMRB_OnlyAccessesArgumentPointees || 1013 MRB == FMRB_OnlyReadsArgumentPointees) 1014 IsArgMemOnlyCall = true; 1015 } 1016 1017 for (Value *Arg : Call->args()) { 1018 // We need to check the underlying objects of all arguments, not just 1019 // the pointer arguments, because we might be passing pointers as 1020 // integers, etc. 1021 // However, if we know that the call only accesses pointer arguments, 1022 // then we only need to check the pointer arguments. 1023 if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy()) 1024 continue; 1025 1026 PtrArgs.push_back(Arg); 1027 } 1028 } 1029 1030 // If we found no pointers, then this instruction is not suitable for 1031 // pairing with an instruction to receive aliasing metadata. 1032 // However, if this is a call, this we might just alias with none of the 1033 // noalias arguments. 1034 if (PtrArgs.empty() && !IsFuncCall) 1035 continue; 1036 1037 // It is possible that there is only one underlying object, but you 1038 // need to go through several PHIs to see it, and thus could be 1039 // repeated in the Objects list. 1040 SmallPtrSet<const Value *, 4> ObjSet; 1041 SmallVector<Metadata *, 4> Scopes, NoAliases; 1042 1043 SmallSetVector<const Argument *, 4> NAPtrArgs; 1044 for (const Value *V : PtrArgs) { 1045 SmallVector<Value *, 4> Objects; 1046 GetUnderlyingObjects(const_cast<Value*>(V), 1047 Objects, DL, /* LI = */ nullptr); 1048 1049 for (Value *O : Objects) 1050 ObjSet.insert(O); 1051 } 1052 1053 // Figure out if we're derived from anything that is not a noalias 1054 // argument. 1055 bool CanDeriveViaCapture = false, UsesAliasingPtr = false; 1056 for (const Value *V : ObjSet) { 1057 // Is this value a constant that cannot be derived from any pointer 1058 // value (we need to exclude constant expressions, for example, that 1059 // are formed from arithmetic on global symbols). 1060 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || 1061 isa<ConstantPointerNull>(V) || 1062 isa<ConstantDataVector>(V) || isa<UndefValue>(V); 1063 if (IsNonPtrConst) 1064 continue; 1065 1066 // If this is anything other than a noalias argument, then we cannot 1067 // completely describe the aliasing properties using alias.scope 1068 // metadata (and, thus, won't add any). 1069 if (const Argument *A = dyn_cast<Argument>(V)) { 1070 if (!A->hasNoAliasAttr()) 1071 UsesAliasingPtr = true; 1072 } else { 1073 UsesAliasingPtr = true; 1074 } 1075 1076 // If this is not some identified function-local object (which cannot 1077 // directly alias a noalias argument), or some other argument (which, 1078 // by definition, also cannot alias a noalias argument), then we could 1079 // alias a noalias argument that has been captured). 1080 if (!isa<Argument>(V) && 1081 !isIdentifiedFunctionLocal(const_cast<Value*>(V))) 1082 CanDeriveViaCapture = true; 1083 } 1084 1085 // A function call can always get captured noalias pointers (via other 1086 // parameters, globals, etc.). 1087 if (IsFuncCall && !IsArgMemOnlyCall) 1088 CanDeriveViaCapture = true; 1089 1090 // First, we want to figure out all of the sets with which we definitely 1091 // don't alias. Iterate over all noalias set, and add those for which: 1092 // 1. The noalias argument is not in the set of objects from which we 1093 // definitely derive. 1094 // 2. The noalias argument has not yet been captured. 1095 // An arbitrary function that might load pointers could see captured 1096 // noalias arguments via other noalias arguments or globals, and so we 1097 // must always check for prior capture. 1098 for (const Argument *A : NoAliasArgs) { 1099 if (!ObjSet.count(A) && (!CanDeriveViaCapture || 1100 // It might be tempting to skip the 1101 // PointerMayBeCapturedBefore check if 1102 // A->hasNoCaptureAttr() is true, but this is 1103 // incorrect because nocapture only guarantees 1104 // that no copies outlive the function, not 1105 // that the value cannot be locally captured. 1106 !PointerMayBeCapturedBefore(A, 1107 /* ReturnCaptures */ false, 1108 /* StoreCaptures */ false, I, &DT))) 1109 NoAliases.push_back(NewScopes[A]); 1110 } 1111 1112 if (!NoAliases.empty()) 1113 NI->setMetadata(LLVMContext::MD_noalias, 1114 MDNode::concatenate( 1115 NI->getMetadata(LLVMContext::MD_noalias), 1116 MDNode::get(CalledFunc->getContext(), NoAliases))); 1117 1118 // Next, we want to figure out all of the sets to which we might belong. 1119 // We might belong to a set if the noalias argument is in the set of 1120 // underlying objects. If there is some non-noalias argument in our list 1121 // of underlying objects, then we cannot add a scope because the fact 1122 // that some access does not alias with any set of our noalias arguments 1123 // cannot itself guarantee that it does not alias with this access 1124 // (because there is some pointer of unknown origin involved and the 1125 // other access might also depend on this pointer). We also cannot add 1126 // scopes to arbitrary functions unless we know they don't access any 1127 // non-parameter pointer-values. 1128 bool CanAddScopes = !UsesAliasingPtr; 1129 if (CanAddScopes && IsFuncCall) 1130 CanAddScopes = IsArgMemOnlyCall; 1131 1132 if (CanAddScopes) 1133 for (const Argument *A : NoAliasArgs) { 1134 if (ObjSet.count(A)) 1135 Scopes.push_back(NewScopes[A]); 1136 } 1137 1138 if (!Scopes.empty()) 1139 NI->setMetadata( 1140 LLVMContext::MD_alias_scope, 1141 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), 1142 MDNode::get(CalledFunc->getContext(), Scopes))); 1143 } 1144 } 1145 } 1146 1147 /// If the inlined function has non-byval align arguments, then 1148 /// add @llvm.assume-based alignment assumptions to preserve this information. 1149 static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) { 1150 if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache) 1151 return; 1152 1153 AssumptionCache *AC = &(*IFI.GetAssumptionCache)(*CS.getCaller()); 1154 auto &DL = CS.getCaller()->getParent()->getDataLayout(); 1155 1156 // To avoid inserting redundant assumptions, we should check for assumptions 1157 // already in the caller. To do this, we might need a DT of the caller. 1158 DominatorTree DT; 1159 bool DTCalculated = false; 1160 1161 Function *CalledFunc = CS.getCalledFunction(); 1162 for (Argument &Arg : CalledFunc->args()) { 1163 unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0; 1164 if (Align && !Arg.hasByValOrInAllocaAttr() && !Arg.hasNUses(0)) { 1165 if (!DTCalculated) { 1166 DT.recalculate(*CS.getCaller()); 1167 DTCalculated = true; 1168 } 1169 1170 // If we can already prove the asserted alignment in the context of the 1171 // caller, then don't bother inserting the assumption. 1172 Value *ArgVal = CS.getArgument(Arg.getArgNo()); 1173 if (getKnownAlignment(ArgVal, DL, CS.getInstruction(), AC, &DT) >= Align) 1174 continue; 1175 1176 CallInst *NewAsmp = IRBuilder<>(CS.getInstruction()) 1177 .CreateAlignmentAssumption(DL, ArgVal, Align); 1178 AC->registerAssumption(NewAsmp); 1179 } 1180 } 1181 } 1182 1183 /// Once we have cloned code over from a callee into the caller, 1184 /// update the specified callgraph to reflect the changes we made. 1185 /// Note that it's possible that not all code was copied over, so only 1186 /// some edges of the callgraph may remain. 1187 static void UpdateCallGraphAfterInlining(CallSite CS, 1188 Function::iterator FirstNewBlock, 1189 ValueToValueMapTy &VMap, 1190 InlineFunctionInfo &IFI) { 1191 CallGraph &CG = *IFI.CG; 1192 const Function *Caller = CS.getCaller(); 1193 const Function *Callee = CS.getCalledFunction(); 1194 CallGraphNode *CalleeNode = CG[Callee]; 1195 CallGraphNode *CallerNode = CG[Caller]; 1196 1197 // Since we inlined some uninlined call sites in the callee into the caller, 1198 // add edges from the caller to all of the callees of the callee. 1199 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 1200 1201 // Consider the case where CalleeNode == CallerNode. 1202 CallGraphNode::CalledFunctionsVector CallCache; 1203 if (CalleeNode == CallerNode) { 1204 CallCache.assign(I, E); 1205 I = CallCache.begin(); 1206 E = CallCache.end(); 1207 } 1208 1209 for (; I != E; ++I) { 1210 const Value *OrigCall = I->first; 1211 1212 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 1213 // Only copy the edge if the call was inlined! 1214 if (VMI == VMap.end() || VMI->second == nullptr) 1215 continue; 1216 1217 // If the call was inlined, but then constant folded, there is no edge to 1218 // add. Check for this case. 1219 Instruction *NewCall = dyn_cast<Instruction>(VMI->second); 1220 if (!NewCall) 1221 continue; 1222 1223 // We do not treat intrinsic calls like real function calls because we 1224 // expect them to become inline code; do not add an edge for an intrinsic. 1225 CallSite CS = CallSite(NewCall); 1226 if (CS && CS.getCalledFunction() && CS.getCalledFunction()->isIntrinsic()) 1227 continue; 1228 1229 // Remember that this call site got inlined for the client of 1230 // InlineFunction. 1231 IFI.InlinedCalls.push_back(NewCall); 1232 1233 // It's possible that inlining the callsite will cause it to go from an 1234 // indirect to a direct call by resolving a function pointer. If this 1235 // happens, set the callee of the new call site to a more precise 1236 // destination. This can also happen if the call graph node of the caller 1237 // was just unnecessarily imprecise. 1238 if (!I->second->getFunction()) 1239 if (Function *F = CallSite(NewCall).getCalledFunction()) { 1240 // Indirect call site resolved to direct call. 1241 CallerNode->addCalledFunction(CallSite(NewCall), CG[F]); 1242 1243 continue; 1244 } 1245 1246 CallerNode->addCalledFunction(CallSite(NewCall), I->second); 1247 } 1248 1249 // Update the call graph by deleting the edge from Callee to Caller. We must 1250 // do this after the loop above in case Caller and Callee are the same. 1251 CallerNode->removeCallEdgeFor(CS); 1252 } 1253 1254 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M, 1255 BasicBlock *InsertBlock, 1256 InlineFunctionInfo &IFI) { 1257 Type *AggTy = cast<PointerType>(Src->getType())->getElementType(); 1258 IRBuilder<> Builder(InsertBlock, InsertBlock->begin()); 1259 1260 Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy)); 1261 1262 // Always generate a memcpy of alignment 1 here because we don't know 1263 // the alignment of the src pointer. Other optimizations can infer 1264 // better alignment. 1265 Builder.CreateMemCpy(Dst, /*DstAlign*/1, Src, /*SrcAlign*/1, Size); 1266 } 1267 1268 /// When inlining a call site that has a byval argument, 1269 /// we have to make the implicit memcpy explicit by adding it. 1270 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 1271 const Function *CalledFunc, 1272 InlineFunctionInfo &IFI, 1273 unsigned ByValAlignment) { 1274 PointerType *ArgTy = cast<PointerType>(Arg->getType()); 1275 Type *AggTy = ArgTy->getElementType(); 1276 1277 Function *Caller = TheCall->getFunction(); 1278 const DataLayout &DL = Caller->getParent()->getDataLayout(); 1279 1280 // If the called function is readonly, then it could not mutate the caller's 1281 // copy of the byval'd memory. In this case, it is safe to elide the copy and 1282 // temporary. 1283 if (CalledFunc->onlyReadsMemory()) { 1284 // If the byval argument has a specified alignment that is greater than the 1285 // passed in pointer, then we either have to round up the input pointer or 1286 // give up on this transformation. 1287 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 1288 return Arg; 1289 1290 AssumptionCache *AC = 1291 IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr; 1292 1293 // If the pointer is already known to be sufficiently aligned, or if we can 1294 // round it up to a larger alignment, then we don't need a temporary. 1295 if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall, AC) >= 1296 ByValAlignment) 1297 return Arg; 1298 1299 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 1300 // for code quality, but rarely happens and is required for correctness. 1301 } 1302 1303 // Create the alloca. If we have DataLayout, use nice alignment. 1304 unsigned Align = DL.getPrefTypeAlignment(AggTy); 1305 1306 // If the byval had an alignment specified, we *must* use at least that 1307 // alignment, as it is required by the byval argument (and uses of the 1308 // pointer inside the callee). 1309 Align = std::max(Align, ByValAlignment); 1310 1311 Value *NewAlloca = new AllocaInst(AggTy, DL.getAllocaAddrSpace(), 1312 nullptr, Align, Arg->getName(), 1313 &*Caller->begin()->begin()); 1314 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); 1315 1316 // Uses of the argument in the function should use our new alloca 1317 // instead. 1318 return NewAlloca; 1319 } 1320 1321 // Check whether this Value is used by a lifetime intrinsic. 1322 static bool isUsedByLifetimeMarker(Value *V) { 1323 for (User *U : V->users()) 1324 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) 1325 if (II->isLifetimeStartOrEnd()) 1326 return true; 1327 return false; 1328 } 1329 1330 // Check whether the given alloca already has 1331 // lifetime.start or lifetime.end intrinsics. 1332 static bool hasLifetimeMarkers(AllocaInst *AI) { 1333 Type *Ty = AI->getType(); 1334 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), 1335 Ty->getPointerAddressSpace()); 1336 if (Ty == Int8PtrTy) 1337 return isUsedByLifetimeMarker(AI); 1338 1339 // Do a scan to find all the casts to i8*. 1340 for (User *U : AI->users()) { 1341 if (U->getType() != Int8PtrTy) continue; 1342 if (U->stripPointerCasts() != AI) continue; 1343 if (isUsedByLifetimeMarker(U)) 1344 return true; 1345 } 1346 return false; 1347 } 1348 1349 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry 1350 /// block. Allocas used in inalloca calls and allocas of dynamic array size 1351 /// cannot be static. 1352 static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) { 1353 return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca(); 1354 } 1355 1356 /// Update inlined instructions' line numbers to 1357 /// to encode location where these instructions are inlined. 1358 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 1359 Instruction *TheCall, bool CalleeHasDebugInfo) { 1360 const DebugLoc &TheCallDL = TheCall->getDebugLoc(); 1361 if (!TheCallDL) 1362 return; 1363 1364 auto &Ctx = Fn->getContext(); 1365 DILocation *InlinedAtNode = TheCallDL; 1366 1367 // Create a unique call site, not to be confused with any other call from the 1368 // same location. 1369 InlinedAtNode = DILocation::getDistinct( 1370 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(), 1371 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt()); 1372 1373 // Cache the inlined-at nodes as they're built so they are reused, without 1374 // this every instruction's inlined-at chain would become distinct from each 1375 // other. 1376 DenseMap<const MDNode *, MDNode *> IANodes; 1377 1378 for (; FI != Fn->end(); ++FI) { 1379 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 1380 BI != BE; ++BI) { 1381 if (DebugLoc DL = BI->getDebugLoc()) { 1382 auto IA = DebugLoc::appendInlinedAt(DL, InlinedAtNode, BI->getContext(), 1383 IANodes); 1384 auto IDL = DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(), IA); 1385 BI->setDebugLoc(IDL); 1386 continue; 1387 } 1388 1389 if (CalleeHasDebugInfo) 1390 continue; 1391 1392 // If the inlined instruction has no line number, make it look as if it 1393 // originates from the call location. This is important for 1394 // ((__always_inline__, __nodebug__)) functions which must use caller 1395 // location for all instructions in their function body. 1396 1397 // Don't update static allocas, as they may get moved later. 1398 if (auto *AI = dyn_cast<AllocaInst>(BI)) 1399 if (allocaWouldBeStaticInEntry(AI)) 1400 continue; 1401 1402 BI->setDebugLoc(TheCallDL); 1403 } 1404 } 1405 } 1406 1407 /// Update the block frequencies of the caller after a callee has been inlined. 1408 /// 1409 /// Each block cloned into the caller has its block frequency scaled by the 1410 /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of 1411 /// callee's entry block gets the same frequency as the callsite block and the 1412 /// relative frequencies of all cloned blocks remain the same after cloning. 1413 static void updateCallerBFI(BasicBlock *CallSiteBlock, 1414 const ValueToValueMapTy &VMap, 1415 BlockFrequencyInfo *CallerBFI, 1416 BlockFrequencyInfo *CalleeBFI, 1417 const BasicBlock &CalleeEntryBlock) { 1418 SmallPtrSet<BasicBlock *, 16> ClonedBBs; 1419 for (auto const &Entry : VMap) { 1420 if (!isa<BasicBlock>(Entry.first) || !Entry.second) 1421 continue; 1422 auto *OrigBB = cast<BasicBlock>(Entry.first); 1423 auto *ClonedBB = cast<BasicBlock>(Entry.second); 1424 uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency(); 1425 if (!ClonedBBs.insert(ClonedBB).second) { 1426 // Multiple blocks in the callee might get mapped to one cloned block in 1427 // the caller since we prune the callee as we clone it. When that happens, 1428 // we want to use the maximum among the original blocks' frequencies. 1429 uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency(); 1430 if (NewFreq > Freq) 1431 Freq = NewFreq; 1432 } 1433 CallerBFI->setBlockFreq(ClonedBB, Freq); 1434 } 1435 BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock)); 1436 CallerBFI->setBlockFreqAndScale( 1437 EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(), 1438 ClonedBBs); 1439 } 1440 1441 /// Update the branch metadata for cloned call instructions. 1442 static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap, 1443 const ProfileCount &CalleeEntryCount, 1444 const Instruction *TheCall, 1445 ProfileSummaryInfo *PSI, 1446 BlockFrequencyInfo *CallerBFI) { 1447 if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() || 1448 CalleeEntryCount.getCount() < 1) 1449 return; 1450 auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None; 1451 uint64_t CallCount = 1452 std::min(CallSiteCount.hasValue() ? CallSiteCount.getValue() : 0, 1453 CalleeEntryCount.getCount()); 1454 1455 for (auto const &Entry : VMap) 1456 if (isa<CallInst>(Entry.first)) 1457 if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second)) 1458 CI->updateProfWeight(CallCount, CalleeEntryCount.getCount()); 1459 for (BasicBlock &BB : *Callee) 1460 // No need to update the callsite if it is pruned during inlining. 1461 if (VMap.count(&BB)) 1462 for (Instruction &I : BB) 1463 if (CallInst *CI = dyn_cast<CallInst>(&I)) 1464 CI->updateProfWeight(CalleeEntryCount.getCount() - CallCount, 1465 CalleeEntryCount.getCount()); 1466 } 1467 1468 /// Update the entry count of callee after inlining. 1469 /// 1470 /// The callsite's block count is subtracted from the callee's function entry 1471 /// count. 1472 static void updateCalleeCount(BlockFrequencyInfo *CallerBFI, BasicBlock *CallBB, 1473 Instruction *CallInst, Function *Callee, 1474 ProfileSummaryInfo *PSI) { 1475 // If the callee has a original count of N, and the estimated count of 1476 // callsite is M, the new callee count is set to N - M. M is estimated from 1477 // the caller's entry count, its entry block frequency and the block frequency 1478 // of the callsite. 1479 auto CalleeCount = Callee->getEntryCount(); 1480 if (!CalleeCount.hasValue() || !PSI) 1481 return; 1482 auto CallCount = PSI->getProfileCount(CallInst, CallerBFI); 1483 if (!CallCount.hasValue()) 1484 return; 1485 // Since CallSiteCount is an estimate, it could exceed the original callee 1486 // count and has to be set to 0. 1487 if (CallCount.getValue() > CalleeCount.getCount()) 1488 CalleeCount.setCount(0); 1489 else 1490 CalleeCount.setCount(CalleeCount.getCount() - CallCount.getValue()); 1491 Callee->setEntryCount(CalleeCount); 1492 } 1493 1494 /// This function inlines the called function into the basic block of the 1495 /// caller. This returns false if it is not possible to inline this call. 1496 /// The program is still in a well defined state if this occurs though. 1497 /// 1498 /// Note that this only does one level of inlining. For example, if the 1499 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 1500 /// exists in the instruction stream. Similarly this will inline a recursive 1501 /// function by one level. 1502 llvm::InlineResult llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI, 1503 AAResults *CalleeAAR, 1504 bool InsertLifetime, 1505 Function *ForwardVarArgsTo) { 1506 Instruction *TheCall = CS.getInstruction(); 1507 assert(TheCall->getParent() && TheCall->getFunction() 1508 && "Instruction not in function!"); 1509 1510 // If IFI has any state in it, zap it before we fill it in. 1511 IFI.reset(); 1512 1513 Function *CalledFunc = CS.getCalledFunction(); 1514 if (!CalledFunc || // Can't inline external function or indirect 1515 CalledFunc->isDeclaration()) // call! 1516 return "external or indirect"; 1517 1518 // The inliner does not know how to inline through calls with operand bundles 1519 // in general ... 1520 if (CS.hasOperandBundles()) { 1521 for (int i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 1522 uint32_t Tag = CS.getOperandBundleAt(i).getTagID(); 1523 // ... but it knows how to inline through "deopt" operand bundles ... 1524 if (Tag == LLVMContext::OB_deopt) 1525 continue; 1526 // ... and "funclet" operand bundles. 1527 if (Tag == LLVMContext::OB_funclet) 1528 continue; 1529 1530 return "unsupported operand bundle"; 1531 } 1532 } 1533 1534 // If the call to the callee cannot throw, set the 'nounwind' flag on any 1535 // calls that we inline. 1536 bool MarkNoUnwind = CS.doesNotThrow(); 1537 1538 BasicBlock *OrigBB = TheCall->getParent(); 1539 Function *Caller = OrigBB->getParent(); 1540 1541 // GC poses two hazards to inlining, which only occur when the callee has GC: 1542 // 1. If the caller has no GC, then the callee's GC must be propagated to the 1543 // caller. 1544 // 2. If the caller has a differing GC, it is invalid to inline. 1545 if (CalledFunc->hasGC()) { 1546 if (!Caller->hasGC()) 1547 Caller->setGC(CalledFunc->getGC()); 1548 else if (CalledFunc->getGC() != Caller->getGC()) 1549 return "incompatible GC"; 1550 } 1551 1552 // Get the personality function from the callee if it contains a landing pad. 1553 Constant *CalledPersonality = 1554 CalledFunc->hasPersonalityFn() 1555 ? CalledFunc->getPersonalityFn()->stripPointerCasts() 1556 : nullptr; 1557 1558 // Find the personality function used by the landing pads of the caller. If it 1559 // exists, then check to see that it matches the personality function used in 1560 // the callee. 1561 Constant *CallerPersonality = 1562 Caller->hasPersonalityFn() 1563 ? Caller->getPersonalityFn()->stripPointerCasts() 1564 : nullptr; 1565 if (CalledPersonality) { 1566 if (!CallerPersonality) 1567 Caller->setPersonalityFn(CalledPersonality); 1568 // If the personality functions match, then we can perform the 1569 // inlining. Otherwise, we can't inline. 1570 // TODO: This isn't 100% true. Some personality functions are proper 1571 // supersets of others and can be used in place of the other. 1572 else if (CalledPersonality != CallerPersonality) 1573 return "incompatible personality"; 1574 } 1575 1576 // We need to figure out which funclet the callsite was in so that we may 1577 // properly nest the callee. 1578 Instruction *CallSiteEHPad = nullptr; 1579 if (CallerPersonality) { 1580 EHPersonality Personality = classifyEHPersonality(CallerPersonality); 1581 if (isScopedEHPersonality(Personality)) { 1582 Optional<OperandBundleUse> ParentFunclet = 1583 CS.getOperandBundle(LLVMContext::OB_funclet); 1584 if (ParentFunclet) 1585 CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front()); 1586 1587 // OK, the inlining site is legal. What about the target function? 1588 1589 if (CallSiteEHPad) { 1590 if (Personality == EHPersonality::MSVC_CXX) { 1591 // The MSVC personality cannot tolerate catches getting inlined into 1592 // cleanup funclets. 1593 if (isa<CleanupPadInst>(CallSiteEHPad)) { 1594 // Ok, the call site is within a cleanuppad. Let's check the callee 1595 // for catchpads. 1596 for (const BasicBlock &CalledBB : *CalledFunc) { 1597 if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI())) 1598 return "catch in cleanup funclet"; 1599 } 1600 } 1601 } else if (isAsynchronousEHPersonality(Personality)) { 1602 // SEH is even less tolerant, there may not be any sort of exceptional 1603 // funclet in the callee. 1604 for (const BasicBlock &CalledBB : *CalledFunc) { 1605 if (CalledBB.isEHPad()) 1606 return "SEH in cleanup funclet"; 1607 } 1608 } 1609 } 1610 } 1611 } 1612 1613 // Determine if we are dealing with a call in an EHPad which does not unwind 1614 // to caller. 1615 bool EHPadForCallUnwindsLocally = false; 1616 if (CallSiteEHPad && CS.isCall()) { 1617 UnwindDestMemoTy FuncletUnwindMap; 1618 Value *CallSiteUnwindDestToken = 1619 getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap); 1620 1621 EHPadForCallUnwindsLocally = 1622 CallSiteUnwindDestToken && 1623 !isa<ConstantTokenNone>(CallSiteUnwindDestToken); 1624 } 1625 1626 // Get an iterator to the last basic block in the function, which will have 1627 // the new function inlined after it. 1628 Function::iterator LastBlock = --Caller->end(); 1629 1630 // Make sure to capture all of the return instructions from the cloned 1631 // function. 1632 SmallVector<ReturnInst*, 8> Returns; 1633 ClonedCodeInfo InlinedFunctionInfo; 1634 Function::iterator FirstNewBlock; 1635 1636 { // Scope to destroy VMap after cloning. 1637 ValueToValueMapTy VMap; 1638 // Keep a list of pair (dst, src) to emit byval initializations. 1639 SmallVector<std::pair<Value*, Value*>, 4> ByValInit; 1640 1641 auto &DL = Caller->getParent()->getDataLayout(); 1642 1643 // Calculate the vector of arguments to pass into the function cloner, which 1644 // matches up the formal to the actual argument values. 1645 CallSite::arg_iterator AI = CS.arg_begin(); 1646 unsigned ArgNo = 0; 1647 for (Function::arg_iterator I = CalledFunc->arg_begin(), 1648 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 1649 Value *ActualArg = *AI; 1650 1651 // When byval arguments actually inlined, we need to make the copy implied 1652 // by them explicit. However, we don't do this if the callee is readonly 1653 // or readnone, because the copy would be unneeded: the callee doesn't 1654 // modify the struct. 1655 if (CS.isByValArgument(ArgNo)) { 1656 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, 1657 CalledFunc->getParamAlignment(ArgNo)); 1658 if (ActualArg != *AI) 1659 ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI)); 1660 } 1661 1662 VMap[&*I] = ActualArg; 1663 } 1664 1665 // Add alignment assumptions if necessary. We do this before the inlined 1666 // instructions are actually cloned into the caller so that we can easily 1667 // check what will be known at the start of the inlined code. 1668 AddAlignmentAssumptions(CS, IFI); 1669 1670 // We want the inliner to prune the code as it copies. We would LOVE to 1671 // have no dead or constant instructions leftover after inlining occurs 1672 // (which can happen, e.g., because an argument was constant), but we'll be 1673 // happy with whatever the cloner can do. 1674 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 1675 /*ModuleLevelChanges=*/false, Returns, ".i", 1676 &InlinedFunctionInfo, TheCall); 1677 // Remember the first block that is newly cloned over. 1678 FirstNewBlock = LastBlock; ++FirstNewBlock; 1679 1680 if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr) 1681 // Update the BFI of blocks cloned into the caller. 1682 updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI, 1683 CalledFunc->front()); 1684 1685 updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), TheCall, 1686 IFI.PSI, IFI.CallerBFI); 1687 // Update the profile count of callee. 1688 updateCalleeCount(IFI.CallerBFI, OrigBB, TheCall, CalledFunc, IFI.PSI); 1689 1690 // Inject byval arguments initialization. 1691 for (std::pair<Value*, Value*> &Init : ByValInit) 1692 HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(), 1693 &*FirstNewBlock, IFI); 1694 1695 Optional<OperandBundleUse> ParentDeopt = 1696 CS.getOperandBundle(LLVMContext::OB_deopt); 1697 if (ParentDeopt) { 1698 SmallVector<OperandBundleDef, 2> OpDefs; 1699 1700 for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) { 1701 Instruction *I = dyn_cast_or_null<Instruction>(VH); 1702 if (!I) continue; // instruction was DCE'd or RAUW'ed to undef 1703 1704 OpDefs.clear(); 1705 1706 CallSite ICS(I); 1707 OpDefs.reserve(ICS.getNumOperandBundles()); 1708 1709 for (unsigned i = 0, e = ICS.getNumOperandBundles(); i < e; ++i) { 1710 auto ChildOB = ICS.getOperandBundleAt(i); 1711 if (ChildOB.getTagID() != LLVMContext::OB_deopt) { 1712 // If the inlined call has other operand bundles, let them be 1713 OpDefs.emplace_back(ChildOB); 1714 continue; 1715 } 1716 1717 // It may be useful to separate this logic (of handling operand 1718 // bundles) out to a separate "policy" component if this gets crowded. 1719 // Prepend the parent's deoptimization continuation to the newly 1720 // inlined call's deoptimization continuation. 1721 std::vector<Value *> MergedDeoptArgs; 1722 MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() + 1723 ChildOB.Inputs.size()); 1724 1725 MergedDeoptArgs.insert(MergedDeoptArgs.end(), 1726 ParentDeopt->Inputs.begin(), 1727 ParentDeopt->Inputs.end()); 1728 MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(), 1729 ChildOB.Inputs.end()); 1730 1731 OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs)); 1732 } 1733 1734 Instruction *NewI = nullptr; 1735 if (isa<CallInst>(I)) 1736 NewI = CallInst::Create(cast<CallInst>(I), OpDefs, I); 1737 else 1738 NewI = InvokeInst::Create(cast<InvokeInst>(I), OpDefs, I); 1739 1740 // Note: the RAUW does the appropriate fixup in VMap, so we need to do 1741 // this even if the call returns void. 1742 I->replaceAllUsesWith(NewI); 1743 1744 VH = nullptr; 1745 I->eraseFromParent(); 1746 } 1747 } 1748 1749 // Update the callgraph if requested. 1750 if (IFI.CG) 1751 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); 1752 1753 // For 'nodebug' functions, the associated DISubprogram is always null. 1754 // Conservatively avoid propagating the callsite debug location to 1755 // instructions inlined from a function whose DISubprogram is not null. 1756 fixupLineNumbers(Caller, FirstNewBlock, TheCall, 1757 CalledFunc->getSubprogram() != nullptr); 1758 1759 // Clone existing noalias metadata if necessary. 1760 CloneAliasScopeMetadata(CS, VMap); 1761 1762 // Add noalias metadata if necessary. 1763 AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR); 1764 1765 // Propagate llvm.mem.parallel_loop_access if necessary. 1766 PropagateParallelLoopAccessMetadata(CS, VMap); 1767 1768 // Register any cloned assumptions. 1769 if (IFI.GetAssumptionCache) 1770 for (BasicBlock &NewBlock : 1771 make_range(FirstNewBlock->getIterator(), Caller->end())) 1772 for (Instruction &I : NewBlock) { 1773 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 1774 if (II->getIntrinsicID() == Intrinsic::assume) 1775 (*IFI.GetAssumptionCache)(*Caller).registerAssumption(II); 1776 } 1777 } 1778 1779 // If there are any alloca instructions in the block that used to be the entry 1780 // block for the callee, move them to the entry block of the caller. First 1781 // calculate which instruction they should be inserted before. We insert the 1782 // instructions at the end of the current alloca list. 1783 { 1784 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 1785 for (BasicBlock::iterator I = FirstNewBlock->begin(), 1786 E = FirstNewBlock->end(); I != E; ) { 1787 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 1788 if (!AI) continue; 1789 1790 // If the alloca is now dead, remove it. This often occurs due to code 1791 // specialization. 1792 if (AI->use_empty()) { 1793 AI->eraseFromParent(); 1794 continue; 1795 } 1796 1797 if (!allocaWouldBeStaticInEntry(AI)) 1798 continue; 1799 1800 // Keep track of the static allocas that we inline into the caller. 1801 IFI.StaticAllocas.push_back(AI); 1802 1803 // Scan for the block of allocas that we can move over, and move them 1804 // all at once. 1805 while (isa<AllocaInst>(I) && 1806 allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) { 1807 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 1808 ++I; 1809 } 1810 1811 // Transfer all of the allocas over in a block. Using splice means 1812 // that the instructions aren't removed from the symbol table, then 1813 // reinserted. 1814 Caller->getEntryBlock().getInstList().splice( 1815 InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I); 1816 } 1817 // Move any dbg.declares describing the allocas into the entry basic block. 1818 DIBuilder DIB(*Caller->getParent()); 1819 for (auto &AI : IFI.StaticAllocas) 1820 replaceDbgDeclareForAlloca(AI, AI, DIB, DIExpression::NoDeref, 0, 1821 DIExpression::NoDeref); 1822 } 1823 1824 SmallVector<Value*,4> VarArgsToForward; 1825 SmallVector<AttributeSet, 4> VarArgsAttrs; 1826 for (unsigned i = CalledFunc->getFunctionType()->getNumParams(); 1827 i < CS.getNumArgOperands(); i++) { 1828 VarArgsToForward.push_back(CS.getArgOperand(i)); 1829 VarArgsAttrs.push_back(CS.getAttributes().getParamAttributes(i)); 1830 } 1831 1832 bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false; 1833 if (InlinedFunctionInfo.ContainsCalls) { 1834 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; 1835 if (CallInst *CI = dyn_cast<CallInst>(TheCall)) 1836 CallSiteTailKind = CI->getTailCallKind(); 1837 1838 // For inlining purposes, the "notail" marker is the same as no marker. 1839 if (CallSiteTailKind == CallInst::TCK_NoTail) 1840 CallSiteTailKind = CallInst::TCK_None; 1841 1842 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 1843 ++BB) { 1844 for (auto II = BB->begin(); II != BB->end();) { 1845 Instruction &I = *II++; 1846 CallInst *CI = dyn_cast<CallInst>(&I); 1847 if (!CI) 1848 continue; 1849 1850 // Forward varargs from inlined call site to calls to the 1851 // ForwardVarArgsTo function, if requested, and to musttail calls. 1852 if (!VarArgsToForward.empty() && 1853 ((ForwardVarArgsTo && 1854 CI->getCalledFunction() == ForwardVarArgsTo) || 1855 CI->isMustTailCall())) { 1856 // Collect attributes for non-vararg parameters. 1857 AttributeList Attrs = CI->getAttributes(); 1858 SmallVector<AttributeSet, 8> ArgAttrs; 1859 if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) { 1860 for (unsigned ArgNo = 0; 1861 ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo) 1862 ArgAttrs.push_back(Attrs.getParamAttributes(ArgNo)); 1863 } 1864 1865 // Add VarArg attributes. 1866 ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end()); 1867 Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttributes(), 1868 Attrs.getRetAttributes(), ArgAttrs); 1869 // Add VarArgs to existing parameters. 1870 SmallVector<Value *, 6> Params(CI->arg_operands()); 1871 Params.append(VarArgsToForward.begin(), VarArgsToForward.end()); 1872 CallInst *NewCI = 1873 CallInst::Create(CI->getCalledFunction() ? CI->getCalledFunction() 1874 : CI->getCalledValue(), 1875 Params, "", CI); 1876 NewCI->setDebugLoc(CI->getDebugLoc()); 1877 NewCI->setAttributes(Attrs); 1878 NewCI->setCallingConv(CI->getCallingConv()); 1879 CI->replaceAllUsesWith(NewCI); 1880 CI->eraseFromParent(); 1881 CI = NewCI; 1882 } 1883 1884 if (Function *F = CI->getCalledFunction()) 1885 InlinedDeoptimizeCalls |= 1886 F->getIntrinsicID() == Intrinsic::experimental_deoptimize; 1887 1888 // We need to reduce the strength of any inlined tail calls. For 1889 // musttail, we have to avoid introducing potential unbounded stack 1890 // growth. For example, if functions 'f' and 'g' are mutually recursive 1891 // with musttail, we can inline 'g' into 'f' so long as we preserve 1892 // musttail on the cloned call to 'f'. If either the inlined call site 1893 // or the cloned call site is *not* musttail, the program already has 1894 // one frame of stack growth, so it's safe to remove musttail. Here is 1895 // a table of example transformations: 1896 // 1897 // f -> musttail g -> musttail f ==> f -> musttail f 1898 // f -> musttail g -> tail f ==> f -> tail f 1899 // f -> g -> musttail f ==> f -> f 1900 // f -> g -> tail f ==> f -> f 1901 // 1902 // Inlined notail calls should remain notail calls. 1903 CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); 1904 if (ChildTCK != CallInst::TCK_NoTail) 1905 ChildTCK = std::min(CallSiteTailKind, ChildTCK); 1906 CI->setTailCallKind(ChildTCK); 1907 InlinedMustTailCalls |= CI->isMustTailCall(); 1908 1909 // Calls inlined through a 'nounwind' call site should be marked 1910 // 'nounwind'. 1911 if (MarkNoUnwind) 1912 CI->setDoesNotThrow(); 1913 } 1914 } 1915 } 1916 1917 // Leave lifetime markers for the static alloca's, scoping them to the 1918 // function we just inlined. 1919 if (InsertLifetime && !IFI.StaticAllocas.empty()) { 1920 IRBuilder<> builder(&FirstNewBlock->front()); 1921 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 1922 AllocaInst *AI = IFI.StaticAllocas[ai]; 1923 // Don't mark swifterror allocas. They can't have bitcast uses. 1924 if (AI->isSwiftError()) 1925 continue; 1926 1927 // If the alloca is already scoped to something smaller than the whole 1928 // function then there's no need to add redundant, less accurate markers. 1929 if (hasLifetimeMarkers(AI)) 1930 continue; 1931 1932 // Try to determine the size of the allocation. 1933 ConstantInt *AllocaSize = nullptr; 1934 if (ConstantInt *AIArraySize = 1935 dyn_cast<ConstantInt>(AI->getArraySize())) { 1936 auto &DL = Caller->getParent()->getDataLayout(); 1937 Type *AllocaType = AI->getAllocatedType(); 1938 uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType); 1939 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 1940 1941 // Don't add markers for zero-sized allocas. 1942 if (AllocaArraySize == 0) 1943 continue; 1944 1945 // Check that array size doesn't saturate uint64_t and doesn't 1946 // overflow when it's multiplied by type size. 1947 if (AllocaArraySize != std::numeric_limits<uint64_t>::max() && 1948 std::numeric_limits<uint64_t>::max() / AllocaArraySize >= 1949 AllocaTypeSize) { 1950 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 1951 AllocaArraySize * AllocaTypeSize); 1952 } 1953 } 1954 1955 builder.CreateLifetimeStart(AI, AllocaSize); 1956 for (ReturnInst *RI : Returns) { 1957 // Don't insert llvm.lifetime.end calls between a musttail or deoptimize 1958 // call and a return. The return kills all local allocas. 1959 if (InlinedMustTailCalls && 1960 RI->getParent()->getTerminatingMustTailCall()) 1961 continue; 1962 if (InlinedDeoptimizeCalls && 1963 RI->getParent()->getTerminatingDeoptimizeCall()) 1964 continue; 1965 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); 1966 } 1967 } 1968 } 1969 1970 // If the inlined code contained dynamic alloca instructions, wrap the inlined 1971 // code with llvm.stacksave/llvm.stackrestore intrinsics. 1972 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 1973 Module *M = Caller->getParent(); 1974 // Get the two intrinsics we care about. 1975 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 1976 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 1977 1978 // Insert the llvm.stacksave. 1979 CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin()) 1980 .CreateCall(StackSave, {}, "savedstack"); 1981 1982 // Insert a call to llvm.stackrestore before any return instructions in the 1983 // inlined function. 1984 for (ReturnInst *RI : Returns) { 1985 // Don't insert llvm.stackrestore calls between a musttail or deoptimize 1986 // call and a return. The return will restore the stack pointer. 1987 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) 1988 continue; 1989 if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall()) 1990 continue; 1991 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); 1992 } 1993 } 1994 1995 // If we are inlining for an invoke instruction, we must make sure to rewrite 1996 // any call instructions into invoke instructions. This is sensitive to which 1997 // funclet pads were top-level in the inlinee, so must be done before 1998 // rewriting the "parent pad" links. 1999 if (auto *II = dyn_cast<InvokeInst>(TheCall)) { 2000 BasicBlock *UnwindDest = II->getUnwindDest(); 2001 Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI(); 2002 if (isa<LandingPadInst>(FirstNonPHI)) { 2003 HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo); 2004 } else { 2005 HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo); 2006 } 2007 } 2008 2009 // Update the lexical scopes of the new funclets and callsites. 2010 // Anything that had 'none' as its parent is now nested inside the callsite's 2011 // EHPad. 2012 2013 if (CallSiteEHPad) { 2014 for (Function::iterator BB = FirstNewBlock->getIterator(), 2015 E = Caller->end(); 2016 BB != E; ++BB) { 2017 // Add bundle operands to any top-level call sites. 2018 SmallVector<OperandBundleDef, 1> OpBundles; 2019 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) { 2020 Instruction *I = &*BBI++; 2021 CallSite CS(I); 2022 if (!CS) 2023 continue; 2024 2025 // Skip call sites which are nounwind intrinsics. 2026 auto *CalledFn = 2027 dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts()); 2028 if (CalledFn && CalledFn->isIntrinsic() && CS.doesNotThrow()) 2029 continue; 2030 2031 // Skip call sites which already have a "funclet" bundle. 2032 if (CS.getOperandBundle(LLVMContext::OB_funclet)) 2033 continue; 2034 2035 CS.getOperandBundlesAsDefs(OpBundles); 2036 OpBundles.emplace_back("funclet", CallSiteEHPad); 2037 2038 Instruction *NewInst; 2039 if (CS.isCall()) 2040 NewInst = CallInst::Create(cast<CallInst>(I), OpBundles, I); 2041 else 2042 NewInst = InvokeInst::Create(cast<InvokeInst>(I), OpBundles, I); 2043 NewInst->takeName(I); 2044 I->replaceAllUsesWith(NewInst); 2045 I->eraseFromParent(); 2046 2047 OpBundles.clear(); 2048 } 2049 2050 // It is problematic if the inlinee has a cleanupret which unwinds to 2051 // caller and we inline it into a call site which doesn't unwind but into 2052 // an EH pad that does. Such an edge must be dynamically unreachable. 2053 // As such, we replace the cleanupret with unreachable. 2054 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator())) 2055 if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally) 2056 changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false); 2057 2058 Instruction *I = BB->getFirstNonPHI(); 2059 if (!I->isEHPad()) 2060 continue; 2061 2062 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 2063 if (isa<ConstantTokenNone>(CatchSwitch->getParentPad())) 2064 CatchSwitch->setParentPad(CallSiteEHPad); 2065 } else { 2066 auto *FPI = cast<FuncletPadInst>(I); 2067 if (isa<ConstantTokenNone>(FPI->getParentPad())) 2068 FPI->setParentPad(CallSiteEHPad); 2069 } 2070 } 2071 } 2072 2073 if (InlinedDeoptimizeCalls) { 2074 // We need to at least remove the deoptimizing returns from the Return set, 2075 // so that the control flow from those returns does not get merged into the 2076 // caller (but terminate it instead). If the caller's return type does not 2077 // match the callee's return type, we also need to change the return type of 2078 // the intrinsic. 2079 if (Caller->getReturnType() == TheCall->getType()) { 2080 auto NewEnd = llvm::remove_if(Returns, [](ReturnInst *RI) { 2081 return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr; 2082 }); 2083 Returns.erase(NewEnd, Returns.end()); 2084 } else { 2085 SmallVector<ReturnInst *, 8> NormalReturns; 2086 Function *NewDeoptIntrinsic = Intrinsic::getDeclaration( 2087 Caller->getParent(), Intrinsic::experimental_deoptimize, 2088 {Caller->getReturnType()}); 2089 2090 for (ReturnInst *RI : Returns) { 2091 CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall(); 2092 if (!DeoptCall) { 2093 NormalReturns.push_back(RI); 2094 continue; 2095 } 2096 2097 // The calling convention on the deoptimize call itself may be bogus, 2098 // since the code we're inlining may have undefined behavior (and may 2099 // never actually execute at runtime); but all 2100 // @llvm.experimental.deoptimize declarations have to have the same 2101 // calling convention in a well-formed module. 2102 auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv(); 2103 NewDeoptIntrinsic->setCallingConv(CallingConv); 2104 auto *CurBB = RI->getParent(); 2105 RI->eraseFromParent(); 2106 2107 SmallVector<Value *, 4> CallArgs(DeoptCall->arg_begin(), 2108 DeoptCall->arg_end()); 2109 2110 SmallVector<OperandBundleDef, 1> OpBundles; 2111 DeoptCall->getOperandBundlesAsDefs(OpBundles); 2112 DeoptCall->eraseFromParent(); 2113 assert(!OpBundles.empty() && 2114 "Expected at least the deopt operand bundle"); 2115 2116 IRBuilder<> Builder(CurBB); 2117 CallInst *NewDeoptCall = 2118 Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles); 2119 NewDeoptCall->setCallingConv(CallingConv); 2120 if (NewDeoptCall->getType()->isVoidTy()) 2121 Builder.CreateRetVoid(); 2122 else 2123 Builder.CreateRet(NewDeoptCall); 2124 } 2125 2126 // Leave behind the normal returns so we can merge control flow. 2127 std::swap(Returns, NormalReturns); 2128 } 2129 } 2130 2131 // Handle any inlined musttail call sites. In order for a new call site to be 2132 // musttail, the source of the clone and the inlined call site must have been 2133 // musttail. Therefore it's safe to return without merging control into the 2134 // phi below. 2135 if (InlinedMustTailCalls) { 2136 // Check if we need to bitcast the result of any musttail calls. 2137 Type *NewRetTy = Caller->getReturnType(); 2138 bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy; 2139 2140 // Handle the returns preceded by musttail calls separately. 2141 SmallVector<ReturnInst *, 8> NormalReturns; 2142 for (ReturnInst *RI : Returns) { 2143 CallInst *ReturnedMustTail = 2144 RI->getParent()->getTerminatingMustTailCall(); 2145 if (!ReturnedMustTail) { 2146 NormalReturns.push_back(RI); 2147 continue; 2148 } 2149 if (!NeedBitCast) 2150 continue; 2151 2152 // Delete the old return and any preceding bitcast. 2153 BasicBlock *CurBB = RI->getParent(); 2154 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); 2155 RI->eraseFromParent(); 2156 if (OldCast) 2157 OldCast->eraseFromParent(); 2158 2159 // Insert a new bitcast and return with the right type. 2160 IRBuilder<> Builder(CurBB); 2161 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); 2162 } 2163 2164 // Leave behind the normal returns so we can merge control flow. 2165 std::swap(Returns, NormalReturns); 2166 } 2167 2168 // Now that all of the transforms on the inlined code have taken place but 2169 // before we splice the inlined code into the CFG and lose track of which 2170 // blocks were actually inlined, collect the call sites. We only do this if 2171 // call graph updates weren't requested, as those provide value handle based 2172 // tracking of inlined call sites instead. 2173 if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) { 2174 // Otherwise just collect the raw call sites that were inlined. 2175 for (BasicBlock &NewBB : 2176 make_range(FirstNewBlock->getIterator(), Caller->end())) 2177 for (Instruction &I : NewBB) 2178 if (auto CS = CallSite(&I)) 2179 IFI.InlinedCallSites.push_back(CS); 2180 } 2181 2182 // If we cloned in _exactly one_ basic block, and if that block ends in a 2183 // return instruction, we splice the body of the inlined callee directly into 2184 // the calling basic block. 2185 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 2186 // Move all of the instructions right before the call. 2187 OrigBB->getInstList().splice(TheCall->getIterator(), 2188 FirstNewBlock->getInstList(), 2189 FirstNewBlock->begin(), FirstNewBlock->end()); 2190 // Remove the cloned basic block. 2191 Caller->getBasicBlockList().pop_back(); 2192 2193 // If the call site was an invoke instruction, add a branch to the normal 2194 // destination. 2195 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 2196 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); 2197 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 2198 } 2199 2200 // If the return instruction returned a value, replace uses of the call with 2201 // uses of the returned value. 2202 if (!TheCall->use_empty()) { 2203 ReturnInst *R = Returns[0]; 2204 if (TheCall == R->getReturnValue()) 2205 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 2206 else 2207 TheCall->replaceAllUsesWith(R->getReturnValue()); 2208 } 2209 // Since we are now done with the Call/Invoke, we can delete it. 2210 TheCall->eraseFromParent(); 2211 2212 // Since we are now done with the return instruction, delete it also. 2213 Returns[0]->eraseFromParent(); 2214 2215 // We are now done with the inlining. 2216 return true; 2217 } 2218 2219 // Otherwise, we have the normal case, of more than one block to inline or 2220 // multiple return sites. 2221 2222 // We want to clone the entire callee function into the hole between the 2223 // "starter" and "ender" blocks. How we accomplish this depends on whether 2224 // this is an invoke instruction or a call instruction. 2225 BasicBlock *AfterCallBB; 2226 BranchInst *CreatedBranchToNormalDest = nullptr; 2227 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 2228 2229 // Add an unconditional branch to make this look like the CallInst case... 2230 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall); 2231 2232 // Split the basic block. This guarantees that no PHI nodes will have to be 2233 // updated due to new incoming edges, and make the invoke case more 2234 // symmetric to the call case. 2235 AfterCallBB = 2236 OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(), 2237 CalledFunc->getName() + ".exit"); 2238 2239 } else { // It's a call 2240 // If this is a call instruction, we need to split the basic block that 2241 // the call lives in. 2242 // 2243 AfterCallBB = OrigBB->splitBasicBlock(TheCall->getIterator(), 2244 CalledFunc->getName() + ".exit"); 2245 } 2246 2247 if (IFI.CallerBFI) { 2248 // Copy original BB's block frequency to AfterCallBB 2249 IFI.CallerBFI->setBlockFreq( 2250 AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency()); 2251 } 2252 2253 // Change the branch that used to go to AfterCallBB to branch to the first 2254 // basic block of the inlined function. 2255 // 2256 Instruction *Br = OrigBB->getTerminator(); 2257 assert(Br && Br->getOpcode() == Instruction::Br && 2258 "splitBasicBlock broken!"); 2259 Br->setOperand(0, &*FirstNewBlock); 2260 2261 // Now that the function is correct, make it a little bit nicer. In 2262 // particular, move the basic blocks inserted from the end of the function 2263 // into the space made by splitting the source basic block. 2264 Caller->getBasicBlockList().splice(AfterCallBB->getIterator(), 2265 Caller->getBasicBlockList(), FirstNewBlock, 2266 Caller->end()); 2267 2268 // Handle all of the return instructions that we just cloned in, and eliminate 2269 // any users of the original call/invoke instruction. 2270 Type *RTy = CalledFunc->getReturnType(); 2271 2272 PHINode *PHI = nullptr; 2273 if (Returns.size() > 1) { 2274 // The PHI node should go at the front of the new basic block to merge all 2275 // possible incoming values. 2276 if (!TheCall->use_empty()) { 2277 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), 2278 &AfterCallBB->front()); 2279 // Anything that used the result of the function call should now use the 2280 // PHI node as their operand. 2281 TheCall->replaceAllUsesWith(PHI); 2282 } 2283 2284 // Loop over all of the return instructions adding entries to the PHI node 2285 // as appropriate. 2286 if (PHI) { 2287 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2288 ReturnInst *RI = Returns[i]; 2289 assert(RI->getReturnValue()->getType() == PHI->getType() && 2290 "Ret value not consistent in function!"); 2291 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 2292 } 2293 } 2294 2295 // Add a branch to the merge points and remove return instructions. 2296 DebugLoc Loc; 2297 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2298 ReturnInst *RI = Returns[i]; 2299 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 2300 Loc = RI->getDebugLoc(); 2301 BI->setDebugLoc(Loc); 2302 RI->eraseFromParent(); 2303 } 2304 // We need to set the debug location to *somewhere* inside the 2305 // inlined function. The line number may be nonsensical, but the 2306 // instruction will at least be associated with the right 2307 // function. 2308 if (CreatedBranchToNormalDest) 2309 CreatedBranchToNormalDest->setDebugLoc(Loc); 2310 } else if (!Returns.empty()) { 2311 // Otherwise, if there is exactly one return value, just replace anything 2312 // using the return value of the call with the computed value. 2313 if (!TheCall->use_empty()) { 2314 if (TheCall == Returns[0]->getReturnValue()) 2315 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 2316 else 2317 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); 2318 } 2319 2320 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 2321 BasicBlock *ReturnBB = Returns[0]->getParent(); 2322 ReturnBB->replaceAllUsesWith(AfterCallBB); 2323 2324 // Splice the code from the return block into the block that it will return 2325 // to, which contains the code that was after the call. 2326 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 2327 ReturnBB->getInstList()); 2328 2329 if (CreatedBranchToNormalDest) 2330 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 2331 2332 // Delete the return instruction now and empty ReturnBB now. 2333 Returns[0]->eraseFromParent(); 2334 ReturnBB->eraseFromParent(); 2335 } else if (!TheCall->use_empty()) { 2336 // No returns, but something is using the return value of the call. Just 2337 // nuke the result. 2338 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 2339 } 2340 2341 // Since we are now done with the Call/Invoke, we can delete it. 2342 TheCall->eraseFromParent(); 2343 2344 // If we inlined any musttail calls and the original return is now 2345 // unreachable, delete it. It can only contain a bitcast and ret. 2346 if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB)) 2347 AfterCallBB->eraseFromParent(); 2348 2349 // We should always be able to fold the entry block of the function into the 2350 // single predecessor of the block... 2351 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 2352 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 2353 2354 // Splice the code entry block into calling block, right before the 2355 // unconditional branch. 2356 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 2357 OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList()); 2358 2359 // Remove the unconditional branch. 2360 OrigBB->getInstList().erase(Br); 2361 2362 // Now we can remove the CalleeEntry block, which is now empty. 2363 Caller->getBasicBlockList().erase(CalleeEntry); 2364 2365 // If we inserted a phi node, check to see if it has a single value (e.g. all 2366 // the entries are the same or undef). If so, remove the PHI so it doesn't 2367 // block other optimizations. 2368 if (PHI) { 2369 AssumptionCache *AC = 2370 IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr; 2371 auto &DL = Caller->getParent()->getDataLayout(); 2372 if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) { 2373 PHI->replaceAllUsesWith(V); 2374 PHI->eraseFromParent(); 2375 } 2376 } 2377 2378 return true; 2379 } 2380