1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements inlining of a function into a call site, resolving 11 // parameters and the return value as appropriate. 12 // 13 // The code in this file for handling inlines through invoke 14 // instructions preserves semantics only under some assumptions about 15 // the behavior of unwinders which correspond to gcc-style libUnwind 16 // exception personality functions. Eventually the IR will be 17 // improved to make this unnecessary, but until then, this code is 18 // marked [LIBUNWIND]. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/Transforms/Utils/Cloning.h" 23 #include "llvm/Constants.h" 24 #include "llvm/DerivedTypes.h" 25 #include "llvm/Module.h" 26 #include "llvm/Instructions.h" 27 #include "llvm/IntrinsicInst.h" 28 #include "llvm/Intrinsics.h" 29 #include "llvm/Attributes.h" 30 #include "llvm/Analysis/CallGraph.h" 31 #include "llvm/Analysis/DebugInfo.h" 32 #include "llvm/Analysis/InstructionSimplify.h" 33 #include "llvm/Target/TargetData.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 #include "llvm/ADT/SmallVector.h" 36 #include "llvm/ADT/StringExtras.h" 37 #include "llvm/Support/CallSite.h" 38 #include "llvm/Support/IRBuilder.h" 39 using namespace llvm; 40 41 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI) { 42 return InlineFunction(CallSite(CI), IFI); 43 } 44 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI) { 45 return InlineFunction(CallSite(II), IFI); 46 } 47 48 /// [LIBUNWIND] Find the (possibly absent) call to @llvm.eh.selector in 49 /// the given landing pad. 50 static EHSelectorInst *findSelectorForLandingPad(BasicBlock *lpad) { 51 // The llvm.eh.exception call is required to be in the landing pad. 52 for (BasicBlock::iterator i = lpad->begin(), e = lpad->end(); i != e; i++) { 53 EHExceptionInst *exn = dyn_cast<EHExceptionInst>(i); 54 if (!exn) continue; 55 56 EHSelectorInst *selector = 0; 57 for (Instruction::use_iterator 58 ui = exn->use_begin(), ue = exn->use_end(); ui != ue; ++ui) { 59 EHSelectorInst *sel = dyn_cast<EHSelectorInst>(*ui); 60 if (!sel) continue; 61 62 // Immediately accept an eh.selector in the landing pad. 63 if (sel->getParent() == lpad) return sel; 64 65 // Otherwise, use the first selector we see. 66 if (!selector) selector = sel; 67 } 68 69 return selector; 70 } 71 72 return 0; 73 } 74 75 namespace { 76 /// A class for recording information about inlining through an invoke. 77 class InvokeInliningInfo { 78 BasicBlock *OuterUnwindDest; 79 EHSelectorInst *OuterSelector; 80 BasicBlock *InnerUnwindDest; 81 PHINode *InnerExceptionPHI; 82 PHINode *InnerSelectorPHI; 83 SmallVector<Value*, 8> UnwindDestPHIValues; 84 85 public: 86 InvokeInliningInfo(InvokeInst *II) : 87 OuterUnwindDest(II->getUnwindDest()), OuterSelector(0), 88 InnerUnwindDest(0), InnerExceptionPHI(0), InnerSelectorPHI(0) { 89 90 // If there are PHI nodes in the unwind destination block, we 91 // need to keep track of which values came into them from the 92 // invoke before removing the edge from this block. 93 llvm::BasicBlock *invokeBB = II->getParent(); 94 for (BasicBlock::iterator I = OuterUnwindDest->begin(); 95 isa<PHINode>(I); ++I) { 96 // Save the value to use for this edge. 97 PHINode *phi = cast<PHINode>(I); 98 UnwindDestPHIValues.push_back(phi->getIncomingValueForBlock(invokeBB)); 99 } 100 } 101 102 /// The outer unwind destination is the target of unwind edges 103 /// introduced for calls within the inlined function. 104 BasicBlock *getOuterUnwindDest() const { 105 return OuterUnwindDest; 106 } 107 108 EHSelectorInst *getOuterSelector() { 109 if (!OuterSelector) 110 OuterSelector = findSelectorForLandingPad(OuterUnwindDest); 111 return OuterSelector; 112 } 113 114 BasicBlock *getInnerUnwindDest(); 115 116 bool forwardEHResume(CallInst *call, BasicBlock *src); 117 118 /// Add incoming-PHI values to the unwind destination block for 119 /// the given basic block, using the values for the original 120 /// invoke's source block. 121 void addIncomingPHIValuesFor(BasicBlock *BB) const { 122 addIncomingPHIValuesForInto(BB, OuterUnwindDest); 123 } 124 125 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 126 BasicBlock::iterator I = dest->begin(); 127 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 128 PHINode *phi = cast<PHINode>(I); 129 phi->addIncoming(UnwindDestPHIValues[i], src); 130 } 131 } 132 }; 133 } 134 135 /// Replace all the instruction uses of a value with a different value. 136 /// This has the advantage of not screwing up the CallGraph. 137 static void replaceAllInsnUsesWith(Instruction *insn, Value *replacement) { 138 for (Value::use_iterator i = insn->use_begin(), e = insn->use_end(); 139 i != e; ) { 140 Use &use = i.getUse(); 141 ++i; 142 if (isa<Instruction>(use.getUser())) 143 use.set(replacement); 144 } 145 } 146 147 /// Get or create a target for the branch out of rewritten calls to 148 /// llvm.eh.resume. 149 BasicBlock *InvokeInliningInfo::getInnerUnwindDest() { 150 if (InnerUnwindDest) return InnerUnwindDest; 151 152 // Find and hoist the llvm.eh.exception and llvm.eh.selector calls 153 // in the outer landing pad to immediately following the phis. 154 EHSelectorInst *selector = getOuterSelector(); 155 if (!selector) return 0; 156 157 // The call to llvm.eh.exception *must* be in the landing pad. 158 Instruction *exn = cast<Instruction>(selector->getArgOperand(0)); 159 assert(exn->getParent() == OuterUnwindDest); 160 161 // TODO: recognize when we've already done this, so that we don't 162 // get a linear number of these when inlining calls into lots of 163 // invokes with the same landing pad. 164 165 // Do the hoisting. 166 Instruction *splitPoint = exn->getParent()->getFirstNonPHI(); 167 assert(splitPoint != selector && "selector-on-exception dominance broken!"); 168 if (splitPoint == exn) { 169 selector->removeFromParent(); 170 selector->insertAfter(exn); 171 splitPoint = selector->getNextNode(); 172 } else { 173 exn->moveBefore(splitPoint); 174 selector->moveBefore(splitPoint); 175 } 176 177 // Split the landing pad. 178 InnerUnwindDest = OuterUnwindDest->splitBasicBlock(splitPoint, 179 OuterUnwindDest->getName() + ".body"); 180 181 // The number of incoming edges we expect to the inner landing pad. 182 const unsigned phiCapacity = 2; 183 184 // Create corresponding new phis for all the phis in the outer landing pad. 185 BasicBlock::iterator insertPoint = InnerUnwindDest->begin(); 186 BasicBlock::iterator I = OuterUnwindDest->begin(); 187 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 188 PHINode *outerPhi = cast<PHINode>(I); 189 PHINode *innerPhi = PHINode::Create(outerPhi->getType(), phiCapacity, 190 outerPhi->getName() + ".lpad-body", 191 insertPoint); 192 outerPhi->replaceAllUsesWith(innerPhi); 193 innerPhi->addIncoming(outerPhi, OuterUnwindDest); 194 } 195 196 // Create a phi for the exception value... 197 InnerExceptionPHI = PHINode::Create(exn->getType(), phiCapacity, 198 "exn.lpad-body", insertPoint); 199 replaceAllInsnUsesWith(exn, InnerExceptionPHI); 200 selector->setArgOperand(0, exn); // restore this use 201 InnerExceptionPHI->addIncoming(exn, OuterUnwindDest); 202 203 // ...and the selector. 204 InnerSelectorPHI = PHINode::Create(selector->getType(), phiCapacity, 205 "selector.lpad-body", insertPoint); 206 replaceAllInsnUsesWith(selector, InnerSelectorPHI); 207 InnerSelectorPHI->addIncoming(selector, OuterUnwindDest); 208 209 // All done. 210 return InnerUnwindDest; 211 } 212 213 /// [LIBUNWIND] Try to forward the given call, which logically occurs 214 /// at the end of the given block, as a branch to the inner unwind 215 /// block. Returns true if the call was forwarded. 216 bool InvokeInliningInfo::forwardEHResume(CallInst *call, BasicBlock *src) { 217 // First, check whether this is a call to the intrinsic. 218 Function *fn = dyn_cast<Function>(call->getCalledValue()); 219 if (!fn || fn->getName() != "llvm.eh.resume") 220 return false; 221 222 // At this point, we need to return true on all paths, because 223 // otherwise we'll construct an invoke of the intrinsic, which is 224 // not well-formed. 225 226 // Try to find or make an inner unwind dest, which will fail if we 227 // can't find a selector call for the outer unwind dest. 228 BasicBlock *dest = getInnerUnwindDest(); 229 bool hasSelector = (dest != 0); 230 231 // If we failed, just use the outer unwind dest, dropping the 232 // exception and selector on the floor. 233 if (!hasSelector) 234 dest = OuterUnwindDest; 235 236 // Make a branch. 237 BranchInst::Create(dest, src); 238 239 // Update the phis in the destination. They were inserted in an 240 // order which makes this work. 241 addIncomingPHIValuesForInto(src, dest); 242 243 if (hasSelector) { 244 InnerExceptionPHI->addIncoming(call->getArgOperand(0), src); 245 InnerSelectorPHI->addIncoming(call->getArgOperand(1), src); 246 } 247 248 return true; 249 } 250 251 /// [LIBUNWIND] Check whether this selector is "only cleanups": 252 /// call i32 @llvm.eh.selector(blah, blah, i32 0) 253 static bool isCleanupOnlySelector(EHSelectorInst *selector) { 254 if (selector->getNumArgOperands() != 3) return false; 255 ConstantInt *val = dyn_cast<ConstantInt>(selector->getArgOperand(2)); 256 return (val && val->isZero()); 257 } 258 259 /// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into 260 /// an invoke, we have to turn all of the calls that can throw into 261 /// invokes. This function analyze BB to see if there are any calls, and if so, 262 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 263 /// nodes in that block with the values specified in InvokeDestPHIValues. 264 /// 265 /// Returns true to indicate that the next block should be skipped. 266 static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, 267 InvokeInliningInfo &Invoke) { 268 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 269 Instruction *I = BBI++; 270 271 // We only need to check for function calls: inlined invoke 272 // instructions require no special handling. 273 CallInst *CI = dyn_cast<CallInst>(I); 274 if (CI == 0) continue; 275 276 // LIBUNWIND: merge selector instructions. 277 if (EHSelectorInst *Inner = dyn_cast<EHSelectorInst>(CI)) { 278 EHSelectorInst *Outer = Invoke.getOuterSelector(); 279 if (!Outer) continue; 280 281 bool innerIsOnlyCleanup = isCleanupOnlySelector(Inner); 282 bool outerIsOnlyCleanup = isCleanupOnlySelector(Outer); 283 284 // If both selectors contain only cleanups, we don't need to do 285 // anything. TODO: this is really just a very specific instance 286 // of a much more general optimization. 287 if (innerIsOnlyCleanup && outerIsOnlyCleanup) continue; 288 289 // Otherwise, we just append the outer selector to the inner selector. 290 SmallVector<Value*, 16> NewSelector; 291 for (unsigned i = 0, e = Inner->getNumArgOperands(); i != e; ++i) 292 NewSelector.push_back(Inner->getArgOperand(i)); 293 for (unsigned i = 2, e = Outer->getNumArgOperands(); i != e; ++i) 294 NewSelector.push_back(Outer->getArgOperand(i)); 295 296 CallInst *NewInner = CallInst::Create(Inner->getCalledValue(), 297 NewSelector.begin(), 298 NewSelector.end(), 299 "", 300 Inner); 301 // No need to copy attributes, calling convention, etc. 302 NewInner->takeName(Inner); 303 Inner->replaceAllUsesWith(NewInner); 304 Inner->eraseFromParent(); 305 continue; 306 } 307 308 // If this call cannot unwind, don't convert it to an invoke. 309 if (CI->doesNotThrow()) 310 continue; 311 312 // Convert this function call into an invoke instruction. 313 // First, split the basic block. 314 BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); 315 316 // Delete the unconditional branch inserted by splitBasicBlock 317 BB->getInstList().pop_back(); 318 319 // LIBUNWIND: If this is a call to @llvm.eh.resume, just branch 320 // directly to the new landing pad. 321 if (Invoke.forwardEHResume(CI, BB)) { 322 // TODO: 'Split' is now unreachable; clean it up. 323 324 // We want to leave the original call intact so that the call 325 // graph and other structures won't get misled. We also have to 326 // avoid processing the next block, or we'll iterate here forever. 327 return true; 328 } 329 330 // Otherwise, create the new invoke instruction. 331 ImmutableCallSite CS(CI); 332 SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end()); 333 InvokeInst *II = 334 InvokeInst::Create(CI->getCalledValue(), Split, 335 Invoke.getOuterUnwindDest(), 336 InvokeArgs.begin(), InvokeArgs.end(), 337 CI->getName(), BB); 338 II->setCallingConv(CI->getCallingConv()); 339 II->setAttributes(CI->getAttributes()); 340 341 // Make sure that anything using the call now uses the invoke! This also 342 // updates the CallGraph if present, because it uses a WeakVH. 343 CI->replaceAllUsesWith(II); 344 345 Split->getInstList().pop_front(); // Delete the original call 346 347 // Update any PHI nodes in the exceptional block to indicate that 348 // there is now a new entry in them. 349 Invoke.addIncomingPHIValuesFor(BB); 350 return false; 351 } 352 353 return false; 354 } 355 356 357 /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls 358 /// in the body of the inlined function into invokes and turn unwind 359 /// instructions into branches to the invoke unwind dest. 360 /// 361 /// II is the invoke instruction being inlined. FirstNewBlock is the first 362 /// block of the inlined code (the last block is the end of the function), 363 /// and InlineCodeInfo is information about the code that got inlined. 364 static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock, 365 ClonedCodeInfo &InlinedCodeInfo) { 366 BasicBlock *InvokeDest = II->getUnwindDest(); 367 368 Function *Caller = FirstNewBlock->getParent(); 369 370 // The inlined code is currently at the end of the function, scan from the 371 // start of the inlined code to its end, checking for stuff we need to 372 // rewrite. If the code doesn't have calls or unwinds, we know there is 373 // nothing to rewrite. 374 if (!InlinedCodeInfo.ContainsCalls && !InlinedCodeInfo.ContainsUnwinds) { 375 // Now that everything is happy, we have one final detail. The PHI nodes in 376 // the exception destination block still have entries due to the original 377 // invoke instruction. Eliminate these entries (which might even delete the 378 // PHI node) now. 379 InvokeDest->removePredecessor(II->getParent()); 380 return; 381 } 382 383 InvokeInliningInfo Invoke(II); 384 385 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){ 386 if (InlinedCodeInfo.ContainsCalls) 387 if (HandleCallsInBlockInlinedThroughInvoke(BB, Invoke)) { 388 // Honor a request to skip the next block. We don't need to 389 // consider UnwindInsts in this case either. 390 ++BB; 391 continue; 392 } 393 394 if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { 395 // An UnwindInst requires special handling when it gets inlined into an 396 // invoke site. Once this happens, we know that the unwind would cause 397 // a control transfer to the invoke exception destination, so we can 398 // transform it into a direct branch to the exception destination. 399 BranchInst::Create(InvokeDest, UI); 400 401 // Delete the unwind instruction! 402 UI->eraseFromParent(); 403 404 // Update any PHI nodes in the exceptional block to indicate that 405 // there is now a new entry in them. 406 Invoke.addIncomingPHIValuesFor(BB); 407 } 408 } 409 410 // Now that everything is happy, we have one final detail. The PHI nodes in 411 // the exception destination block still have entries due to the original 412 // invoke instruction. Eliminate these entries (which might even delete the 413 // PHI node) now. 414 InvokeDest->removePredecessor(II->getParent()); 415 } 416 417 /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee 418 /// into the caller, update the specified callgraph to reflect the changes we 419 /// made. Note that it's possible that not all code was copied over, so only 420 /// some edges of the callgraph may remain. 421 static void UpdateCallGraphAfterInlining(CallSite CS, 422 Function::iterator FirstNewBlock, 423 ValueToValueMapTy &VMap, 424 InlineFunctionInfo &IFI) { 425 CallGraph &CG = *IFI.CG; 426 const Function *Caller = CS.getInstruction()->getParent()->getParent(); 427 const Function *Callee = CS.getCalledFunction(); 428 CallGraphNode *CalleeNode = CG[Callee]; 429 CallGraphNode *CallerNode = CG[Caller]; 430 431 // Since we inlined some uninlined call sites in the callee into the caller, 432 // add edges from the caller to all of the callees of the callee. 433 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 434 435 // Consider the case where CalleeNode == CallerNode. 436 CallGraphNode::CalledFunctionsVector CallCache; 437 if (CalleeNode == CallerNode) { 438 CallCache.assign(I, E); 439 I = CallCache.begin(); 440 E = CallCache.end(); 441 } 442 443 for (; I != E; ++I) { 444 const Value *OrigCall = I->first; 445 446 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 447 // Only copy the edge if the call was inlined! 448 if (VMI == VMap.end() || VMI->second == 0) 449 continue; 450 451 // If the call was inlined, but then constant folded, there is no edge to 452 // add. Check for this case. 453 Instruction *NewCall = dyn_cast<Instruction>(VMI->second); 454 if (NewCall == 0) continue; 455 456 // Remember that this call site got inlined for the client of 457 // InlineFunction. 458 IFI.InlinedCalls.push_back(NewCall); 459 460 // It's possible that inlining the callsite will cause it to go from an 461 // indirect to a direct call by resolving a function pointer. If this 462 // happens, set the callee of the new call site to a more precise 463 // destination. This can also happen if the call graph node of the caller 464 // was just unnecessarily imprecise. 465 if (I->second->getFunction() == 0) 466 if (Function *F = CallSite(NewCall).getCalledFunction()) { 467 // Indirect call site resolved to direct call. 468 CallerNode->addCalledFunction(CallSite(NewCall), CG[F]); 469 470 continue; 471 } 472 473 CallerNode->addCalledFunction(CallSite(NewCall), I->second); 474 } 475 476 // Update the call graph by deleting the edge from Callee to Caller. We must 477 // do this after the loop above in case Caller and Callee are the same. 478 CallerNode->removeCallEdgeFor(CS); 479 } 480 481 /// HandleByValArgument - When inlining a call site that has a byval argument, 482 /// we have to make the implicit memcpy explicit by adding it. 483 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 484 const Function *CalledFunc, 485 InlineFunctionInfo &IFI, 486 unsigned ByValAlignment) { 487 const Type *AggTy = cast<PointerType>(Arg->getType())->getElementType(); 488 489 // If the called function is readonly, then it could not mutate the caller's 490 // copy of the byval'd memory. In this case, it is safe to elide the copy and 491 // temporary. 492 if (CalledFunc->onlyReadsMemory()) { 493 // If the byval argument has a specified alignment that is greater than the 494 // passed in pointer, then we either have to round up the input pointer or 495 // give up on this transformation. 496 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 497 return Arg; 498 499 // If the pointer is already known to be sufficiently aligned, or if we can 500 // round it up to a larger alignment, then we don't need a temporary. 501 if (getOrEnforceKnownAlignment(Arg, ByValAlignment, 502 IFI.TD) >= ByValAlignment) 503 return Arg; 504 505 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 506 // for code quality, but rarely happens and is required for correctness. 507 } 508 509 LLVMContext &Context = Arg->getContext(); 510 511 const Type *VoidPtrTy = Type::getInt8PtrTy(Context); 512 513 // Create the alloca. If we have TargetData, use nice alignment. 514 unsigned Align = 1; 515 if (IFI.TD) 516 Align = IFI.TD->getPrefTypeAlignment(AggTy); 517 518 // If the byval had an alignment specified, we *must* use at least that 519 // alignment, as it is required by the byval argument (and uses of the 520 // pointer inside the callee). 521 Align = std::max(Align, ByValAlignment); 522 523 Function *Caller = TheCall->getParent()->getParent(); 524 525 Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(), 526 &*Caller->begin()->begin()); 527 // Emit a memcpy. 528 const Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)}; 529 Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(), 530 Intrinsic::memcpy, 531 Tys, 3); 532 Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall); 533 Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall); 534 535 Value *Size; 536 if (IFI.TD == 0) 537 Size = ConstantExpr::getSizeOf(AggTy); 538 else 539 Size = ConstantInt::get(Type::getInt64Ty(Context), 540 IFI.TD->getTypeStoreSize(AggTy)); 541 542 // Always generate a memcpy of alignment 1 here because we don't know 543 // the alignment of the src pointer. Other optimizations can infer 544 // better alignment. 545 Value *CallArgs[] = { 546 DestCast, SrcCast, Size, 547 ConstantInt::get(Type::getInt32Ty(Context), 1), 548 ConstantInt::getFalse(Context) // isVolatile 549 }; 550 CallInst *TheMemCpy = 551 CallInst::Create(MemCpyFn, CallArgs, CallArgs+5, "", TheCall); 552 553 // If we have a call graph, update it. 554 if (CallGraph *CG = IFI.CG) { 555 CallGraphNode *MemCpyCGN = CG->getOrInsertFunction(MemCpyFn); 556 CallGraphNode *CallerNode = (*CG)[Caller]; 557 CallerNode->addCalledFunction(TheMemCpy, MemCpyCGN); 558 } 559 560 // Uses of the argument in the function should use our new alloca 561 // instead. 562 return NewAlloca; 563 } 564 565 // isUsedByLifetimeMarker - Check whether this Value is used by a lifetime 566 // intrinsic. 567 static bool isUsedByLifetimeMarker(Value *V) { 568 for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE; 569 ++UI) { 570 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI)) { 571 switch (II->getIntrinsicID()) { 572 default: break; 573 case Intrinsic::lifetime_start: 574 case Intrinsic::lifetime_end: 575 return true; 576 } 577 } 578 } 579 return false; 580 } 581 582 // hasLifetimeMarkers - Check whether the given alloca already has 583 // lifetime.start or lifetime.end intrinsics. 584 static bool hasLifetimeMarkers(AllocaInst *AI) { 585 const Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext()); 586 if (AI->getType() == Int8PtrTy) 587 return isUsedByLifetimeMarker(AI); 588 589 // Do a scan to find all the bitcasts to i8*. 590 for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E; 591 ++I) { 592 if (I->getType() != Int8PtrTy) continue; 593 if (!isa<BitCastInst>(*I)) continue; 594 if (isUsedByLifetimeMarker(*I)) 595 return true; 596 } 597 return false; 598 } 599 600 // InlineFunction - This function inlines the called function into the basic 601 // block of the caller. This returns false if it is not possible to inline this 602 // call. The program is still in a well defined state if this occurs though. 603 // 604 // Note that this only does one level of inlining. For example, if the 605 // instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 606 // exists in the instruction stream. Similarly this will inline a recursive 607 // function by one level. 608 // 609 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) { 610 Instruction *TheCall = CS.getInstruction(); 611 LLVMContext &Context = TheCall->getContext(); 612 assert(TheCall->getParent() && TheCall->getParent()->getParent() && 613 "Instruction not in function!"); 614 615 // If IFI has any state in it, zap it before we fill it in. 616 IFI.reset(); 617 618 const Function *CalledFunc = CS.getCalledFunction(); 619 if (CalledFunc == 0 || // Can't inline external function or indirect 620 CalledFunc->isDeclaration() || // call, or call to a vararg function! 621 CalledFunc->getFunctionType()->isVarArg()) return false; 622 623 // If the call to the callee is not a tail call, we must clear the 'tail' 624 // flags on any calls that we inline. 625 bool MustClearTailCallFlags = 626 !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall()); 627 628 // If the call to the callee cannot throw, set the 'nounwind' flag on any 629 // calls that we inline. 630 bool MarkNoUnwind = CS.doesNotThrow(); 631 632 BasicBlock *OrigBB = TheCall->getParent(); 633 Function *Caller = OrigBB->getParent(); 634 635 // GC poses two hazards to inlining, which only occur when the callee has GC: 636 // 1. If the caller has no GC, then the callee's GC must be propagated to the 637 // caller. 638 // 2. If the caller has a differing GC, it is invalid to inline. 639 if (CalledFunc->hasGC()) { 640 if (!Caller->hasGC()) 641 Caller->setGC(CalledFunc->getGC()); 642 else if (CalledFunc->getGC() != Caller->getGC()) 643 return false; 644 } 645 646 // Get an iterator to the last basic block in the function, which will have 647 // the new function inlined after it. 648 // 649 Function::iterator LastBlock = &Caller->back(); 650 651 // Make sure to capture all of the return instructions from the cloned 652 // function. 653 SmallVector<ReturnInst*, 8> Returns; 654 ClonedCodeInfo InlinedFunctionInfo; 655 Function::iterator FirstNewBlock; 656 657 { // Scope to destroy VMap after cloning. 658 ValueToValueMapTy VMap; 659 660 assert(CalledFunc->arg_size() == CS.arg_size() && 661 "No varargs calls can be inlined!"); 662 663 // Calculate the vector of arguments to pass into the function cloner, which 664 // matches up the formal to the actual argument values. 665 CallSite::arg_iterator AI = CS.arg_begin(); 666 unsigned ArgNo = 0; 667 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 668 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 669 Value *ActualArg = *AI; 670 671 // When byval arguments actually inlined, we need to make the copy implied 672 // by them explicit. However, we don't do this if the callee is readonly 673 // or readnone, because the copy would be unneeded: the callee doesn't 674 // modify the struct. 675 if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal)) { 676 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, 677 CalledFunc->getParamAlignment(ArgNo+1)); 678 679 // Calls that we inline may use the new alloca, so we need to clear 680 // their 'tail' flags if HandleByValArgument introduced a new alloca and 681 // the callee has calls. 682 MustClearTailCallFlags |= ActualArg != *AI; 683 } 684 685 VMap[I] = ActualArg; 686 } 687 688 // We want the inliner to prune the code as it copies. We would LOVE to 689 // have no dead or constant instructions leftover after inlining occurs 690 // (which can happen, e.g., because an argument was constant), but we'll be 691 // happy with whatever the cloner can do. 692 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 693 /*ModuleLevelChanges=*/false, Returns, ".i", 694 &InlinedFunctionInfo, IFI.TD, TheCall); 695 696 // Remember the first block that is newly cloned over. 697 FirstNewBlock = LastBlock; ++FirstNewBlock; 698 699 // Update the callgraph if requested. 700 if (IFI.CG) 701 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); 702 } 703 704 // If there are any alloca instructions in the block that used to be the entry 705 // block for the callee, move them to the entry block of the caller. First 706 // calculate which instruction they should be inserted before. We insert the 707 // instructions at the end of the current alloca list. 708 // 709 { 710 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 711 for (BasicBlock::iterator I = FirstNewBlock->begin(), 712 E = FirstNewBlock->end(); I != E; ) { 713 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 714 if (AI == 0) continue; 715 716 // If the alloca is now dead, remove it. This often occurs due to code 717 // specialization. 718 if (AI->use_empty()) { 719 AI->eraseFromParent(); 720 continue; 721 } 722 723 if (!isa<Constant>(AI->getArraySize())) 724 continue; 725 726 // Keep track of the static allocas that we inline into the caller. 727 IFI.StaticAllocas.push_back(AI); 728 729 // Scan for the block of allocas that we can move over, and move them 730 // all at once. 731 while (isa<AllocaInst>(I) && 732 isa<Constant>(cast<AllocaInst>(I)->getArraySize())) { 733 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 734 ++I; 735 } 736 737 // Transfer all of the allocas over in a block. Using splice means 738 // that the instructions aren't removed from the symbol table, then 739 // reinserted. 740 Caller->getEntryBlock().getInstList().splice(InsertPoint, 741 FirstNewBlock->getInstList(), 742 AI, I); 743 } 744 } 745 746 // Leave lifetime markers for the static alloca's, scoping them to the 747 // function we just inlined. 748 if (!IFI.StaticAllocas.empty()) { 749 // Also preserve the call graph, if applicable. 750 CallGraphNode *StartCGN = 0, *EndCGN = 0, *CallerNode = 0; 751 if (CallGraph *CG = IFI.CG) { 752 Function *Start = Intrinsic::getDeclaration(Caller->getParent(), 753 Intrinsic::lifetime_start); 754 Function *End = Intrinsic::getDeclaration(Caller->getParent(), 755 Intrinsic::lifetime_end); 756 StartCGN = CG->getOrInsertFunction(Start); 757 EndCGN = CG->getOrInsertFunction(End); 758 CallerNode = (*CG)[Caller]; 759 } 760 761 IRBuilder<> builder(FirstNewBlock->begin()); 762 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 763 AllocaInst *AI = IFI.StaticAllocas[ai]; 764 765 // If the alloca is already scoped to something smaller than the whole 766 // function then there's no need to add redundant, less accurate markers. 767 if (hasLifetimeMarkers(AI)) 768 continue; 769 770 CallInst *StartCall = builder.CreateLifetimeStart(AI); 771 if (IFI.CG) CallerNode->addCalledFunction(StartCall, StartCGN); 772 for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) { 773 IRBuilder<> builder(Returns[ri]); 774 CallInst *EndCall = builder.CreateLifetimeEnd(AI); 775 if (IFI.CG) CallerNode->addCalledFunction(EndCall, EndCGN); 776 } 777 } 778 } 779 780 // If the inlined code contained dynamic alloca instructions, wrap the inlined 781 // code with llvm.stacksave/llvm.stackrestore intrinsics. 782 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 783 Module *M = Caller->getParent(); 784 // Get the two intrinsics we care about. 785 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 786 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 787 788 // If we are preserving the callgraph, add edges to the stacksave/restore 789 // functions for the calls we insert. 790 CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0; 791 if (CallGraph *CG = IFI.CG) { 792 StackSaveCGN = CG->getOrInsertFunction(StackSave); 793 StackRestoreCGN = CG->getOrInsertFunction(StackRestore); 794 CallerNode = (*CG)[Caller]; 795 } 796 797 // Insert the llvm.stacksave. 798 CallInst *SavedPtr = CallInst::Create(StackSave, "savedstack", 799 FirstNewBlock->begin()); 800 if (IFI.CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN); 801 802 // Insert a call to llvm.stackrestore before any return instructions in the 803 // inlined function. 804 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 805 CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", Returns[i]); 806 if (IFI.CG) CallerNode->addCalledFunction(CI, StackRestoreCGN); 807 } 808 809 // Count the number of StackRestore calls we insert. 810 unsigned NumStackRestores = Returns.size(); 811 812 // If we are inlining an invoke instruction, insert restores before each 813 // unwind. These unwinds will be rewritten into branches later. 814 if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) { 815 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); 816 BB != E; ++BB) 817 if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { 818 CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", UI); 819 if (IFI.CG) CallerNode->addCalledFunction(CI, StackRestoreCGN); 820 ++NumStackRestores; 821 } 822 } 823 } 824 825 // If we are inlining tail call instruction through a call site that isn't 826 // marked 'tail', we must remove the tail marker for any calls in the inlined 827 // code. Also, calls inlined through a 'nounwind' call site should be marked 828 // 'nounwind'. 829 if (InlinedFunctionInfo.ContainsCalls && 830 (MustClearTailCallFlags || MarkNoUnwind)) { 831 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); 832 BB != E; ++BB) 833 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 834 if (CallInst *CI = dyn_cast<CallInst>(I)) { 835 if (MustClearTailCallFlags) 836 CI->setTailCall(false); 837 if (MarkNoUnwind) 838 CI->setDoesNotThrow(); 839 } 840 } 841 842 // If we are inlining through a 'nounwind' call site then any inlined 'unwind' 843 // instructions are unreachable. 844 if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind) 845 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); 846 BB != E; ++BB) { 847 TerminatorInst *Term = BB->getTerminator(); 848 if (isa<UnwindInst>(Term)) { 849 new UnreachableInst(Context, Term); 850 BB->getInstList().erase(Term); 851 } 852 } 853 854 // If we are inlining for an invoke instruction, we must make sure to rewrite 855 // any inlined 'unwind' instructions into branches to the invoke exception 856 // destination, and call instructions into invoke instructions. 857 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) 858 HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo); 859 860 // If we cloned in _exactly one_ basic block, and if that block ends in a 861 // return instruction, we splice the body of the inlined callee directly into 862 // the calling basic block. 863 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 864 // Move all of the instructions right before the call. 865 OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(), 866 FirstNewBlock->begin(), FirstNewBlock->end()); 867 // Remove the cloned basic block. 868 Caller->getBasicBlockList().pop_back(); 869 870 // If the call site was an invoke instruction, add a branch to the normal 871 // destination. 872 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) 873 BranchInst::Create(II->getNormalDest(), TheCall); 874 875 // If the return instruction returned a value, replace uses of the call with 876 // uses of the returned value. 877 if (!TheCall->use_empty()) { 878 ReturnInst *R = Returns[0]; 879 if (TheCall == R->getReturnValue()) 880 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 881 else 882 TheCall->replaceAllUsesWith(R->getReturnValue()); 883 } 884 // Since we are now done with the Call/Invoke, we can delete it. 885 TheCall->eraseFromParent(); 886 887 // Since we are now done with the return instruction, delete it also. 888 Returns[0]->eraseFromParent(); 889 890 // We are now done with the inlining. 891 return true; 892 } 893 894 // Otherwise, we have the normal case, of more than one block to inline or 895 // multiple return sites. 896 897 // We want to clone the entire callee function into the hole between the 898 // "starter" and "ender" blocks. How we accomplish this depends on whether 899 // this is an invoke instruction or a call instruction. 900 BasicBlock *AfterCallBB; 901 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 902 903 // Add an unconditional branch to make this look like the CallInst case... 904 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); 905 906 // Split the basic block. This guarantees that no PHI nodes will have to be 907 // updated due to new incoming edges, and make the invoke case more 908 // symmetric to the call case. 909 AfterCallBB = OrigBB->splitBasicBlock(NewBr, 910 CalledFunc->getName()+".exit"); 911 912 } else { // It's a call 913 // If this is a call instruction, we need to split the basic block that 914 // the call lives in. 915 // 916 AfterCallBB = OrigBB->splitBasicBlock(TheCall, 917 CalledFunc->getName()+".exit"); 918 } 919 920 // Change the branch that used to go to AfterCallBB to branch to the first 921 // basic block of the inlined function. 922 // 923 TerminatorInst *Br = OrigBB->getTerminator(); 924 assert(Br && Br->getOpcode() == Instruction::Br && 925 "splitBasicBlock broken!"); 926 Br->setOperand(0, FirstNewBlock); 927 928 929 // Now that the function is correct, make it a little bit nicer. In 930 // particular, move the basic blocks inserted from the end of the function 931 // into the space made by splitting the source basic block. 932 Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(), 933 FirstNewBlock, Caller->end()); 934 935 // Handle all of the return instructions that we just cloned in, and eliminate 936 // any users of the original call/invoke instruction. 937 const Type *RTy = CalledFunc->getReturnType(); 938 939 PHINode *PHI = 0; 940 if (Returns.size() > 1) { 941 // The PHI node should go at the front of the new basic block to merge all 942 // possible incoming values. 943 if (!TheCall->use_empty()) { 944 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), 945 AfterCallBB->begin()); 946 // Anything that used the result of the function call should now use the 947 // PHI node as their operand. 948 TheCall->replaceAllUsesWith(PHI); 949 } 950 951 // Loop over all of the return instructions adding entries to the PHI node 952 // as appropriate. 953 if (PHI) { 954 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 955 ReturnInst *RI = Returns[i]; 956 assert(RI->getReturnValue()->getType() == PHI->getType() && 957 "Ret value not consistent in function!"); 958 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 959 } 960 } 961 962 963 // Add a branch to the merge points and remove return instructions. 964 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 965 ReturnInst *RI = Returns[i]; 966 BranchInst::Create(AfterCallBB, RI); 967 RI->eraseFromParent(); 968 } 969 } else if (!Returns.empty()) { 970 // Otherwise, if there is exactly one return value, just replace anything 971 // using the return value of the call with the computed value. 972 if (!TheCall->use_empty()) { 973 if (TheCall == Returns[0]->getReturnValue()) 974 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 975 else 976 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); 977 } 978 979 // Splice the code from the return block into the block that it will return 980 // to, which contains the code that was after the call. 981 BasicBlock *ReturnBB = Returns[0]->getParent(); 982 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 983 ReturnBB->getInstList()); 984 985 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 986 ReturnBB->replaceAllUsesWith(AfterCallBB); 987 988 // Delete the return instruction now and empty ReturnBB now. 989 Returns[0]->eraseFromParent(); 990 ReturnBB->eraseFromParent(); 991 } else if (!TheCall->use_empty()) { 992 // No returns, but something is using the return value of the call. Just 993 // nuke the result. 994 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 995 } 996 997 // Since we are now done with the Call/Invoke, we can delete it. 998 TheCall->eraseFromParent(); 999 1000 // We should always be able to fold the entry block of the function into the 1001 // single predecessor of the block... 1002 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 1003 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 1004 1005 // Splice the code entry block into calling block, right before the 1006 // unconditional branch. 1007 OrigBB->getInstList().splice(Br, CalleeEntry->getInstList()); 1008 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 1009 1010 // Remove the unconditional branch. 1011 OrigBB->getInstList().erase(Br); 1012 1013 // Now we can remove the CalleeEntry block, which is now empty. 1014 Caller->getBasicBlockList().erase(CalleeEntry); 1015 1016 // If we inserted a phi node, check to see if it has a single value (e.g. all 1017 // the entries are the same or undef). If so, remove the PHI so it doesn't 1018 // block other optimizations. 1019 if (PHI) 1020 if (Value *V = SimplifyInstruction(PHI, IFI.TD)) { 1021 PHI->replaceAllUsesWith(V); 1022 PHI->eraseFromParent(); 1023 } 1024 1025 return true; 1026 } 1027