1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements inlining of a function into a call site, resolving 11 // parameters and the return value as appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Cloning.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/CallGraph.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/EHPersonalities.h" 26 #include "llvm/Analysis/InstructionSimplify.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/CallSite.h" 30 #include "llvm/IR/CFG.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DebugInfo.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/DIBuilder.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/IRBuilder.h" 38 #include "llvm/IR/Instructions.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/IR/MDBuilder.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include "llvm/Support/CommandLine.h" 45 #include <algorithm> 46 47 using namespace llvm; 48 49 static cl::opt<bool> 50 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), 51 cl::Hidden, 52 cl::desc("Convert noalias attributes to metadata during inlining.")); 53 54 static cl::opt<bool> 55 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", 56 cl::init(true), cl::Hidden, 57 cl::desc("Convert align attributes to assumptions during inlining.")); 58 59 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI, 60 AAResults *CalleeAAR, bool InsertLifetime) { 61 return InlineFunction(CallSite(CI), IFI, CalleeAAR, InsertLifetime); 62 } 63 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI, 64 AAResults *CalleeAAR, bool InsertLifetime) { 65 return InlineFunction(CallSite(II), IFI, CalleeAAR, InsertLifetime); 66 } 67 68 namespace { 69 /// A class for recording information about inlining a landing pad. 70 class LandingPadInliningInfo { 71 BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind. 72 BasicBlock *InnerResumeDest; ///< Destination for the callee's resume. 73 LandingPadInst *CallerLPad; ///< LandingPadInst associated with the invoke. 74 PHINode *InnerEHValuesPHI; ///< PHI for EH values from landingpad insts. 75 SmallVector<Value*, 8> UnwindDestPHIValues; 76 77 public: 78 LandingPadInliningInfo(InvokeInst *II) 79 : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr), 80 CallerLPad(nullptr), InnerEHValuesPHI(nullptr) { 81 // If there are PHI nodes in the unwind destination block, we need to keep 82 // track of which values came into them from the invoke before removing 83 // the edge from this block. 84 llvm::BasicBlock *InvokeBB = II->getParent(); 85 BasicBlock::iterator I = OuterResumeDest->begin(); 86 for (; isa<PHINode>(I); ++I) { 87 // Save the value to use for this edge. 88 PHINode *PHI = cast<PHINode>(I); 89 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 90 } 91 92 CallerLPad = cast<LandingPadInst>(I); 93 } 94 95 /// The outer unwind destination is the target of 96 /// unwind edges introduced for calls within the inlined function. 97 BasicBlock *getOuterResumeDest() const { 98 return OuterResumeDest; 99 } 100 101 BasicBlock *getInnerResumeDest(); 102 103 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 104 105 /// Forward the 'resume' instruction to the caller's landing pad block. 106 /// When the landing pad block has only one predecessor, this is 107 /// a simple branch. When there is more than one predecessor, we need to 108 /// split the landing pad block after the landingpad instruction and jump 109 /// to there. 110 void forwardResume(ResumeInst *RI, 111 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); 112 113 /// Add incoming-PHI values to the unwind destination block for the given 114 /// basic block, using the values for the original invoke's source block. 115 void addIncomingPHIValuesFor(BasicBlock *BB) const { 116 addIncomingPHIValuesForInto(BB, OuterResumeDest); 117 } 118 119 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 120 BasicBlock::iterator I = dest->begin(); 121 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 122 PHINode *phi = cast<PHINode>(I); 123 phi->addIncoming(UnwindDestPHIValues[i], src); 124 } 125 } 126 }; 127 } // anonymous namespace 128 129 /// Get or create a target for the branch from ResumeInsts. 130 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() { 131 if (InnerResumeDest) return InnerResumeDest; 132 133 // Split the landing pad. 134 BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator(); 135 InnerResumeDest = 136 OuterResumeDest->splitBasicBlock(SplitPoint, 137 OuterResumeDest->getName() + ".body"); 138 139 // The number of incoming edges we expect to the inner landing pad. 140 const unsigned PHICapacity = 2; 141 142 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 143 Instruction *InsertPoint = &InnerResumeDest->front(); 144 BasicBlock::iterator I = OuterResumeDest->begin(); 145 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 146 PHINode *OuterPHI = cast<PHINode>(I); 147 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 148 OuterPHI->getName() + ".lpad-body", 149 InsertPoint); 150 OuterPHI->replaceAllUsesWith(InnerPHI); 151 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 152 } 153 154 // Create a PHI for the exception values. 155 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 156 "eh.lpad-body", InsertPoint); 157 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 158 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 159 160 // All done. 161 return InnerResumeDest; 162 } 163 164 /// Forward the 'resume' instruction to the caller's landing pad block. 165 /// When the landing pad block has only one predecessor, this is a simple 166 /// branch. When there is more than one predecessor, we need to split the 167 /// landing pad block after the landingpad instruction and jump to there. 168 void LandingPadInliningInfo::forwardResume( 169 ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) { 170 BasicBlock *Dest = getInnerResumeDest(); 171 BasicBlock *Src = RI->getParent(); 172 173 BranchInst::Create(Dest, Src); 174 175 // Update the PHIs in the destination. They were inserted in an order which 176 // makes this work. 177 addIncomingPHIValuesForInto(Src, Dest); 178 179 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 180 RI->eraseFromParent(); 181 } 182 183 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper. 184 static Value *getParentPad(Value *EHPad) { 185 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 186 return FPI->getParentPad(); 187 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 188 } 189 190 typedef DenseMap<Instruction *, Value *> UnwindDestMemoTy; 191 192 /// Helper for getUnwindDestToken that does the descendant-ward part of 193 /// the search. 194 static Value *getUnwindDestTokenHelper(Instruction *EHPad, 195 UnwindDestMemoTy &MemoMap) { 196 SmallVector<Instruction *, 8> Worklist(1, EHPad); 197 198 while (!Worklist.empty()) { 199 Instruction *CurrentPad = Worklist.pop_back_val(); 200 // We only put pads on the worklist that aren't in the MemoMap. When 201 // we find an unwind dest for a pad we may update its ancestors, but 202 // the queue only ever contains uncles/great-uncles/etc. of CurrentPad, 203 // so they should never get updated while queued on the worklist. 204 assert(!MemoMap.count(CurrentPad)); 205 Value *UnwindDestToken = nullptr; 206 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) { 207 if (CatchSwitch->hasUnwindDest()) { 208 UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI(); 209 } else { 210 // Catchswitch doesn't have a 'nounwind' variant, and one might be 211 // annotated as "unwinds to caller" when really it's nounwind (see 212 // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the 213 // parent's unwind dest from this. We can check its catchpads' 214 // descendants, since they might include a cleanuppad with an 215 // "unwinds to caller" cleanupret, which can be trusted. 216 for (auto HI = CatchSwitch->handler_begin(), 217 HE = CatchSwitch->handler_end(); 218 HI != HE && !UnwindDestToken; ++HI) { 219 BasicBlock *HandlerBlock = *HI; 220 auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI()); 221 for (User *Child : CatchPad->users()) { 222 // Intentionally ignore invokes here -- since the catchswitch is 223 // marked "unwind to caller", it would be a verifier error if it 224 // contained an invoke which unwinds out of it, so any invoke we'd 225 // encounter must unwind to some child of the catch. 226 if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child)) 227 continue; 228 229 Instruction *ChildPad = cast<Instruction>(Child); 230 auto Memo = MemoMap.find(ChildPad); 231 if (Memo == MemoMap.end()) { 232 // Haven't figured out this child pad yet; queue it. 233 Worklist.push_back(ChildPad); 234 continue; 235 } 236 // We've already checked this child, but might have found that 237 // it offers no proof either way. 238 Value *ChildUnwindDestToken = Memo->second; 239 if (!ChildUnwindDestToken) 240 continue; 241 // We already know the child's unwind dest, which can either 242 // be ConstantTokenNone to indicate unwind to caller, or can 243 // be another child of the catchpad. Only the former indicates 244 // the unwind dest of the catchswitch. 245 if (isa<ConstantTokenNone>(ChildUnwindDestToken)) { 246 UnwindDestToken = ChildUnwindDestToken; 247 break; 248 } 249 assert(getParentPad(ChildUnwindDestToken) == CatchPad); 250 } 251 } 252 } 253 } else { 254 auto *CleanupPad = cast<CleanupPadInst>(CurrentPad); 255 for (User *U : CleanupPad->users()) { 256 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) { 257 if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest()) 258 UnwindDestToken = RetUnwindDest->getFirstNonPHI(); 259 else 260 UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext()); 261 break; 262 } 263 Value *ChildUnwindDestToken; 264 if (auto *Invoke = dyn_cast<InvokeInst>(U)) { 265 ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI(); 266 } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) { 267 Instruction *ChildPad = cast<Instruction>(U); 268 auto Memo = MemoMap.find(ChildPad); 269 if (Memo == MemoMap.end()) { 270 // Haven't resolved this child yet; queue it and keep searching. 271 Worklist.push_back(ChildPad); 272 continue; 273 } 274 // We've checked this child, but still need to ignore it if it 275 // had no proof either way. 276 ChildUnwindDestToken = Memo->second; 277 if (!ChildUnwindDestToken) 278 continue; 279 } else { 280 // Not a relevant user of the cleanuppad 281 continue; 282 } 283 // In a well-formed program, the child/invoke must either unwind to 284 // an(other) child of the cleanup, or exit the cleanup. In the 285 // first case, continue searching. 286 if (isa<Instruction>(ChildUnwindDestToken) && 287 getParentPad(ChildUnwindDestToken) == CleanupPad) 288 continue; 289 UnwindDestToken = ChildUnwindDestToken; 290 break; 291 } 292 } 293 // If we haven't found an unwind dest for CurrentPad, we may have queued its 294 // children, so move on to the next in the worklist. 295 if (!UnwindDestToken) 296 continue; 297 298 // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits 299 // any ancestors of CurrentPad up to but not including UnwindDestToken's 300 // parent pad. Record this in the memo map, and check to see if the 301 // original EHPad being queried is one of the ones exited. 302 Value *UnwindParent; 303 if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken)) 304 UnwindParent = getParentPad(UnwindPad); 305 else 306 UnwindParent = nullptr; 307 bool ExitedOriginalPad = false; 308 for (Instruction *ExitedPad = CurrentPad; 309 ExitedPad && ExitedPad != UnwindParent; 310 ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) { 311 // Skip over catchpads since they just follow their catchswitches. 312 if (isa<CatchPadInst>(ExitedPad)) 313 continue; 314 MemoMap[ExitedPad] = UnwindDestToken; 315 ExitedOriginalPad |= (ExitedPad == EHPad); 316 } 317 318 if (ExitedOriginalPad) 319 return UnwindDestToken; 320 321 // Continue the search. 322 } 323 324 // No definitive information is contained within this funclet. 325 return nullptr; 326 } 327 328 /// Given an EH pad, find where it unwinds. If it unwinds to an EH pad, 329 /// return that pad instruction. If it unwinds to caller, return 330 /// ConstantTokenNone. If it does not have a definitive unwind destination, 331 /// return nullptr. 332 /// 333 /// This routine gets invoked for calls in funclets in inlinees when inlining 334 /// an invoke. Since many funclets don't have calls inside them, it's queried 335 /// on-demand rather than building a map of pads to unwind dests up front. 336 /// Determining a funclet's unwind dest may require recursively searching its 337 /// descendants, and also ancestors and cousins if the descendants don't provide 338 /// an answer. Since most funclets will have their unwind dest immediately 339 /// available as the unwind dest of a catchswitch or cleanupret, this routine 340 /// searches top-down from the given pad and then up. To avoid worst-case 341 /// quadratic run-time given that approach, it uses a memo map to avoid 342 /// re-processing funclet trees. The callers that rewrite the IR as they go 343 /// take advantage of this, for correctness, by checking/forcing rewritten 344 /// pads' entries to match the original callee view. 345 static Value *getUnwindDestToken(Instruction *EHPad, 346 UnwindDestMemoTy &MemoMap) { 347 // Catchpads unwind to the same place as their catchswitch; 348 // redirct any queries on catchpads so the code below can 349 // deal with just catchswitches and cleanuppads. 350 if (auto *CPI = dyn_cast<CatchPadInst>(EHPad)) 351 EHPad = CPI->getCatchSwitch(); 352 353 // Check if we've already determined the unwind dest for this pad. 354 auto Memo = MemoMap.find(EHPad); 355 if (Memo != MemoMap.end()) 356 return Memo->second; 357 358 // Search EHPad and, if necessary, its descendants. 359 Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap); 360 assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0)); 361 if (UnwindDestToken) 362 return UnwindDestToken; 363 364 // No information is available for this EHPad from itself or any of its 365 // descendants. An unwind all the way out to a pad in the caller would 366 // need also to agree with the unwind dest of the parent funclet, so 367 // search up the chain to try to find a funclet with information. Put 368 // null entries in the memo map to avoid re-processing as we go up. 369 MemoMap[EHPad] = nullptr; 370 #ifndef NDEBUG 371 SmallPtrSet<Instruction *, 4> TempMemos; 372 TempMemos.insert(EHPad); 373 #endif 374 Instruction *LastUselessPad = EHPad; 375 Value *AncestorToken; 376 for (AncestorToken = getParentPad(EHPad); 377 auto *AncestorPad = dyn_cast<Instruction>(AncestorToken); 378 AncestorToken = getParentPad(AncestorToken)) { 379 // Skip over catchpads since they just follow their catchswitches. 380 if (isa<CatchPadInst>(AncestorPad)) 381 continue; 382 // If the MemoMap had an entry mapping AncestorPad to nullptr, since we 383 // haven't yet called getUnwindDestTokenHelper for AncestorPad in this 384 // call to getUnwindDestToken, that would mean that AncestorPad had no 385 // information in itself, its descendants, or its ancestors. If that 386 // were the case, then we should also have recorded the lack of information 387 // for the descendant that we're coming from. So assert that we don't 388 // find a null entry in the MemoMap for AncestorPad. 389 assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]); 390 auto AncestorMemo = MemoMap.find(AncestorPad); 391 if (AncestorMemo == MemoMap.end()) { 392 UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap); 393 } else { 394 UnwindDestToken = AncestorMemo->second; 395 } 396 if (UnwindDestToken) 397 break; 398 LastUselessPad = AncestorPad; 399 MemoMap[LastUselessPad] = nullptr; 400 #ifndef NDEBUG 401 TempMemos.insert(LastUselessPad); 402 #endif 403 } 404 405 // We know that getUnwindDestTokenHelper was called on LastUselessPad and 406 // returned nullptr (and likewise for EHPad and any of its ancestors up to 407 // LastUselessPad), so LastUselessPad has no information from below. Since 408 // getUnwindDestTokenHelper must investigate all downward paths through 409 // no-information nodes to prove that a node has no information like this, 410 // and since any time it finds information it records it in the MemoMap for 411 // not just the immediately-containing funclet but also any ancestors also 412 // exited, it must be the case that, walking downward from LastUselessPad, 413 // visiting just those nodes which have not been mapped to an unwind dest 414 // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since 415 // they are just used to keep getUnwindDestTokenHelper from repeating work), 416 // any node visited must have been exhaustively searched with no information 417 // for it found. 418 SmallVector<Instruction *, 8> Worklist(1, LastUselessPad); 419 while (!Worklist.empty()) { 420 Instruction *UselessPad = Worklist.pop_back_val(); 421 auto Memo = MemoMap.find(UselessPad); 422 if (Memo != MemoMap.end() && Memo->second) { 423 // Here the name 'UselessPad' is a bit of a misnomer, because we've found 424 // that it is a funclet that does have information about unwinding to 425 // a particular destination; its parent was a useless pad. 426 // Since its parent has no information, the unwind edge must not escape 427 // the parent, and must target a sibling of this pad. This local unwind 428 // gives us no information about EHPad. Leave it and the subtree rooted 429 // at it alone. 430 assert(getParentPad(Memo->second) == getParentPad(UselessPad)); 431 continue; 432 } 433 // We know we don't have information for UselesPad. If it has an entry in 434 // the MemoMap (mapping it to nullptr), it must be one of the TempMemos 435 // added on this invocation of getUnwindDestToken; if a previous invocation 436 // recorded nullptr, it would have had to prove that the ancestors of 437 // UselessPad, which include LastUselessPad, had no information, and that 438 // in turn would have required proving that the descendants of 439 // LastUselesPad, which include EHPad, have no information about 440 // LastUselessPad, which would imply that EHPad was mapped to nullptr in 441 // the MemoMap on that invocation, which isn't the case if we got here. 442 assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad)); 443 // Assert as we enumerate users that 'UselessPad' doesn't have any unwind 444 // information that we'd be contradicting by making a map entry for it 445 // (which is something that getUnwindDestTokenHelper must have proved for 446 // us to get here). Just assert on is direct users here; the checks in 447 // this downward walk at its descendants will verify that they don't have 448 // any unwind edges that exit 'UselessPad' either (i.e. they either have no 449 // unwind edges or unwind to a sibling). 450 MemoMap[UselessPad] = UnwindDestToken; 451 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) { 452 assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad"); 453 for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) { 454 auto *CatchPad = HandlerBlock->getFirstNonPHI(); 455 for (User *U : CatchPad->users()) { 456 assert( 457 (!isa<InvokeInst>(U) || 458 (getParentPad( 459 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 460 CatchPad)) && 461 "Expected useless pad"); 462 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 463 Worklist.push_back(cast<Instruction>(U)); 464 } 465 } 466 } else { 467 assert(isa<CleanupPadInst>(UselessPad)); 468 for (User *U : UselessPad->users()) { 469 assert(!isa<CleanupReturnInst>(U) && "Expected useless pad"); 470 assert((!isa<InvokeInst>(U) || 471 (getParentPad( 472 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 473 UselessPad)) && 474 "Expected useless pad"); 475 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 476 Worklist.push_back(cast<Instruction>(U)); 477 } 478 } 479 } 480 481 return UnwindDestToken; 482 } 483 484 /// When we inline a basic block into an invoke, 485 /// we have to turn all of the calls that can throw into invokes. 486 /// This function analyze BB to see if there are any calls, and if so, 487 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 488 /// nodes in that block with the values specified in InvokeDestPHIValues. 489 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke( 490 BasicBlock *BB, BasicBlock *UnwindEdge, 491 UnwindDestMemoTy *FuncletUnwindMap = nullptr) { 492 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 493 Instruction *I = &*BBI++; 494 495 // We only need to check for function calls: inlined invoke 496 // instructions require no special handling. 497 CallInst *CI = dyn_cast<CallInst>(I); 498 499 if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue())) 500 continue; 501 502 // We do not need to (and in fact, cannot) convert possibly throwing calls 503 // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into 504 // invokes. The caller's "segment" of the deoptimization continuation 505 // attached to the newly inlined @llvm.experimental_deoptimize 506 // (resp. @llvm.experimental.guard) call should contain the exception 507 // handling logic, if any. 508 if (auto *F = CI->getCalledFunction()) 509 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize || 510 F->getIntrinsicID() == Intrinsic::experimental_guard) 511 continue; 512 513 if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) { 514 // This call is nested inside a funclet. If that funclet has an unwind 515 // destination within the inlinee, then unwinding out of this call would 516 // be UB. Rewriting this call to an invoke which targets the inlined 517 // invoke's unwind dest would give the call's parent funclet multiple 518 // unwind destinations, which is something that subsequent EH table 519 // generation can't handle and that the veirifer rejects. So when we 520 // see such a call, leave it as a call. 521 auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]); 522 Value *UnwindDestToken = 523 getUnwindDestToken(FuncletPad, *FuncletUnwindMap); 524 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 525 continue; 526 #ifndef NDEBUG 527 Instruction *MemoKey; 528 if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad)) 529 MemoKey = CatchPad->getCatchSwitch(); 530 else 531 MemoKey = FuncletPad; 532 assert(FuncletUnwindMap->count(MemoKey) && 533 (*FuncletUnwindMap)[MemoKey] == UnwindDestToken && 534 "must get memoized to avoid confusing later searches"); 535 #endif // NDEBUG 536 } 537 538 changeToInvokeAndSplitBasicBlock(CI, UnwindEdge); 539 return BB; 540 } 541 return nullptr; 542 } 543 544 /// If we inlined an invoke site, we need to convert calls 545 /// in the body of the inlined function into invokes. 546 /// 547 /// II is the invoke instruction being inlined. FirstNewBlock is the first 548 /// block of the inlined code (the last block is the end of the function), 549 /// and InlineCodeInfo is information about the code that got inlined. 550 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock, 551 ClonedCodeInfo &InlinedCodeInfo) { 552 BasicBlock *InvokeDest = II->getUnwindDest(); 553 554 Function *Caller = FirstNewBlock->getParent(); 555 556 // The inlined code is currently at the end of the function, scan from the 557 // start of the inlined code to its end, checking for stuff we need to 558 // rewrite. 559 LandingPadInliningInfo Invoke(II); 560 561 // Get all of the inlined landing pad instructions. 562 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 563 for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end(); 564 I != E; ++I) 565 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 566 InlinedLPads.insert(II->getLandingPadInst()); 567 568 // Append the clauses from the outer landing pad instruction into the inlined 569 // landing pad instructions. 570 LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 571 for (LandingPadInst *InlinedLPad : InlinedLPads) { 572 unsigned OuterNum = OuterLPad->getNumClauses(); 573 InlinedLPad->reserveClauses(OuterNum); 574 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 575 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 576 if (OuterLPad->isCleanup()) 577 InlinedLPad->setCleanup(true); 578 } 579 580 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 581 BB != E; ++BB) { 582 if (InlinedCodeInfo.ContainsCalls) 583 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 584 &*BB, Invoke.getOuterResumeDest())) 585 // Update any PHI nodes in the exceptional block to indicate that there 586 // is now a new entry in them. 587 Invoke.addIncomingPHIValuesFor(NewBB); 588 589 // Forward any resumes that are remaining here. 590 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 591 Invoke.forwardResume(RI, InlinedLPads); 592 } 593 594 // Now that everything is happy, we have one final detail. The PHI nodes in 595 // the exception destination block still have entries due to the original 596 // invoke instruction. Eliminate these entries (which might even delete the 597 // PHI node) now. 598 InvokeDest->removePredecessor(II->getParent()); 599 } 600 601 /// If we inlined an invoke site, we need to convert calls 602 /// in the body of the inlined function into invokes. 603 /// 604 /// II is the invoke instruction being inlined. FirstNewBlock is the first 605 /// block of the inlined code (the last block is the end of the function), 606 /// and InlineCodeInfo is information about the code that got inlined. 607 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock, 608 ClonedCodeInfo &InlinedCodeInfo) { 609 BasicBlock *UnwindDest = II->getUnwindDest(); 610 Function *Caller = FirstNewBlock->getParent(); 611 612 assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!"); 613 614 // If there are PHI nodes in the unwind destination block, we need to keep 615 // track of which values came into them from the invoke before removing the 616 // edge from this block. 617 SmallVector<Value *, 8> UnwindDestPHIValues; 618 llvm::BasicBlock *InvokeBB = II->getParent(); 619 for (Instruction &I : *UnwindDest) { 620 // Save the value to use for this edge. 621 PHINode *PHI = dyn_cast<PHINode>(&I); 622 if (!PHI) 623 break; 624 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 625 } 626 627 // Add incoming-PHI values to the unwind destination block for the given basic 628 // block, using the values for the original invoke's source block. 629 auto UpdatePHINodes = [&](BasicBlock *Src) { 630 BasicBlock::iterator I = UnwindDest->begin(); 631 for (Value *V : UnwindDestPHIValues) { 632 PHINode *PHI = cast<PHINode>(I); 633 PHI->addIncoming(V, Src); 634 ++I; 635 } 636 }; 637 638 // This connects all the instructions which 'unwind to caller' to the invoke 639 // destination. 640 UnwindDestMemoTy FuncletUnwindMap; 641 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 642 BB != E; ++BB) { 643 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 644 if (CRI->unwindsToCaller()) { 645 auto *CleanupPad = CRI->getCleanupPad(); 646 CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI); 647 CRI->eraseFromParent(); 648 UpdatePHINodes(&*BB); 649 // Finding a cleanupret with an unwind destination would confuse 650 // subsequent calls to getUnwindDestToken, so map the cleanuppad 651 // to short-circuit any such calls and recognize this as an "unwind 652 // to caller" cleanup. 653 assert(!FuncletUnwindMap.count(CleanupPad) || 654 isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad])); 655 FuncletUnwindMap[CleanupPad] = 656 ConstantTokenNone::get(Caller->getContext()); 657 } 658 } 659 660 Instruction *I = BB->getFirstNonPHI(); 661 if (!I->isEHPad()) 662 continue; 663 664 Instruction *Replacement = nullptr; 665 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 666 if (CatchSwitch->unwindsToCaller()) { 667 Value *UnwindDestToken; 668 if (auto *ParentPad = 669 dyn_cast<Instruction>(CatchSwitch->getParentPad())) { 670 // This catchswitch is nested inside another funclet. If that 671 // funclet has an unwind destination within the inlinee, then 672 // unwinding out of this catchswitch would be UB. Rewriting this 673 // catchswitch to unwind to the inlined invoke's unwind dest would 674 // give the parent funclet multiple unwind destinations, which is 675 // something that subsequent EH table generation can't handle and 676 // that the veirifer rejects. So when we see such a call, leave it 677 // as "unwind to caller". 678 UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap); 679 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 680 continue; 681 } else { 682 // This catchswitch has no parent to inherit constraints from, and 683 // none of its descendants can have an unwind edge that exits it and 684 // targets another funclet in the inlinee. It may or may not have a 685 // descendant that definitively has an unwind to caller. In either 686 // case, we'll have to assume that any unwinds out of it may need to 687 // be routed to the caller, so treat it as though it has a definitive 688 // unwind to caller. 689 UnwindDestToken = ConstantTokenNone::get(Caller->getContext()); 690 } 691 auto *NewCatchSwitch = CatchSwitchInst::Create( 692 CatchSwitch->getParentPad(), UnwindDest, 693 CatchSwitch->getNumHandlers(), CatchSwitch->getName(), 694 CatchSwitch); 695 for (BasicBlock *PadBB : CatchSwitch->handlers()) 696 NewCatchSwitch->addHandler(PadBB); 697 // Propagate info for the old catchswitch over to the new one in 698 // the unwind map. This also serves to short-circuit any subsequent 699 // checks for the unwind dest of this catchswitch, which would get 700 // confused if they found the outer handler in the callee. 701 FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken; 702 Replacement = NewCatchSwitch; 703 } 704 } else if (!isa<FuncletPadInst>(I)) { 705 llvm_unreachable("unexpected EHPad!"); 706 } 707 708 if (Replacement) { 709 Replacement->takeName(I); 710 I->replaceAllUsesWith(Replacement); 711 I->eraseFromParent(); 712 UpdatePHINodes(&*BB); 713 } 714 } 715 716 if (InlinedCodeInfo.ContainsCalls) 717 for (Function::iterator BB = FirstNewBlock->getIterator(), 718 E = Caller->end(); 719 BB != E; ++BB) 720 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 721 &*BB, UnwindDest, &FuncletUnwindMap)) 722 // Update any PHI nodes in the exceptional block to indicate that there 723 // is now a new entry in them. 724 UpdatePHINodes(NewBB); 725 726 // Now that everything is happy, we have one final detail. The PHI nodes in 727 // the exception destination block still have entries due to the original 728 // invoke instruction. Eliminate these entries (which might even delete the 729 // PHI node) now. 730 UnwindDest->removePredecessor(InvokeBB); 731 } 732 733 /// When inlining a call site that has !llvm.mem.parallel_loop_access metadata, 734 /// that metadata should be propagated to all memory-accessing cloned 735 /// instructions. 736 static void PropagateParallelLoopAccessMetadata(CallSite CS, 737 ValueToValueMapTy &VMap) { 738 MDNode *M = 739 CS.getInstruction()->getMetadata(LLVMContext::MD_mem_parallel_loop_access); 740 if (!M) 741 return; 742 743 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 744 VMI != VMIE; ++VMI) { 745 if (!VMI->second) 746 continue; 747 748 Instruction *NI = dyn_cast<Instruction>(VMI->second); 749 if (!NI) 750 continue; 751 752 if (MDNode *PM = NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access)) { 753 M = MDNode::concatenate(PM, M); 754 NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M); 755 } else if (NI->mayReadOrWriteMemory()) { 756 NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M); 757 } 758 } 759 } 760 761 /// When inlining a function that contains noalias scope metadata, 762 /// this metadata needs to be cloned so that the inlined blocks 763 /// have different "unqiue scopes" at every call site. Were this not done, then 764 /// aliasing scopes from a function inlined into a caller multiple times could 765 /// not be differentiated (and this would lead to miscompiles because the 766 /// non-aliasing property communicated by the metadata could have 767 /// call-site-specific control dependencies). 768 static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) { 769 const Function *CalledFunc = CS.getCalledFunction(); 770 SetVector<const MDNode *> MD; 771 772 // Note: We could only clone the metadata if it is already used in the 773 // caller. I'm omitting that check here because it might confuse 774 // inter-procedural alias analysis passes. We can revisit this if it becomes 775 // an efficiency or overhead problem. 776 777 for (const BasicBlock &I : *CalledFunc) 778 for (const Instruction &J : I) { 779 if (const MDNode *M = J.getMetadata(LLVMContext::MD_alias_scope)) 780 MD.insert(M); 781 if (const MDNode *M = J.getMetadata(LLVMContext::MD_noalias)) 782 MD.insert(M); 783 } 784 785 if (MD.empty()) 786 return; 787 788 // Walk the existing metadata, adding the complete (perhaps cyclic) chain to 789 // the set. 790 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end()); 791 while (!Queue.empty()) { 792 const MDNode *M = cast<MDNode>(Queue.pop_back_val()); 793 for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i) 794 if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i))) 795 if (MD.insert(M1)) 796 Queue.push_back(M1); 797 } 798 799 // Now we have a complete set of all metadata in the chains used to specify 800 // the noalias scopes and the lists of those scopes. 801 SmallVector<TempMDTuple, 16> DummyNodes; 802 DenseMap<const MDNode *, TrackingMDNodeRef> MDMap; 803 for (const MDNode *I : MD) { 804 DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None)); 805 MDMap[I].reset(DummyNodes.back().get()); 806 } 807 808 // Create new metadata nodes to replace the dummy nodes, replacing old 809 // metadata references with either a dummy node or an already-created new 810 // node. 811 for (const MDNode *I : MD) { 812 SmallVector<Metadata *, 4> NewOps; 813 for (unsigned i = 0, ie = I->getNumOperands(); i != ie; ++i) { 814 const Metadata *V = I->getOperand(i); 815 if (const MDNode *M = dyn_cast<MDNode>(V)) 816 NewOps.push_back(MDMap[M]); 817 else 818 NewOps.push_back(const_cast<Metadata *>(V)); 819 } 820 821 MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps); 822 MDTuple *TempM = cast<MDTuple>(MDMap[I]); 823 assert(TempM->isTemporary() && "Expected temporary node"); 824 825 TempM->replaceAllUsesWith(NewM); 826 } 827 828 // Now replace the metadata in the new inlined instructions with the 829 // repacements from the map. 830 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 831 VMI != VMIE; ++VMI) { 832 if (!VMI->second) 833 continue; 834 835 Instruction *NI = dyn_cast<Instruction>(VMI->second); 836 if (!NI) 837 continue; 838 839 if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) { 840 MDNode *NewMD = MDMap[M]; 841 // If the call site also had alias scope metadata (a list of scopes to 842 // which instructions inside it might belong), propagate those scopes to 843 // the inlined instructions. 844 if (MDNode *CSM = 845 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 846 NewMD = MDNode::concatenate(NewMD, CSM); 847 NI->setMetadata(LLVMContext::MD_alias_scope, NewMD); 848 } else if (NI->mayReadOrWriteMemory()) { 849 if (MDNode *M = 850 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 851 NI->setMetadata(LLVMContext::MD_alias_scope, M); 852 } 853 854 if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) { 855 MDNode *NewMD = MDMap[M]; 856 // If the call site also had noalias metadata (a list of scopes with 857 // which instructions inside it don't alias), propagate those scopes to 858 // the inlined instructions. 859 if (MDNode *CSM = 860 CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 861 NewMD = MDNode::concatenate(NewMD, CSM); 862 NI->setMetadata(LLVMContext::MD_noalias, NewMD); 863 } else if (NI->mayReadOrWriteMemory()) { 864 if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 865 NI->setMetadata(LLVMContext::MD_noalias, M); 866 } 867 } 868 } 869 870 /// If the inlined function has noalias arguments, 871 /// then add new alias scopes for each noalias argument, tag the mapped noalias 872 /// parameters with noalias metadata specifying the new scope, and tag all 873 /// non-derived loads, stores and memory intrinsics with the new alias scopes. 874 static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap, 875 const DataLayout &DL, AAResults *CalleeAAR) { 876 if (!EnableNoAliasConversion) 877 return; 878 879 const Function *CalledFunc = CS.getCalledFunction(); 880 SmallVector<const Argument *, 4> NoAliasArgs; 881 882 for (const Argument &Arg : CalledFunc->args()) 883 if (Arg.hasNoAliasAttr() && !Arg.use_empty()) 884 NoAliasArgs.push_back(&Arg); 885 886 if (NoAliasArgs.empty()) 887 return; 888 889 // To do a good job, if a noalias variable is captured, we need to know if 890 // the capture point dominates the particular use we're considering. 891 DominatorTree DT; 892 DT.recalculate(const_cast<Function&>(*CalledFunc)); 893 894 // noalias indicates that pointer values based on the argument do not alias 895 // pointer values which are not based on it. So we add a new "scope" for each 896 // noalias function argument. Accesses using pointers based on that argument 897 // become part of that alias scope, accesses using pointers not based on that 898 // argument are tagged as noalias with that scope. 899 900 DenseMap<const Argument *, MDNode *> NewScopes; 901 MDBuilder MDB(CalledFunc->getContext()); 902 903 // Create a new scope domain for this function. 904 MDNode *NewDomain = 905 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); 906 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { 907 const Argument *A = NoAliasArgs[i]; 908 909 std::string Name = CalledFunc->getName(); 910 if (A->hasName()) { 911 Name += ": %"; 912 Name += A->getName(); 913 } else { 914 Name += ": argument "; 915 Name += utostr(i); 916 } 917 918 // Note: We always create a new anonymous root here. This is true regardless 919 // of the linkage of the callee because the aliasing "scope" is not just a 920 // property of the callee, but also all control dependencies in the caller. 921 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); 922 NewScopes.insert(std::make_pair(A, NewScope)); 923 } 924 925 // Iterate over all new instructions in the map; for all memory-access 926 // instructions, add the alias scope metadata. 927 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 928 VMI != VMIE; ++VMI) { 929 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { 930 if (!VMI->second) 931 continue; 932 933 Instruction *NI = dyn_cast<Instruction>(VMI->second); 934 if (!NI) 935 continue; 936 937 bool IsArgMemOnlyCall = false, IsFuncCall = false; 938 SmallVector<const Value *, 2> PtrArgs; 939 940 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 941 PtrArgs.push_back(LI->getPointerOperand()); 942 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 943 PtrArgs.push_back(SI->getPointerOperand()); 944 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) 945 PtrArgs.push_back(VAAI->getPointerOperand()); 946 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 947 PtrArgs.push_back(CXI->getPointerOperand()); 948 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 949 PtrArgs.push_back(RMWI->getPointerOperand()); 950 else if (ImmutableCallSite ICS = ImmutableCallSite(I)) { 951 // If we know that the call does not access memory, then we'll still 952 // know that about the inlined clone of this call site, and we don't 953 // need to add metadata. 954 if (ICS.doesNotAccessMemory()) 955 continue; 956 957 IsFuncCall = true; 958 if (CalleeAAR) { 959 FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(ICS); 960 if (MRB == FMRB_OnlyAccessesArgumentPointees || 961 MRB == FMRB_OnlyReadsArgumentPointees) 962 IsArgMemOnlyCall = true; 963 } 964 965 for (Value *Arg : ICS.args()) { 966 // We need to check the underlying objects of all arguments, not just 967 // the pointer arguments, because we might be passing pointers as 968 // integers, etc. 969 // However, if we know that the call only accesses pointer arguments, 970 // then we only need to check the pointer arguments. 971 if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy()) 972 continue; 973 974 PtrArgs.push_back(Arg); 975 } 976 } 977 978 // If we found no pointers, then this instruction is not suitable for 979 // pairing with an instruction to receive aliasing metadata. 980 // However, if this is a call, this we might just alias with none of the 981 // noalias arguments. 982 if (PtrArgs.empty() && !IsFuncCall) 983 continue; 984 985 // It is possible that there is only one underlying object, but you 986 // need to go through several PHIs to see it, and thus could be 987 // repeated in the Objects list. 988 SmallPtrSet<const Value *, 4> ObjSet; 989 SmallVector<Metadata *, 4> Scopes, NoAliases; 990 991 SmallSetVector<const Argument *, 4> NAPtrArgs; 992 for (const Value *V : PtrArgs) { 993 SmallVector<Value *, 4> Objects; 994 GetUnderlyingObjects(const_cast<Value*>(V), 995 Objects, DL, /* LI = */ nullptr); 996 997 for (Value *O : Objects) 998 ObjSet.insert(O); 999 } 1000 1001 // Figure out if we're derived from anything that is not a noalias 1002 // argument. 1003 bool CanDeriveViaCapture = false, UsesAliasingPtr = false; 1004 for (const Value *V : ObjSet) { 1005 // Is this value a constant that cannot be derived from any pointer 1006 // value (we need to exclude constant expressions, for example, that 1007 // are formed from arithmetic on global symbols). 1008 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || 1009 isa<ConstantPointerNull>(V) || 1010 isa<ConstantDataVector>(V) || isa<UndefValue>(V); 1011 if (IsNonPtrConst) 1012 continue; 1013 1014 // If this is anything other than a noalias argument, then we cannot 1015 // completely describe the aliasing properties using alias.scope 1016 // metadata (and, thus, won't add any). 1017 if (const Argument *A = dyn_cast<Argument>(V)) { 1018 if (!A->hasNoAliasAttr()) 1019 UsesAliasingPtr = true; 1020 } else { 1021 UsesAliasingPtr = true; 1022 } 1023 1024 // If this is not some identified function-local object (which cannot 1025 // directly alias a noalias argument), or some other argument (which, 1026 // by definition, also cannot alias a noalias argument), then we could 1027 // alias a noalias argument that has been captured). 1028 if (!isa<Argument>(V) && 1029 !isIdentifiedFunctionLocal(const_cast<Value*>(V))) 1030 CanDeriveViaCapture = true; 1031 } 1032 1033 // A function call can always get captured noalias pointers (via other 1034 // parameters, globals, etc.). 1035 if (IsFuncCall && !IsArgMemOnlyCall) 1036 CanDeriveViaCapture = true; 1037 1038 // First, we want to figure out all of the sets with which we definitely 1039 // don't alias. Iterate over all noalias set, and add those for which: 1040 // 1. The noalias argument is not in the set of objects from which we 1041 // definitely derive. 1042 // 2. The noalias argument has not yet been captured. 1043 // An arbitrary function that might load pointers could see captured 1044 // noalias arguments via other noalias arguments or globals, and so we 1045 // must always check for prior capture. 1046 for (const Argument *A : NoAliasArgs) { 1047 if (!ObjSet.count(A) && (!CanDeriveViaCapture || 1048 // It might be tempting to skip the 1049 // PointerMayBeCapturedBefore check if 1050 // A->hasNoCaptureAttr() is true, but this is 1051 // incorrect because nocapture only guarantees 1052 // that no copies outlive the function, not 1053 // that the value cannot be locally captured. 1054 !PointerMayBeCapturedBefore(A, 1055 /* ReturnCaptures */ false, 1056 /* StoreCaptures */ false, I, &DT))) 1057 NoAliases.push_back(NewScopes[A]); 1058 } 1059 1060 if (!NoAliases.empty()) 1061 NI->setMetadata(LLVMContext::MD_noalias, 1062 MDNode::concatenate( 1063 NI->getMetadata(LLVMContext::MD_noalias), 1064 MDNode::get(CalledFunc->getContext(), NoAliases))); 1065 1066 // Next, we want to figure out all of the sets to which we might belong. 1067 // We might belong to a set if the noalias argument is in the set of 1068 // underlying objects. If there is some non-noalias argument in our list 1069 // of underlying objects, then we cannot add a scope because the fact 1070 // that some access does not alias with any set of our noalias arguments 1071 // cannot itself guarantee that it does not alias with this access 1072 // (because there is some pointer of unknown origin involved and the 1073 // other access might also depend on this pointer). We also cannot add 1074 // scopes to arbitrary functions unless we know they don't access any 1075 // non-parameter pointer-values. 1076 bool CanAddScopes = !UsesAliasingPtr; 1077 if (CanAddScopes && IsFuncCall) 1078 CanAddScopes = IsArgMemOnlyCall; 1079 1080 if (CanAddScopes) 1081 for (const Argument *A : NoAliasArgs) { 1082 if (ObjSet.count(A)) 1083 Scopes.push_back(NewScopes[A]); 1084 } 1085 1086 if (!Scopes.empty()) 1087 NI->setMetadata( 1088 LLVMContext::MD_alias_scope, 1089 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), 1090 MDNode::get(CalledFunc->getContext(), Scopes))); 1091 } 1092 } 1093 } 1094 1095 /// If the inlined function has non-byval align arguments, then 1096 /// add @llvm.assume-based alignment assumptions to preserve this information. 1097 static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) { 1098 if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache) 1099 return; 1100 AssumptionCache *AC = IFI.GetAssumptionCache 1101 ? &(*IFI.GetAssumptionCache)(*CS.getCaller()) 1102 : nullptr; 1103 auto &DL = CS.getCaller()->getParent()->getDataLayout(); 1104 1105 // To avoid inserting redundant assumptions, we should check for assumptions 1106 // already in the caller. To do this, we might need a DT of the caller. 1107 DominatorTree DT; 1108 bool DTCalculated = false; 1109 1110 Function *CalledFunc = CS.getCalledFunction(); 1111 for (Function::arg_iterator I = CalledFunc->arg_begin(), 1112 E = CalledFunc->arg_end(); 1113 I != E; ++I) { 1114 unsigned Align = I->getType()->isPointerTy() ? I->getParamAlignment() : 0; 1115 if (Align && !I->hasByValOrInAllocaAttr() && !I->hasNUses(0)) { 1116 if (!DTCalculated) { 1117 DT.recalculate(const_cast<Function&>(*CS.getInstruction()->getParent() 1118 ->getParent())); 1119 DTCalculated = true; 1120 } 1121 1122 // If we can already prove the asserted alignment in the context of the 1123 // caller, then don't bother inserting the assumption. 1124 Value *Arg = CS.getArgument(I->getArgNo()); 1125 if (getKnownAlignment(Arg, DL, CS.getInstruction(), AC, &DT) >= Align) 1126 continue; 1127 1128 CallInst *NewAssumption = IRBuilder<>(CS.getInstruction()) 1129 .CreateAlignmentAssumption(DL, Arg, Align); 1130 if (AC) 1131 AC->registerAssumption(NewAssumption); 1132 } 1133 } 1134 } 1135 1136 /// Once we have cloned code over from a callee into the caller, 1137 /// update the specified callgraph to reflect the changes we made. 1138 /// Note that it's possible that not all code was copied over, so only 1139 /// some edges of the callgraph may remain. 1140 static void UpdateCallGraphAfterInlining(CallSite CS, 1141 Function::iterator FirstNewBlock, 1142 ValueToValueMapTy &VMap, 1143 InlineFunctionInfo &IFI) { 1144 CallGraph &CG = *IFI.CG; 1145 const Function *Caller = CS.getInstruction()->getParent()->getParent(); 1146 const Function *Callee = CS.getCalledFunction(); 1147 CallGraphNode *CalleeNode = CG[Callee]; 1148 CallGraphNode *CallerNode = CG[Caller]; 1149 1150 // Since we inlined some uninlined call sites in the callee into the caller, 1151 // add edges from the caller to all of the callees of the callee. 1152 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 1153 1154 // Consider the case where CalleeNode == CallerNode. 1155 CallGraphNode::CalledFunctionsVector CallCache; 1156 if (CalleeNode == CallerNode) { 1157 CallCache.assign(I, E); 1158 I = CallCache.begin(); 1159 E = CallCache.end(); 1160 } 1161 1162 for (; I != E; ++I) { 1163 const Value *OrigCall = I->first; 1164 1165 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 1166 // Only copy the edge if the call was inlined! 1167 if (VMI == VMap.end() || VMI->second == nullptr) 1168 continue; 1169 1170 // If the call was inlined, but then constant folded, there is no edge to 1171 // add. Check for this case. 1172 Instruction *NewCall = dyn_cast<Instruction>(VMI->second); 1173 if (!NewCall) 1174 continue; 1175 1176 // We do not treat intrinsic calls like real function calls because we 1177 // expect them to become inline code; do not add an edge for an intrinsic. 1178 CallSite CS = CallSite(NewCall); 1179 if (CS && CS.getCalledFunction() && CS.getCalledFunction()->isIntrinsic()) 1180 continue; 1181 1182 // Remember that this call site got inlined for the client of 1183 // InlineFunction. 1184 IFI.InlinedCalls.push_back(NewCall); 1185 1186 // It's possible that inlining the callsite will cause it to go from an 1187 // indirect to a direct call by resolving a function pointer. If this 1188 // happens, set the callee of the new call site to a more precise 1189 // destination. This can also happen if the call graph node of the caller 1190 // was just unnecessarily imprecise. 1191 if (!I->second->getFunction()) 1192 if (Function *F = CallSite(NewCall).getCalledFunction()) { 1193 // Indirect call site resolved to direct call. 1194 CallerNode->addCalledFunction(CallSite(NewCall), CG[F]); 1195 1196 continue; 1197 } 1198 1199 CallerNode->addCalledFunction(CallSite(NewCall), I->second); 1200 } 1201 1202 // Update the call graph by deleting the edge from Callee to Caller. We must 1203 // do this after the loop above in case Caller and Callee are the same. 1204 CallerNode->removeCallEdgeFor(CS); 1205 } 1206 1207 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M, 1208 BasicBlock *InsertBlock, 1209 InlineFunctionInfo &IFI) { 1210 Type *AggTy = cast<PointerType>(Src->getType())->getElementType(); 1211 IRBuilder<> Builder(InsertBlock, InsertBlock->begin()); 1212 1213 Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy)); 1214 1215 // Always generate a memcpy of alignment 1 here because we don't know 1216 // the alignment of the src pointer. Other optimizations can infer 1217 // better alignment. 1218 Builder.CreateMemCpy(Dst, Src, Size, /*Align=*/1); 1219 } 1220 1221 /// When inlining a call site that has a byval argument, 1222 /// we have to make the implicit memcpy explicit by adding it. 1223 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 1224 const Function *CalledFunc, 1225 InlineFunctionInfo &IFI, 1226 unsigned ByValAlignment) { 1227 PointerType *ArgTy = cast<PointerType>(Arg->getType()); 1228 Type *AggTy = ArgTy->getElementType(); 1229 1230 Function *Caller = TheCall->getParent()->getParent(); 1231 1232 // If the called function is readonly, then it could not mutate the caller's 1233 // copy of the byval'd memory. In this case, it is safe to elide the copy and 1234 // temporary. 1235 if (CalledFunc->onlyReadsMemory()) { 1236 // If the byval argument has a specified alignment that is greater than the 1237 // passed in pointer, then we either have to round up the input pointer or 1238 // give up on this transformation. 1239 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 1240 return Arg; 1241 1242 AssumptionCache *AC = 1243 IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr; 1244 const DataLayout &DL = Caller->getParent()->getDataLayout(); 1245 1246 // If the pointer is already known to be sufficiently aligned, or if we can 1247 // round it up to a larger alignment, then we don't need a temporary. 1248 if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall, AC) >= 1249 ByValAlignment) 1250 return Arg; 1251 1252 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 1253 // for code quality, but rarely happens and is required for correctness. 1254 } 1255 1256 // Create the alloca. If we have DataLayout, use nice alignment. 1257 unsigned Align = 1258 Caller->getParent()->getDataLayout().getPrefTypeAlignment(AggTy); 1259 1260 // If the byval had an alignment specified, we *must* use at least that 1261 // alignment, as it is required by the byval argument (and uses of the 1262 // pointer inside the callee). 1263 Align = std::max(Align, ByValAlignment); 1264 1265 Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(), 1266 &*Caller->begin()->begin()); 1267 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); 1268 1269 // Uses of the argument in the function should use our new alloca 1270 // instead. 1271 return NewAlloca; 1272 } 1273 1274 // Check whether this Value is used by a lifetime intrinsic. 1275 static bool isUsedByLifetimeMarker(Value *V) { 1276 for (User *U : V->users()) { 1277 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 1278 switch (II->getIntrinsicID()) { 1279 default: break; 1280 case Intrinsic::lifetime_start: 1281 case Intrinsic::lifetime_end: 1282 return true; 1283 } 1284 } 1285 } 1286 return false; 1287 } 1288 1289 // Check whether the given alloca already has 1290 // lifetime.start or lifetime.end intrinsics. 1291 static bool hasLifetimeMarkers(AllocaInst *AI) { 1292 Type *Ty = AI->getType(); 1293 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), 1294 Ty->getPointerAddressSpace()); 1295 if (Ty == Int8PtrTy) 1296 return isUsedByLifetimeMarker(AI); 1297 1298 // Do a scan to find all the casts to i8*. 1299 for (User *U : AI->users()) { 1300 if (U->getType() != Int8PtrTy) continue; 1301 if (U->stripPointerCasts() != AI) continue; 1302 if (isUsedByLifetimeMarker(U)) 1303 return true; 1304 } 1305 return false; 1306 } 1307 1308 /// Rebuild the entire inlined-at chain for this instruction so that the top of 1309 /// the chain now is inlined-at the new call site. 1310 static DebugLoc 1311 updateInlinedAtInfo(const DebugLoc &DL, DILocation *InlinedAtNode, 1312 LLVMContext &Ctx, 1313 DenseMap<const DILocation *, DILocation *> &IANodes) { 1314 SmallVector<DILocation *, 3> InlinedAtLocations; 1315 DILocation *Last = InlinedAtNode; 1316 DILocation *CurInlinedAt = DL; 1317 1318 // Gather all the inlined-at nodes 1319 while (DILocation *IA = CurInlinedAt->getInlinedAt()) { 1320 // Skip any we've already built nodes for 1321 if (DILocation *Found = IANodes[IA]) { 1322 Last = Found; 1323 break; 1324 } 1325 1326 InlinedAtLocations.push_back(IA); 1327 CurInlinedAt = IA; 1328 } 1329 1330 // Starting from the top, rebuild the nodes to point to the new inlined-at 1331 // location (then rebuilding the rest of the chain behind it) and update the 1332 // map of already-constructed inlined-at nodes. 1333 for (const DILocation *MD : reverse(InlinedAtLocations)) { 1334 Last = IANodes[MD] = DILocation::getDistinct( 1335 Ctx, MD->getLine(), MD->getColumn(), MD->getScope(), Last); 1336 } 1337 1338 // And finally create the normal location for this instruction, referring to 1339 // the new inlined-at chain. 1340 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(), Last); 1341 } 1342 1343 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry 1344 /// block. Allocas used in inalloca calls and allocas of dynamic array size 1345 /// cannot be static. 1346 static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) { 1347 return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca(); 1348 } 1349 1350 /// Update inlined instructions' line numbers to 1351 /// to encode location where these instructions are inlined. 1352 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 1353 Instruction *TheCall, bool CalleeHasDebugInfo) { 1354 const DebugLoc &TheCallDL = TheCall->getDebugLoc(); 1355 if (!TheCallDL) 1356 return; 1357 1358 auto &Ctx = Fn->getContext(); 1359 DILocation *InlinedAtNode = TheCallDL; 1360 1361 // Create a unique call site, not to be confused with any other call from the 1362 // same location. 1363 InlinedAtNode = DILocation::getDistinct( 1364 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(), 1365 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt()); 1366 1367 // Cache the inlined-at nodes as they're built so they are reused, without 1368 // this every instruction's inlined-at chain would become distinct from each 1369 // other. 1370 DenseMap<const DILocation *, DILocation *> IANodes; 1371 1372 for (; FI != Fn->end(); ++FI) { 1373 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 1374 BI != BE; ++BI) { 1375 if (DebugLoc DL = BI->getDebugLoc()) { 1376 BI->setDebugLoc( 1377 updateInlinedAtInfo(DL, InlinedAtNode, BI->getContext(), IANodes)); 1378 continue; 1379 } 1380 1381 if (CalleeHasDebugInfo) 1382 continue; 1383 1384 // If the inlined instruction has no line number, make it look as if it 1385 // originates from the call location. This is important for 1386 // ((__always_inline__, __nodebug__)) functions which must use caller 1387 // location for all instructions in their function body. 1388 1389 // Don't update static allocas, as they may get moved later. 1390 if (auto *AI = dyn_cast<AllocaInst>(BI)) 1391 if (allocaWouldBeStaticInEntry(AI)) 1392 continue; 1393 1394 BI->setDebugLoc(TheCallDL); 1395 } 1396 } 1397 } 1398 1399 /// This function inlines the called function into the basic block of the 1400 /// caller. This returns false if it is not possible to inline this call. 1401 /// The program is still in a well defined state if this occurs though. 1402 /// 1403 /// Note that this only does one level of inlining. For example, if the 1404 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 1405 /// exists in the instruction stream. Similarly this will inline a recursive 1406 /// function by one level. 1407 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI, 1408 AAResults *CalleeAAR, bool InsertLifetime) { 1409 Instruction *TheCall = CS.getInstruction(); 1410 assert(TheCall->getParent() && TheCall->getParent()->getParent() && 1411 "Instruction not in function!"); 1412 1413 // If IFI has any state in it, zap it before we fill it in. 1414 IFI.reset(); 1415 1416 const Function *CalledFunc = CS.getCalledFunction(); 1417 if (!CalledFunc || // Can't inline external function or indirect 1418 CalledFunc->isDeclaration() || // call, or call to a vararg function! 1419 CalledFunc->getFunctionType()->isVarArg()) return false; 1420 1421 // The inliner does not know how to inline through calls with operand bundles 1422 // in general ... 1423 if (CS.hasOperandBundles()) { 1424 for (int i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 1425 uint32_t Tag = CS.getOperandBundleAt(i).getTagID(); 1426 // ... but it knows how to inline through "deopt" operand bundles ... 1427 if (Tag == LLVMContext::OB_deopt) 1428 continue; 1429 // ... and "funclet" operand bundles. 1430 if (Tag == LLVMContext::OB_funclet) 1431 continue; 1432 1433 return false; 1434 } 1435 } 1436 1437 // If the call to the callee cannot throw, set the 'nounwind' flag on any 1438 // calls that we inline. 1439 bool MarkNoUnwind = CS.doesNotThrow(); 1440 1441 BasicBlock *OrigBB = TheCall->getParent(); 1442 Function *Caller = OrigBB->getParent(); 1443 1444 // GC poses two hazards to inlining, which only occur when the callee has GC: 1445 // 1. If the caller has no GC, then the callee's GC must be propagated to the 1446 // caller. 1447 // 2. If the caller has a differing GC, it is invalid to inline. 1448 if (CalledFunc->hasGC()) { 1449 if (!Caller->hasGC()) 1450 Caller->setGC(CalledFunc->getGC()); 1451 else if (CalledFunc->getGC() != Caller->getGC()) 1452 return false; 1453 } 1454 1455 // Get the personality function from the callee if it contains a landing pad. 1456 Constant *CalledPersonality = 1457 CalledFunc->hasPersonalityFn() 1458 ? CalledFunc->getPersonalityFn()->stripPointerCasts() 1459 : nullptr; 1460 1461 // Find the personality function used by the landing pads of the caller. If it 1462 // exists, then check to see that it matches the personality function used in 1463 // the callee. 1464 Constant *CallerPersonality = 1465 Caller->hasPersonalityFn() 1466 ? Caller->getPersonalityFn()->stripPointerCasts() 1467 : nullptr; 1468 if (CalledPersonality) { 1469 if (!CallerPersonality) 1470 Caller->setPersonalityFn(CalledPersonality); 1471 // If the personality functions match, then we can perform the 1472 // inlining. Otherwise, we can't inline. 1473 // TODO: This isn't 100% true. Some personality functions are proper 1474 // supersets of others and can be used in place of the other. 1475 else if (CalledPersonality != CallerPersonality) 1476 return false; 1477 } 1478 1479 // We need to figure out which funclet the callsite was in so that we may 1480 // properly nest the callee. 1481 Instruction *CallSiteEHPad = nullptr; 1482 if (CallerPersonality) { 1483 EHPersonality Personality = classifyEHPersonality(CallerPersonality); 1484 if (isFuncletEHPersonality(Personality)) { 1485 Optional<OperandBundleUse> ParentFunclet = 1486 CS.getOperandBundle(LLVMContext::OB_funclet); 1487 if (ParentFunclet) 1488 CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front()); 1489 1490 // OK, the inlining site is legal. What about the target function? 1491 1492 if (CallSiteEHPad) { 1493 if (Personality == EHPersonality::MSVC_CXX) { 1494 // The MSVC personality cannot tolerate catches getting inlined into 1495 // cleanup funclets. 1496 if (isa<CleanupPadInst>(CallSiteEHPad)) { 1497 // Ok, the call site is within a cleanuppad. Let's check the callee 1498 // for catchpads. 1499 for (const BasicBlock &CalledBB : *CalledFunc) { 1500 if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI())) 1501 return false; 1502 } 1503 } 1504 } else if (isAsynchronousEHPersonality(Personality)) { 1505 // SEH is even less tolerant, there may not be any sort of exceptional 1506 // funclet in the callee. 1507 for (const BasicBlock &CalledBB : *CalledFunc) { 1508 if (CalledBB.isEHPad()) 1509 return false; 1510 } 1511 } 1512 } 1513 } 1514 } 1515 1516 // Determine if we are dealing with a call in an EHPad which does not unwind 1517 // to caller. 1518 bool EHPadForCallUnwindsLocally = false; 1519 if (CallSiteEHPad && CS.isCall()) { 1520 UnwindDestMemoTy FuncletUnwindMap; 1521 Value *CallSiteUnwindDestToken = 1522 getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap); 1523 1524 EHPadForCallUnwindsLocally = 1525 CallSiteUnwindDestToken && 1526 !isa<ConstantTokenNone>(CallSiteUnwindDestToken); 1527 } 1528 1529 // Get an iterator to the last basic block in the function, which will have 1530 // the new function inlined after it. 1531 Function::iterator LastBlock = --Caller->end(); 1532 1533 // Make sure to capture all of the return instructions from the cloned 1534 // function. 1535 SmallVector<ReturnInst*, 8> Returns; 1536 ClonedCodeInfo InlinedFunctionInfo; 1537 Function::iterator FirstNewBlock; 1538 1539 { // Scope to destroy VMap after cloning. 1540 ValueToValueMapTy VMap; 1541 // Keep a list of pair (dst, src) to emit byval initializations. 1542 SmallVector<std::pair<Value*, Value*>, 4> ByValInit; 1543 1544 auto &DL = Caller->getParent()->getDataLayout(); 1545 1546 assert(CalledFunc->arg_size() == CS.arg_size() && 1547 "No varargs calls can be inlined!"); 1548 1549 // Calculate the vector of arguments to pass into the function cloner, which 1550 // matches up the formal to the actual argument values. 1551 CallSite::arg_iterator AI = CS.arg_begin(); 1552 unsigned ArgNo = 0; 1553 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 1554 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 1555 Value *ActualArg = *AI; 1556 1557 // When byval arguments actually inlined, we need to make the copy implied 1558 // by them explicit. However, we don't do this if the callee is readonly 1559 // or readnone, because the copy would be unneeded: the callee doesn't 1560 // modify the struct. 1561 if (CS.isByValArgument(ArgNo)) { 1562 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, 1563 CalledFunc->getParamAlignment(ArgNo+1)); 1564 if (ActualArg != *AI) 1565 ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI)); 1566 } 1567 1568 VMap[&*I] = ActualArg; 1569 } 1570 1571 // Add alignment assumptions if necessary. We do this before the inlined 1572 // instructions are actually cloned into the caller so that we can easily 1573 // check what will be known at the start of the inlined code. 1574 AddAlignmentAssumptions(CS, IFI); 1575 1576 // We want the inliner to prune the code as it copies. We would LOVE to 1577 // have no dead or constant instructions leftover after inlining occurs 1578 // (which can happen, e.g., because an argument was constant), but we'll be 1579 // happy with whatever the cloner can do. 1580 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 1581 /*ModuleLevelChanges=*/false, Returns, ".i", 1582 &InlinedFunctionInfo, TheCall); 1583 1584 // Remember the first block that is newly cloned over. 1585 FirstNewBlock = LastBlock; ++FirstNewBlock; 1586 1587 // Inject byval arguments initialization. 1588 for (std::pair<Value*, Value*> &Init : ByValInit) 1589 HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(), 1590 &*FirstNewBlock, IFI); 1591 1592 Optional<OperandBundleUse> ParentDeopt = 1593 CS.getOperandBundle(LLVMContext::OB_deopt); 1594 if (ParentDeopt) { 1595 SmallVector<OperandBundleDef, 2> OpDefs; 1596 1597 for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) { 1598 Instruction *I = dyn_cast_or_null<Instruction>(VH); 1599 if (!I) continue; // instruction was DCE'd or RAUW'ed to undef 1600 1601 OpDefs.clear(); 1602 1603 CallSite ICS(I); 1604 OpDefs.reserve(ICS.getNumOperandBundles()); 1605 1606 for (unsigned i = 0, e = ICS.getNumOperandBundles(); i < e; ++i) { 1607 auto ChildOB = ICS.getOperandBundleAt(i); 1608 if (ChildOB.getTagID() != LLVMContext::OB_deopt) { 1609 // If the inlined call has other operand bundles, let them be 1610 OpDefs.emplace_back(ChildOB); 1611 continue; 1612 } 1613 1614 // It may be useful to separate this logic (of handling operand 1615 // bundles) out to a separate "policy" component if this gets crowded. 1616 // Prepend the parent's deoptimization continuation to the newly 1617 // inlined call's deoptimization continuation. 1618 std::vector<Value *> MergedDeoptArgs; 1619 MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() + 1620 ChildOB.Inputs.size()); 1621 1622 MergedDeoptArgs.insert(MergedDeoptArgs.end(), 1623 ParentDeopt->Inputs.begin(), 1624 ParentDeopt->Inputs.end()); 1625 MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(), 1626 ChildOB.Inputs.end()); 1627 1628 OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs)); 1629 } 1630 1631 Instruction *NewI = nullptr; 1632 if (isa<CallInst>(I)) 1633 NewI = CallInst::Create(cast<CallInst>(I), OpDefs, I); 1634 else 1635 NewI = InvokeInst::Create(cast<InvokeInst>(I), OpDefs, I); 1636 1637 // Note: the RAUW does the appropriate fixup in VMap, so we need to do 1638 // this even if the call returns void. 1639 I->replaceAllUsesWith(NewI); 1640 1641 VH = nullptr; 1642 I->eraseFromParent(); 1643 } 1644 } 1645 1646 // Update the callgraph if requested. 1647 if (IFI.CG) 1648 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); 1649 1650 // For 'nodebug' functions, the associated DISubprogram is always null. 1651 // Conservatively avoid propagating the callsite debug location to 1652 // instructions inlined from a function whose DISubprogram is not null. 1653 fixupLineNumbers(Caller, FirstNewBlock, TheCall, 1654 CalledFunc->getSubprogram() != nullptr); 1655 1656 // Clone existing noalias metadata if necessary. 1657 CloneAliasScopeMetadata(CS, VMap); 1658 1659 // Add noalias metadata if necessary. 1660 AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR); 1661 1662 // Propagate llvm.mem.parallel_loop_access if necessary. 1663 PropagateParallelLoopAccessMetadata(CS, VMap); 1664 1665 // Register any cloned assumptions. 1666 if (IFI.GetAssumptionCache) 1667 for (BasicBlock &NewBlock : 1668 make_range(FirstNewBlock->getIterator(), Caller->end())) 1669 for (Instruction &I : NewBlock) { 1670 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 1671 if (II->getIntrinsicID() == Intrinsic::assume) 1672 (*IFI.GetAssumptionCache)(*Caller).registerAssumption(II); 1673 } 1674 } 1675 1676 // If there are any alloca instructions in the block that used to be the entry 1677 // block for the callee, move them to the entry block of the caller. First 1678 // calculate which instruction they should be inserted before. We insert the 1679 // instructions at the end of the current alloca list. 1680 { 1681 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 1682 for (BasicBlock::iterator I = FirstNewBlock->begin(), 1683 E = FirstNewBlock->end(); I != E; ) { 1684 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 1685 if (!AI) continue; 1686 1687 // If the alloca is now dead, remove it. This often occurs due to code 1688 // specialization. 1689 if (AI->use_empty()) { 1690 AI->eraseFromParent(); 1691 continue; 1692 } 1693 1694 if (!allocaWouldBeStaticInEntry(AI)) 1695 continue; 1696 1697 // Keep track of the static allocas that we inline into the caller. 1698 IFI.StaticAllocas.push_back(AI); 1699 1700 // Scan for the block of allocas that we can move over, and move them 1701 // all at once. 1702 while (isa<AllocaInst>(I) && 1703 allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) { 1704 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 1705 ++I; 1706 } 1707 1708 // Transfer all of the allocas over in a block. Using splice means 1709 // that the instructions aren't removed from the symbol table, then 1710 // reinserted. 1711 Caller->getEntryBlock().getInstList().splice( 1712 InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I); 1713 } 1714 // Move any dbg.declares describing the allocas into the entry basic block. 1715 DIBuilder DIB(*Caller->getParent()); 1716 for (auto &AI : IFI.StaticAllocas) 1717 replaceDbgDeclareForAlloca(AI, AI, DIB, /*Deref=*/false); 1718 } 1719 1720 bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false; 1721 if (InlinedFunctionInfo.ContainsCalls) { 1722 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; 1723 if (CallInst *CI = dyn_cast<CallInst>(TheCall)) 1724 CallSiteTailKind = CI->getTailCallKind(); 1725 1726 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 1727 ++BB) { 1728 for (Instruction &I : *BB) { 1729 CallInst *CI = dyn_cast<CallInst>(&I); 1730 if (!CI) 1731 continue; 1732 1733 if (Function *F = CI->getCalledFunction()) 1734 InlinedDeoptimizeCalls |= 1735 F->getIntrinsicID() == Intrinsic::experimental_deoptimize; 1736 1737 // We need to reduce the strength of any inlined tail calls. For 1738 // musttail, we have to avoid introducing potential unbounded stack 1739 // growth. For example, if functions 'f' and 'g' are mutually recursive 1740 // with musttail, we can inline 'g' into 'f' so long as we preserve 1741 // musttail on the cloned call to 'f'. If either the inlined call site 1742 // or the cloned call site is *not* musttail, the program already has 1743 // one frame of stack growth, so it's safe to remove musttail. Here is 1744 // a table of example transformations: 1745 // 1746 // f -> musttail g -> musttail f ==> f -> musttail f 1747 // f -> musttail g -> tail f ==> f -> tail f 1748 // f -> g -> musttail f ==> f -> f 1749 // f -> g -> tail f ==> f -> f 1750 CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); 1751 ChildTCK = std::min(CallSiteTailKind, ChildTCK); 1752 CI->setTailCallKind(ChildTCK); 1753 InlinedMustTailCalls |= CI->isMustTailCall(); 1754 1755 // Calls inlined through a 'nounwind' call site should be marked 1756 // 'nounwind'. 1757 if (MarkNoUnwind) 1758 CI->setDoesNotThrow(); 1759 } 1760 } 1761 } 1762 1763 // Leave lifetime markers for the static alloca's, scoping them to the 1764 // function we just inlined. 1765 if (InsertLifetime && !IFI.StaticAllocas.empty()) { 1766 IRBuilder<> builder(&FirstNewBlock->front()); 1767 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 1768 AllocaInst *AI = IFI.StaticAllocas[ai]; 1769 // Don't mark swifterror allocas. They can't have bitcast uses. 1770 if (AI->isSwiftError()) 1771 continue; 1772 1773 // If the alloca is already scoped to something smaller than the whole 1774 // function then there's no need to add redundant, less accurate markers. 1775 if (hasLifetimeMarkers(AI)) 1776 continue; 1777 1778 // Try to determine the size of the allocation. 1779 ConstantInt *AllocaSize = nullptr; 1780 if (ConstantInt *AIArraySize = 1781 dyn_cast<ConstantInt>(AI->getArraySize())) { 1782 auto &DL = Caller->getParent()->getDataLayout(); 1783 Type *AllocaType = AI->getAllocatedType(); 1784 uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType); 1785 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 1786 1787 // Don't add markers for zero-sized allocas. 1788 if (AllocaArraySize == 0) 1789 continue; 1790 1791 // Check that array size doesn't saturate uint64_t and doesn't 1792 // overflow when it's multiplied by type size. 1793 if (AllocaArraySize != ~0ULL && 1794 UINT64_MAX / AllocaArraySize >= AllocaTypeSize) { 1795 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 1796 AllocaArraySize * AllocaTypeSize); 1797 } 1798 } 1799 1800 builder.CreateLifetimeStart(AI, AllocaSize); 1801 for (ReturnInst *RI : Returns) { 1802 // Don't insert llvm.lifetime.end calls between a musttail or deoptimize 1803 // call and a return. The return kills all local allocas. 1804 if (InlinedMustTailCalls && 1805 RI->getParent()->getTerminatingMustTailCall()) 1806 continue; 1807 if (InlinedDeoptimizeCalls && 1808 RI->getParent()->getTerminatingDeoptimizeCall()) 1809 continue; 1810 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); 1811 } 1812 } 1813 } 1814 1815 // If the inlined code contained dynamic alloca instructions, wrap the inlined 1816 // code with llvm.stacksave/llvm.stackrestore intrinsics. 1817 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 1818 Module *M = Caller->getParent(); 1819 // Get the two intrinsics we care about. 1820 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 1821 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 1822 1823 // Insert the llvm.stacksave. 1824 CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin()) 1825 .CreateCall(StackSave, {}, "savedstack"); 1826 1827 // Insert a call to llvm.stackrestore before any return instructions in the 1828 // inlined function. 1829 for (ReturnInst *RI : Returns) { 1830 // Don't insert llvm.stackrestore calls between a musttail or deoptimize 1831 // call and a return. The return will restore the stack pointer. 1832 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) 1833 continue; 1834 if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall()) 1835 continue; 1836 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); 1837 } 1838 } 1839 1840 // If we are inlining for an invoke instruction, we must make sure to rewrite 1841 // any call instructions into invoke instructions. This is sensitive to which 1842 // funclet pads were top-level in the inlinee, so must be done before 1843 // rewriting the "parent pad" links. 1844 if (auto *II = dyn_cast<InvokeInst>(TheCall)) { 1845 BasicBlock *UnwindDest = II->getUnwindDest(); 1846 Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI(); 1847 if (isa<LandingPadInst>(FirstNonPHI)) { 1848 HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo); 1849 } else { 1850 HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo); 1851 } 1852 } 1853 1854 // Update the lexical scopes of the new funclets and callsites. 1855 // Anything that had 'none' as its parent is now nested inside the callsite's 1856 // EHPad. 1857 1858 if (CallSiteEHPad) { 1859 for (Function::iterator BB = FirstNewBlock->getIterator(), 1860 E = Caller->end(); 1861 BB != E; ++BB) { 1862 // Add bundle operands to any top-level call sites. 1863 SmallVector<OperandBundleDef, 1> OpBundles; 1864 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) { 1865 Instruction *I = &*BBI++; 1866 CallSite CS(I); 1867 if (!CS) 1868 continue; 1869 1870 // Skip call sites which are nounwind intrinsics. 1871 auto *CalledFn = 1872 dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts()); 1873 if (CalledFn && CalledFn->isIntrinsic() && CS.doesNotThrow()) 1874 continue; 1875 1876 // Skip call sites which already have a "funclet" bundle. 1877 if (CS.getOperandBundle(LLVMContext::OB_funclet)) 1878 continue; 1879 1880 CS.getOperandBundlesAsDefs(OpBundles); 1881 OpBundles.emplace_back("funclet", CallSiteEHPad); 1882 1883 Instruction *NewInst; 1884 if (CS.isCall()) 1885 NewInst = CallInst::Create(cast<CallInst>(I), OpBundles, I); 1886 else 1887 NewInst = InvokeInst::Create(cast<InvokeInst>(I), OpBundles, I); 1888 NewInst->takeName(I); 1889 I->replaceAllUsesWith(NewInst); 1890 I->eraseFromParent(); 1891 1892 OpBundles.clear(); 1893 } 1894 1895 // It is problematic if the inlinee has a cleanupret which unwinds to 1896 // caller and we inline it into a call site which doesn't unwind but into 1897 // an EH pad that does. Such an edge must be dynamically unreachable. 1898 // As such, we replace the cleanupret with unreachable. 1899 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator())) 1900 if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally) 1901 changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false); 1902 1903 Instruction *I = BB->getFirstNonPHI(); 1904 if (!I->isEHPad()) 1905 continue; 1906 1907 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 1908 if (isa<ConstantTokenNone>(CatchSwitch->getParentPad())) 1909 CatchSwitch->setParentPad(CallSiteEHPad); 1910 } else { 1911 auto *FPI = cast<FuncletPadInst>(I); 1912 if (isa<ConstantTokenNone>(FPI->getParentPad())) 1913 FPI->setParentPad(CallSiteEHPad); 1914 } 1915 } 1916 } 1917 1918 if (InlinedDeoptimizeCalls) { 1919 // We need to at least remove the deoptimizing returns from the Return set, 1920 // so that the control flow from those returns does not get merged into the 1921 // caller (but terminate it instead). If the caller's return type does not 1922 // match the callee's return type, we also need to change the return type of 1923 // the intrinsic. 1924 if (Caller->getReturnType() == TheCall->getType()) { 1925 auto NewEnd = remove_if(Returns, [](ReturnInst *RI) { 1926 return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr; 1927 }); 1928 Returns.erase(NewEnd, Returns.end()); 1929 } else { 1930 SmallVector<ReturnInst *, 8> NormalReturns; 1931 Function *NewDeoptIntrinsic = Intrinsic::getDeclaration( 1932 Caller->getParent(), Intrinsic::experimental_deoptimize, 1933 {Caller->getReturnType()}); 1934 1935 for (ReturnInst *RI : Returns) { 1936 CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall(); 1937 if (!DeoptCall) { 1938 NormalReturns.push_back(RI); 1939 continue; 1940 } 1941 1942 // The calling convention on the deoptimize call itself may be bogus, 1943 // since the code we're inlining may have undefined behavior (and may 1944 // never actually execute at runtime); but all 1945 // @llvm.experimental.deoptimize declarations have to have the same 1946 // calling convention in a well-formed module. 1947 auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv(); 1948 NewDeoptIntrinsic->setCallingConv(CallingConv); 1949 auto *CurBB = RI->getParent(); 1950 RI->eraseFromParent(); 1951 1952 SmallVector<Value *, 4> CallArgs(DeoptCall->arg_begin(), 1953 DeoptCall->arg_end()); 1954 1955 SmallVector<OperandBundleDef, 1> OpBundles; 1956 DeoptCall->getOperandBundlesAsDefs(OpBundles); 1957 DeoptCall->eraseFromParent(); 1958 assert(!OpBundles.empty() && 1959 "Expected at least the deopt operand bundle"); 1960 1961 IRBuilder<> Builder(CurBB); 1962 CallInst *NewDeoptCall = 1963 Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles); 1964 NewDeoptCall->setCallingConv(CallingConv); 1965 if (NewDeoptCall->getType()->isVoidTy()) 1966 Builder.CreateRetVoid(); 1967 else 1968 Builder.CreateRet(NewDeoptCall); 1969 } 1970 1971 // Leave behind the normal returns so we can merge control flow. 1972 std::swap(Returns, NormalReturns); 1973 } 1974 } 1975 1976 // Handle any inlined musttail call sites. In order for a new call site to be 1977 // musttail, the source of the clone and the inlined call site must have been 1978 // musttail. Therefore it's safe to return without merging control into the 1979 // phi below. 1980 if (InlinedMustTailCalls) { 1981 // Check if we need to bitcast the result of any musttail calls. 1982 Type *NewRetTy = Caller->getReturnType(); 1983 bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy; 1984 1985 // Handle the returns preceded by musttail calls separately. 1986 SmallVector<ReturnInst *, 8> NormalReturns; 1987 for (ReturnInst *RI : Returns) { 1988 CallInst *ReturnedMustTail = 1989 RI->getParent()->getTerminatingMustTailCall(); 1990 if (!ReturnedMustTail) { 1991 NormalReturns.push_back(RI); 1992 continue; 1993 } 1994 if (!NeedBitCast) 1995 continue; 1996 1997 // Delete the old return and any preceding bitcast. 1998 BasicBlock *CurBB = RI->getParent(); 1999 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); 2000 RI->eraseFromParent(); 2001 if (OldCast) 2002 OldCast->eraseFromParent(); 2003 2004 // Insert a new bitcast and return with the right type. 2005 IRBuilder<> Builder(CurBB); 2006 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); 2007 } 2008 2009 // Leave behind the normal returns so we can merge control flow. 2010 std::swap(Returns, NormalReturns); 2011 } 2012 2013 // If we cloned in _exactly one_ basic block, and if that block ends in a 2014 // return instruction, we splice the body of the inlined callee directly into 2015 // the calling basic block. 2016 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 2017 // Move all of the instructions right before the call. 2018 OrigBB->getInstList().splice(TheCall->getIterator(), 2019 FirstNewBlock->getInstList(), 2020 FirstNewBlock->begin(), FirstNewBlock->end()); 2021 // Remove the cloned basic block. 2022 Caller->getBasicBlockList().pop_back(); 2023 2024 // If the call site was an invoke instruction, add a branch to the normal 2025 // destination. 2026 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 2027 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); 2028 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 2029 } 2030 2031 // If the return instruction returned a value, replace uses of the call with 2032 // uses of the returned value. 2033 if (!TheCall->use_empty()) { 2034 ReturnInst *R = Returns[0]; 2035 if (TheCall == R->getReturnValue()) 2036 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 2037 else 2038 TheCall->replaceAllUsesWith(R->getReturnValue()); 2039 } 2040 // Since we are now done with the Call/Invoke, we can delete it. 2041 TheCall->eraseFromParent(); 2042 2043 // Since we are now done with the return instruction, delete it also. 2044 Returns[0]->eraseFromParent(); 2045 2046 // We are now done with the inlining. 2047 return true; 2048 } 2049 2050 // Otherwise, we have the normal case, of more than one block to inline or 2051 // multiple return sites. 2052 2053 // We want to clone the entire callee function into the hole between the 2054 // "starter" and "ender" blocks. How we accomplish this depends on whether 2055 // this is an invoke instruction or a call instruction. 2056 BasicBlock *AfterCallBB; 2057 BranchInst *CreatedBranchToNormalDest = nullptr; 2058 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 2059 2060 // Add an unconditional branch to make this look like the CallInst case... 2061 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall); 2062 2063 // Split the basic block. This guarantees that no PHI nodes will have to be 2064 // updated due to new incoming edges, and make the invoke case more 2065 // symmetric to the call case. 2066 AfterCallBB = 2067 OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(), 2068 CalledFunc->getName() + ".exit"); 2069 2070 } else { // It's a call 2071 // If this is a call instruction, we need to split the basic block that 2072 // the call lives in. 2073 // 2074 AfterCallBB = OrigBB->splitBasicBlock(TheCall->getIterator(), 2075 CalledFunc->getName() + ".exit"); 2076 } 2077 2078 // Change the branch that used to go to AfterCallBB to branch to the first 2079 // basic block of the inlined function. 2080 // 2081 TerminatorInst *Br = OrigBB->getTerminator(); 2082 assert(Br && Br->getOpcode() == Instruction::Br && 2083 "splitBasicBlock broken!"); 2084 Br->setOperand(0, &*FirstNewBlock); 2085 2086 // Now that the function is correct, make it a little bit nicer. In 2087 // particular, move the basic blocks inserted from the end of the function 2088 // into the space made by splitting the source basic block. 2089 Caller->getBasicBlockList().splice(AfterCallBB->getIterator(), 2090 Caller->getBasicBlockList(), FirstNewBlock, 2091 Caller->end()); 2092 2093 // Handle all of the return instructions that we just cloned in, and eliminate 2094 // any users of the original call/invoke instruction. 2095 Type *RTy = CalledFunc->getReturnType(); 2096 2097 PHINode *PHI = nullptr; 2098 if (Returns.size() > 1) { 2099 // The PHI node should go at the front of the new basic block to merge all 2100 // possible incoming values. 2101 if (!TheCall->use_empty()) { 2102 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), 2103 &AfterCallBB->front()); 2104 // Anything that used the result of the function call should now use the 2105 // PHI node as their operand. 2106 TheCall->replaceAllUsesWith(PHI); 2107 } 2108 2109 // Loop over all of the return instructions adding entries to the PHI node 2110 // as appropriate. 2111 if (PHI) { 2112 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2113 ReturnInst *RI = Returns[i]; 2114 assert(RI->getReturnValue()->getType() == PHI->getType() && 2115 "Ret value not consistent in function!"); 2116 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 2117 } 2118 } 2119 2120 // Add a branch to the merge points and remove return instructions. 2121 DebugLoc Loc; 2122 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2123 ReturnInst *RI = Returns[i]; 2124 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 2125 Loc = RI->getDebugLoc(); 2126 BI->setDebugLoc(Loc); 2127 RI->eraseFromParent(); 2128 } 2129 // We need to set the debug location to *somewhere* inside the 2130 // inlined function. The line number may be nonsensical, but the 2131 // instruction will at least be associated with the right 2132 // function. 2133 if (CreatedBranchToNormalDest) 2134 CreatedBranchToNormalDest->setDebugLoc(Loc); 2135 } else if (!Returns.empty()) { 2136 // Otherwise, if there is exactly one return value, just replace anything 2137 // using the return value of the call with the computed value. 2138 if (!TheCall->use_empty()) { 2139 if (TheCall == Returns[0]->getReturnValue()) 2140 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 2141 else 2142 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); 2143 } 2144 2145 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 2146 BasicBlock *ReturnBB = Returns[0]->getParent(); 2147 ReturnBB->replaceAllUsesWith(AfterCallBB); 2148 2149 // Splice the code from the return block into the block that it will return 2150 // to, which contains the code that was after the call. 2151 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 2152 ReturnBB->getInstList()); 2153 2154 if (CreatedBranchToNormalDest) 2155 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 2156 2157 // Delete the return instruction now and empty ReturnBB now. 2158 Returns[0]->eraseFromParent(); 2159 ReturnBB->eraseFromParent(); 2160 } else if (!TheCall->use_empty()) { 2161 // No returns, but something is using the return value of the call. Just 2162 // nuke the result. 2163 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 2164 } 2165 2166 // Since we are now done with the Call/Invoke, we can delete it. 2167 TheCall->eraseFromParent(); 2168 2169 // If we inlined any musttail calls and the original return is now 2170 // unreachable, delete it. It can only contain a bitcast and ret. 2171 if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB)) 2172 AfterCallBB->eraseFromParent(); 2173 2174 // We should always be able to fold the entry block of the function into the 2175 // single predecessor of the block... 2176 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 2177 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 2178 2179 // Splice the code entry block into calling block, right before the 2180 // unconditional branch. 2181 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 2182 OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList()); 2183 2184 // Remove the unconditional branch. 2185 OrigBB->getInstList().erase(Br); 2186 2187 // Now we can remove the CalleeEntry block, which is now empty. 2188 Caller->getBasicBlockList().erase(CalleeEntry); 2189 2190 // If we inserted a phi node, check to see if it has a single value (e.g. all 2191 // the entries are the same or undef). If so, remove the PHI so it doesn't 2192 // block other optimizations. 2193 if (PHI) { 2194 AssumptionCache *AC = 2195 IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr; 2196 auto &DL = Caller->getParent()->getDataLayout(); 2197 if (Value *V = SimplifyInstruction(PHI, DL, nullptr, nullptr, AC)) { 2198 PHI->replaceAllUsesWith(V); 2199 PHI->eraseFromParent(); 2200 } 2201 } 2202 2203 return true; 2204 } 2205