1 //===- InlineFunction.cpp - Code to perform function inlining -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements inlining of a function into a call site, resolving
11 // parameters and the return value as appropriate.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/Cloning.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/CallGraph.h"
23 #include "llvm/Analysis/CaptureTracking.h"
24 #include "llvm/Analysis/EHPersonalities.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/CallSite.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DebugInfo.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/DIBuilder.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/MDBuilder.h"
41 #include "llvm/IR/Module.h"
42 #include "llvm/Transforms/Utils/Local.h"
43 #include "llvm/Support/CommandLine.h"
44 #include <algorithm>
45 
46 using namespace llvm;
47 
48 static cl::opt<bool>
49 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
50   cl::Hidden,
51   cl::desc("Convert noalias attributes to metadata during inlining."));
52 
53 static cl::opt<bool>
54 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
55   cl::init(true), cl::Hidden,
56   cl::desc("Convert align attributes to assumptions during inlining."));
57 
58 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI,
59                           AAResults *CalleeAAR, bool InsertLifetime) {
60   return InlineFunction(CallSite(CI), IFI, CalleeAAR, InsertLifetime);
61 }
62 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
63                           AAResults *CalleeAAR, bool InsertLifetime) {
64   return InlineFunction(CallSite(II), IFI, CalleeAAR, InsertLifetime);
65 }
66 
67 namespace {
68   /// A class for recording information about inlining a landing pad.
69   class LandingPadInliningInfo {
70     BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind.
71     BasicBlock *InnerResumeDest; ///< Destination for the callee's resume.
72     LandingPadInst *CallerLPad;  ///< LandingPadInst associated with the invoke.
73     PHINode *InnerEHValuesPHI;   ///< PHI for EH values from landingpad insts.
74     SmallVector<Value*, 8> UnwindDestPHIValues;
75 
76   public:
77     LandingPadInliningInfo(InvokeInst *II)
78       : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr),
79         CallerLPad(nullptr), InnerEHValuesPHI(nullptr) {
80       // If there are PHI nodes in the unwind destination block, we need to keep
81       // track of which values came into them from the invoke before removing
82       // the edge from this block.
83       llvm::BasicBlock *InvokeBB = II->getParent();
84       BasicBlock::iterator I = OuterResumeDest->begin();
85       for (; isa<PHINode>(I); ++I) {
86         // Save the value to use for this edge.
87         PHINode *PHI = cast<PHINode>(I);
88         UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
89       }
90 
91       CallerLPad = cast<LandingPadInst>(I);
92     }
93 
94     /// The outer unwind destination is the target of
95     /// unwind edges introduced for calls within the inlined function.
96     BasicBlock *getOuterResumeDest() const {
97       return OuterResumeDest;
98     }
99 
100     BasicBlock *getInnerResumeDest();
101 
102     LandingPadInst *getLandingPadInst() const { return CallerLPad; }
103 
104     /// Forward the 'resume' instruction to the caller's landing pad block.
105     /// When the landing pad block has only one predecessor, this is
106     /// a simple branch. When there is more than one predecessor, we need to
107     /// split the landing pad block after the landingpad instruction and jump
108     /// to there.
109     void forwardResume(ResumeInst *RI,
110                        SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
111 
112     /// Add incoming-PHI values to the unwind destination block for the given
113     /// basic block, using the values for the original invoke's source block.
114     void addIncomingPHIValuesFor(BasicBlock *BB) const {
115       addIncomingPHIValuesForInto(BB, OuterResumeDest);
116     }
117 
118     void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
119       BasicBlock::iterator I = dest->begin();
120       for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
121         PHINode *phi = cast<PHINode>(I);
122         phi->addIncoming(UnwindDestPHIValues[i], src);
123       }
124     }
125   };
126 } // anonymous namespace
127 
128 /// Get or create a target for the branch from ResumeInsts.
129 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
130   if (InnerResumeDest) return InnerResumeDest;
131 
132   // Split the landing pad.
133   BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
134   InnerResumeDest =
135     OuterResumeDest->splitBasicBlock(SplitPoint,
136                                      OuterResumeDest->getName() + ".body");
137 
138   // The number of incoming edges we expect to the inner landing pad.
139   const unsigned PHICapacity = 2;
140 
141   // Create corresponding new PHIs for all the PHIs in the outer landing pad.
142   Instruction *InsertPoint = &InnerResumeDest->front();
143   BasicBlock::iterator I = OuterResumeDest->begin();
144   for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
145     PHINode *OuterPHI = cast<PHINode>(I);
146     PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
147                                         OuterPHI->getName() + ".lpad-body",
148                                         InsertPoint);
149     OuterPHI->replaceAllUsesWith(InnerPHI);
150     InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
151   }
152 
153   // Create a PHI for the exception values.
154   InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
155                                      "eh.lpad-body", InsertPoint);
156   CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
157   InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
158 
159   // All done.
160   return InnerResumeDest;
161 }
162 
163 /// Forward the 'resume' instruction to the caller's landing pad block.
164 /// When the landing pad block has only one predecessor, this is a simple
165 /// branch. When there is more than one predecessor, we need to split the
166 /// landing pad block after the landingpad instruction and jump to there.
167 void LandingPadInliningInfo::forwardResume(
168     ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
169   BasicBlock *Dest = getInnerResumeDest();
170   BasicBlock *Src = RI->getParent();
171 
172   BranchInst::Create(Dest, Src);
173 
174   // Update the PHIs in the destination. They were inserted in an order which
175   // makes this work.
176   addIncomingPHIValuesForInto(Src, Dest);
177 
178   InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
179   RI->eraseFromParent();
180 }
181 
182 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
183 static Value *getParentPad(Value *EHPad) {
184   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
185     return FPI->getParentPad();
186   return cast<CatchSwitchInst>(EHPad)->getParentPad();
187 }
188 
189 typedef DenseMap<Instruction *, Value *> UnwindDestMemoTy;
190 
191 /// Helper for getUnwindDestToken that does the descendant-ward part of
192 /// the search.
193 static Value *getUnwindDestTokenHelper(Instruction *EHPad,
194                                        UnwindDestMemoTy &MemoMap) {
195   SmallVector<Instruction *, 8> Worklist(1, EHPad);
196 
197   while (!Worklist.empty()) {
198     Instruction *CurrentPad = Worklist.pop_back_val();
199     // We only put pads on the worklist that aren't in the MemoMap.  When
200     // we find an unwind dest for a pad we may update its ancestors, but
201     // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
202     // so they should never get updated while queued on the worklist.
203     assert(!MemoMap.count(CurrentPad));
204     Value *UnwindDestToken = nullptr;
205     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
206       if (CatchSwitch->hasUnwindDest()) {
207         UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
208       } else {
209         // Catchswitch doesn't have a 'nounwind' variant, and one might be
210         // annotated as "unwinds to caller" when really it's nounwind (see
211         // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
212         // parent's unwind dest from this.  We can check its catchpads'
213         // descendants, since they might include a cleanuppad with an
214         // "unwinds to caller" cleanupret, which can be trusted.
215         for (auto HI = CatchSwitch->handler_begin(),
216                   HE = CatchSwitch->handler_end();
217              HI != HE && !UnwindDestToken; ++HI) {
218           BasicBlock *HandlerBlock = *HI;
219           auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
220           for (User *Child : CatchPad->users()) {
221             // Intentionally ignore invokes here -- since the catchswitch is
222             // marked "unwind to caller", it would be a verifier error if it
223             // contained an invoke which unwinds out of it, so any invoke we'd
224             // encounter must unwind to some child of the catch.
225             if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
226               continue;
227 
228             Instruction *ChildPad = cast<Instruction>(Child);
229             auto Memo = MemoMap.find(ChildPad);
230             if (Memo == MemoMap.end()) {
231               // Haven't figure out this child pad yet; queue it.
232               Worklist.push_back(ChildPad);
233               continue;
234             }
235             // We've already checked this child, but might have found that
236             // it offers no proof either way.
237             Value *ChildUnwindDestToken = Memo->second;
238             if (!ChildUnwindDestToken)
239               continue;
240             // We already know the child's unwind dest, which can either
241             // be ConstantTokenNone to indicate unwind to caller, or can
242             // be another child of the catchpad.  Only the former indicates
243             // the unwind dest of the catchswitch.
244             if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
245               UnwindDestToken = ChildUnwindDestToken;
246               break;
247             }
248             assert(getParentPad(ChildUnwindDestToken) == CatchPad);
249           }
250         }
251       }
252     } else {
253       auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
254       for (User *U : CleanupPad->users()) {
255         if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
256           if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
257             UnwindDestToken = RetUnwindDest->getFirstNonPHI();
258           else
259             UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
260           break;
261         }
262         Value *ChildUnwindDestToken;
263         if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
264           ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
265         } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
266           Instruction *ChildPad = cast<Instruction>(U);
267           auto Memo = MemoMap.find(ChildPad);
268           if (Memo == MemoMap.end()) {
269             // Haven't resolved this child yet; queue it and keep searching.
270             Worklist.push_back(ChildPad);
271             continue;
272           }
273           // We've checked this child, but still need to ignore it if it
274           // had no proof either way.
275           ChildUnwindDestToken = Memo->second;
276           if (!ChildUnwindDestToken)
277             continue;
278         } else {
279           // Not a relevant user of the cleanuppad
280           continue;
281         }
282         // In a well-formed program, the child/invoke must either unwind to
283         // an(other) child of the cleanup, or exit the cleanup.  In the
284         // first case, continue searching.
285         if (isa<Instruction>(ChildUnwindDestToken) &&
286             getParentPad(ChildUnwindDestToken) == CleanupPad)
287           continue;
288         UnwindDestToken = ChildUnwindDestToken;
289         break;
290       }
291     }
292     // If we haven't found an unwind dest for CurrentPad, we may have queued its
293     // children, so move on to the next in the worklist.
294     if (!UnwindDestToken)
295       continue;
296 
297     // Now we know that CurrentPad unwinds to UnwindDestToken.  It also exits
298     // any ancestors of CurrentPad up to but not including UnwindDestToken's
299     // parent pad.  Record this in the memo map, and check to see if the
300     // original EHPad being queried is one of the ones exited.
301     Value *UnwindParent;
302     if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
303       UnwindParent = getParentPad(UnwindPad);
304     else
305       UnwindParent = nullptr;
306     bool ExitedOriginalPad = false;
307     for (Instruction *ExitedPad = CurrentPad;
308          ExitedPad && ExitedPad != UnwindParent;
309          ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
310       // Skip over catchpads since they just follow their catchswitches.
311       if (isa<CatchPadInst>(ExitedPad))
312         continue;
313       MemoMap[ExitedPad] = UnwindDestToken;
314       ExitedOriginalPad |= (ExitedPad == EHPad);
315     }
316 
317     if (ExitedOriginalPad)
318       return UnwindDestToken;
319 
320     // Continue the search.
321   }
322 
323   // No definitive information is contained within this funclet.
324   return nullptr;
325 }
326 
327 /// Given an EH pad, find where it unwinds.  If it unwinds to an EH pad,
328 /// return that pad instruction.  If it unwinds to caller, return
329 /// ConstantTokenNone.  If it does not have a definitive unwind destination,
330 /// return nullptr.
331 ///
332 /// This routine gets invoked for calls in funclets in inlinees when inlining
333 /// an invoke.  Since many funclets don't have calls inside them, it's queried
334 /// on-demand rather than building a map of pads to unwind dests up front.
335 /// Determining a funclet's unwind dest may require recursively searching its
336 /// descendants, and also ancestors and cousins if the descendants don't provide
337 /// an answer.  Since most funclets will have their unwind dest immediately
338 /// available as the unwind dest of a catchswitch or cleanupret, this routine
339 /// searches top-down from the given pad and then up. To avoid worst-case
340 /// quadratic run-time given that approach, it uses a memo map to avoid
341 /// re-processing funclet trees.  The callers that rewrite the IR as they go
342 /// take advantage of this, for correctness, by checking/forcing rewritten
343 /// pads' entries to match the original callee view.
344 static Value *getUnwindDestToken(Instruction *EHPad,
345                                  UnwindDestMemoTy &MemoMap) {
346   // Catchpads unwind to the same place as their catchswitch;
347   // redirct any queries on catchpads so the code below can
348   // deal with just catchswitches and cleanuppads.
349   if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
350     EHPad = CPI->getCatchSwitch();
351 
352   // Check if we've already determined the unwind dest for this pad.
353   auto Memo = MemoMap.find(EHPad);
354   if (Memo != MemoMap.end())
355     return Memo->second;
356 
357   // Search EHPad and, if necessary, its descendants.
358   Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
359   assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
360   if (UnwindDestToken)
361     return UnwindDestToken;
362 
363   // No information is available for this EHPad from itself or any of its
364   // descendants.  An unwind all the way out to a pad in the caller would
365   // need also to agree with the unwind dest of the parent funclet, so
366   // search up the chain to try to find a funclet with information.  Put
367   // null entries in the memo map to avoid re-processing as we go up.
368   MemoMap[EHPad] = nullptr;
369   Instruction *LastUselessPad = EHPad;
370   Value *AncestorToken;
371   for (AncestorToken = getParentPad(EHPad);
372        auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
373        AncestorToken = getParentPad(AncestorToken)) {
374     // Skip over catchpads since they just follow their catchswitches.
375     if (isa<CatchPadInst>(AncestorPad))
376       continue;
377     assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
378     auto AncestorMemo = MemoMap.find(AncestorPad);
379     if (AncestorMemo == MemoMap.end()) {
380       UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
381     } else {
382       UnwindDestToken = AncestorMemo->second;
383     }
384     if (UnwindDestToken)
385       break;
386     LastUselessPad = AncestorPad;
387   }
388 
389   // Since the whole tree under LastUselessPad has no information, it all must
390   // match UnwindDestToken; record that to avoid repeating the search.
391   SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
392   while (!Worklist.empty()) {
393     Instruction *UselessPad = Worklist.pop_back_val();
394     assert(!MemoMap.count(UselessPad) || MemoMap[UselessPad] == nullptr);
395     MemoMap[UselessPad] = UnwindDestToken;
396     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
397       for (BasicBlock *HandlerBlock : CatchSwitch->handlers())
398         for (User *U : HandlerBlock->getFirstNonPHI()->users())
399           if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
400             Worklist.push_back(cast<Instruction>(U));
401     } else {
402       assert(isa<CleanupPadInst>(UselessPad));
403       for (User *U : UselessPad->users())
404         if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
405           Worklist.push_back(cast<Instruction>(U));
406     }
407   }
408 
409   return UnwindDestToken;
410 }
411 
412 /// When we inline a basic block into an invoke,
413 /// we have to turn all of the calls that can throw into invokes.
414 /// This function analyze BB to see if there are any calls, and if so,
415 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
416 /// nodes in that block with the values specified in InvokeDestPHIValues.
417 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
418     BasicBlock *BB, BasicBlock *UnwindEdge,
419     UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
420   for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
421     Instruction *I = &*BBI++;
422 
423     // We only need to check for function calls: inlined invoke
424     // instructions require no special handling.
425     CallInst *CI = dyn_cast<CallInst>(I);
426 
427     if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue()))
428       continue;
429 
430     // We do not need to (and in fact, cannot) convert possibly throwing calls
431     // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
432     // invokes.  The caller's "segment" of the deoptimization continuation
433     // attached to the newly inlined @llvm.experimental_deoptimize
434     // (resp. @llvm.experimental.guard) call should contain the exception
435     // handling logic, if any.
436     if (auto *F = CI->getCalledFunction())
437       if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize ||
438           F->getIntrinsicID() == Intrinsic::experimental_guard)
439         continue;
440 
441     if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
442       // This call is nested inside a funclet.  If that funclet has an unwind
443       // destination within the inlinee, then unwinding out of this call would
444       // be UB.  Rewriting this call to an invoke which targets the inlined
445       // invoke's unwind dest would give the call's parent funclet multiple
446       // unwind destinations, which is something that subsequent EH table
447       // generation can't handle and that the veirifer rejects.  So when we
448       // see such a call, leave it as a call.
449       auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
450       Value *UnwindDestToken =
451           getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
452       if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
453         continue;
454 #ifndef NDEBUG
455       Instruction *MemoKey;
456       if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
457         MemoKey = CatchPad->getCatchSwitch();
458       else
459         MemoKey = FuncletPad;
460       assert(FuncletUnwindMap->count(MemoKey) &&
461              (*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
462              "must get memoized to avoid confusing later searches");
463 #endif // NDEBUG
464     }
465 
466     // Convert this function call into an invoke instruction.  First, split the
467     // basic block.
468     BasicBlock *Split =
469         BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
470 
471     // Delete the unconditional branch inserted by splitBasicBlock
472     BB->getInstList().pop_back();
473 
474     // Create the new invoke instruction.
475     SmallVector<Value*, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
476     SmallVector<OperandBundleDef, 1> OpBundles;
477 
478     CI->getOperandBundlesAsDefs(OpBundles);
479 
480     // Note: we're round tripping operand bundles through memory here, and that
481     // can potentially be avoided with a cleverer API design that we do not have
482     // as of this time.
483 
484     InvokeInst *II =
485         InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, InvokeArgs,
486                            OpBundles, CI->getName(), BB);
487     II->setDebugLoc(CI->getDebugLoc());
488     II->setCallingConv(CI->getCallingConv());
489     II->setAttributes(CI->getAttributes());
490 
491     // Make sure that anything using the call now uses the invoke!  This also
492     // updates the CallGraph if present, because it uses a WeakVH.
493     CI->replaceAllUsesWith(II);
494 
495     // Delete the original call
496     Split->getInstList().pop_front();
497     return BB;
498   }
499   return nullptr;
500 }
501 
502 /// If we inlined an invoke site, we need to convert calls
503 /// in the body of the inlined function into invokes.
504 ///
505 /// II is the invoke instruction being inlined.  FirstNewBlock is the first
506 /// block of the inlined code (the last block is the end of the function),
507 /// and InlineCodeInfo is information about the code that got inlined.
508 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
509                                     ClonedCodeInfo &InlinedCodeInfo) {
510   BasicBlock *InvokeDest = II->getUnwindDest();
511 
512   Function *Caller = FirstNewBlock->getParent();
513 
514   // The inlined code is currently at the end of the function, scan from the
515   // start of the inlined code to its end, checking for stuff we need to
516   // rewrite.
517   LandingPadInliningInfo Invoke(II);
518 
519   // Get all of the inlined landing pad instructions.
520   SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
521   for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
522        I != E; ++I)
523     if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
524       InlinedLPads.insert(II->getLandingPadInst());
525 
526   // Append the clauses from the outer landing pad instruction into the inlined
527   // landing pad instructions.
528   LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
529   for (LandingPadInst *InlinedLPad : InlinedLPads) {
530     unsigned OuterNum = OuterLPad->getNumClauses();
531     InlinedLPad->reserveClauses(OuterNum);
532     for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
533       InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
534     if (OuterLPad->isCleanup())
535       InlinedLPad->setCleanup(true);
536   }
537 
538   for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
539        BB != E; ++BB) {
540     if (InlinedCodeInfo.ContainsCalls)
541       if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
542               &*BB, Invoke.getOuterResumeDest()))
543         // Update any PHI nodes in the exceptional block to indicate that there
544         // is now a new entry in them.
545         Invoke.addIncomingPHIValuesFor(NewBB);
546 
547     // Forward any resumes that are remaining here.
548     if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
549       Invoke.forwardResume(RI, InlinedLPads);
550   }
551 
552   // Now that everything is happy, we have one final detail.  The PHI nodes in
553   // the exception destination block still have entries due to the original
554   // invoke instruction. Eliminate these entries (which might even delete the
555   // PHI node) now.
556   InvokeDest->removePredecessor(II->getParent());
557 }
558 
559 /// If we inlined an invoke site, we need to convert calls
560 /// in the body of the inlined function into invokes.
561 ///
562 /// II is the invoke instruction being inlined.  FirstNewBlock is the first
563 /// block of the inlined code (the last block is the end of the function),
564 /// and InlineCodeInfo is information about the code that got inlined.
565 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
566                                ClonedCodeInfo &InlinedCodeInfo) {
567   BasicBlock *UnwindDest = II->getUnwindDest();
568   Function *Caller = FirstNewBlock->getParent();
569 
570   assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");
571 
572   // If there are PHI nodes in the unwind destination block, we need to keep
573   // track of which values came into them from the invoke before removing the
574   // edge from this block.
575   SmallVector<Value *, 8> UnwindDestPHIValues;
576   llvm::BasicBlock *InvokeBB = II->getParent();
577   for (Instruction &I : *UnwindDest) {
578     // Save the value to use for this edge.
579     PHINode *PHI = dyn_cast<PHINode>(&I);
580     if (!PHI)
581       break;
582     UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
583   }
584 
585   // Add incoming-PHI values to the unwind destination block for the given basic
586   // block, using the values for the original invoke's source block.
587   auto UpdatePHINodes = [&](BasicBlock *Src) {
588     BasicBlock::iterator I = UnwindDest->begin();
589     for (Value *V : UnwindDestPHIValues) {
590       PHINode *PHI = cast<PHINode>(I);
591       PHI->addIncoming(V, Src);
592       ++I;
593     }
594   };
595 
596   // This connects all the instructions which 'unwind to caller' to the invoke
597   // destination.
598   UnwindDestMemoTy FuncletUnwindMap;
599   for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
600        BB != E; ++BB) {
601     if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
602       if (CRI->unwindsToCaller()) {
603         auto *CleanupPad = CRI->getCleanupPad();
604         CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
605         CRI->eraseFromParent();
606         UpdatePHINodes(&*BB);
607         // Finding a cleanupret with an unwind destination would confuse
608         // subsequent calls to getUnwindDestToken, so map the cleanuppad
609         // to short-circuit any such calls and recognize this as an "unwind
610         // to caller" cleanup.
611         assert(!FuncletUnwindMap.count(CleanupPad) ||
612                isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
613         FuncletUnwindMap[CleanupPad] =
614             ConstantTokenNone::get(Caller->getContext());
615       }
616     }
617 
618     Instruction *I = BB->getFirstNonPHI();
619     if (!I->isEHPad())
620       continue;
621 
622     Instruction *Replacement = nullptr;
623     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
624       if (CatchSwitch->unwindsToCaller()) {
625         Value *UnwindDestToken;
626         if (auto *ParentPad =
627                 dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
628           // This catchswitch is nested inside another funclet.  If that
629           // funclet has an unwind destination within the inlinee, then
630           // unwinding out of this catchswitch would be UB.  Rewriting this
631           // catchswitch to unwind to the inlined invoke's unwind dest would
632           // give the parent funclet multiple unwind destinations, which is
633           // something that subsequent EH table generation can't handle and
634           // that the veirifer rejects.  So when we see such a call, leave it
635           // as "unwind to caller".
636           UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
637           if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
638             continue;
639         } else {
640           // This catchswitch has no parent to inherit constraints from, and
641           // none of its descendants can have an unwind edge that exits it and
642           // targets another funclet in the inlinee.  It may or may not have a
643           // descendant that definitively has an unwind to caller.  In either
644           // case, we'll have to assume that any unwinds out of it may need to
645           // be routed to the caller, so treat it as though it has a definitive
646           // unwind to caller.
647           UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
648         }
649         auto *NewCatchSwitch = CatchSwitchInst::Create(
650             CatchSwitch->getParentPad(), UnwindDest,
651             CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
652             CatchSwitch);
653         for (BasicBlock *PadBB : CatchSwitch->handlers())
654           NewCatchSwitch->addHandler(PadBB);
655         // Propagate info for the old catchswitch over to the new one in
656         // the unwind map.  This also serves to short-circuit any subsequent
657         // checks for the unwind dest of this catchswitch, which would get
658         // confused if they found the outer handler in the callee.
659         FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
660         Replacement = NewCatchSwitch;
661       }
662     } else if (!isa<FuncletPadInst>(I)) {
663       llvm_unreachable("unexpected EHPad!");
664     }
665 
666     if (Replacement) {
667       Replacement->takeName(I);
668       I->replaceAllUsesWith(Replacement);
669       I->eraseFromParent();
670       UpdatePHINodes(&*BB);
671     }
672   }
673 
674   if (InlinedCodeInfo.ContainsCalls)
675     for (Function::iterator BB = FirstNewBlock->getIterator(),
676                             E = Caller->end();
677          BB != E; ++BB)
678       if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
679               &*BB, UnwindDest, &FuncletUnwindMap))
680         // Update any PHI nodes in the exceptional block to indicate that there
681         // is now a new entry in them.
682         UpdatePHINodes(NewBB);
683 
684   // Now that everything is happy, we have one final detail.  The PHI nodes in
685   // the exception destination block still have entries due to the original
686   // invoke instruction. Eliminate these entries (which might even delete the
687   // PHI node) now.
688   UnwindDest->removePredecessor(InvokeBB);
689 }
690 
691 /// When inlining a call site that has !llvm.mem.parallel_loop_access metadata,
692 /// that metadata should be propagated to all memory-accessing cloned
693 /// instructions.
694 static void PropagateParallelLoopAccessMetadata(CallSite CS,
695                                                 ValueToValueMapTy &VMap) {
696   MDNode *M =
697     CS.getInstruction()->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
698   if (!M)
699     return;
700 
701   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
702        VMI != VMIE; ++VMI) {
703     if (!VMI->second)
704       continue;
705 
706     Instruction *NI = dyn_cast<Instruction>(VMI->second);
707     if (!NI)
708       continue;
709 
710     if (MDNode *PM = NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access)) {
711         M = MDNode::concatenate(PM, M);
712       NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
713     } else if (NI->mayReadOrWriteMemory()) {
714       NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
715     }
716   }
717 }
718 
719 /// When inlining a function that contains noalias scope metadata,
720 /// this metadata needs to be cloned so that the inlined blocks
721 /// have different "unqiue scopes" at every call site. Were this not done, then
722 /// aliasing scopes from a function inlined into a caller multiple times could
723 /// not be differentiated (and this would lead to miscompiles because the
724 /// non-aliasing property communicated by the metadata could have
725 /// call-site-specific control dependencies).
726 static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) {
727   const Function *CalledFunc = CS.getCalledFunction();
728   SetVector<const MDNode *> MD;
729 
730   // Note: We could only clone the metadata if it is already used in the
731   // caller. I'm omitting that check here because it might confuse
732   // inter-procedural alias analysis passes. We can revisit this if it becomes
733   // an efficiency or overhead problem.
734 
735   for (const BasicBlock &I : *CalledFunc)
736     for (const Instruction &J : I) {
737       if (const MDNode *M = J.getMetadata(LLVMContext::MD_alias_scope))
738         MD.insert(M);
739       if (const MDNode *M = J.getMetadata(LLVMContext::MD_noalias))
740         MD.insert(M);
741     }
742 
743   if (MD.empty())
744     return;
745 
746   // Walk the existing metadata, adding the complete (perhaps cyclic) chain to
747   // the set.
748   SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
749   while (!Queue.empty()) {
750     const MDNode *M = cast<MDNode>(Queue.pop_back_val());
751     for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i)
752       if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i)))
753         if (MD.insert(M1))
754           Queue.push_back(M1);
755   }
756 
757   // Now we have a complete set of all metadata in the chains used to specify
758   // the noalias scopes and the lists of those scopes.
759   SmallVector<TempMDTuple, 16> DummyNodes;
760   DenseMap<const MDNode *, TrackingMDNodeRef> MDMap;
761   for (const MDNode *I : MD) {
762     DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None));
763     MDMap[I].reset(DummyNodes.back().get());
764   }
765 
766   // Create new metadata nodes to replace the dummy nodes, replacing old
767   // metadata references with either a dummy node or an already-created new
768   // node.
769   for (const MDNode *I : MD) {
770     SmallVector<Metadata *, 4> NewOps;
771     for (unsigned i = 0, ie = I->getNumOperands(); i != ie; ++i) {
772       const Metadata *V = I->getOperand(i);
773       if (const MDNode *M = dyn_cast<MDNode>(V))
774         NewOps.push_back(MDMap[M]);
775       else
776         NewOps.push_back(const_cast<Metadata *>(V));
777     }
778 
779     MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps);
780     MDTuple *TempM = cast<MDTuple>(MDMap[I]);
781     assert(TempM->isTemporary() && "Expected temporary node");
782 
783     TempM->replaceAllUsesWith(NewM);
784   }
785 
786   // Now replace the metadata in the new inlined instructions with the
787   // repacements from the map.
788   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
789        VMI != VMIE; ++VMI) {
790     if (!VMI->second)
791       continue;
792 
793     Instruction *NI = dyn_cast<Instruction>(VMI->second);
794     if (!NI)
795       continue;
796 
797     if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) {
798       MDNode *NewMD = MDMap[M];
799       // If the call site also had alias scope metadata (a list of scopes to
800       // which instructions inside it might belong), propagate those scopes to
801       // the inlined instructions.
802       if (MDNode *CSM =
803               CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
804         NewMD = MDNode::concatenate(NewMD, CSM);
805       NI->setMetadata(LLVMContext::MD_alias_scope, NewMD);
806     } else if (NI->mayReadOrWriteMemory()) {
807       if (MDNode *M =
808               CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
809         NI->setMetadata(LLVMContext::MD_alias_scope, M);
810     }
811 
812     if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) {
813       MDNode *NewMD = MDMap[M];
814       // If the call site also had noalias metadata (a list of scopes with
815       // which instructions inside it don't alias), propagate those scopes to
816       // the inlined instructions.
817       if (MDNode *CSM =
818               CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
819         NewMD = MDNode::concatenate(NewMD, CSM);
820       NI->setMetadata(LLVMContext::MD_noalias, NewMD);
821     } else if (NI->mayReadOrWriteMemory()) {
822       if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
823         NI->setMetadata(LLVMContext::MD_noalias, M);
824     }
825   }
826 }
827 
828 /// If the inlined function has noalias arguments,
829 /// then add new alias scopes for each noalias argument, tag the mapped noalias
830 /// parameters with noalias metadata specifying the new scope, and tag all
831 /// non-derived loads, stores and memory intrinsics with the new alias scopes.
832 static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap,
833                                   const DataLayout &DL, AAResults *CalleeAAR) {
834   if (!EnableNoAliasConversion)
835     return;
836 
837   const Function *CalledFunc = CS.getCalledFunction();
838   SmallVector<const Argument *, 4> NoAliasArgs;
839 
840   for (const Argument &Arg : CalledFunc->args())
841     if (Arg.hasNoAliasAttr() && !Arg.use_empty())
842       NoAliasArgs.push_back(&Arg);
843 
844   if (NoAliasArgs.empty())
845     return;
846 
847   // To do a good job, if a noalias variable is captured, we need to know if
848   // the capture point dominates the particular use we're considering.
849   DominatorTree DT;
850   DT.recalculate(const_cast<Function&>(*CalledFunc));
851 
852   // noalias indicates that pointer values based on the argument do not alias
853   // pointer values which are not based on it. So we add a new "scope" for each
854   // noalias function argument. Accesses using pointers based on that argument
855   // become part of that alias scope, accesses using pointers not based on that
856   // argument are tagged as noalias with that scope.
857 
858   DenseMap<const Argument *, MDNode *> NewScopes;
859   MDBuilder MDB(CalledFunc->getContext());
860 
861   // Create a new scope domain for this function.
862   MDNode *NewDomain =
863     MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
864   for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
865     const Argument *A = NoAliasArgs[i];
866 
867     std::string Name = CalledFunc->getName();
868     if (A->hasName()) {
869       Name += ": %";
870       Name += A->getName();
871     } else {
872       Name += ": argument ";
873       Name += utostr(i);
874     }
875 
876     // Note: We always create a new anonymous root here. This is true regardless
877     // of the linkage of the callee because the aliasing "scope" is not just a
878     // property of the callee, but also all control dependencies in the caller.
879     MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
880     NewScopes.insert(std::make_pair(A, NewScope));
881   }
882 
883   // Iterate over all new instructions in the map; for all memory-access
884   // instructions, add the alias scope metadata.
885   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
886        VMI != VMIE; ++VMI) {
887     if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
888       if (!VMI->second)
889         continue;
890 
891       Instruction *NI = dyn_cast<Instruction>(VMI->second);
892       if (!NI)
893         continue;
894 
895       bool IsArgMemOnlyCall = false, IsFuncCall = false;
896       SmallVector<const Value *, 2> PtrArgs;
897 
898       if (const LoadInst *LI = dyn_cast<LoadInst>(I))
899         PtrArgs.push_back(LI->getPointerOperand());
900       else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
901         PtrArgs.push_back(SI->getPointerOperand());
902       else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
903         PtrArgs.push_back(VAAI->getPointerOperand());
904       else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
905         PtrArgs.push_back(CXI->getPointerOperand());
906       else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
907         PtrArgs.push_back(RMWI->getPointerOperand());
908       else if (ImmutableCallSite ICS = ImmutableCallSite(I)) {
909         // If we know that the call does not access memory, then we'll still
910         // know that about the inlined clone of this call site, and we don't
911         // need to add metadata.
912         if (ICS.doesNotAccessMemory())
913           continue;
914 
915         IsFuncCall = true;
916         if (CalleeAAR) {
917           FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(ICS);
918           if (MRB == FMRB_OnlyAccessesArgumentPointees ||
919               MRB == FMRB_OnlyReadsArgumentPointees)
920             IsArgMemOnlyCall = true;
921         }
922 
923         for (Value *Arg : ICS.args()) {
924           // We need to check the underlying objects of all arguments, not just
925           // the pointer arguments, because we might be passing pointers as
926           // integers, etc.
927           // However, if we know that the call only accesses pointer arguments,
928           // then we only need to check the pointer arguments.
929           if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy())
930             continue;
931 
932           PtrArgs.push_back(Arg);
933         }
934       }
935 
936       // If we found no pointers, then this instruction is not suitable for
937       // pairing with an instruction to receive aliasing metadata.
938       // However, if this is a call, this we might just alias with none of the
939       // noalias arguments.
940       if (PtrArgs.empty() && !IsFuncCall)
941         continue;
942 
943       // It is possible that there is only one underlying object, but you
944       // need to go through several PHIs to see it, and thus could be
945       // repeated in the Objects list.
946       SmallPtrSet<const Value *, 4> ObjSet;
947       SmallVector<Metadata *, 4> Scopes, NoAliases;
948 
949       SmallSetVector<const Argument *, 4> NAPtrArgs;
950       for (const Value *V : PtrArgs) {
951         SmallVector<Value *, 4> Objects;
952         GetUnderlyingObjects(const_cast<Value*>(V),
953                              Objects, DL, /* LI = */ nullptr);
954 
955         for (Value *O : Objects)
956           ObjSet.insert(O);
957       }
958 
959       // Figure out if we're derived from anything that is not a noalias
960       // argument.
961       bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
962       for (const Value *V : ObjSet) {
963         // Is this value a constant that cannot be derived from any pointer
964         // value (we need to exclude constant expressions, for example, that
965         // are formed from arithmetic on global symbols).
966         bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
967                              isa<ConstantPointerNull>(V) ||
968                              isa<ConstantDataVector>(V) || isa<UndefValue>(V);
969         if (IsNonPtrConst)
970           continue;
971 
972         // If this is anything other than a noalias argument, then we cannot
973         // completely describe the aliasing properties using alias.scope
974         // metadata (and, thus, won't add any).
975         if (const Argument *A = dyn_cast<Argument>(V)) {
976           if (!A->hasNoAliasAttr())
977             UsesAliasingPtr = true;
978         } else {
979           UsesAliasingPtr = true;
980         }
981 
982         // If this is not some identified function-local object (which cannot
983         // directly alias a noalias argument), or some other argument (which,
984         // by definition, also cannot alias a noalias argument), then we could
985         // alias a noalias argument that has been captured).
986         if (!isa<Argument>(V) &&
987             !isIdentifiedFunctionLocal(const_cast<Value*>(V)))
988           CanDeriveViaCapture = true;
989       }
990 
991       // A function call can always get captured noalias pointers (via other
992       // parameters, globals, etc.).
993       if (IsFuncCall && !IsArgMemOnlyCall)
994         CanDeriveViaCapture = true;
995 
996       // First, we want to figure out all of the sets with which we definitely
997       // don't alias. Iterate over all noalias set, and add those for which:
998       //   1. The noalias argument is not in the set of objects from which we
999       //      definitely derive.
1000       //   2. The noalias argument has not yet been captured.
1001       // An arbitrary function that might load pointers could see captured
1002       // noalias arguments via other noalias arguments or globals, and so we
1003       // must always check for prior capture.
1004       for (const Argument *A : NoAliasArgs) {
1005         if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
1006                                  // It might be tempting to skip the
1007                                  // PointerMayBeCapturedBefore check if
1008                                  // A->hasNoCaptureAttr() is true, but this is
1009                                  // incorrect because nocapture only guarantees
1010                                  // that no copies outlive the function, not
1011                                  // that the value cannot be locally captured.
1012                                  !PointerMayBeCapturedBefore(A,
1013                                    /* ReturnCaptures */ false,
1014                                    /* StoreCaptures */ false, I, &DT)))
1015           NoAliases.push_back(NewScopes[A]);
1016       }
1017 
1018       if (!NoAliases.empty())
1019         NI->setMetadata(LLVMContext::MD_noalias,
1020                         MDNode::concatenate(
1021                             NI->getMetadata(LLVMContext::MD_noalias),
1022                             MDNode::get(CalledFunc->getContext(), NoAliases)));
1023 
1024       // Next, we want to figure out all of the sets to which we might belong.
1025       // We might belong to a set if the noalias argument is in the set of
1026       // underlying objects. If there is some non-noalias argument in our list
1027       // of underlying objects, then we cannot add a scope because the fact
1028       // that some access does not alias with any set of our noalias arguments
1029       // cannot itself guarantee that it does not alias with this access
1030       // (because there is some pointer of unknown origin involved and the
1031       // other access might also depend on this pointer). We also cannot add
1032       // scopes to arbitrary functions unless we know they don't access any
1033       // non-parameter pointer-values.
1034       bool CanAddScopes = !UsesAliasingPtr;
1035       if (CanAddScopes && IsFuncCall)
1036         CanAddScopes = IsArgMemOnlyCall;
1037 
1038       if (CanAddScopes)
1039         for (const Argument *A : NoAliasArgs) {
1040           if (ObjSet.count(A))
1041             Scopes.push_back(NewScopes[A]);
1042         }
1043 
1044       if (!Scopes.empty())
1045         NI->setMetadata(
1046             LLVMContext::MD_alias_scope,
1047             MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
1048                                 MDNode::get(CalledFunc->getContext(), Scopes)));
1049     }
1050   }
1051 }
1052 
1053 /// If the inlined function has non-byval align arguments, then
1054 /// add @llvm.assume-based alignment assumptions to preserve this information.
1055 static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) {
1056   if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache)
1057     return;
1058   AssumptionCache *AC = IFI.GetAssumptionCache
1059                             ? &(*IFI.GetAssumptionCache)(*CS.getCaller())
1060                             : nullptr;
1061   auto &DL = CS.getCaller()->getParent()->getDataLayout();
1062 
1063   // To avoid inserting redundant assumptions, we should check for assumptions
1064   // already in the caller. To do this, we might need a DT of the caller.
1065   DominatorTree DT;
1066   bool DTCalculated = false;
1067 
1068   Function *CalledFunc = CS.getCalledFunction();
1069   for (Function::arg_iterator I = CalledFunc->arg_begin(),
1070                               E = CalledFunc->arg_end();
1071        I != E; ++I) {
1072     unsigned Align = I->getType()->isPointerTy() ? I->getParamAlignment() : 0;
1073     if (Align && !I->hasByValOrInAllocaAttr() && !I->hasNUses(0)) {
1074       if (!DTCalculated) {
1075         DT.recalculate(const_cast<Function&>(*CS.getInstruction()->getParent()
1076                                                ->getParent()));
1077         DTCalculated = true;
1078       }
1079 
1080       // If we can already prove the asserted alignment in the context of the
1081       // caller, then don't bother inserting the assumption.
1082       Value *Arg = CS.getArgument(I->getArgNo());
1083       if (getKnownAlignment(Arg, DL, CS.getInstruction(), AC, &DT) >= Align)
1084         continue;
1085 
1086       CallInst *NewAssumption = IRBuilder<>(CS.getInstruction())
1087                                     .CreateAlignmentAssumption(DL, Arg, Align);
1088       if (AC)
1089         AC->registerAssumption(NewAssumption);
1090     }
1091   }
1092 }
1093 
1094 /// Once we have cloned code over from a callee into the caller,
1095 /// update the specified callgraph to reflect the changes we made.
1096 /// Note that it's possible that not all code was copied over, so only
1097 /// some edges of the callgraph may remain.
1098 static void UpdateCallGraphAfterInlining(CallSite CS,
1099                                          Function::iterator FirstNewBlock,
1100                                          ValueToValueMapTy &VMap,
1101                                          InlineFunctionInfo &IFI) {
1102   CallGraph &CG = *IFI.CG;
1103   const Function *Caller = CS.getInstruction()->getParent()->getParent();
1104   const Function *Callee = CS.getCalledFunction();
1105   CallGraphNode *CalleeNode = CG[Callee];
1106   CallGraphNode *CallerNode = CG[Caller];
1107 
1108   // Since we inlined some uninlined call sites in the callee into the caller,
1109   // add edges from the caller to all of the callees of the callee.
1110   CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
1111 
1112   // Consider the case where CalleeNode == CallerNode.
1113   CallGraphNode::CalledFunctionsVector CallCache;
1114   if (CalleeNode == CallerNode) {
1115     CallCache.assign(I, E);
1116     I = CallCache.begin();
1117     E = CallCache.end();
1118   }
1119 
1120   for (; I != E; ++I) {
1121     const Value *OrigCall = I->first;
1122 
1123     ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
1124     // Only copy the edge if the call was inlined!
1125     if (VMI == VMap.end() || VMI->second == nullptr)
1126       continue;
1127 
1128     // If the call was inlined, but then constant folded, there is no edge to
1129     // add.  Check for this case.
1130     Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
1131     if (!NewCall)
1132       continue;
1133 
1134     // We do not treat intrinsic calls like real function calls because we
1135     // expect them to become inline code; do not add an edge for an intrinsic.
1136     CallSite CS = CallSite(NewCall);
1137     if (CS && CS.getCalledFunction() && CS.getCalledFunction()->isIntrinsic())
1138       continue;
1139 
1140     // Remember that this call site got inlined for the client of
1141     // InlineFunction.
1142     IFI.InlinedCalls.push_back(NewCall);
1143 
1144     // It's possible that inlining the callsite will cause it to go from an
1145     // indirect to a direct call by resolving a function pointer.  If this
1146     // happens, set the callee of the new call site to a more precise
1147     // destination.  This can also happen if the call graph node of the caller
1148     // was just unnecessarily imprecise.
1149     if (!I->second->getFunction())
1150       if (Function *F = CallSite(NewCall).getCalledFunction()) {
1151         // Indirect call site resolved to direct call.
1152         CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
1153 
1154         continue;
1155       }
1156 
1157     CallerNode->addCalledFunction(CallSite(NewCall), I->second);
1158   }
1159 
1160   // Update the call graph by deleting the edge from Callee to Caller.  We must
1161   // do this after the loop above in case Caller and Callee are the same.
1162   CallerNode->removeCallEdgeFor(CS);
1163 }
1164 
1165 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
1166                                     BasicBlock *InsertBlock,
1167                                     InlineFunctionInfo &IFI) {
1168   Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
1169   IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
1170 
1171   Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy));
1172 
1173   // Always generate a memcpy of alignment 1 here because we don't know
1174   // the alignment of the src pointer.  Other optimizations can infer
1175   // better alignment.
1176   Builder.CreateMemCpy(Dst, Src, Size, /*Align=*/1);
1177 }
1178 
1179 /// When inlining a call site that has a byval argument,
1180 /// we have to make the implicit memcpy explicit by adding it.
1181 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
1182                                   const Function *CalledFunc,
1183                                   InlineFunctionInfo &IFI,
1184                                   unsigned ByValAlignment) {
1185   PointerType *ArgTy = cast<PointerType>(Arg->getType());
1186   Type *AggTy = ArgTy->getElementType();
1187 
1188   Function *Caller = TheCall->getParent()->getParent();
1189 
1190   // If the called function is readonly, then it could not mutate the caller's
1191   // copy of the byval'd memory.  In this case, it is safe to elide the copy and
1192   // temporary.
1193   if (CalledFunc->onlyReadsMemory()) {
1194     // If the byval argument has a specified alignment that is greater than the
1195     // passed in pointer, then we either have to round up the input pointer or
1196     // give up on this transformation.
1197     if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
1198       return Arg;
1199 
1200     AssumptionCache *AC =
1201         IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr;
1202     const DataLayout &DL = Caller->getParent()->getDataLayout();
1203 
1204     // If the pointer is already known to be sufficiently aligned, or if we can
1205     // round it up to a larger alignment, then we don't need a temporary.
1206     if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall, AC) >=
1207         ByValAlignment)
1208       return Arg;
1209 
1210     // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
1211     // for code quality, but rarely happens and is required for correctness.
1212   }
1213 
1214   // Create the alloca.  If we have DataLayout, use nice alignment.
1215   unsigned Align =
1216       Caller->getParent()->getDataLayout().getPrefTypeAlignment(AggTy);
1217 
1218   // If the byval had an alignment specified, we *must* use at least that
1219   // alignment, as it is required by the byval argument (and uses of the
1220   // pointer inside the callee).
1221   Align = std::max(Align, ByValAlignment);
1222 
1223   Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(),
1224                                     &*Caller->begin()->begin());
1225   IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
1226 
1227   // Uses of the argument in the function should use our new alloca
1228   // instead.
1229   return NewAlloca;
1230 }
1231 
1232 // Check whether this Value is used by a lifetime intrinsic.
1233 static bool isUsedByLifetimeMarker(Value *V) {
1234   for (User *U : V->users()) {
1235     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
1236       switch (II->getIntrinsicID()) {
1237       default: break;
1238       case Intrinsic::lifetime_start:
1239       case Intrinsic::lifetime_end:
1240         return true;
1241       }
1242     }
1243   }
1244   return false;
1245 }
1246 
1247 // Check whether the given alloca already has
1248 // lifetime.start or lifetime.end intrinsics.
1249 static bool hasLifetimeMarkers(AllocaInst *AI) {
1250   Type *Ty = AI->getType();
1251   Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
1252                                        Ty->getPointerAddressSpace());
1253   if (Ty == Int8PtrTy)
1254     return isUsedByLifetimeMarker(AI);
1255 
1256   // Do a scan to find all the casts to i8*.
1257   for (User *U : AI->users()) {
1258     if (U->getType() != Int8PtrTy) continue;
1259     if (U->stripPointerCasts() != AI) continue;
1260     if (isUsedByLifetimeMarker(U))
1261       return true;
1262   }
1263   return false;
1264 }
1265 
1266 /// Rebuild the entire inlined-at chain for this instruction so that the top of
1267 /// the chain now is inlined-at the new call site.
1268 static DebugLoc
1269 updateInlinedAtInfo(const DebugLoc &DL, DILocation *InlinedAtNode,
1270                     LLVMContext &Ctx,
1271                     DenseMap<const DILocation *, DILocation *> &IANodes) {
1272   SmallVector<DILocation *, 3> InlinedAtLocations;
1273   DILocation *Last = InlinedAtNode;
1274   DILocation *CurInlinedAt = DL;
1275 
1276   // Gather all the inlined-at nodes
1277   while (DILocation *IA = CurInlinedAt->getInlinedAt()) {
1278     // Skip any we've already built nodes for
1279     if (DILocation *Found = IANodes[IA]) {
1280       Last = Found;
1281       break;
1282     }
1283 
1284     InlinedAtLocations.push_back(IA);
1285     CurInlinedAt = IA;
1286   }
1287 
1288   // Starting from the top, rebuild the nodes to point to the new inlined-at
1289   // location (then rebuilding the rest of the chain behind it) and update the
1290   // map of already-constructed inlined-at nodes.
1291   for (const DILocation *MD : reverse(InlinedAtLocations)) {
1292     Last = IANodes[MD] = DILocation::getDistinct(
1293         Ctx, MD->getLine(), MD->getColumn(), MD->getScope(), Last);
1294   }
1295 
1296   // And finally create the normal location for this instruction, referring to
1297   // the new inlined-at chain.
1298   return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(), Last);
1299 }
1300 
1301 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry
1302 /// block. Allocas used in inalloca calls and allocas of dynamic array size
1303 /// cannot be static.
1304 static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) {
1305   return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca();
1306 }
1307 
1308 /// Update inlined instructions' line numbers to
1309 /// to encode location where these instructions are inlined.
1310 static void fixupLineNumbers(Function *Fn, Function::iterator FI,
1311                              Instruction *TheCall) {
1312   const DebugLoc &TheCallDL = TheCall->getDebugLoc();
1313   if (!TheCallDL)
1314     return;
1315 
1316   auto &Ctx = Fn->getContext();
1317   DILocation *InlinedAtNode = TheCallDL;
1318 
1319   // Create a unique call site, not to be confused with any other call from the
1320   // same location.
1321   InlinedAtNode = DILocation::getDistinct(
1322       Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
1323       InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
1324 
1325   // Cache the inlined-at nodes as they're built so they are reused, without
1326   // this every instruction's inlined-at chain would become distinct from each
1327   // other.
1328   DenseMap<const DILocation *, DILocation *> IANodes;
1329 
1330   for (; FI != Fn->end(); ++FI) {
1331     for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
1332          BI != BE; ++BI) {
1333       DebugLoc DL = BI->getDebugLoc();
1334       if (!DL) {
1335         // If the inlined instruction has no line number, make it look as if it
1336         // originates from the call location. This is important for
1337         // ((__always_inline__, __nodebug__)) functions which must use caller
1338         // location for all instructions in their function body.
1339 
1340         // Don't update static allocas, as they may get moved later.
1341         if (auto *AI = dyn_cast<AllocaInst>(BI))
1342           if (allocaWouldBeStaticInEntry(AI))
1343             continue;
1344 
1345         BI->setDebugLoc(TheCallDL);
1346       } else {
1347         BI->setDebugLoc(updateInlinedAtInfo(DL, InlinedAtNode, BI->getContext(), IANodes));
1348       }
1349     }
1350   }
1351 }
1352 
1353 /// This function inlines the called function into the basic block of the
1354 /// caller. This returns false if it is not possible to inline this call.
1355 /// The program is still in a well defined state if this occurs though.
1356 ///
1357 /// Note that this only does one level of inlining.  For example, if the
1358 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
1359 /// exists in the instruction stream.  Similarly this will inline a recursive
1360 /// function by one level.
1361 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
1362                           AAResults *CalleeAAR, bool InsertLifetime) {
1363   Instruction *TheCall = CS.getInstruction();
1364   assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
1365          "Instruction not in function!");
1366 
1367   // If IFI has any state in it, zap it before we fill it in.
1368   IFI.reset();
1369 
1370   const Function *CalledFunc = CS.getCalledFunction();
1371   if (!CalledFunc ||              // Can't inline external function or indirect
1372       CalledFunc->isDeclaration() || // call, or call to a vararg function!
1373       CalledFunc->getFunctionType()->isVarArg()) return false;
1374 
1375   // The inliner does not know how to inline through calls with operand bundles
1376   // in general ...
1377   if (CS.hasOperandBundles()) {
1378     for (int i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
1379       uint32_t Tag = CS.getOperandBundleAt(i).getTagID();
1380       // ... but it knows how to inline through "deopt" operand bundles ...
1381       if (Tag == LLVMContext::OB_deopt)
1382         continue;
1383       // ... and "funclet" operand bundles.
1384       if (Tag == LLVMContext::OB_funclet)
1385         continue;
1386 
1387       return false;
1388     }
1389   }
1390 
1391   // If the call to the callee cannot throw, set the 'nounwind' flag on any
1392   // calls that we inline.
1393   bool MarkNoUnwind = CS.doesNotThrow();
1394 
1395   BasicBlock *OrigBB = TheCall->getParent();
1396   Function *Caller = OrigBB->getParent();
1397 
1398   // GC poses two hazards to inlining, which only occur when the callee has GC:
1399   //  1. If the caller has no GC, then the callee's GC must be propagated to the
1400   //     caller.
1401   //  2. If the caller has a differing GC, it is invalid to inline.
1402   if (CalledFunc->hasGC()) {
1403     if (!Caller->hasGC())
1404       Caller->setGC(CalledFunc->getGC());
1405     else if (CalledFunc->getGC() != Caller->getGC())
1406       return false;
1407   }
1408 
1409   // Get the personality function from the callee if it contains a landing pad.
1410   Constant *CalledPersonality =
1411       CalledFunc->hasPersonalityFn()
1412           ? CalledFunc->getPersonalityFn()->stripPointerCasts()
1413           : nullptr;
1414 
1415   // Find the personality function used by the landing pads of the caller. If it
1416   // exists, then check to see that it matches the personality function used in
1417   // the callee.
1418   Constant *CallerPersonality =
1419       Caller->hasPersonalityFn()
1420           ? Caller->getPersonalityFn()->stripPointerCasts()
1421           : nullptr;
1422   if (CalledPersonality) {
1423     if (!CallerPersonality)
1424       Caller->setPersonalityFn(CalledPersonality);
1425     // If the personality functions match, then we can perform the
1426     // inlining. Otherwise, we can't inline.
1427     // TODO: This isn't 100% true. Some personality functions are proper
1428     //       supersets of others and can be used in place of the other.
1429     else if (CalledPersonality != CallerPersonality)
1430       return false;
1431   }
1432 
1433   // We need to figure out which funclet the callsite was in so that we may
1434   // properly nest the callee.
1435   Instruction *CallSiteEHPad = nullptr;
1436   if (CallerPersonality) {
1437     EHPersonality Personality = classifyEHPersonality(CallerPersonality);
1438     if (isFuncletEHPersonality(Personality)) {
1439       Optional<OperandBundleUse> ParentFunclet =
1440           CS.getOperandBundle(LLVMContext::OB_funclet);
1441       if (ParentFunclet)
1442         CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
1443 
1444       // OK, the inlining site is legal.  What about the target function?
1445 
1446       if (CallSiteEHPad) {
1447         if (Personality == EHPersonality::MSVC_CXX) {
1448           // The MSVC personality cannot tolerate catches getting inlined into
1449           // cleanup funclets.
1450           if (isa<CleanupPadInst>(CallSiteEHPad)) {
1451             // Ok, the call site is within a cleanuppad.  Let's check the callee
1452             // for catchpads.
1453             for (const BasicBlock &CalledBB : *CalledFunc) {
1454               if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
1455                 return false;
1456             }
1457           }
1458         } else if (isAsynchronousEHPersonality(Personality)) {
1459           // SEH is even less tolerant, there may not be any sort of exceptional
1460           // funclet in the callee.
1461           for (const BasicBlock &CalledBB : *CalledFunc) {
1462             if (CalledBB.isEHPad())
1463               return false;
1464           }
1465         }
1466       }
1467     }
1468   }
1469 
1470   // Determine if we are dealing with a call in an EHPad which does not unwind
1471   // to caller.
1472   bool EHPadForCallUnwindsLocally = false;
1473   if (CallSiteEHPad && CS.isCall()) {
1474     UnwindDestMemoTy FuncletUnwindMap;
1475     Value *CallSiteUnwindDestToken =
1476         getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap);
1477 
1478     EHPadForCallUnwindsLocally =
1479         CallSiteUnwindDestToken &&
1480         !isa<ConstantTokenNone>(CallSiteUnwindDestToken);
1481   }
1482 
1483   // Get an iterator to the last basic block in the function, which will have
1484   // the new function inlined after it.
1485   Function::iterator LastBlock = --Caller->end();
1486 
1487   // Make sure to capture all of the return instructions from the cloned
1488   // function.
1489   SmallVector<ReturnInst*, 8> Returns;
1490   ClonedCodeInfo InlinedFunctionInfo;
1491   Function::iterator FirstNewBlock;
1492 
1493   { // Scope to destroy VMap after cloning.
1494     ValueToValueMapTy VMap;
1495     // Keep a list of pair (dst, src) to emit byval initializations.
1496     SmallVector<std::pair<Value*, Value*>, 4> ByValInit;
1497 
1498     auto &DL = Caller->getParent()->getDataLayout();
1499 
1500     assert(CalledFunc->arg_size() == CS.arg_size() &&
1501            "No varargs calls can be inlined!");
1502 
1503     // Calculate the vector of arguments to pass into the function cloner, which
1504     // matches up the formal to the actual argument values.
1505     CallSite::arg_iterator AI = CS.arg_begin();
1506     unsigned ArgNo = 0;
1507     for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
1508          E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
1509       Value *ActualArg = *AI;
1510 
1511       // When byval arguments actually inlined, we need to make the copy implied
1512       // by them explicit.  However, we don't do this if the callee is readonly
1513       // or readnone, because the copy would be unneeded: the callee doesn't
1514       // modify the struct.
1515       if (CS.isByValArgument(ArgNo)) {
1516         ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
1517                                         CalledFunc->getParamAlignment(ArgNo+1));
1518         if (ActualArg != *AI)
1519           ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
1520       }
1521 
1522       VMap[&*I] = ActualArg;
1523     }
1524 
1525     // Add alignment assumptions if necessary. We do this before the inlined
1526     // instructions are actually cloned into the caller so that we can easily
1527     // check what will be known at the start of the inlined code.
1528     AddAlignmentAssumptions(CS, IFI);
1529 
1530     // We want the inliner to prune the code as it copies.  We would LOVE to
1531     // have no dead or constant instructions leftover after inlining occurs
1532     // (which can happen, e.g., because an argument was constant), but we'll be
1533     // happy with whatever the cloner can do.
1534     CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
1535                               /*ModuleLevelChanges=*/false, Returns, ".i",
1536                               &InlinedFunctionInfo, TheCall);
1537 
1538     // Remember the first block that is newly cloned over.
1539     FirstNewBlock = LastBlock; ++FirstNewBlock;
1540 
1541     // Inject byval arguments initialization.
1542     for (std::pair<Value*, Value*> &Init : ByValInit)
1543       HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
1544                               &*FirstNewBlock, IFI);
1545 
1546     Optional<OperandBundleUse> ParentDeopt =
1547         CS.getOperandBundle(LLVMContext::OB_deopt);
1548     if (ParentDeopt) {
1549       SmallVector<OperandBundleDef, 2> OpDefs;
1550 
1551       for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
1552         Instruction *I = dyn_cast_or_null<Instruction>(VH);
1553         if (!I) continue;  // instruction was DCE'd or RAUW'ed to undef
1554 
1555         OpDefs.clear();
1556 
1557         CallSite ICS(I);
1558         OpDefs.reserve(ICS.getNumOperandBundles());
1559 
1560         for (unsigned i = 0, e = ICS.getNumOperandBundles(); i < e; ++i) {
1561           auto ChildOB = ICS.getOperandBundleAt(i);
1562           if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
1563             // If the inlined call has other operand bundles, let them be
1564             OpDefs.emplace_back(ChildOB);
1565             continue;
1566           }
1567 
1568           // It may be useful to separate this logic (of handling operand
1569           // bundles) out to a separate "policy" component if this gets crowded.
1570           // Prepend the parent's deoptimization continuation to the newly
1571           // inlined call's deoptimization continuation.
1572           std::vector<Value *> MergedDeoptArgs;
1573           MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
1574                                   ChildOB.Inputs.size());
1575 
1576           MergedDeoptArgs.insert(MergedDeoptArgs.end(),
1577                                  ParentDeopt->Inputs.begin(),
1578                                  ParentDeopt->Inputs.end());
1579           MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(),
1580                                  ChildOB.Inputs.end());
1581 
1582           OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
1583         }
1584 
1585         Instruction *NewI = nullptr;
1586         if (isa<CallInst>(I))
1587           NewI = CallInst::Create(cast<CallInst>(I), OpDefs, I);
1588         else
1589           NewI = InvokeInst::Create(cast<InvokeInst>(I), OpDefs, I);
1590 
1591         // Note: the RAUW does the appropriate fixup in VMap, so we need to do
1592         // this even if the call returns void.
1593         I->replaceAllUsesWith(NewI);
1594 
1595         VH = nullptr;
1596         I->eraseFromParent();
1597       }
1598     }
1599 
1600     // Update the callgraph if requested.
1601     if (IFI.CG)
1602       UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
1603 
1604     // Update inlined instructions' line number information.
1605     fixupLineNumbers(Caller, FirstNewBlock, TheCall);
1606 
1607     // Clone existing noalias metadata if necessary.
1608     CloneAliasScopeMetadata(CS, VMap);
1609 
1610     // Add noalias metadata if necessary.
1611     AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR);
1612 
1613     // Propagate llvm.mem.parallel_loop_access if necessary.
1614     PropagateParallelLoopAccessMetadata(CS, VMap);
1615 
1616     // Register any cloned assumptions.
1617     if (IFI.GetAssumptionCache)
1618       for (BasicBlock &NewBlock :
1619            make_range(FirstNewBlock->getIterator(), Caller->end()))
1620         for (Instruction &I : NewBlock) {
1621           if (auto *II = dyn_cast<IntrinsicInst>(&I))
1622             if (II->getIntrinsicID() == Intrinsic::assume)
1623               (*IFI.GetAssumptionCache)(*Caller).registerAssumption(II);
1624         }
1625   }
1626 
1627   // If there are any alloca instructions in the block that used to be the entry
1628   // block for the callee, move them to the entry block of the caller.  First
1629   // calculate which instruction they should be inserted before.  We insert the
1630   // instructions at the end of the current alloca list.
1631   {
1632     BasicBlock::iterator InsertPoint = Caller->begin()->begin();
1633     for (BasicBlock::iterator I = FirstNewBlock->begin(),
1634          E = FirstNewBlock->end(); I != E; ) {
1635       AllocaInst *AI = dyn_cast<AllocaInst>(I++);
1636       if (!AI) continue;
1637 
1638       // If the alloca is now dead, remove it.  This often occurs due to code
1639       // specialization.
1640       if (AI->use_empty()) {
1641         AI->eraseFromParent();
1642         continue;
1643       }
1644 
1645       if (!allocaWouldBeStaticInEntry(AI))
1646         continue;
1647 
1648       // Keep track of the static allocas that we inline into the caller.
1649       IFI.StaticAllocas.push_back(AI);
1650 
1651       // Scan for the block of allocas that we can move over, and move them
1652       // all at once.
1653       while (isa<AllocaInst>(I) &&
1654              allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) {
1655         IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
1656         ++I;
1657       }
1658 
1659       // Transfer all of the allocas over in a block.  Using splice means
1660       // that the instructions aren't removed from the symbol table, then
1661       // reinserted.
1662       Caller->getEntryBlock().getInstList().splice(
1663           InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I);
1664     }
1665     // Move any dbg.declares describing the allocas into the entry basic block.
1666     DIBuilder DIB(*Caller->getParent());
1667     for (auto &AI : IFI.StaticAllocas)
1668       replaceDbgDeclareForAlloca(AI, AI, DIB, /*Deref=*/false);
1669   }
1670 
1671   bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false;
1672   if (InlinedFunctionInfo.ContainsCalls) {
1673     CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
1674     if (CallInst *CI = dyn_cast<CallInst>(TheCall))
1675       CallSiteTailKind = CI->getTailCallKind();
1676 
1677     for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
1678          ++BB) {
1679       for (Instruction &I : *BB) {
1680         CallInst *CI = dyn_cast<CallInst>(&I);
1681         if (!CI)
1682           continue;
1683 
1684         if (Function *F = CI->getCalledFunction())
1685           InlinedDeoptimizeCalls |=
1686               F->getIntrinsicID() == Intrinsic::experimental_deoptimize;
1687 
1688         // We need to reduce the strength of any inlined tail calls.  For
1689         // musttail, we have to avoid introducing potential unbounded stack
1690         // growth.  For example, if functions 'f' and 'g' are mutually recursive
1691         // with musttail, we can inline 'g' into 'f' so long as we preserve
1692         // musttail on the cloned call to 'f'.  If either the inlined call site
1693         // or the cloned call site is *not* musttail, the program already has
1694         // one frame of stack growth, so it's safe to remove musttail.  Here is
1695         // a table of example transformations:
1696         //
1697         //    f -> musttail g -> musttail f  ==>  f -> musttail f
1698         //    f -> musttail g ->     tail f  ==>  f ->     tail f
1699         //    f ->          g -> musttail f  ==>  f ->          f
1700         //    f ->          g ->     tail f  ==>  f ->          f
1701         CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
1702         ChildTCK = std::min(CallSiteTailKind, ChildTCK);
1703         CI->setTailCallKind(ChildTCK);
1704         InlinedMustTailCalls |= CI->isMustTailCall();
1705 
1706         // Calls inlined through a 'nounwind' call site should be marked
1707         // 'nounwind'.
1708         if (MarkNoUnwind)
1709           CI->setDoesNotThrow();
1710       }
1711     }
1712   }
1713 
1714   // Leave lifetime markers for the static alloca's, scoping them to the
1715   // function we just inlined.
1716   if (InsertLifetime && !IFI.StaticAllocas.empty()) {
1717     IRBuilder<> builder(&FirstNewBlock->front());
1718     for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
1719       AllocaInst *AI = IFI.StaticAllocas[ai];
1720 
1721       // If the alloca is already scoped to something smaller than the whole
1722       // function then there's no need to add redundant, less accurate markers.
1723       if (hasLifetimeMarkers(AI))
1724         continue;
1725 
1726       // Try to determine the size of the allocation.
1727       ConstantInt *AllocaSize = nullptr;
1728       if (ConstantInt *AIArraySize =
1729           dyn_cast<ConstantInt>(AI->getArraySize())) {
1730         auto &DL = Caller->getParent()->getDataLayout();
1731         Type *AllocaType = AI->getAllocatedType();
1732         uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
1733         uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
1734 
1735         // Don't add markers for zero-sized allocas.
1736         if (AllocaArraySize == 0)
1737           continue;
1738 
1739         // Check that array size doesn't saturate uint64_t and doesn't
1740         // overflow when it's multiplied by type size.
1741         if (AllocaArraySize != ~0ULL &&
1742             UINT64_MAX / AllocaArraySize >= AllocaTypeSize) {
1743           AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
1744                                         AllocaArraySize * AllocaTypeSize);
1745         }
1746       }
1747 
1748       builder.CreateLifetimeStart(AI, AllocaSize);
1749       for (ReturnInst *RI : Returns) {
1750         // Don't insert llvm.lifetime.end calls between a musttail or deoptimize
1751         // call and a return.  The return kills all local allocas.
1752         if (InlinedMustTailCalls &&
1753             RI->getParent()->getTerminatingMustTailCall())
1754           continue;
1755         if (InlinedDeoptimizeCalls &&
1756             RI->getParent()->getTerminatingDeoptimizeCall())
1757           continue;
1758         IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
1759       }
1760     }
1761   }
1762 
1763   // If the inlined code contained dynamic alloca instructions, wrap the inlined
1764   // code with llvm.stacksave/llvm.stackrestore intrinsics.
1765   if (InlinedFunctionInfo.ContainsDynamicAllocas) {
1766     Module *M = Caller->getParent();
1767     // Get the two intrinsics we care about.
1768     Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
1769     Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
1770 
1771     // Insert the llvm.stacksave.
1772     CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
1773                              .CreateCall(StackSave, {}, "savedstack");
1774 
1775     // Insert a call to llvm.stackrestore before any return instructions in the
1776     // inlined function.
1777     for (ReturnInst *RI : Returns) {
1778       // Don't insert llvm.stackrestore calls between a musttail or deoptimize
1779       // call and a return.  The return will restore the stack pointer.
1780       if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
1781         continue;
1782       if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall())
1783         continue;
1784       IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
1785     }
1786   }
1787 
1788   // If we are inlining for an invoke instruction, we must make sure to rewrite
1789   // any call instructions into invoke instructions.  This is sensitive to which
1790   // funclet pads were top-level in the inlinee, so must be done before
1791   // rewriting the "parent pad" links.
1792   if (auto *II = dyn_cast<InvokeInst>(TheCall)) {
1793     BasicBlock *UnwindDest = II->getUnwindDest();
1794     Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
1795     if (isa<LandingPadInst>(FirstNonPHI)) {
1796       HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
1797     } else {
1798       HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
1799     }
1800   }
1801 
1802   // Update the lexical scopes of the new funclets and callsites.
1803   // Anything that had 'none' as its parent is now nested inside the callsite's
1804   // EHPad.
1805 
1806   if (CallSiteEHPad) {
1807     for (Function::iterator BB = FirstNewBlock->getIterator(),
1808                             E = Caller->end();
1809          BB != E; ++BB) {
1810       // Add bundle operands to any top-level call sites.
1811       SmallVector<OperandBundleDef, 1> OpBundles;
1812       for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) {
1813         Instruction *I = &*BBI++;
1814         CallSite CS(I);
1815         if (!CS)
1816           continue;
1817 
1818         // Skip call sites which are nounwind intrinsics.
1819         auto *CalledFn =
1820             dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
1821         if (CalledFn && CalledFn->isIntrinsic() && CS.doesNotThrow())
1822           continue;
1823 
1824         // Skip call sites which already have a "funclet" bundle.
1825         if (CS.getOperandBundle(LLVMContext::OB_funclet))
1826           continue;
1827 
1828         CS.getOperandBundlesAsDefs(OpBundles);
1829         OpBundles.emplace_back("funclet", CallSiteEHPad);
1830 
1831         Instruction *NewInst;
1832         if (CS.isCall())
1833           NewInst = CallInst::Create(cast<CallInst>(I), OpBundles, I);
1834         else
1835           NewInst = InvokeInst::Create(cast<InvokeInst>(I), OpBundles, I);
1836         NewInst->takeName(I);
1837         I->replaceAllUsesWith(NewInst);
1838         I->eraseFromParent();
1839 
1840         OpBundles.clear();
1841       }
1842 
1843       // It is problematic if the inlinee has a cleanupret which unwinds to
1844       // caller and we inline it into a call site which doesn't unwind but into
1845       // an EH pad that does.  Such an edge must be dynamically unreachable.
1846       // As such, we replace the cleanupret with unreachable.
1847       if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
1848         if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
1849           changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false);
1850 
1851       Instruction *I = BB->getFirstNonPHI();
1852       if (!I->isEHPad())
1853         continue;
1854 
1855       if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
1856         if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
1857           CatchSwitch->setParentPad(CallSiteEHPad);
1858       } else {
1859         auto *FPI = cast<FuncletPadInst>(I);
1860         if (isa<ConstantTokenNone>(FPI->getParentPad()))
1861           FPI->setParentPad(CallSiteEHPad);
1862       }
1863     }
1864   }
1865 
1866   if (InlinedDeoptimizeCalls) {
1867     // We need to at least remove the deoptimizing returns from the Return set,
1868     // so that the control flow from those returns does not get merged into the
1869     // caller (but terminate it instead).  If the caller's return type does not
1870     // match the callee's return type, we also need to change the return type of
1871     // the intrinsic.
1872     if (Caller->getReturnType() == TheCall->getType()) {
1873       auto NewEnd = remove_if(Returns, [](ReturnInst *RI) {
1874         return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr;
1875       });
1876       Returns.erase(NewEnd, Returns.end());
1877     } else {
1878       SmallVector<ReturnInst *, 8> NormalReturns;
1879       Function *NewDeoptIntrinsic = Intrinsic::getDeclaration(
1880           Caller->getParent(), Intrinsic::experimental_deoptimize,
1881           {Caller->getReturnType()});
1882 
1883       for (ReturnInst *RI : Returns) {
1884         CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall();
1885         if (!DeoptCall) {
1886           NormalReturns.push_back(RI);
1887           continue;
1888         }
1889 
1890         // The calling convention on the deoptimize call itself may be bogus,
1891         // since the code we're inlining may have undefined behavior (and may
1892         // never actually execute at runtime); but all
1893         // @llvm.experimental.deoptimize declarations have to have the same
1894         // calling convention in a well-formed module.
1895         auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv();
1896         NewDeoptIntrinsic->setCallingConv(CallingConv);
1897         auto *CurBB = RI->getParent();
1898         RI->eraseFromParent();
1899 
1900         SmallVector<Value *, 4> CallArgs(DeoptCall->arg_begin(),
1901                                          DeoptCall->arg_end());
1902 
1903         SmallVector<OperandBundleDef, 1> OpBundles;
1904         DeoptCall->getOperandBundlesAsDefs(OpBundles);
1905         DeoptCall->eraseFromParent();
1906         assert(!OpBundles.empty() &&
1907                "Expected at least the deopt operand bundle");
1908 
1909         IRBuilder<> Builder(CurBB);
1910         CallInst *NewDeoptCall =
1911             Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles);
1912         NewDeoptCall->setCallingConv(CallingConv);
1913         if (NewDeoptCall->getType()->isVoidTy())
1914           Builder.CreateRetVoid();
1915         else
1916           Builder.CreateRet(NewDeoptCall);
1917       }
1918 
1919       // Leave behind the normal returns so we can merge control flow.
1920       std::swap(Returns, NormalReturns);
1921     }
1922   }
1923 
1924   // Handle any inlined musttail call sites.  In order for a new call site to be
1925   // musttail, the source of the clone and the inlined call site must have been
1926   // musttail.  Therefore it's safe to return without merging control into the
1927   // phi below.
1928   if (InlinedMustTailCalls) {
1929     // Check if we need to bitcast the result of any musttail calls.
1930     Type *NewRetTy = Caller->getReturnType();
1931     bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy;
1932 
1933     // Handle the returns preceded by musttail calls separately.
1934     SmallVector<ReturnInst *, 8> NormalReturns;
1935     for (ReturnInst *RI : Returns) {
1936       CallInst *ReturnedMustTail =
1937           RI->getParent()->getTerminatingMustTailCall();
1938       if (!ReturnedMustTail) {
1939         NormalReturns.push_back(RI);
1940         continue;
1941       }
1942       if (!NeedBitCast)
1943         continue;
1944 
1945       // Delete the old return and any preceding bitcast.
1946       BasicBlock *CurBB = RI->getParent();
1947       auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
1948       RI->eraseFromParent();
1949       if (OldCast)
1950         OldCast->eraseFromParent();
1951 
1952       // Insert a new bitcast and return with the right type.
1953       IRBuilder<> Builder(CurBB);
1954       Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
1955     }
1956 
1957     // Leave behind the normal returns so we can merge control flow.
1958     std::swap(Returns, NormalReturns);
1959   }
1960 
1961   // If we cloned in _exactly one_ basic block, and if that block ends in a
1962   // return instruction, we splice the body of the inlined callee directly into
1963   // the calling basic block.
1964   if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
1965     // Move all of the instructions right before the call.
1966     OrigBB->getInstList().splice(TheCall->getIterator(),
1967                                  FirstNewBlock->getInstList(),
1968                                  FirstNewBlock->begin(), FirstNewBlock->end());
1969     // Remove the cloned basic block.
1970     Caller->getBasicBlockList().pop_back();
1971 
1972     // If the call site was an invoke instruction, add a branch to the normal
1973     // destination.
1974     if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
1975       BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
1976       NewBr->setDebugLoc(Returns[0]->getDebugLoc());
1977     }
1978 
1979     // If the return instruction returned a value, replace uses of the call with
1980     // uses of the returned value.
1981     if (!TheCall->use_empty()) {
1982       ReturnInst *R = Returns[0];
1983       if (TheCall == R->getReturnValue())
1984         TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
1985       else
1986         TheCall->replaceAllUsesWith(R->getReturnValue());
1987     }
1988     // Since we are now done with the Call/Invoke, we can delete it.
1989     TheCall->eraseFromParent();
1990 
1991     // Since we are now done with the return instruction, delete it also.
1992     Returns[0]->eraseFromParent();
1993 
1994     // We are now done with the inlining.
1995     return true;
1996   }
1997 
1998   // Otherwise, we have the normal case, of more than one block to inline or
1999   // multiple return sites.
2000 
2001   // We want to clone the entire callee function into the hole between the
2002   // "starter" and "ender" blocks.  How we accomplish this depends on whether
2003   // this is an invoke instruction or a call instruction.
2004   BasicBlock *AfterCallBB;
2005   BranchInst *CreatedBranchToNormalDest = nullptr;
2006   if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
2007 
2008     // Add an unconditional branch to make this look like the CallInst case...
2009     CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall);
2010 
2011     // Split the basic block.  This guarantees that no PHI nodes will have to be
2012     // updated due to new incoming edges, and make the invoke case more
2013     // symmetric to the call case.
2014     AfterCallBB =
2015         OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
2016                                 CalledFunc->getName() + ".exit");
2017 
2018   } else {  // It's a call
2019     // If this is a call instruction, we need to split the basic block that
2020     // the call lives in.
2021     //
2022     AfterCallBB = OrigBB->splitBasicBlock(TheCall->getIterator(),
2023                                           CalledFunc->getName() + ".exit");
2024   }
2025 
2026   // Change the branch that used to go to AfterCallBB to branch to the first
2027   // basic block of the inlined function.
2028   //
2029   TerminatorInst *Br = OrigBB->getTerminator();
2030   assert(Br && Br->getOpcode() == Instruction::Br &&
2031          "splitBasicBlock broken!");
2032   Br->setOperand(0, &*FirstNewBlock);
2033 
2034   // Now that the function is correct, make it a little bit nicer.  In
2035   // particular, move the basic blocks inserted from the end of the function
2036   // into the space made by splitting the source basic block.
2037   Caller->getBasicBlockList().splice(AfterCallBB->getIterator(),
2038                                      Caller->getBasicBlockList(), FirstNewBlock,
2039                                      Caller->end());
2040 
2041   // Handle all of the return instructions that we just cloned in, and eliminate
2042   // any users of the original call/invoke instruction.
2043   Type *RTy = CalledFunc->getReturnType();
2044 
2045   PHINode *PHI = nullptr;
2046   if (Returns.size() > 1) {
2047     // The PHI node should go at the front of the new basic block to merge all
2048     // possible incoming values.
2049     if (!TheCall->use_empty()) {
2050       PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
2051                             &AfterCallBB->front());
2052       // Anything that used the result of the function call should now use the
2053       // PHI node as their operand.
2054       TheCall->replaceAllUsesWith(PHI);
2055     }
2056 
2057     // Loop over all of the return instructions adding entries to the PHI node
2058     // as appropriate.
2059     if (PHI) {
2060       for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2061         ReturnInst *RI = Returns[i];
2062         assert(RI->getReturnValue()->getType() == PHI->getType() &&
2063                "Ret value not consistent in function!");
2064         PHI->addIncoming(RI->getReturnValue(), RI->getParent());
2065       }
2066     }
2067 
2068     // Add a branch to the merge points and remove return instructions.
2069     DebugLoc Loc;
2070     for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2071       ReturnInst *RI = Returns[i];
2072       BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
2073       Loc = RI->getDebugLoc();
2074       BI->setDebugLoc(Loc);
2075       RI->eraseFromParent();
2076     }
2077     // We need to set the debug location to *somewhere* inside the
2078     // inlined function. The line number may be nonsensical, but the
2079     // instruction will at least be associated with the right
2080     // function.
2081     if (CreatedBranchToNormalDest)
2082       CreatedBranchToNormalDest->setDebugLoc(Loc);
2083   } else if (!Returns.empty()) {
2084     // Otherwise, if there is exactly one return value, just replace anything
2085     // using the return value of the call with the computed value.
2086     if (!TheCall->use_empty()) {
2087       if (TheCall == Returns[0]->getReturnValue())
2088         TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
2089       else
2090         TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
2091     }
2092 
2093     // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
2094     BasicBlock *ReturnBB = Returns[0]->getParent();
2095     ReturnBB->replaceAllUsesWith(AfterCallBB);
2096 
2097     // Splice the code from the return block into the block that it will return
2098     // to, which contains the code that was after the call.
2099     AfterCallBB->getInstList().splice(AfterCallBB->begin(),
2100                                       ReturnBB->getInstList());
2101 
2102     if (CreatedBranchToNormalDest)
2103       CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
2104 
2105     // Delete the return instruction now and empty ReturnBB now.
2106     Returns[0]->eraseFromParent();
2107     ReturnBB->eraseFromParent();
2108   } else if (!TheCall->use_empty()) {
2109     // No returns, but something is using the return value of the call.  Just
2110     // nuke the result.
2111     TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
2112   }
2113 
2114   // Since we are now done with the Call/Invoke, we can delete it.
2115   TheCall->eraseFromParent();
2116 
2117   // If we inlined any musttail calls and the original return is now
2118   // unreachable, delete it.  It can only contain a bitcast and ret.
2119   if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB))
2120     AfterCallBB->eraseFromParent();
2121 
2122   // We should always be able to fold the entry block of the function into the
2123   // single predecessor of the block...
2124   assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
2125   BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
2126 
2127   // Splice the code entry block into calling block, right before the
2128   // unconditional branch.
2129   CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
2130   OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList());
2131 
2132   // Remove the unconditional branch.
2133   OrigBB->getInstList().erase(Br);
2134 
2135   // Now we can remove the CalleeEntry block, which is now empty.
2136   Caller->getBasicBlockList().erase(CalleeEntry);
2137 
2138   // If we inserted a phi node, check to see if it has a single value (e.g. all
2139   // the entries are the same or undef).  If so, remove the PHI so it doesn't
2140   // block other optimizations.
2141   if (PHI) {
2142     AssumptionCache *AC =
2143         IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr;
2144     auto &DL = Caller->getParent()->getDataLayout();
2145     if (Value *V = SimplifyInstruction(PHI, DL, nullptr, nullptr, AC)) {
2146       PHI->replaceAllUsesWith(V);
2147       PHI->eraseFromParent();
2148     }
2149   }
2150 
2151   return true;
2152 }
2153