1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements inlining of a function into a call site, resolving 11 // parameters and the return value as appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Cloning.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/CallGraph.h" 23 #include "llvm/Analysis/CaptureTracking.h" 24 #include "llvm/Analysis/EHPersonalities.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/CallSite.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/DIBuilder.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/MDBuilder.h" 41 #include "llvm/IR/Module.h" 42 #include "llvm/Transforms/Utils/Local.h" 43 #include "llvm/Support/CommandLine.h" 44 #include <algorithm> 45 46 using namespace llvm; 47 48 static cl::opt<bool> 49 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), 50 cl::Hidden, 51 cl::desc("Convert noalias attributes to metadata during inlining.")); 52 53 static cl::opt<bool> 54 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", 55 cl::init(true), cl::Hidden, 56 cl::desc("Convert align attributes to assumptions during inlining.")); 57 58 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI, 59 AAResults *CalleeAAR, bool InsertLifetime) { 60 return InlineFunction(CallSite(CI), IFI, CalleeAAR, InsertLifetime); 61 } 62 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI, 63 AAResults *CalleeAAR, bool InsertLifetime) { 64 return InlineFunction(CallSite(II), IFI, CalleeAAR, InsertLifetime); 65 } 66 67 namespace { 68 /// A class for recording information about inlining a landing pad. 69 class LandingPadInliningInfo { 70 BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind. 71 BasicBlock *InnerResumeDest; ///< Destination for the callee's resume. 72 LandingPadInst *CallerLPad; ///< LandingPadInst associated with the invoke. 73 PHINode *InnerEHValuesPHI; ///< PHI for EH values from landingpad insts. 74 SmallVector<Value*, 8> UnwindDestPHIValues; 75 76 public: 77 LandingPadInliningInfo(InvokeInst *II) 78 : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr), 79 CallerLPad(nullptr), InnerEHValuesPHI(nullptr) { 80 // If there are PHI nodes in the unwind destination block, we need to keep 81 // track of which values came into them from the invoke before removing 82 // the edge from this block. 83 llvm::BasicBlock *InvokeBB = II->getParent(); 84 BasicBlock::iterator I = OuterResumeDest->begin(); 85 for (; isa<PHINode>(I); ++I) { 86 // Save the value to use for this edge. 87 PHINode *PHI = cast<PHINode>(I); 88 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 89 } 90 91 CallerLPad = cast<LandingPadInst>(I); 92 } 93 94 /// The outer unwind destination is the target of 95 /// unwind edges introduced for calls within the inlined function. 96 BasicBlock *getOuterResumeDest() const { 97 return OuterResumeDest; 98 } 99 100 BasicBlock *getInnerResumeDest(); 101 102 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 103 104 /// Forward the 'resume' instruction to the caller's landing pad block. 105 /// When the landing pad block has only one predecessor, this is 106 /// a simple branch. When there is more than one predecessor, we need to 107 /// split the landing pad block after the landingpad instruction and jump 108 /// to there. 109 void forwardResume(ResumeInst *RI, 110 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); 111 112 /// Add incoming-PHI values to the unwind destination block for the given 113 /// basic block, using the values for the original invoke's source block. 114 void addIncomingPHIValuesFor(BasicBlock *BB) const { 115 addIncomingPHIValuesForInto(BB, OuterResumeDest); 116 } 117 118 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 119 BasicBlock::iterator I = dest->begin(); 120 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 121 PHINode *phi = cast<PHINode>(I); 122 phi->addIncoming(UnwindDestPHIValues[i], src); 123 } 124 } 125 }; 126 } // anonymous namespace 127 128 /// Get or create a target for the branch from ResumeInsts. 129 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() { 130 if (InnerResumeDest) return InnerResumeDest; 131 132 // Split the landing pad. 133 BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator(); 134 InnerResumeDest = 135 OuterResumeDest->splitBasicBlock(SplitPoint, 136 OuterResumeDest->getName() + ".body"); 137 138 // The number of incoming edges we expect to the inner landing pad. 139 const unsigned PHICapacity = 2; 140 141 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 142 Instruction *InsertPoint = &InnerResumeDest->front(); 143 BasicBlock::iterator I = OuterResumeDest->begin(); 144 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 145 PHINode *OuterPHI = cast<PHINode>(I); 146 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 147 OuterPHI->getName() + ".lpad-body", 148 InsertPoint); 149 OuterPHI->replaceAllUsesWith(InnerPHI); 150 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 151 } 152 153 // Create a PHI for the exception values. 154 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 155 "eh.lpad-body", InsertPoint); 156 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 157 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 158 159 // All done. 160 return InnerResumeDest; 161 } 162 163 /// Forward the 'resume' instruction to the caller's landing pad block. 164 /// When the landing pad block has only one predecessor, this is a simple 165 /// branch. When there is more than one predecessor, we need to split the 166 /// landing pad block after the landingpad instruction and jump to there. 167 void LandingPadInliningInfo::forwardResume( 168 ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) { 169 BasicBlock *Dest = getInnerResumeDest(); 170 BasicBlock *Src = RI->getParent(); 171 172 BranchInst::Create(Dest, Src); 173 174 // Update the PHIs in the destination. They were inserted in an order which 175 // makes this work. 176 addIncomingPHIValuesForInto(Src, Dest); 177 178 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 179 RI->eraseFromParent(); 180 } 181 182 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper. 183 static Value *getParentPad(Value *EHPad) { 184 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 185 return FPI->getParentPad(); 186 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 187 } 188 189 typedef DenseMap<Instruction *, Value *> UnwindDestMemoTy; 190 191 /// Helper for getUnwindDestToken that does the descendant-ward part of 192 /// the search. 193 static Value *getUnwindDestTokenHelper(Instruction *EHPad, 194 UnwindDestMemoTy &MemoMap) { 195 SmallVector<Instruction *, 8> Worklist(1, EHPad); 196 197 while (!Worklist.empty()) { 198 Instruction *CurrentPad = Worklist.pop_back_val(); 199 // We only put pads on the worklist that aren't in the MemoMap. When 200 // we find an unwind dest for a pad we may update its ancestors, but 201 // the queue only ever contains uncles/great-uncles/etc. of CurrentPad, 202 // so they should never get updated while queued on the worklist. 203 assert(!MemoMap.count(CurrentPad)); 204 Value *UnwindDestToken = nullptr; 205 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) { 206 if (CatchSwitch->hasUnwindDest()) { 207 UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI(); 208 } else { 209 // Catchswitch doesn't have a 'nounwind' variant, and one might be 210 // annotated as "unwinds to caller" when really it's nounwind (see 211 // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the 212 // parent's unwind dest from this. We can check its catchpads' 213 // descendants, since they might include a cleanuppad with an 214 // "unwinds to caller" cleanupret, which can be trusted. 215 for (auto HI = CatchSwitch->handler_begin(), 216 HE = CatchSwitch->handler_end(); 217 HI != HE && !UnwindDestToken; ++HI) { 218 BasicBlock *HandlerBlock = *HI; 219 auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI()); 220 for (User *Child : CatchPad->users()) { 221 // Intentionally ignore invokes here -- since the catchswitch is 222 // marked "unwind to caller", it would be a verifier error if it 223 // contained an invoke which unwinds out of it, so any invoke we'd 224 // encounter must unwind to some child of the catch. 225 if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child)) 226 continue; 227 228 Instruction *ChildPad = cast<Instruction>(Child); 229 auto Memo = MemoMap.find(ChildPad); 230 if (Memo == MemoMap.end()) { 231 // Haven't figure out this child pad yet; queue it. 232 Worklist.push_back(ChildPad); 233 continue; 234 } 235 // We've already checked this child, but might have found that 236 // it offers no proof either way. 237 Value *ChildUnwindDestToken = Memo->second; 238 if (!ChildUnwindDestToken) 239 continue; 240 // We already know the child's unwind dest, which can either 241 // be ConstantTokenNone to indicate unwind to caller, or can 242 // be another child of the catchpad. Only the former indicates 243 // the unwind dest of the catchswitch. 244 if (isa<ConstantTokenNone>(ChildUnwindDestToken)) { 245 UnwindDestToken = ChildUnwindDestToken; 246 break; 247 } 248 assert(getParentPad(ChildUnwindDestToken) == CatchPad); 249 } 250 } 251 } 252 } else { 253 auto *CleanupPad = cast<CleanupPadInst>(CurrentPad); 254 for (User *U : CleanupPad->users()) { 255 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) { 256 if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest()) 257 UnwindDestToken = RetUnwindDest->getFirstNonPHI(); 258 else 259 UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext()); 260 break; 261 } 262 Value *ChildUnwindDestToken; 263 if (auto *Invoke = dyn_cast<InvokeInst>(U)) { 264 ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI(); 265 } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) { 266 Instruction *ChildPad = cast<Instruction>(U); 267 auto Memo = MemoMap.find(ChildPad); 268 if (Memo == MemoMap.end()) { 269 // Haven't resolved this child yet; queue it and keep searching. 270 Worklist.push_back(ChildPad); 271 continue; 272 } 273 // We've checked this child, but still need to ignore it if it 274 // had no proof either way. 275 ChildUnwindDestToken = Memo->second; 276 if (!ChildUnwindDestToken) 277 continue; 278 } else { 279 // Not a relevant user of the cleanuppad 280 continue; 281 } 282 // In a well-formed program, the child/invoke must either unwind to 283 // an(other) child of the cleanup, or exit the cleanup. In the 284 // first case, continue searching. 285 if (isa<Instruction>(ChildUnwindDestToken) && 286 getParentPad(ChildUnwindDestToken) == CleanupPad) 287 continue; 288 UnwindDestToken = ChildUnwindDestToken; 289 break; 290 } 291 } 292 // If we haven't found an unwind dest for CurrentPad, we may have queued its 293 // children, so move on to the next in the worklist. 294 if (!UnwindDestToken) 295 continue; 296 297 // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits 298 // any ancestors of CurrentPad up to but not including UnwindDestToken's 299 // parent pad. Record this in the memo map, and check to see if the 300 // original EHPad being queried is one of the ones exited. 301 Value *UnwindParent; 302 if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken)) 303 UnwindParent = getParentPad(UnwindPad); 304 else 305 UnwindParent = nullptr; 306 bool ExitedOriginalPad = false; 307 for (Instruction *ExitedPad = CurrentPad; 308 ExitedPad && ExitedPad != UnwindParent; 309 ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) { 310 // Skip over catchpads since they just follow their catchswitches. 311 if (isa<CatchPadInst>(ExitedPad)) 312 continue; 313 MemoMap[ExitedPad] = UnwindDestToken; 314 ExitedOriginalPad |= (ExitedPad == EHPad); 315 } 316 317 if (ExitedOriginalPad) 318 return UnwindDestToken; 319 320 // Continue the search. 321 } 322 323 // No definitive information is contained within this funclet. 324 return nullptr; 325 } 326 327 /// Given an EH pad, find where it unwinds. If it unwinds to an EH pad, 328 /// return that pad instruction. If it unwinds to caller, return 329 /// ConstantTokenNone. If it does not have a definitive unwind destination, 330 /// return nullptr. 331 /// 332 /// This routine gets invoked for calls in funclets in inlinees when inlining 333 /// an invoke. Since many funclets don't have calls inside them, it's queried 334 /// on-demand rather than building a map of pads to unwind dests up front. 335 /// Determining a funclet's unwind dest may require recursively searching its 336 /// descendants, and also ancestors and cousins if the descendants don't provide 337 /// an answer. Since most funclets will have their unwind dest immediately 338 /// available as the unwind dest of a catchswitch or cleanupret, this routine 339 /// searches top-down from the given pad and then up. To avoid worst-case 340 /// quadratic run-time given that approach, it uses a memo map to avoid 341 /// re-processing funclet trees. The callers that rewrite the IR as they go 342 /// take advantage of this, for correctness, by checking/forcing rewritten 343 /// pads' entries to match the original callee view. 344 static Value *getUnwindDestToken(Instruction *EHPad, 345 UnwindDestMemoTy &MemoMap) { 346 // Catchpads unwind to the same place as their catchswitch; 347 // redirct any queries on catchpads so the code below can 348 // deal with just catchswitches and cleanuppads. 349 if (auto *CPI = dyn_cast<CatchPadInst>(EHPad)) 350 EHPad = CPI->getCatchSwitch(); 351 352 // Check if we've already determined the unwind dest for this pad. 353 auto Memo = MemoMap.find(EHPad); 354 if (Memo != MemoMap.end()) 355 return Memo->second; 356 357 // Search EHPad and, if necessary, its descendants. 358 Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap); 359 assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0)); 360 if (UnwindDestToken) 361 return UnwindDestToken; 362 363 // No information is available for this EHPad from itself or any of its 364 // descendants. An unwind all the way out to a pad in the caller would 365 // need also to agree with the unwind dest of the parent funclet, so 366 // search up the chain to try to find a funclet with information. Put 367 // null entries in the memo map to avoid re-processing as we go up. 368 MemoMap[EHPad] = nullptr; 369 Instruction *LastUselessPad = EHPad; 370 Value *AncestorToken; 371 for (AncestorToken = getParentPad(EHPad); 372 auto *AncestorPad = dyn_cast<Instruction>(AncestorToken); 373 AncestorToken = getParentPad(AncestorToken)) { 374 // Skip over catchpads since they just follow their catchswitches. 375 if (isa<CatchPadInst>(AncestorPad)) 376 continue; 377 assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]); 378 auto AncestorMemo = MemoMap.find(AncestorPad); 379 if (AncestorMemo == MemoMap.end()) { 380 UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap); 381 } else { 382 UnwindDestToken = AncestorMemo->second; 383 } 384 if (UnwindDestToken) 385 break; 386 LastUselessPad = AncestorPad; 387 } 388 389 // Since the whole tree under LastUselessPad has no information, it all must 390 // match UnwindDestToken; record that to avoid repeating the search. 391 SmallVector<Instruction *, 8> Worklist(1, LastUselessPad); 392 while (!Worklist.empty()) { 393 Instruction *UselessPad = Worklist.pop_back_val(); 394 assert(!MemoMap.count(UselessPad) || MemoMap[UselessPad] == nullptr); 395 MemoMap[UselessPad] = UnwindDestToken; 396 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) { 397 for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) 398 for (User *U : HandlerBlock->getFirstNonPHI()->users()) 399 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 400 Worklist.push_back(cast<Instruction>(U)); 401 } else { 402 assert(isa<CleanupPadInst>(UselessPad)); 403 for (User *U : UselessPad->users()) 404 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 405 Worklist.push_back(cast<Instruction>(U)); 406 } 407 } 408 409 return UnwindDestToken; 410 } 411 412 /// When we inline a basic block into an invoke, 413 /// we have to turn all of the calls that can throw into invokes. 414 /// This function analyze BB to see if there are any calls, and if so, 415 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 416 /// nodes in that block with the values specified in InvokeDestPHIValues. 417 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke( 418 BasicBlock *BB, BasicBlock *UnwindEdge, 419 UnwindDestMemoTy *FuncletUnwindMap = nullptr) { 420 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 421 Instruction *I = &*BBI++; 422 423 // We only need to check for function calls: inlined invoke 424 // instructions require no special handling. 425 CallInst *CI = dyn_cast<CallInst>(I); 426 427 if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue())) 428 continue; 429 430 // We do not need to (and in fact, cannot) convert possibly throwing calls 431 // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into 432 // invokes. The caller's "segment" of the deoptimization continuation 433 // attached to the newly inlined @llvm.experimental_deoptimize 434 // (resp. @llvm.experimental.guard) call should contain the exception 435 // handling logic, if any. 436 if (auto *F = CI->getCalledFunction()) 437 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize || 438 F->getIntrinsicID() == Intrinsic::experimental_guard) 439 continue; 440 441 if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) { 442 // This call is nested inside a funclet. If that funclet has an unwind 443 // destination within the inlinee, then unwinding out of this call would 444 // be UB. Rewriting this call to an invoke which targets the inlined 445 // invoke's unwind dest would give the call's parent funclet multiple 446 // unwind destinations, which is something that subsequent EH table 447 // generation can't handle and that the veirifer rejects. So when we 448 // see such a call, leave it as a call. 449 auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]); 450 Value *UnwindDestToken = 451 getUnwindDestToken(FuncletPad, *FuncletUnwindMap); 452 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 453 continue; 454 #ifndef NDEBUG 455 Instruction *MemoKey; 456 if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad)) 457 MemoKey = CatchPad->getCatchSwitch(); 458 else 459 MemoKey = FuncletPad; 460 assert(FuncletUnwindMap->count(MemoKey) && 461 (*FuncletUnwindMap)[MemoKey] == UnwindDestToken && 462 "must get memoized to avoid confusing later searches"); 463 #endif // NDEBUG 464 } 465 466 // Convert this function call into an invoke instruction. First, split the 467 // basic block. 468 BasicBlock *Split = 469 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 470 471 // Delete the unconditional branch inserted by splitBasicBlock 472 BB->getInstList().pop_back(); 473 474 // Create the new invoke instruction. 475 SmallVector<Value*, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 476 SmallVector<OperandBundleDef, 1> OpBundles; 477 478 CI->getOperandBundlesAsDefs(OpBundles); 479 480 // Note: we're round tripping operand bundles through memory here, and that 481 // can potentially be avoided with a cleverer API design that we do not have 482 // as of this time. 483 484 InvokeInst *II = 485 InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, InvokeArgs, 486 OpBundles, CI->getName(), BB); 487 II->setDebugLoc(CI->getDebugLoc()); 488 II->setCallingConv(CI->getCallingConv()); 489 II->setAttributes(CI->getAttributes()); 490 491 // Make sure that anything using the call now uses the invoke! This also 492 // updates the CallGraph if present, because it uses a WeakVH. 493 CI->replaceAllUsesWith(II); 494 495 // Delete the original call 496 Split->getInstList().pop_front(); 497 return BB; 498 } 499 return nullptr; 500 } 501 502 /// If we inlined an invoke site, we need to convert calls 503 /// in the body of the inlined function into invokes. 504 /// 505 /// II is the invoke instruction being inlined. FirstNewBlock is the first 506 /// block of the inlined code (the last block is the end of the function), 507 /// and InlineCodeInfo is information about the code that got inlined. 508 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock, 509 ClonedCodeInfo &InlinedCodeInfo) { 510 BasicBlock *InvokeDest = II->getUnwindDest(); 511 512 Function *Caller = FirstNewBlock->getParent(); 513 514 // The inlined code is currently at the end of the function, scan from the 515 // start of the inlined code to its end, checking for stuff we need to 516 // rewrite. 517 LandingPadInliningInfo Invoke(II); 518 519 // Get all of the inlined landing pad instructions. 520 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 521 for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end(); 522 I != E; ++I) 523 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 524 InlinedLPads.insert(II->getLandingPadInst()); 525 526 // Append the clauses from the outer landing pad instruction into the inlined 527 // landing pad instructions. 528 LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 529 for (LandingPadInst *InlinedLPad : InlinedLPads) { 530 unsigned OuterNum = OuterLPad->getNumClauses(); 531 InlinedLPad->reserveClauses(OuterNum); 532 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 533 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 534 if (OuterLPad->isCleanup()) 535 InlinedLPad->setCleanup(true); 536 } 537 538 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 539 BB != E; ++BB) { 540 if (InlinedCodeInfo.ContainsCalls) 541 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 542 &*BB, Invoke.getOuterResumeDest())) 543 // Update any PHI nodes in the exceptional block to indicate that there 544 // is now a new entry in them. 545 Invoke.addIncomingPHIValuesFor(NewBB); 546 547 // Forward any resumes that are remaining here. 548 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 549 Invoke.forwardResume(RI, InlinedLPads); 550 } 551 552 // Now that everything is happy, we have one final detail. The PHI nodes in 553 // the exception destination block still have entries due to the original 554 // invoke instruction. Eliminate these entries (which might even delete the 555 // PHI node) now. 556 InvokeDest->removePredecessor(II->getParent()); 557 } 558 559 /// If we inlined an invoke site, we need to convert calls 560 /// in the body of the inlined function into invokes. 561 /// 562 /// II is the invoke instruction being inlined. FirstNewBlock is the first 563 /// block of the inlined code (the last block is the end of the function), 564 /// and InlineCodeInfo is information about the code that got inlined. 565 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock, 566 ClonedCodeInfo &InlinedCodeInfo) { 567 BasicBlock *UnwindDest = II->getUnwindDest(); 568 Function *Caller = FirstNewBlock->getParent(); 569 570 assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!"); 571 572 // If there are PHI nodes in the unwind destination block, we need to keep 573 // track of which values came into them from the invoke before removing the 574 // edge from this block. 575 SmallVector<Value *, 8> UnwindDestPHIValues; 576 llvm::BasicBlock *InvokeBB = II->getParent(); 577 for (Instruction &I : *UnwindDest) { 578 // Save the value to use for this edge. 579 PHINode *PHI = dyn_cast<PHINode>(&I); 580 if (!PHI) 581 break; 582 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 583 } 584 585 // Add incoming-PHI values to the unwind destination block for the given basic 586 // block, using the values for the original invoke's source block. 587 auto UpdatePHINodes = [&](BasicBlock *Src) { 588 BasicBlock::iterator I = UnwindDest->begin(); 589 for (Value *V : UnwindDestPHIValues) { 590 PHINode *PHI = cast<PHINode>(I); 591 PHI->addIncoming(V, Src); 592 ++I; 593 } 594 }; 595 596 // This connects all the instructions which 'unwind to caller' to the invoke 597 // destination. 598 UnwindDestMemoTy FuncletUnwindMap; 599 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 600 BB != E; ++BB) { 601 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 602 if (CRI->unwindsToCaller()) { 603 auto *CleanupPad = CRI->getCleanupPad(); 604 CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI); 605 CRI->eraseFromParent(); 606 UpdatePHINodes(&*BB); 607 // Finding a cleanupret with an unwind destination would confuse 608 // subsequent calls to getUnwindDestToken, so map the cleanuppad 609 // to short-circuit any such calls and recognize this as an "unwind 610 // to caller" cleanup. 611 assert(!FuncletUnwindMap.count(CleanupPad) || 612 isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad])); 613 FuncletUnwindMap[CleanupPad] = 614 ConstantTokenNone::get(Caller->getContext()); 615 } 616 } 617 618 Instruction *I = BB->getFirstNonPHI(); 619 if (!I->isEHPad()) 620 continue; 621 622 Instruction *Replacement = nullptr; 623 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 624 if (CatchSwitch->unwindsToCaller()) { 625 Value *UnwindDestToken; 626 if (auto *ParentPad = 627 dyn_cast<Instruction>(CatchSwitch->getParentPad())) { 628 // This catchswitch is nested inside another funclet. If that 629 // funclet has an unwind destination within the inlinee, then 630 // unwinding out of this catchswitch would be UB. Rewriting this 631 // catchswitch to unwind to the inlined invoke's unwind dest would 632 // give the parent funclet multiple unwind destinations, which is 633 // something that subsequent EH table generation can't handle and 634 // that the veirifer rejects. So when we see such a call, leave it 635 // as "unwind to caller". 636 UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap); 637 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 638 continue; 639 } else { 640 // This catchswitch has no parent to inherit constraints from, and 641 // none of its descendants can have an unwind edge that exits it and 642 // targets another funclet in the inlinee. It may or may not have a 643 // descendant that definitively has an unwind to caller. In either 644 // case, we'll have to assume that any unwinds out of it may need to 645 // be routed to the caller, so treat it as though it has a definitive 646 // unwind to caller. 647 UnwindDestToken = ConstantTokenNone::get(Caller->getContext()); 648 } 649 auto *NewCatchSwitch = CatchSwitchInst::Create( 650 CatchSwitch->getParentPad(), UnwindDest, 651 CatchSwitch->getNumHandlers(), CatchSwitch->getName(), 652 CatchSwitch); 653 for (BasicBlock *PadBB : CatchSwitch->handlers()) 654 NewCatchSwitch->addHandler(PadBB); 655 // Propagate info for the old catchswitch over to the new one in 656 // the unwind map. This also serves to short-circuit any subsequent 657 // checks for the unwind dest of this catchswitch, which would get 658 // confused if they found the outer handler in the callee. 659 FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken; 660 Replacement = NewCatchSwitch; 661 } 662 } else if (!isa<FuncletPadInst>(I)) { 663 llvm_unreachable("unexpected EHPad!"); 664 } 665 666 if (Replacement) { 667 Replacement->takeName(I); 668 I->replaceAllUsesWith(Replacement); 669 I->eraseFromParent(); 670 UpdatePHINodes(&*BB); 671 } 672 } 673 674 if (InlinedCodeInfo.ContainsCalls) 675 for (Function::iterator BB = FirstNewBlock->getIterator(), 676 E = Caller->end(); 677 BB != E; ++BB) 678 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 679 &*BB, UnwindDest, &FuncletUnwindMap)) 680 // Update any PHI nodes in the exceptional block to indicate that there 681 // is now a new entry in them. 682 UpdatePHINodes(NewBB); 683 684 // Now that everything is happy, we have one final detail. The PHI nodes in 685 // the exception destination block still have entries due to the original 686 // invoke instruction. Eliminate these entries (which might even delete the 687 // PHI node) now. 688 UnwindDest->removePredecessor(InvokeBB); 689 } 690 691 /// When inlining a function that contains noalias scope metadata, 692 /// this metadata needs to be cloned so that the inlined blocks 693 /// have different "unqiue scopes" at every call site. Were this not done, then 694 /// aliasing scopes from a function inlined into a caller multiple times could 695 /// not be differentiated (and this would lead to miscompiles because the 696 /// non-aliasing property communicated by the metadata could have 697 /// call-site-specific control dependencies). 698 static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) { 699 const Function *CalledFunc = CS.getCalledFunction(); 700 SetVector<const MDNode *> MD; 701 702 // Note: We could only clone the metadata if it is already used in the 703 // caller. I'm omitting that check here because it might confuse 704 // inter-procedural alias analysis passes. We can revisit this if it becomes 705 // an efficiency or overhead problem. 706 707 for (Function::const_iterator I = CalledFunc->begin(), IE = CalledFunc->end(); 708 I != IE; ++I) 709 for (BasicBlock::const_iterator J = I->begin(), JE = I->end(); J != JE; ++J) { 710 if (const MDNode *M = J->getMetadata(LLVMContext::MD_alias_scope)) 711 MD.insert(M); 712 if (const MDNode *M = J->getMetadata(LLVMContext::MD_noalias)) 713 MD.insert(M); 714 } 715 716 if (MD.empty()) 717 return; 718 719 // Walk the existing metadata, adding the complete (perhaps cyclic) chain to 720 // the set. 721 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end()); 722 while (!Queue.empty()) { 723 const MDNode *M = cast<MDNode>(Queue.pop_back_val()); 724 for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i) 725 if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i))) 726 if (MD.insert(M1)) 727 Queue.push_back(M1); 728 } 729 730 // Now we have a complete set of all metadata in the chains used to specify 731 // the noalias scopes and the lists of those scopes. 732 SmallVector<TempMDTuple, 16> DummyNodes; 733 DenseMap<const MDNode *, TrackingMDNodeRef> MDMap; 734 for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); 735 I != IE; ++I) { 736 DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None)); 737 MDMap[*I].reset(DummyNodes.back().get()); 738 } 739 740 // Create new metadata nodes to replace the dummy nodes, replacing old 741 // metadata references with either a dummy node or an already-created new 742 // node. 743 for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); 744 I != IE; ++I) { 745 SmallVector<Metadata *, 4> NewOps; 746 for (unsigned i = 0, ie = (*I)->getNumOperands(); i != ie; ++i) { 747 const Metadata *V = (*I)->getOperand(i); 748 if (const MDNode *M = dyn_cast<MDNode>(V)) 749 NewOps.push_back(MDMap[M]); 750 else 751 NewOps.push_back(const_cast<Metadata *>(V)); 752 } 753 754 MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps); 755 MDTuple *TempM = cast<MDTuple>(MDMap[*I]); 756 assert(TempM->isTemporary() && "Expected temporary node"); 757 758 TempM->replaceAllUsesWith(NewM); 759 } 760 761 // Now replace the metadata in the new inlined instructions with the 762 // repacements from the map. 763 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 764 VMI != VMIE; ++VMI) { 765 if (!VMI->second) 766 continue; 767 768 Instruction *NI = dyn_cast<Instruction>(VMI->second); 769 if (!NI) 770 continue; 771 772 if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) { 773 MDNode *NewMD = MDMap[M]; 774 // If the call site also had alias scope metadata (a list of scopes to 775 // which instructions inside it might belong), propagate those scopes to 776 // the inlined instructions. 777 if (MDNode *CSM = 778 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 779 NewMD = MDNode::concatenate(NewMD, CSM); 780 NI->setMetadata(LLVMContext::MD_alias_scope, NewMD); 781 } else if (NI->mayReadOrWriteMemory()) { 782 if (MDNode *M = 783 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 784 NI->setMetadata(LLVMContext::MD_alias_scope, M); 785 } 786 787 if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) { 788 MDNode *NewMD = MDMap[M]; 789 // If the call site also had noalias metadata (a list of scopes with 790 // which instructions inside it don't alias), propagate those scopes to 791 // the inlined instructions. 792 if (MDNode *CSM = 793 CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 794 NewMD = MDNode::concatenate(NewMD, CSM); 795 NI->setMetadata(LLVMContext::MD_noalias, NewMD); 796 } else if (NI->mayReadOrWriteMemory()) { 797 if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 798 NI->setMetadata(LLVMContext::MD_noalias, M); 799 } 800 } 801 } 802 803 /// If the inlined function has noalias arguments, 804 /// then add new alias scopes for each noalias argument, tag the mapped noalias 805 /// parameters with noalias metadata specifying the new scope, and tag all 806 /// non-derived loads, stores and memory intrinsics with the new alias scopes. 807 static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap, 808 const DataLayout &DL, AAResults *CalleeAAR) { 809 if (!EnableNoAliasConversion) 810 return; 811 812 const Function *CalledFunc = CS.getCalledFunction(); 813 SmallVector<const Argument *, 4> NoAliasArgs; 814 815 for (const Argument &Arg : CalledFunc->args()) 816 if (Arg.hasNoAliasAttr() && !Arg.use_empty()) 817 NoAliasArgs.push_back(&Arg); 818 819 if (NoAliasArgs.empty()) 820 return; 821 822 // To do a good job, if a noalias variable is captured, we need to know if 823 // the capture point dominates the particular use we're considering. 824 DominatorTree DT; 825 DT.recalculate(const_cast<Function&>(*CalledFunc)); 826 827 // noalias indicates that pointer values based on the argument do not alias 828 // pointer values which are not based on it. So we add a new "scope" for each 829 // noalias function argument. Accesses using pointers based on that argument 830 // become part of that alias scope, accesses using pointers not based on that 831 // argument are tagged as noalias with that scope. 832 833 DenseMap<const Argument *, MDNode *> NewScopes; 834 MDBuilder MDB(CalledFunc->getContext()); 835 836 // Create a new scope domain for this function. 837 MDNode *NewDomain = 838 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); 839 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { 840 const Argument *A = NoAliasArgs[i]; 841 842 std::string Name = CalledFunc->getName(); 843 if (A->hasName()) { 844 Name += ": %"; 845 Name += A->getName(); 846 } else { 847 Name += ": argument "; 848 Name += utostr(i); 849 } 850 851 // Note: We always create a new anonymous root here. This is true regardless 852 // of the linkage of the callee because the aliasing "scope" is not just a 853 // property of the callee, but also all control dependencies in the caller. 854 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); 855 NewScopes.insert(std::make_pair(A, NewScope)); 856 } 857 858 // Iterate over all new instructions in the map; for all memory-access 859 // instructions, add the alias scope metadata. 860 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 861 VMI != VMIE; ++VMI) { 862 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { 863 if (!VMI->second) 864 continue; 865 866 Instruction *NI = dyn_cast<Instruction>(VMI->second); 867 if (!NI) 868 continue; 869 870 bool IsArgMemOnlyCall = false, IsFuncCall = false; 871 SmallVector<const Value *, 2> PtrArgs; 872 873 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 874 PtrArgs.push_back(LI->getPointerOperand()); 875 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 876 PtrArgs.push_back(SI->getPointerOperand()); 877 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) 878 PtrArgs.push_back(VAAI->getPointerOperand()); 879 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 880 PtrArgs.push_back(CXI->getPointerOperand()); 881 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 882 PtrArgs.push_back(RMWI->getPointerOperand()); 883 else if (ImmutableCallSite ICS = ImmutableCallSite(I)) { 884 // If we know that the call does not access memory, then we'll still 885 // know that about the inlined clone of this call site, and we don't 886 // need to add metadata. 887 if (ICS.doesNotAccessMemory()) 888 continue; 889 890 IsFuncCall = true; 891 if (CalleeAAR) { 892 FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(ICS); 893 if (MRB == FMRB_OnlyAccessesArgumentPointees || 894 MRB == FMRB_OnlyReadsArgumentPointees) 895 IsArgMemOnlyCall = true; 896 } 897 898 for (Value *Arg : ICS.args()) { 899 // We need to check the underlying objects of all arguments, not just 900 // the pointer arguments, because we might be passing pointers as 901 // integers, etc. 902 // However, if we know that the call only accesses pointer arguments, 903 // then we only need to check the pointer arguments. 904 if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy()) 905 continue; 906 907 PtrArgs.push_back(Arg); 908 } 909 } 910 911 // If we found no pointers, then this instruction is not suitable for 912 // pairing with an instruction to receive aliasing metadata. 913 // However, if this is a call, this we might just alias with none of the 914 // noalias arguments. 915 if (PtrArgs.empty() && !IsFuncCall) 916 continue; 917 918 // It is possible that there is only one underlying object, but you 919 // need to go through several PHIs to see it, and thus could be 920 // repeated in the Objects list. 921 SmallPtrSet<const Value *, 4> ObjSet; 922 SmallVector<Metadata *, 4> Scopes, NoAliases; 923 924 SmallSetVector<const Argument *, 4> NAPtrArgs; 925 for (const Value *V : PtrArgs) { 926 SmallVector<Value *, 4> Objects; 927 GetUnderlyingObjects(const_cast<Value*>(V), 928 Objects, DL, /* LI = */ nullptr); 929 930 for (Value *O : Objects) 931 ObjSet.insert(O); 932 } 933 934 // Figure out if we're derived from anything that is not a noalias 935 // argument. 936 bool CanDeriveViaCapture = false, UsesAliasingPtr = false; 937 for (const Value *V : ObjSet) { 938 // Is this value a constant that cannot be derived from any pointer 939 // value (we need to exclude constant expressions, for example, that 940 // are formed from arithmetic on global symbols). 941 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || 942 isa<ConstantPointerNull>(V) || 943 isa<ConstantDataVector>(V) || isa<UndefValue>(V); 944 if (IsNonPtrConst) 945 continue; 946 947 // If this is anything other than a noalias argument, then we cannot 948 // completely describe the aliasing properties using alias.scope 949 // metadata (and, thus, won't add any). 950 if (const Argument *A = dyn_cast<Argument>(V)) { 951 if (!A->hasNoAliasAttr()) 952 UsesAliasingPtr = true; 953 } else { 954 UsesAliasingPtr = true; 955 } 956 957 // If this is not some identified function-local object (which cannot 958 // directly alias a noalias argument), or some other argument (which, 959 // by definition, also cannot alias a noalias argument), then we could 960 // alias a noalias argument that has been captured). 961 if (!isa<Argument>(V) && 962 !isIdentifiedFunctionLocal(const_cast<Value*>(V))) 963 CanDeriveViaCapture = true; 964 } 965 966 // A function call can always get captured noalias pointers (via other 967 // parameters, globals, etc.). 968 if (IsFuncCall && !IsArgMemOnlyCall) 969 CanDeriveViaCapture = true; 970 971 // First, we want to figure out all of the sets with which we definitely 972 // don't alias. Iterate over all noalias set, and add those for which: 973 // 1. The noalias argument is not in the set of objects from which we 974 // definitely derive. 975 // 2. The noalias argument has not yet been captured. 976 // An arbitrary function that might load pointers could see captured 977 // noalias arguments via other noalias arguments or globals, and so we 978 // must always check for prior capture. 979 for (const Argument *A : NoAliasArgs) { 980 if (!ObjSet.count(A) && (!CanDeriveViaCapture || 981 // It might be tempting to skip the 982 // PointerMayBeCapturedBefore check if 983 // A->hasNoCaptureAttr() is true, but this is 984 // incorrect because nocapture only guarantees 985 // that no copies outlive the function, not 986 // that the value cannot be locally captured. 987 !PointerMayBeCapturedBefore(A, 988 /* ReturnCaptures */ false, 989 /* StoreCaptures */ false, I, &DT))) 990 NoAliases.push_back(NewScopes[A]); 991 } 992 993 if (!NoAliases.empty()) 994 NI->setMetadata(LLVMContext::MD_noalias, 995 MDNode::concatenate( 996 NI->getMetadata(LLVMContext::MD_noalias), 997 MDNode::get(CalledFunc->getContext(), NoAliases))); 998 999 // Next, we want to figure out all of the sets to which we might belong. 1000 // We might belong to a set if the noalias argument is in the set of 1001 // underlying objects. If there is some non-noalias argument in our list 1002 // of underlying objects, then we cannot add a scope because the fact 1003 // that some access does not alias with any set of our noalias arguments 1004 // cannot itself guarantee that it does not alias with this access 1005 // (because there is some pointer of unknown origin involved and the 1006 // other access might also depend on this pointer). We also cannot add 1007 // scopes to arbitrary functions unless we know they don't access any 1008 // non-parameter pointer-values. 1009 bool CanAddScopes = !UsesAliasingPtr; 1010 if (CanAddScopes && IsFuncCall) 1011 CanAddScopes = IsArgMemOnlyCall; 1012 1013 if (CanAddScopes) 1014 for (const Argument *A : NoAliasArgs) { 1015 if (ObjSet.count(A)) 1016 Scopes.push_back(NewScopes[A]); 1017 } 1018 1019 if (!Scopes.empty()) 1020 NI->setMetadata( 1021 LLVMContext::MD_alias_scope, 1022 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), 1023 MDNode::get(CalledFunc->getContext(), Scopes))); 1024 } 1025 } 1026 } 1027 1028 /// If the inlined function has non-byval align arguments, then 1029 /// add @llvm.assume-based alignment assumptions to preserve this information. 1030 static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) { 1031 if (!PreserveAlignmentAssumptions) 1032 return; 1033 auto &DL = CS.getCaller()->getParent()->getDataLayout(); 1034 1035 // To avoid inserting redundant assumptions, we should check for assumptions 1036 // already in the caller. To do this, we might need a DT of the caller. 1037 DominatorTree DT; 1038 bool DTCalculated = false; 1039 1040 Function *CalledFunc = CS.getCalledFunction(); 1041 for (Function::arg_iterator I = CalledFunc->arg_begin(), 1042 E = CalledFunc->arg_end(); 1043 I != E; ++I) { 1044 unsigned Align = I->getType()->isPointerTy() ? I->getParamAlignment() : 0; 1045 if (Align && !I->hasByValOrInAllocaAttr() && !I->hasNUses(0)) { 1046 if (!DTCalculated) { 1047 DT.recalculate(const_cast<Function&>(*CS.getInstruction()->getParent() 1048 ->getParent())); 1049 DTCalculated = true; 1050 } 1051 1052 // If we can already prove the asserted alignment in the context of the 1053 // caller, then don't bother inserting the assumption. 1054 Value *Arg = CS.getArgument(I->getArgNo()); 1055 if (getKnownAlignment(Arg, DL, CS.getInstruction(), 1056 &IFI.ACT->getAssumptionCache(*CS.getCaller()), 1057 &DT) >= Align) 1058 continue; 1059 1060 IRBuilder<>(CS.getInstruction()) 1061 .CreateAlignmentAssumption(DL, Arg, Align); 1062 } 1063 } 1064 } 1065 1066 /// Once we have cloned code over from a callee into the caller, 1067 /// update the specified callgraph to reflect the changes we made. 1068 /// Note that it's possible that not all code was copied over, so only 1069 /// some edges of the callgraph may remain. 1070 static void UpdateCallGraphAfterInlining(CallSite CS, 1071 Function::iterator FirstNewBlock, 1072 ValueToValueMapTy &VMap, 1073 InlineFunctionInfo &IFI) { 1074 CallGraph &CG = *IFI.CG; 1075 const Function *Caller = CS.getInstruction()->getParent()->getParent(); 1076 const Function *Callee = CS.getCalledFunction(); 1077 CallGraphNode *CalleeNode = CG[Callee]; 1078 CallGraphNode *CallerNode = CG[Caller]; 1079 1080 // Since we inlined some uninlined call sites in the callee into the caller, 1081 // add edges from the caller to all of the callees of the callee. 1082 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 1083 1084 // Consider the case where CalleeNode == CallerNode. 1085 CallGraphNode::CalledFunctionsVector CallCache; 1086 if (CalleeNode == CallerNode) { 1087 CallCache.assign(I, E); 1088 I = CallCache.begin(); 1089 E = CallCache.end(); 1090 } 1091 1092 for (; I != E; ++I) { 1093 const Value *OrigCall = I->first; 1094 1095 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 1096 // Only copy the edge if the call was inlined! 1097 if (VMI == VMap.end() || VMI->second == nullptr) 1098 continue; 1099 1100 // If the call was inlined, but then constant folded, there is no edge to 1101 // add. Check for this case. 1102 Instruction *NewCall = dyn_cast<Instruction>(VMI->second); 1103 if (!NewCall) 1104 continue; 1105 1106 // We do not treat intrinsic calls like real function calls because we 1107 // expect them to become inline code; do not add an edge for an intrinsic. 1108 CallSite CS = CallSite(NewCall); 1109 if (CS && CS.getCalledFunction() && CS.getCalledFunction()->isIntrinsic()) 1110 continue; 1111 1112 // Remember that this call site got inlined for the client of 1113 // InlineFunction. 1114 IFI.InlinedCalls.push_back(NewCall); 1115 1116 // It's possible that inlining the callsite will cause it to go from an 1117 // indirect to a direct call by resolving a function pointer. If this 1118 // happens, set the callee of the new call site to a more precise 1119 // destination. This can also happen if the call graph node of the caller 1120 // was just unnecessarily imprecise. 1121 if (!I->second->getFunction()) 1122 if (Function *F = CallSite(NewCall).getCalledFunction()) { 1123 // Indirect call site resolved to direct call. 1124 CallerNode->addCalledFunction(CallSite(NewCall), CG[F]); 1125 1126 continue; 1127 } 1128 1129 CallerNode->addCalledFunction(CallSite(NewCall), I->second); 1130 } 1131 1132 // Update the call graph by deleting the edge from Callee to Caller. We must 1133 // do this after the loop above in case Caller and Callee are the same. 1134 CallerNode->removeCallEdgeFor(CS); 1135 } 1136 1137 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M, 1138 BasicBlock *InsertBlock, 1139 InlineFunctionInfo &IFI) { 1140 Type *AggTy = cast<PointerType>(Src->getType())->getElementType(); 1141 IRBuilder<> Builder(InsertBlock, InsertBlock->begin()); 1142 1143 Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy)); 1144 1145 // Always generate a memcpy of alignment 1 here because we don't know 1146 // the alignment of the src pointer. Other optimizations can infer 1147 // better alignment. 1148 Builder.CreateMemCpy(Dst, Src, Size, /*Align=*/1); 1149 } 1150 1151 /// When inlining a call site that has a byval argument, 1152 /// we have to make the implicit memcpy explicit by adding it. 1153 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 1154 const Function *CalledFunc, 1155 InlineFunctionInfo &IFI, 1156 unsigned ByValAlignment) { 1157 PointerType *ArgTy = cast<PointerType>(Arg->getType()); 1158 Type *AggTy = ArgTy->getElementType(); 1159 1160 Function *Caller = TheCall->getParent()->getParent(); 1161 1162 // If the called function is readonly, then it could not mutate the caller's 1163 // copy of the byval'd memory. In this case, it is safe to elide the copy and 1164 // temporary. 1165 if (CalledFunc->onlyReadsMemory()) { 1166 // If the byval argument has a specified alignment that is greater than the 1167 // passed in pointer, then we either have to round up the input pointer or 1168 // give up on this transformation. 1169 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 1170 return Arg; 1171 1172 const DataLayout &DL = Caller->getParent()->getDataLayout(); 1173 1174 // If the pointer is already known to be sufficiently aligned, or if we can 1175 // round it up to a larger alignment, then we don't need a temporary. 1176 if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall, 1177 &IFI.ACT->getAssumptionCache(*Caller)) >= 1178 ByValAlignment) 1179 return Arg; 1180 1181 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 1182 // for code quality, but rarely happens and is required for correctness. 1183 } 1184 1185 // Create the alloca. If we have DataLayout, use nice alignment. 1186 unsigned Align = 1187 Caller->getParent()->getDataLayout().getPrefTypeAlignment(AggTy); 1188 1189 // If the byval had an alignment specified, we *must* use at least that 1190 // alignment, as it is required by the byval argument (and uses of the 1191 // pointer inside the callee). 1192 Align = std::max(Align, ByValAlignment); 1193 1194 Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(), 1195 &*Caller->begin()->begin()); 1196 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); 1197 1198 // Uses of the argument in the function should use our new alloca 1199 // instead. 1200 return NewAlloca; 1201 } 1202 1203 // Check whether this Value is used by a lifetime intrinsic. 1204 static bool isUsedByLifetimeMarker(Value *V) { 1205 for (User *U : V->users()) { 1206 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 1207 switch (II->getIntrinsicID()) { 1208 default: break; 1209 case Intrinsic::lifetime_start: 1210 case Intrinsic::lifetime_end: 1211 return true; 1212 } 1213 } 1214 } 1215 return false; 1216 } 1217 1218 // Check whether the given alloca already has 1219 // lifetime.start or lifetime.end intrinsics. 1220 static bool hasLifetimeMarkers(AllocaInst *AI) { 1221 Type *Ty = AI->getType(); 1222 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), 1223 Ty->getPointerAddressSpace()); 1224 if (Ty == Int8PtrTy) 1225 return isUsedByLifetimeMarker(AI); 1226 1227 // Do a scan to find all the casts to i8*. 1228 for (User *U : AI->users()) { 1229 if (U->getType() != Int8PtrTy) continue; 1230 if (U->stripPointerCasts() != AI) continue; 1231 if (isUsedByLifetimeMarker(U)) 1232 return true; 1233 } 1234 return false; 1235 } 1236 1237 /// Rebuild the entire inlined-at chain for this instruction so that the top of 1238 /// the chain now is inlined-at the new call site. 1239 static DebugLoc 1240 updateInlinedAtInfo(DebugLoc DL, DILocation *InlinedAtNode, LLVMContext &Ctx, 1241 DenseMap<const DILocation *, DILocation *> &IANodes) { 1242 SmallVector<DILocation *, 3> InlinedAtLocations; 1243 DILocation *Last = InlinedAtNode; 1244 DILocation *CurInlinedAt = DL; 1245 1246 // Gather all the inlined-at nodes 1247 while (DILocation *IA = CurInlinedAt->getInlinedAt()) { 1248 // Skip any we've already built nodes for 1249 if (DILocation *Found = IANodes[IA]) { 1250 Last = Found; 1251 break; 1252 } 1253 1254 InlinedAtLocations.push_back(IA); 1255 CurInlinedAt = IA; 1256 } 1257 1258 // Starting from the top, rebuild the nodes to point to the new inlined-at 1259 // location (then rebuilding the rest of the chain behind it) and update the 1260 // map of already-constructed inlined-at nodes. 1261 for (const DILocation *MD : make_range(InlinedAtLocations.rbegin(), 1262 InlinedAtLocations.rend())) { 1263 Last = IANodes[MD] = DILocation::getDistinct( 1264 Ctx, MD->getLine(), MD->getColumn(), MD->getScope(), Last); 1265 } 1266 1267 // And finally create the normal location for this instruction, referring to 1268 // the new inlined-at chain. 1269 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(), Last); 1270 } 1271 1272 /// Update inlined instructions' line numbers to 1273 /// to encode location where these instructions are inlined. 1274 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 1275 Instruction *TheCall) { 1276 DebugLoc TheCallDL = TheCall->getDebugLoc(); 1277 if (!TheCallDL) 1278 return; 1279 1280 auto &Ctx = Fn->getContext(); 1281 DILocation *InlinedAtNode = TheCallDL; 1282 1283 // Create a unique call site, not to be confused with any other call from the 1284 // same location. 1285 InlinedAtNode = DILocation::getDistinct( 1286 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(), 1287 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt()); 1288 1289 // Cache the inlined-at nodes as they're built so they are reused, without 1290 // this every instruction's inlined-at chain would become distinct from each 1291 // other. 1292 DenseMap<const DILocation *, DILocation *> IANodes; 1293 1294 for (; FI != Fn->end(); ++FI) { 1295 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 1296 BI != BE; ++BI) { 1297 DebugLoc DL = BI->getDebugLoc(); 1298 if (!DL) { 1299 // If the inlined instruction has no line number, make it look as if it 1300 // originates from the call location. This is important for 1301 // ((__always_inline__, __nodebug__)) functions which must use caller 1302 // location for all instructions in their function body. 1303 1304 // Don't update static allocas, as they may get moved later. 1305 if (auto *AI = dyn_cast<AllocaInst>(BI)) 1306 if (isa<Constant>(AI->getArraySize())) 1307 continue; 1308 1309 BI->setDebugLoc(TheCallDL); 1310 } else { 1311 BI->setDebugLoc(updateInlinedAtInfo(DL, InlinedAtNode, BI->getContext(), IANodes)); 1312 } 1313 } 1314 } 1315 } 1316 1317 /// This function inlines the called function into the basic block of the 1318 /// caller. This returns false if it is not possible to inline this call. 1319 /// The program is still in a well defined state if this occurs though. 1320 /// 1321 /// Note that this only does one level of inlining. For example, if the 1322 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 1323 /// exists in the instruction stream. Similarly this will inline a recursive 1324 /// function by one level. 1325 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI, 1326 AAResults *CalleeAAR, bool InsertLifetime) { 1327 Instruction *TheCall = CS.getInstruction(); 1328 assert(TheCall->getParent() && TheCall->getParent()->getParent() && 1329 "Instruction not in function!"); 1330 1331 // If IFI has any state in it, zap it before we fill it in. 1332 IFI.reset(); 1333 1334 const Function *CalledFunc = CS.getCalledFunction(); 1335 if (!CalledFunc || // Can't inline external function or indirect 1336 CalledFunc->isDeclaration() || // call, or call to a vararg function! 1337 CalledFunc->getFunctionType()->isVarArg()) return false; 1338 1339 // The inliner does not know how to inline through calls with operand bundles 1340 // in general ... 1341 if (CS.hasOperandBundles()) { 1342 for (int i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 1343 uint32_t Tag = CS.getOperandBundleAt(i).getTagID(); 1344 // ... but it knows how to inline through "deopt" operand bundles ... 1345 if (Tag == LLVMContext::OB_deopt) 1346 continue; 1347 // ... and "funclet" operand bundles. 1348 if (Tag == LLVMContext::OB_funclet) 1349 continue; 1350 1351 return false; 1352 } 1353 } 1354 1355 // If the call to the callee cannot throw, set the 'nounwind' flag on any 1356 // calls that we inline. 1357 bool MarkNoUnwind = CS.doesNotThrow(); 1358 1359 BasicBlock *OrigBB = TheCall->getParent(); 1360 Function *Caller = OrigBB->getParent(); 1361 1362 // GC poses two hazards to inlining, which only occur when the callee has GC: 1363 // 1. If the caller has no GC, then the callee's GC must be propagated to the 1364 // caller. 1365 // 2. If the caller has a differing GC, it is invalid to inline. 1366 if (CalledFunc->hasGC()) { 1367 if (!Caller->hasGC()) 1368 Caller->setGC(CalledFunc->getGC()); 1369 else if (CalledFunc->getGC() != Caller->getGC()) 1370 return false; 1371 } 1372 1373 // Get the personality function from the callee if it contains a landing pad. 1374 Constant *CalledPersonality = 1375 CalledFunc->hasPersonalityFn() 1376 ? CalledFunc->getPersonalityFn()->stripPointerCasts() 1377 : nullptr; 1378 1379 // Find the personality function used by the landing pads of the caller. If it 1380 // exists, then check to see that it matches the personality function used in 1381 // the callee. 1382 Constant *CallerPersonality = 1383 Caller->hasPersonalityFn() 1384 ? Caller->getPersonalityFn()->stripPointerCasts() 1385 : nullptr; 1386 if (CalledPersonality) { 1387 if (!CallerPersonality) 1388 Caller->setPersonalityFn(CalledPersonality); 1389 // If the personality functions match, then we can perform the 1390 // inlining. Otherwise, we can't inline. 1391 // TODO: This isn't 100% true. Some personality functions are proper 1392 // supersets of others and can be used in place of the other. 1393 else if (CalledPersonality != CallerPersonality) 1394 return false; 1395 } 1396 1397 // We need to figure out which funclet the callsite was in so that we may 1398 // properly nest the callee. 1399 Instruction *CallSiteEHPad = nullptr; 1400 if (CallerPersonality) { 1401 EHPersonality Personality = classifyEHPersonality(CallerPersonality); 1402 if (isFuncletEHPersonality(Personality)) { 1403 Optional<OperandBundleUse> ParentFunclet = 1404 CS.getOperandBundle(LLVMContext::OB_funclet); 1405 if (ParentFunclet) 1406 CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front()); 1407 1408 // OK, the inlining site is legal. What about the target function? 1409 1410 if (CallSiteEHPad) { 1411 if (Personality == EHPersonality::MSVC_CXX) { 1412 // The MSVC personality cannot tolerate catches getting inlined into 1413 // cleanup funclets. 1414 if (isa<CleanupPadInst>(CallSiteEHPad)) { 1415 // Ok, the call site is within a cleanuppad. Let's check the callee 1416 // for catchpads. 1417 for (const BasicBlock &CalledBB : *CalledFunc) { 1418 if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI())) 1419 return false; 1420 } 1421 } 1422 } else if (isAsynchronousEHPersonality(Personality)) { 1423 // SEH is even less tolerant, there may not be any sort of exceptional 1424 // funclet in the callee. 1425 for (const BasicBlock &CalledBB : *CalledFunc) { 1426 if (CalledBB.isEHPad()) 1427 return false; 1428 } 1429 } 1430 } 1431 } 1432 } 1433 1434 // Determine if we are dealing with a call in an EHPad which does not unwind 1435 // to caller. 1436 bool EHPadForCallUnwindsLocally = false; 1437 if (CallSiteEHPad && CS.isCall()) { 1438 UnwindDestMemoTy FuncletUnwindMap; 1439 Value *CallSiteUnwindDestToken = 1440 getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap); 1441 1442 EHPadForCallUnwindsLocally = 1443 CallSiteUnwindDestToken && 1444 !isa<ConstantTokenNone>(CallSiteUnwindDestToken); 1445 } 1446 1447 // Get an iterator to the last basic block in the function, which will have 1448 // the new function inlined after it. 1449 Function::iterator LastBlock = --Caller->end(); 1450 1451 // Make sure to capture all of the return instructions from the cloned 1452 // function. 1453 SmallVector<ReturnInst*, 8> Returns; 1454 ClonedCodeInfo InlinedFunctionInfo; 1455 Function::iterator FirstNewBlock; 1456 1457 { // Scope to destroy VMap after cloning. 1458 ValueToValueMapTy VMap; 1459 // Keep a list of pair (dst, src) to emit byval initializations. 1460 SmallVector<std::pair<Value*, Value*>, 4> ByValInit; 1461 1462 auto &DL = Caller->getParent()->getDataLayout(); 1463 1464 assert(CalledFunc->arg_size() == CS.arg_size() && 1465 "No varargs calls can be inlined!"); 1466 1467 // Calculate the vector of arguments to pass into the function cloner, which 1468 // matches up the formal to the actual argument values. 1469 CallSite::arg_iterator AI = CS.arg_begin(); 1470 unsigned ArgNo = 0; 1471 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 1472 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 1473 Value *ActualArg = *AI; 1474 1475 // When byval arguments actually inlined, we need to make the copy implied 1476 // by them explicit. However, we don't do this if the callee is readonly 1477 // or readnone, because the copy would be unneeded: the callee doesn't 1478 // modify the struct. 1479 if (CS.isByValArgument(ArgNo)) { 1480 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, 1481 CalledFunc->getParamAlignment(ArgNo+1)); 1482 if (ActualArg != *AI) 1483 ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI)); 1484 } 1485 1486 VMap[&*I] = ActualArg; 1487 } 1488 1489 // Add alignment assumptions if necessary. We do this before the inlined 1490 // instructions are actually cloned into the caller so that we can easily 1491 // check what will be known at the start of the inlined code. 1492 AddAlignmentAssumptions(CS, IFI); 1493 1494 // We want the inliner to prune the code as it copies. We would LOVE to 1495 // have no dead or constant instructions leftover after inlining occurs 1496 // (which can happen, e.g., because an argument was constant), but we'll be 1497 // happy with whatever the cloner can do. 1498 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 1499 /*ModuleLevelChanges=*/false, Returns, ".i", 1500 &InlinedFunctionInfo, TheCall); 1501 1502 // Remember the first block that is newly cloned over. 1503 FirstNewBlock = LastBlock; ++FirstNewBlock; 1504 1505 // Inject byval arguments initialization. 1506 for (std::pair<Value*, Value*> &Init : ByValInit) 1507 HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(), 1508 &*FirstNewBlock, IFI); 1509 1510 Optional<OperandBundleUse> ParentDeopt = 1511 CS.getOperandBundle(LLVMContext::OB_deopt); 1512 if (ParentDeopt) { 1513 SmallVector<OperandBundleDef, 2> OpDefs; 1514 1515 for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) { 1516 Instruction *I = dyn_cast_or_null<Instruction>(VH); 1517 if (!I) continue; // instruction was DCE'd or RAUW'ed to undef 1518 1519 OpDefs.clear(); 1520 1521 CallSite ICS(I); 1522 OpDefs.reserve(ICS.getNumOperandBundles()); 1523 1524 for (unsigned i = 0, e = ICS.getNumOperandBundles(); i < e; ++i) { 1525 auto ChildOB = ICS.getOperandBundleAt(i); 1526 if (ChildOB.getTagID() != LLVMContext::OB_deopt) { 1527 // If the inlined call has other operand bundles, let them be 1528 OpDefs.emplace_back(ChildOB); 1529 continue; 1530 } 1531 1532 // It may be useful to separate this logic (of handling operand 1533 // bundles) out to a separate "policy" component if this gets crowded. 1534 // Prepend the parent's deoptimization continuation to the newly 1535 // inlined call's deoptimization continuation. 1536 std::vector<Value *> MergedDeoptArgs; 1537 MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() + 1538 ChildOB.Inputs.size()); 1539 1540 MergedDeoptArgs.insert(MergedDeoptArgs.end(), 1541 ParentDeopt->Inputs.begin(), 1542 ParentDeopt->Inputs.end()); 1543 MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(), 1544 ChildOB.Inputs.end()); 1545 1546 OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs)); 1547 } 1548 1549 Instruction *NewI = nullptr; 1550 if (isa<CallInst>(I)) 1551 NewI = CallInst::Create(cast<CallInst>(I), OpDefs, I); 1552 else 1553 NewI = InvokeInst::Create(cast<InvokeInst>(I), OpDefs, I); 1554 1555 // Note: the RAUW does the appropriate fixup in VMap, so we need to do 1556 // this even if the call returns void. 1557 I->replaceAllUsesWith(NewI); 1558 1559 VH = nullptr; 1560 I->eraseFromParent(); 1561 } 1562 } 1563 1564 // Update the callgraph if requested. 1565 if (IFI.CG) 1566 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); 1567 1568 // Update inlined instructions' line number information. 1569 fixupLineNumbers(Caller, FirstNewBlock, TheCall); 1570 1571 // Clone existing noalias metadata if necessary. 1572 CloneAliasScopeMetadata(CS, VMap); 1573 1574 // Add noalias metadata if necessary. 1575 AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR); 1576 1577 // FIXME: We could register any cloned assumptions instead of clearing the 1578 // whole function's cache. 1579 if (IFI.ACT) 1580 IFI.ACT->getAssumptionCache(*Caller).clear(); 1581 } 1582 1583 // If there are any alloca instructions in the block that used to be the entry 1584 // block for the callee, move them to the entry block of the caller. First 1585 // calculate which instruction they should be inserted before. We insert the 1586 // instructions at the end of the current alloca list. 1587 { 1588 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 1589 for (BasicBlock::iterator I = FirstNewBlock->begin(), 1590 E = FirstNewBlock->end(); I != E; ) { 1591 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 1592 if (!AI) continue; 1593 1594 // If the alloca is now dead, remove it. This often occurs due to code 1595 // specialization. 1596 if (AI->use_empty()) { 1597 AI->eraseFromParent(); 1598 continue; 1599 } 1600 1601 if (!isa<Constant>(AI->getArraySize())) 1602 continue; 1603 1604 // Keep track of the static allocas that we inline into the caller. 1605 IFI.StaticAllocas.push_back(AI); 1606 1607 // Scan for the block of allocas that we can move over, and move them 1608 // all at once. 1609 while (isa<AllocaInst>(I) && 1610 isa<Constant>(cast<AllocaInst>(I)->getArraySize())) { 1611 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 1612 ++I; 1613 } 1614 1615 // Transfer all of the allocas over in a block. Using splice means 1616 // that the instructions aren't removed from the symbol table, then 1617 // reinserted. 1618 Caller->getEntryBlock().getInstList().splice( 1619 InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I); 1620 } 1621 // Move any dbg.declares describing the allocas into the entry basic block. 1622 DIBuilder DIB(*Caller->getParent()); 1623 for (auto &AI : IFI.StaticAllocas) 1624 replaceDbgDeclareForAlloca(AI, AI, DIB, /*Deref=*/false); 1625 } 1626 1627 bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false; 1628 if (InlinedFunctionInfo.ContainsCalls) { 1629 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; 1630 if (CallInst *CI = dyn_cast<CallInst>(TheCall)) 1631 CallSiteTailKind = CI->getTailCallKind(); 1632 1633 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 1634 ++BB) { 1635 for (Instruction &I : *BB) { 1636 CallInst *CI = dyn_cast<CallInst>(&I); 1637 if (!CI) 1638 continue; 1639 1640 if (Function *F = CI->getCalledFunction()) 1641 InlinedDeoptimizeCalls |= 1642 F->getIntrinsicID() == Intrinsic::experimental_deoptimize; 1643 1644 // We need to reduce the strength of any inlined tail calls. For 1645 // musttail, we have to avoid introducing potential unbounded stack 1646 // growth. For example, if functions 'f' and 'g' are mutually recursive 1647 // with musttail, we can inline 'g' into 'f' so long as we preserve 1648 // musttail on the cloned call to 'f'. If either the inlined call site 1649 // or the cloned call site is *not* musttail, the program already has 1650 // one frame of stack growth, so it's safe to remove musttail. Here is 1651 // a table of example transformations: 1652 // 1653 // f -> musttail g -> musttail f ==> f -> musttail f 1654 // f -> musttail g -> tail f ==> f -> tail f 1655 // f -> g -> musttail f ==> f -> f 1656 // f -> g -> tail f ==> f -> f 1657 CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); 1658 ChildTCK = std::min(CallSiteTailKind, ChildTCK); 1659 CI->setTailCallKind(ChildTCK); 1660 InlinedMustTailCalls |= CI->isMustTailCall(); 1661 1662 // Calls inlined through a 'nounwind' call site should be marked 1663 // 'nounwind'. 1664 if (MarkNoUnwind) 1665 CI->setDoesNotThrow(); 1666 } 1667 } 1668 } 1669 1670 // Leave lifetime markers for the static alloca's, scoping them to the 1671 // function we just inlined. 1672 if (InsertLifetime && !IFI.StaticAllocas.empty()) { 1673 IRBuilder<> builder(&FirstNewBlock->front()); 1674 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 1675 AllocaInst *AI = IFI.StaticAllocas[ai]; 1676 1677 // If the alloca is already scoped to something smaller than the whole 1678 // function then there's no need to add redundant, less accurate markers. 1679 if (hasLifetimeMarkers(AI)) 1680 continue; 1681 1682 // Try to determine the size of the allocation. 1683 ConstantInt *AllocaSize = nullptr; 1684 if (ConstantInt *AIArraySize = 1685 dyn_cast<ConstantInt>(AI->getArraySize())) { 1686 auto &DL = Caller->getParent()->getDataLayout(); 1687 Type *AllocaType = AI->getAllocatedType(); 1688 uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType); 1689 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 1690 1691 // Don't add markers for zero-sized allocas. 1692 if (AllocaArraySize == 0) 1693 continue; 1694 1695 // Check that array size doesn't saturate uint64_t and doesn't 1696 // overflow when it's multiplied by type size. 1697 if (AllocaArraySize != ~0ULL && 1698 UINT64_MAX / AllocaArraySize >= AllocaTypeSize) { 1699 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 1700 AllocaArraySize * AllocaTypeSize); 1701 } 1702 } 1703 1704 builder.CreateLifetimeStart(AI, AllocaSize); 1705 for (ReturnInst *RI : Returns) { 1706 // Don't insert llvm.lifetime.end calls between a musttail or deoptimize 1707 // call and a return. The return kills all local allocas. 1708 if (InlinedMustTailCalls && 1709 RI->getParent()->getTerminatingMustTailCall()) 1710 continue; 1711 if (InlinedDeoptimizeCalls && 1712 RI->getParent()->getTerminatingDeoptimizeCall()) 1713 continue; 1714 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); 1715 } 1716 } 1717 } 1718 1719 // If the inlined code contained dynamic alloca instructions, wrap the inlined 1720 // code with llvm.stacksave/llvm.stackrestore intrinsics. 1721 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 1722 Module *M = Caller->getParent(); 1723 // Get the two intrinsics we care about. 1724 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 1725 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 1726 1727 // Insert the llvm.stacksave. 1728 CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin()) 1729 .CreateCall(StackSave, {}, "savedstack"); 1730 1731 // Insert a call to llvm.stackrestore before any return instructions in the 1732 // inlined function. 1733 for (ReturnInst *RI : Returns) { 1734 // Don't insert llvm.stackrestore calls between a musttail or deoptimize 1735 // call and a return. The return will restore the stack pointer. 1736 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) 1737 continue; 1738 if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall()) 1739 continue; 1740 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); 1741 } 1742 } 1743 1744 // If we are inlining for an invoke instruction, we must make sure to rewrite 1745 // any call instructions into invoke instructions. This is sensitive to which 1746 // funclet pads were top-level in the inlinee, so must be done before 1747 // rewriting the "parent pad" links. 1748 if (auto *II = dyn_cast<InvokeInst>(TheCall)) { 1749 BasicBlock *UnwindDest = II->getUnwindDest(); 1750 Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI(); 1751 if (isa<LandingPadInst>(FirstNonPHI)) { 1752 HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo); 1753 } else { 1754 HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo); 1755 } 1756 } 1757 1758 // Update the lexical scopes of the new funclets and callsites. 1759 // Anything that had 'none' as its parent is now nested inside the callsite's 1760 // EHPad. 1761 1762 if (CallSiteEHPad) { 1763 for (Function::iterator BB = FirstNewBlock->getIterator(), 1764 E = Caller->end(); 1765 BB != E; ++BB) { 1766 // Add bundle operands to any top-level call sites. 1767 SmallVector<OperandBundleDef, 1> OpBundles; 1768 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) { 1769 Instruction *I = &*BBI++; 1770 CallSite CS(I); 1771 if (!CS) 1772 continue; 1773 1774 // Skip call sites which are nounwind intrinsics. 1775 auto *CalledFn = 1776 dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts()); 1777 if (CalledFn && CalledFn->isIntrinsic() && CS.doesNotThrow()) 1778 continue; 1779 1780 // Skip call sites which already have a "funclet" bundle. 1781 if (CS.getOperandBundle(LLVMContext::OB_funclet)) 1782 continue; 1783 1784 CS.getOperandBundlesAsDefs(OpBundles); 1785 OpBundles.emplace_back("funclet", CallSiteEHPad); 1786 1787 Instruction *NewInst; 1788 if (CS.isCall()) 1789 NewInst = CallInst::Create(cast<CallInst>(I), OpBundles, I); 1790 else 1791 NewInst = InvokeInst::Create(cast<InvokeInst>(I), OpBundles, I); 1792 NewInst->takeName(I); 1793 I->replaceAllUsesWith(NewInst); 1794 I->eraseFromParent(); 1795 1796 OpBundles.clear(); 1797 } 1798 1799 // It is problematic if the inlinee has a cleanupret which unwinds to 1800 // caller and we inline it into a call site which doesn't unwind but into 1801 // an EH pad that does. Such an edge must be dynamically unreachable. 1802 // As such, we replace the cleanupret with unreachable. 1803 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator())) 1804 if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally) 1805 changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false); 1806 1807 Instruction *I = BB->getFirstNonPHI(); 1808 if (!I->isEHPad()) 1809 continue; 1810 1811 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 1812 if (isa<ConstantTokenNone>(CatchSwitch->getParentPad())) 1813 CatchSwitch->setParentPad(CallSiteEHPad); 1814 } else { 1815 auto *FPI = cast<FuncletPadInst>(I); 1816 if (isa<ConstantTokenNone>(FPI->getParentPad())) 1817 FPI->setParentPad(CallSiteEHPad); 1818 } 1819 } 1820 } 1821 1822 if (InlinedDeoptimizeCalls) { 1823 // We need to at least remove the deoptimizing returns from the Return set, 1824 // so that the control flow from those returns does not get merged into the 1825 // caller (but terminate it instead). If the caller's return type does not 1826 // match the callee's return type, we also need to change the return type of 1827 // the intrinsic. 1828 if (Caller->getReturnType() == TheCall->getType()) { 1829 auto NewEnd = remove_if(Returns, [](ReturnInst *RI) { 1830 return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr; 1831 }); 1832 Returns.erase(NewEnd, Returns.end()); 1833 } else { 1834 SmallVector<ReturnInst *, 8> NormalReturns; 1835 Function *NewDeoptIntrinsic = Intrinsic::getDeclaration( 1836 Caller->getParent(), Intrinsic::experimental_deoptimize, 1837 {Caller->getReturnType()}); 1838 1839 for (ReturnInst *RI : Returns) { 1840 CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall(); 1841 if (!DeoptCall) { 1842 NormalReturns.push_back(RI); 1843 continue; 1844 } 1845 1846 auto CallingConv = DeoptCall->getCallingConv(); 1847 auto *CurBB = RI->getParent(); 1848 RI->eraseFromParent(); 1849 1850 SmallVector<Value *, 4> CallArgs(DeoptCall->arg_begin(), 1851 DeoptCall->arg_end()); 1852 1853 SmallVector<OperandBundleDef, 1> OpBundles; 1854 DeoptCall->getOperandBundlesAsDefs(OpBundles); 1855 DeoptCall->eraseFromParent(); 1856 assert(!OpBundles.empty() && 1857 "Expected at least the deopt operand bundle"); 1858 1859 IRBuilder<> Builder(CurBB); 1860 CallInst *NewDeoptCall = 1861 Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles); 1862 NewDeoptCall->setCallingConv(CallingConv); 1863 if (NewDeoptCall->getType()->isVoidTy()) 1864 Builder.CreateRetVoid(); 1865 else 1866 Builder.CreateRet(NewDeoptCall); 1867 } 1868 1869 // Leave behind the normal returns so we can merge control flow. 1870 std::swap(Returns, NormalReturns); 1871 } 1872 } 1873 1874 // Handle any inlined musttail call sites. In order for a new call site to be 1875 // musttail, the source of the clone and the inlined call site must have been 1876 // musttail. Therefore it's safe to return without merging control into the 1877 // phi below. 1878 if (InlinedMustTailCalls) { 1879 // Check if we need to bitcast the result of any musttail calls. 1880 Type *NewRetTy = Caller->getReturnType(); 1881 bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy; 1882 1883 // Handle the returns preceded by musttail calls separately. 1884 SmallVector<ReturnInst *, 8> NormalReturns; 1885 for (ReturnInst *RI : Returns) { 1886 CallInst *ReturnedMustTail = 1887 RI->getParent()->getTerminatingMustTailCall(); 1888 if (!ReturnedMustTail) { 1889 NormalReturns.push_back(RI); 1890 continue; 1891 } 1892 if (!NeedBitCast) 1893 continue; 1894 1895 // Delete the old return and any preceding bitcast. 1896 BasicBlock *CurBB = RI->getParent(); 1897 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); 1898 RI->eraseFromParent(); 1899 if (OldCast) 1900 OldCast->eraseFromParent(); 1901 1902 // Insert a new bitcast and return with the right type. 1903 IRBuilder<> Builder(CurBB); 1904 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); 1905 } 1906 1907 // Leave behind the normal returns so we can merge control flow. 1908 std::swap(Returns, NormalReturns); 1909 } 1910 1911 // If we cloned in _exactly one_ basic block, and if that block ends in a 1912 // return instruction, we splice the body of the inlined callee directly into 1913 // the calling basic block. 1914 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 1915 // Move all of the instructions right before the call. 1916 OrigBB->getInstList().splice(TheCall->getIterator(), 1917 FirstNewBlock->getInstList(), 1918 FirstNewBlock->begin(), FirstNewBlock->end()); 1919 // Remove the cloned basic block. 1920 Caller->getBasicBlockList().pop_back(); 1921 1922 // If the call site was an invoke instruction, add a branch to the normal 1923 // destination. 1924 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 1925 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); 1926 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 1927 } 1928 1929 // If the return instruction returned a value, replace uses of the call with 1930 // uses of the returned value. 1931 if (!TheCall->use_empty()) { 1932 ReturnInst *R = Returns[0]; 1933 if (TheCall == R->getReturnValue()) 1934 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1935 else 1936 TheCall->replaceAllUsesWith(R->getReturnValue()); 1937 } 1938 // Since we are now done with the Call/Invoke, we can delete it. 1939 TheCall->eraseFromParent(); 1940 1941 // Since we are now done with the return instruction, delete it also. 1942 Returns[0]->eraseFromParent(); 1943 1944 // We are now done with the inlining. 1945 return true; 1946 } 1947 1948 // Otherwise, we have the normal case, of more than one block to inline or 1949 // multiple return sites. 1950 1951 // We want to clone the entire callee function into the hole between the 1952 // "starter" and "ender" blocks. How we accomplish this depends on whether 1953 // this is an invoke instruction or a call instruction. 1954 BasicBlock *AfterCallBB; 1955 BranchInst *CreatedBranchToNormalDest = nullptr; 1956 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 1957 1958 // Add an unconditional branch to make this look like the CallInst case... 1959 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall); 1960 1961 // Split the basic block. This guarantees that no PHI nodes will have to be 1962 // updated due to new incoming edges, and make the invoke case more 1963 // symmetric to the call case. 1964 AfterCallBB = 1965 OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(), 1966 CalledFunc->getName() + ".exit"); 1967 1968 } else { // It's a call 1969 // If this is a call instruction, we need to split the basic block that 1970 // the call lives in. 1971 // 1972 AfterCallBB = OrigBB->splitBasicBlock(TheCall->getIterator(), 1973 CalledFunc->getName() + ".exit"); 1974 } 1975 1976 // Change the branch that used to go to AfterCallBB to branch to the first 1977 // basic block of the inlined function. 1978 // 1979 TerminatorInst *Br = OrigBB->getTerminator(); 1980 assert(Br && Br->getOpcode() == Instruction::Br && 1981 "splitBasicBlock broken!"); 1982 Br->setOperand(0, &*FirstNewBlock); 1983 1984 // Now that the function is correct, make it a little bit nicer. In 1985 // particular, move the basic blocks inserted from the end of the function 1986 // into the space made by splitting the source basic block. 1987 Caller->getBasicBlockList().splice(AfterCallBB->getIterator(), 1988 Caller->getBasicBlockList(), FirstNewBlock, 1989 Caller->end()); 1990 1991 // Handle all of the return instructions that we just cloned in, and eliminate 1992 // any users of the original call/invoke instruction. 1993 Type *RTy = CalledFunc->getReturnType(); 1994 1995 PHINode *PHI = nullptr; 1996 if (Returns.size() > 1) { 1997 // The PHI node should go at the front of the new basic block to merge all 1998 // possible incoming values. 1999 if (!TheCall->use_empty()) { 2000 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), 2001 &AfterCallBB->front()); 2002 // Anything that used the result of the function call should now use the 2003 // PHI node as their operand. 2004 TheCall->replaceAllUsesWith(PHI); 2005 } 2006 2007 // Loop over all of the return instructions adding entries to the PHI node 2008 // as appropriate. 2009 if (PHI) { 2010 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2011 ReturnInst *RI = Returns[i]; 2012 assert(RI->getReturnValue()->getType() == PHI->getType() && 2013 "Ret value not consistent in function!"); 2014 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 2015 } 2016 } 2017 2018 // Add a branch to the merge points and remove return instructions. 2019 DebugLoc Loc; 2020 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2021 ReturnInst *RI = Returns[i]; 2022 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 2023 Loc = RI->getDebugLoc(); 2024 BI->setDebugLoc(Loc); 2025 RI->eraseFromParent(); 2026 } 2027 // We need to set the debug location to *somewhere* inside the 2028 // inlined function. The line number may be nonsensical, but the 2029 // instruction will at least be associated with the right 2030 // function. 2031 if (CreatedBranchToNormalDest) 2032 CreatedBranchToNormalDest->setDebugLoc(Loc); 2033 } else if (!Returns.empty()) { 2034 // Otherwise, if there is exactly one return value, just replace anything 2035 // using the return value of the call with the computed value. 2036 if (!TheCall->use_empty()) { 2037 if (TheCall == Returns[0]->getReturnValue()) 2038 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 2039 else 2040 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); 2041 } 2042 2043 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 2044 BasicBlock *ReturnBB = Returns[0]->getParent(); 2045 ReturnBB->replaceAllUsesWith(AfterCallBB); 2046 2047 // Splice the code from the return block into the block that it will return 2048 // to, which contains the code that was after the call. 2049 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 2050 ReturnBB->getInstList()); 2051 2052 if (CreatedBranchToNormalDest) 2053 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 2054 2055 // Delete the return instruction now and empty ReturnBB now. 2056 Returns[0]->eraseFromParent(); 2057 ReturnBB->eraseFromParent(); 2058 } else if (!TheCall->use_empty()) { 2059 // No returns, but something is using the return value of the call. Just 2060 // nuke the result. 2061 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 2062 } 2063 2064 // Since we are now done with the Call/Invoke, we can delete it. 2065 TheCall->eraseFromParent(); 2066 2067 // If we inlined any musttail calls and the original return is now 2068 // unreachable, delete it. It can only contain a bitcast and ret. 2069 if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB)) 2070 AfterCallBB->eraseFromParent(); 2071 2072 // We should always be able to fold the entry block of the function into the 2073 // single predecessor of the block... 2074 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 2075 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 2076 2077 // Splice the code entry block into calling block, right before the 2078 // unconditional branch. 2079 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 2080 OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList()); 2081 2082 // Remove the unconditional branch. 2083 OrigBB->getInstList().erase(Br); 2084 2085 // Now we can remove the CalleeEntry block, which is now empty. 2086 Caller->getBasicBlockList().erase(CalleeEntry); 2087 2088 // If we inserted a phi node, check to see if it has a single value (e.g. all 2089 // the entries are the same or undef). If so, remove the PHI so it doesn't 2090 // block other optimizations. 2091 if (PHI) { 2092 auto &DL = Caller->getParent()->getDataLayout(); 2093 if (Value *V = SimplifyInstruction(PHI, DL, nullptr, nullptr, 2094 &IFI.ACT->getAssumptionCache(*Caller))) { 2095 PHI->replaceAllUsesWith(V); 2096 PHI->eraseFromParent(); 2097 } 2098 } 2099 2100 return true; 2101 } 2102