1 //===- InlineFunction.cpp - Code to perform function inlining -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements inlining of a function into a call site, resolving
10 // parameters and the return value as appropriate.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/BlockFrequencyInfo.h"
26 #include "llvm/Analysis/CallGraph.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/EHPersonalities.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/ObjCARCAnalysisUtils.h"
31 #include "llvm/Analysis/ObjCARCRVAttr.h"
32 #include "llvm/Analysis/ProfileSummaryInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DIBuilder.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Dominators.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/IntrinsicInst.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/User.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
64 #include "llvm/Transforms/Utils/Cloning.h"
65 #include "llvm/Transforms/Utils/Local.h"
66 #include "llvm/Transforms/Utils/ValueMapper.h"
67 #include <algorithm>
68 #include <cassert>
69 #include <cstdint>
70 #include <iterator>
71 #include <limits>
72 #include <string>
73 #include <utility>
74 #include <vector>
75 
76 using namespace llvm;
77 using ProfileCount = Function::ProfileCount;
78 
79 static cl::opt<bool>
80 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
81   cl::Hidden,
82   cl::desc("Convert noalias attributes to metadata during inlining."));
83 
84 static cl::opt<bool>
85     UseNoAliasIntrinsic("use-noalias-intrinsic-during-inlining", cl::Hidden,
86                         cl::ZeroOrMore, cl::init(true),
87                         cl::desc("Use the llvm.experimental.noalias.scope.decl "
88                                  "intrinsic during inlining."));
89 
90 // Disabled by default, because the added alignment assumptions may increase
91 // compile-time and block optimizations. This option is not suitable for use
92 // with frontends that emit comprehensive parameter alignment annotations.
93 static cl::opt<bool>
94 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
95   cl::init(false), cl::Hidden,
96   cl::desc("Convert align attributes to assumptions during inlining."));
97 
98 static cl::opt<bool> UpdateReturnAttributes(
99         "update-return-attrs", cl::init(true), cl::Hidden,
100             cl::desc("Update return attributes on calls within inlined body"));
101 
102 static cl::opt<unsigned> InlinerAttributeWindow(
103     "max-inst-checked-for-throw-during-inlining", cl::Hidden,
104     cl::desc("the maximum number of instructions analyzed for may throw during "
105              "attribute inference in inlined body"),
106     cl::init(4));
107 
108 namespace {
109 
110   /// A class for recording information about inlining a landing pad.
111   class LandingPadInliningInfo {
112     /// Destination of the invoke's unwind.
113     BasicBlock *OuterResumeDest;
114 
115     /// Destination for the callee's resume.
116     BasicBlock *InnerResumeDest = nullptr;
117 
118     /// LandingPadInst associated with the invoke.
119     LandingPadInst *CallerLPad = nullptr;
120 
121     /// PHI for EH values from landingpad insts.
122     PHINode *InnerEHValuesPHI = nullptr;
123 
124     SmallVector<Value*, 8> UnwindDestPHIValues;
125 
126   public:
127     LandingPadInliningInfo(InvokeInst *II)
128         : OuterResumeDest(II->getUnwindDest()) {
129       // If there are PHI nodes in the unwind destination block, we need to keep
130       // track of which values came into them from the invoke before removing
131       // the edge from this block.
132       BasicBlock *InvokeBB = II->getParent();
133       BasicBlock::iterator I = OuterResumeDest->begin();
134       for (; isa<PHINode>(I); ++I) {
135         // Save the value to use for this edge.
136         PHINode *PHI = cast<PHINode>(I);
137         UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
138       }
139 
140       CallerLPad = cast<LandingPadInst>(I);
141     }
142 
143     /// The outer unwind destination is the target of
144     /// unwind edges introduced for calls within the inlined function.
145     BasicBlock *getOuterResumeDest() const {
146       return OuterResumeDest;
147     }
148 
149     BasicBlock *getInnerResumeDest();
150 
151     LandingPadInst *getLandingPadInst() const { return CallerLPad; }
152 
153     /// Forward the 'resume' instruction to the caller's landing pad block.
154     /// When the landing pad block has only one predecessor, this is
155     /// a simple branch. When there is more than one predecessor, we need to
156     /// split the landing pad block after the landingpad instruction and jump
157     /// to there.
158     void forwardResume(ResumeInst *RI,
159                        SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
160 
161     /// Add incoming-PHI values to the unwind destination block for the given
162     /// basic block, using the values for the original invoke's source block.
163     void addIncomingPHIValuesFor(BasicBlock *BB) const {
164       addIncomingPHIValuesForInto(BB, OuterResumeDest);
165     }
166 
167     void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
168       BasicBlock::iterator I = dest->begin();
169       for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
170         PHINode *phi = cast<PHINode>(I);
171         phi->addIncoming(UnwindDestPHIValues[i], src);
172       }
173     }
174   };
175 
176 } // end anonymous namespace
177 
178 /// Get or create a target for the branch from ResumeInsts.
179 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
180   if (InnerResumeDest) return InnerResumeDest;
181 
182   // Split the landing pad.
183   BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
184   InnerResumeDest =
185     OuterResumeDest->splitBasicBlock(SplitPoint,
186                                      OuterResumeDest->getName() + ".body");
187 
188   // The number of incoming edges we expect to the inner landing pad.
189   const unsigned PHICapacity = 2;
190 
191   // Create corresponding new PHIs for all the PHIs in the outer landing pad.
192   Instruction *InsertPoint = &InnerResumeDest->front();
193   BasicBlock::iterator I = OuterResumeDest->begin();
194   for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
195     PHINode *OuterPHI = cast<PHINode>(I);
196     PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
197                                         OuterPHI->getName() + ".lpad-body",
198                                         InsertPoint);
199     OuterPHI->replaceAllUsesWith(InnerPHI);
200     InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
201   }
202 
203   // Create a PHI for the exception values.
204   InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
205                                      "eh.lpad-body", InsertPoint);
206   CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
207   InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
208 
209   // All done.
210   return InnerResumeDest;
211 }
212 
213 /// Forward the 'resume' instruction to the caller's landing pad block.
214 /// When the landing pad block has only one predecessor, this is a simple
215 /// branch. When there is more than one predecessor, we need to split the
216 /// landing pad block after the landingpad instruction and jump to there.
217 void LandingPadInliningInfo::forwardResume(
218     ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
219   BasicBlock *Dest = getInnerResumeDest();
220   BasicBlock *Src = RI->getParent();
221 
222   BranchInst::Create(Dest, Src);
223 
224   // Update the PHIs in the destination. They were inserted in an order which
225   // makes this work.
226   addIncomingPHIValuesForInto(Src, Dest);
227 
228   InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
229   RI->eraseFromParent();
230 }
231 
232 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
233 static Value *getParentPad(Value *EHPad) {
234   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
235     return FPI->getParentPad();
236   return cast<CatchSwitchInst>(EHPad)->getParentPad();
237 }
238 
239 using UnwindDestMemoTy = DenseMap<Instruction *, Value *>;
240 
241 /// Helper for getUnwindDestToken that does the descendant-ward part of
242 /// the search.
243 static Value *getUnwindDestTokenHelper(Instruction *EHPad,
244                                        UnwindDestMemoTy &MemoMap) {
245   SmallVector<Instruction *, 8> Worklist(1, EHPad);
246 
247   while (!Worklist.empty()) {
248     Instruction *CurrentPad = Worklist.pop_back_val();
249     // We only put pads on the worklist that aren't in the MemoMap.  When
250     // we find an unwind dest for a pad we may update its ancestors, but
251     // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
252     // so they should never get updated while queued on the worklist.
253     assert(!MemoMap.count(CurrentPad));
254     Value *UnwindDestToken = nullptr;
255     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
256       if (CatchSwitch->hasUnwindDest()) {
257         UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
258       } else {
259         // Catchswitch doesn't have a 'nounwind' variant, and one might be
260         // annotated as "unwinds to caller" when really it's nounwind (see
261         // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
262         // parent's unwind dest from this.  We can check its catchpads'
263         // descendants, since they might include a cleanuppad with an
264         // "unwinds to caller" cleanupret, which can be trusted.
265         for (auto HI = CatchSwitch->handler_begin(),
266                   HE = CatchSwitch->handler_end();
267              HI != HE && !UnwindDestToken; ++HI) {
268           BasicBlock *HandlerBlock = *HI;
269           auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
270           for (User *Child : CatchPad->users()) {
271             // Intentionally ignore invokes here -- since the catchswitch is
272             // marked "unwind to caller", it would be a verifier error if it
273             // contained an invoke which unwinds out of it, so any invoke we'd
274             // encounter must unwind to some child of the catch.
275             if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
276               continue;
277 
278             Instruction *ChildPad = cast<Instruction>(Child);
279             auto Memo = MemoMap.find(ChildPad);
280             if (Memo == MemoMap.end()) {
281               // Haven't figured out this child pad yet; queue it.
282               Worklist.push_back(ChildPad);
283               continue;
284             }
285             // We've already checked this child, but might have found that
286             // it offers no proof either way.
287             Value *ChildUnwindDestToken = Memo->second;
288             if (!ChildUnwindDestToken)
289               continue;
290             // We already know the child's unwind dest, which can either
291             // be ConstantTokenNone to indicate unwind to caller, or can
292             // be another child of the catchpad.  Only the former indicates
293             // the unwind dest of the catchswitch.
294             if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
295               UnwindDestToken = ChildUnwindDestToken;
296               break;
297             }
298             assert(getParentPad(ChildUnwindDestToken) == CatchPad);
299           }
300         }
301       }
302     } else {
303       auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
304       for (User *U : CleanupPad->users()) {
305         if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
306           if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
307             UnwindDestToken = RetUnwindDest->getFirstNonPHI();
308           else
309             UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
310           break;
311         }
312         Value *ChildUnwindDestToken;
313         if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
314           ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
315         } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
316           Instruction *ChildPad = cast<Instruction>(U);
317           auto Memo = MemoMap.find(ChildPad);
318           if (Memo == MemoMap.end()) {
319             // Haven't resolved this child yet; queue it and keep searching.
320             Worklist.push_back(ChildPad);
321             continue;
322           }
323           // We've checked this child, but still need to ignore it if it
324           // had no proof either way.
325           ChildUnwindDestToken = Memo->second;
326           if (!ChildUnwindDestToken)
327             continue;
328         } else {
329           // Not a relevant user of the cleanuppad
330           continue;
331         }
332         // In a well-formed program, the child/invoke must either unwind to
333         // an(other) child of the cleanup, or exit the cleanup.  In the
334         // first case, continue searching.
335         if (isa<Instruction>(ChildUnwindDestToken) &&
336             getParentPad(ChildUnwindDestToken) == CleanupPad)
337           continue;
338         UnwindDestToken = ChildUnwindDestToken;
339         break;
340       }
341     }
342     // If we haven't found an unwind dest for CurrentPad, we may have queued its
343     // children, so move on to the next in the worklist.
344     if (!UnwindDestToken)
345       continue;
346 
347     // Now we know that CurrentPad unwinds to UnwindDestToken.  It also exits
348     // any ancestors of CurrentPad up to but not including UnwindDestToken's
349     // parent pad.  Record this in the memo map, and check to see if the
350     // original EHPad being queried is one of the ones exited.
351     Value *UnwindParent;
352     if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
353       UnwindParent = getParentPad(UnwindPad);
354     else
355       UnwindParent = nullptr;
356     bool ExitedOriginalPad = false;
357     for (Instruction *ExitedPad = CurrentPad;
358          ExitedPad && ExitedPad != UnwindParent;
359          ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
360       // Skip over catchpads since they just follow their catchswitches.
361       if (isa<CatchPadInst>(ExitedPad))
362         continue;
363       MemoMap[ExitedPad] = UnwindDestToken;
364       ExitedOriginalPad |= (ExitedPad == EHPad);
365     }
366 
367     if (ExitedOriginalPad)
368       return UnwindDestToken;
369 
370     // Continue the search.
371   }
372 
373   // No definitive information is contained within this funclet.
374   return nullptr;
375 }
376 
377 /// Given an EH pad, find where it unwinds.  If it unwinds to an EH pad,
378 /// return that pad instruction.  If it unwinds to caller, return
379 /// ConstantTokenNone.  If it does not have a definitive unwind destination,
380 /// return nullptr.
381 ///
382 /// This routine gets invoked for calls in funclets in inlinees when inlining
383 /// an invoke.  Since many funclets don't have calls inside them, it's queried
384 /// on-demand rather than building a map of pads to unwind dests up front.
385 /// Determining a funclet's unwind dest may require recursively searching its
386 /// descendants, and also ancestors and cousins if the descendants don't provide
387 /// an answer.  Since most funclets will have their unwind dest immediately
388 /// available as the unwind dest of a catchswitch or cleanupret, this routine
389 /// searches top-down from the given pad and then up. To avoid worst-case
390 /// quadratic run-time given that approach, it uses a memo map to avoid
391 /// re-processing funclet trees.  The callers that rewrite the IR as they go
392 /// take advantage of this, for correctness, by checking/forcing rewritten
393 /// pads' entries to match the original callee view.
394 static Value *getUnwindDestToken(Instruction *EHPad,
395                                  UnwindDestMemoTy &MemoMap) {
396   // Catchpads unwind to the same place as their catchswitch;
397   // redirct any queries on catchpads so the code below can
398   // deal with just catchswitches and cleanuppads.
399   if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
400     EHPad = CPI->getCatchSwitch();
401 
402   // Check if we've already determined the unwind dest for this pad.
403   auto Memo = MemoMap.find(EHPad);
404   if (Memo != MemoMap.end())
405     return Memo->second;
406 
407   // Search EHPad and, if necessary, its descendants.
408   Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
409   assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
410   if (UnwindDestToken)
411     return UnwindDestToken;
412 
413   // No information is available for this EHPad from itself or any of its
414   // descendants.  An unwind all the way out to a pad in the caller would
415   // need also to agree with the unwind dest of the parent funclet, so
416   // search up the chain to try to find a funclet with information.  Put
417   // null entries in the memo map to avoid re-processing as we go up.
418   MemoMap[EHPad] = nullptr;
419 #ifndef NDEBUG
420   SmallPtrSet<Instruction *, 4> TempMemos;
421   TempMemos.insert(EHPad);
422 #endif
423   Instruction *LastUselessPad = EHPad;
424   Value *AncestorToken;
425   for (AncestorToken = getParentPad(EHPad);
426        auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
427        AncestorToken = getParentPad(AncestorToken)) {
428     // Skip over catchpads since they just follow their catchswitches.
429     if (isa<CatchPadInst>(AncestorPad))
430       continue;
431     // If the MemoMap had an entry mapping AncestorPad to nullptr, since we
432     // haven't yet called getUnwindDestTokenHelper for AncestorPad in this
433     // call to getUnwindDestToken, that would mean that AncestorPad had no
434     // information in itself, its descendants, or its ancestors.  If that
435     // were the case, then we should also have recorded the lack of information
436     // for the descendant that we're coming from.  So assert that we don't
437     // find a null entry in the MemoMap for AncestorPad.
438     assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
439     auto AncestorMemo = MemoMap.find(AncestorPad);
440     if (AncestorMemo == MemoMap.end()) {
441       UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
442     } else {
443       UnwindDestToken = AncestorMemo->second;
444     }
445     if (UnwindDestToken)
446       break;
447     LastUselessPad = AncestorPad;
448     MemoMap[LastUselessPad] = nullptr;
449 #ifndef NDEBUG
450     TempMemos.insert(LastUselessPad);
451 #endif
452   }
453 
454   // We know that getUnwindDestTokenHelper was called on LastUselessPad and
455   // returned nullptr (and likewise for EHPad and any of its ancestors up to
456   // LastUselessPad), so LastUselessPad has no information from below.  Since
457   // getUnwindDestTokenHelper must investigate all downward paths through
458   // no-information nodes to prove that a node has no information like this,
459   // and since any time it finds information it records it in the MemoMap for
460   // not just the immediately-containing funclet but also any ancestors also
461   // exited, it must be the case that, walking downward from LastUselessPad,
462   // visiting just those nodes which have not been mapped to an unwind dest
463   // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since
464   // they are just used to keep getUnwindDestTokenHelper from repeating work),
465   // any node visited must have been exhaustively searched with no information
466   // for it found.
467   SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
468   while (!Worklist.empty()) {
469     Instruction *UselessPad = Worklist.pop_back_val();
470     auto Memo = MemoMap.find(UselessPad);
471     if (Memo != MemoMap.end() && Memo->second) {
472       // Here the name 'UselessPad' is a bit of a misnomer, because we've found
473       // that it is a funclet that does have information about unwinding to
474       // a particular destination; its parent was a useless pad.
475       // Since its parent has no information, the unwind edge must not escape
476       // the parent, and must target a sibling of this pad.  This local unwind
477       // gives us no information about EHPad.  Leave it and the subtree rooted
478       // at it alone.
479       assert(getParentPad(Memo->second) == getParentPad(UselessPad));
480       continue;
481     }
482     // We know we don't have information for UselesPad.  If it has an entry in
483     // the MemoMap (mapping it to nullptr), it must be one of the TempMemos
484     // added on this invocation of getUnwindDestToken; if a previous invocation
485     // recorded nullptr, it would have had to prove that the ancestors of
486     // UselessPad, which include LastUselessPad, had no information, and that
487     // in turn would have required proving that the descendants of
488     // LastUselesPad, which include EHPad, have no information about
489     // LastUselessPad, which would imply that EHPad was mapped to nullptr in
490     // the MemoMap on that invocation, which isn't the case if we got here.
491     assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad));
492     // Assert as we enumerate users that 'UselessPad' doesn't have any unwind
493     // information that we'd be contradicting by making a map entry for it
494     // (which is something that getUnwindDestTokenHelper must have proved for
495     // us to get here).  Just assert on is direct users here; the checks in
496     // this downward walk at its descendants will verify that they don't have
497     // any unwind edges that exit 'UselessPad' either (i.e. they either have no
498     // unwind edges or unwind to a sibling).
499     MemoMap[UselessPad] = UnwindDestToken;
500     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
501       assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad");
502       for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) {
503         auto *CatchPad = HandlerBlock->getFirstNonPHI();
504         for (User *U : CatchPad->users()) {
505           assert(
506               (!isa<InvokeInst>(U) ||
507                (getParentPad(
508                     cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
509                 CatchPad)) &&
510               "Expected useless pad");
511           if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
512             Worklist.push_back(cast<Instruction>(U));
513         }
514       }
515     } else {
516       assert(isa<CleanupPadInst>(UselessPad));
517       for (User *U : UselessPad->users()) {
518         assert(!isa<CleanupReturnInst>(U) && "Expected useless pad");
519         assert((!isa<InvokeInst>(U) ||
520                 (getParentPad(
521                      cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
522                  UselessPad)) &&
523                "Expected useless pad");
524         if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
525           Worklist.push_back(cast<Instruction>(U));
526       }
527     }
528   }
529 
530   return UnwindDestToken;
531 }
532 
533 /// When we inline a basic block into an invoke,
534 /// we have to turn all of the calls that can throw into invokes.
535 /// This function analyze BB to see if there are any calls, and if so,
536 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
537 /// nodes in that block with the values specified in InvokeDestPHIValues.
538 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
539     BasicBlock *BB, BasicBlock *UnwindEdge,
540     UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
541   for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
542     Instruction *I = &*BBI++;
543 
544     // We only need to check for function calls: inlined invoke
545     // instructions require no special handling.
546     CallInst *CI = dyn_cast<CallInst>(I);
547 
548     if (!CI || CI->doesNotThrow() || CI->isInlineAsm())
549       continue;
550 
551     // We do not need to (and in fact, cannot) convert possibly throwing calls
552     // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
553     // invokes.  The caller's "segment" of the deoptimization continuation
554     // attached to the newly inlined @llvm.experimental_deoptimize
555     // (resp. @llvm.experimental.guard) call should contain the exception
556     // handling logic, if any.
557     if (auto *F = CI->getCalledFunction())
558       if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize ||
559           F->getIntrinsicID() == Intrinsic::experimental_guard)
560         continue;
561 
562     if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
563       // This call is nested inside a funclet.  If that funclet has an unwind
564       // destination within the inlinee, then unwinding out of this call would
565       // be UB.  Rewriting this call to an invoke which targets the inlined
566       // invoke's unwind dest would give the call's parent funclet multiple
567       // unwind destinations, which is something that subsequent EH table
568       // generation can't handle and that the veirifer rejects.  So when we
569       // see such a call, leave it as a call.
570       auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
571       Value *UnwindDestToken =
572           getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
573       if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
574         continue;
575 #ifndef NDEBUG
576       Instruction *MemoKey;
577       if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
578         MemoKey = CatchPad->getCatchSwitch();
579       else
580         MemoKey = FuncletPad;
581       assert(FuncletUnwindMap->count(MemoKey) &&
582              (*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
583              "must get memoized to avoid confusing later searches");
584 #endif // NDEBUG
585     }
586 
587     changeToInvokeAndSplitBasicBlock(CI, UnwindEdge);
588     return BB;
589   }
590   return nullptr;
591 }
592 
593 /// If we inlined an invoke site, we need to convert calls
594 /// in the body of the inlined function into invokes.
595 ///
596 /// II is the invoke instruction being inlined.  FirstNewBlock is the first
597 /// block of the inlined code (the last block is the end of the function),
598 /// and InlineCodeInfo is information about the code that got inlined.
599 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
600                                     ClonedCodeInfo &InlinedCodeInfo) {
601   BasicBlock *InvokeDest = II->getUnwindDest();
602 
603   Function *Caller = FirstNewBlock->getParent();
604 
605   // The inlined code is currently at the end of the function, scan from the
606   // start of the inlined code to its end, checking for stuff we need to
607   // rewrite.
608   LandingPadInliningInfo Invoke(II);
609 
610   // Get all of the inlined landing pad instructions.
611   SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
612   for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
613        I != E; ++I)
614     if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
615       InlinedLPads.insert(II->getLandingPadInst());
616 
617   // Append the clauses from the outer landing pad instruction into the inlined
618   // landing pad instructions.
619   LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
620   for (LandingPadInst *InlinedLPad : InlinedLPads) {
621     unsigned OuterNum = OuterLPad->getNumClauses();
622     InlinedLPad->reserveClauses(OuterNum);
623     for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
624       InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
625     if (OuterLPad->isCleanup())
626       InlinedLPad->setCleanup(true);
627   }
628 
629   for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
630        BB != E; ++BB) {
631     if (InlinedCodeInfo.ContainsCalls)
632       if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
633               &*BB, Invoke.getOuterResumeDest()))
634         // Update any PHI nodes in the exceptional block to indicate that there
635         // is now a new entry in them.
636         Invoke.addIncomingPHIValuesFor(NewBB);
637 
638     // Forward any resumes that are remaining here.
639     if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
640       Invoke.forwardResume(RI, InlinedLPads);
641   }
642 
643   // Now that everything is happy, we have one final detail.  The PHI nodes in
644   // the exception destination block still have entries due to the original
645   // invoke instruction. Eliminate these entries (which might even delete the
646   // PHI node) now.
647   InvokeDest->removePredecessor(II->getParent());
648 }
649 
650 /// If we inlined an invoke site, we need to convert calls
651 /// in the body of the inlined function into invokes.
652 ///
653 /// II is the invoke instruction being inlined.  FirstNewBlock is the first
654 /// block of the inlined code (the last block is the end of the function),
655 /// and InlineCodeInfo is information about the code that got inlined.
656 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
657                                ClonedCodeInfo &InlinedCodeInfo) {
658   BasicBlock *UnwindDest = II->getUnwindDest();
659   Function *Caller = FirstNewBlock->getParent();
660 
661   assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");
662 
663   // If there are PHI nodes in the unwind destination block, we need to keep
664   // track of which values came into them from the invoke before removing the
665   // edge from this block.
666   SmallVector<Value *, 8> UnwindDestPHIValues;
667   BasicBlock *InvokeBB = II->getParent();
668   for (Instruction &I : *UnwindDest) {
669     // Save the value to use for this edge.
670     PHINode *PHI = dyn_cast<PHINode>(&I);
671     if (!PHI)
672       break;
673     UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
674   }
675 
676   // Add incoming-PHI values to the unwind destination block for the given basic
677   // block, using the values for the original invoke's source block.
678   auto UpdatePHINodes = [&](BasicBlock *Src) {
679     BasicBlock::iterator I = UnwindDest->begin();
680     for (Value *V : UnwindDestPHIValues) {
681       PHINode *PHI = cast<PHINode>(I);
682       PHI->addIncoming(V, Src);
683       ++I;
684     }
685   };
686 
687   // This connects all the instructions which 'unwind to caller' to the invoke
688   // destination.
689   UnwindDestMemoTy FuncletUnwindMap;
690   for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
691        BB != E; ++BB) {
692     if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
693       if (CRI->unwindsToCaller()) {
694         auto *CleanupPad = CRI->getCleanupPad();
695         CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
696         CRI->eraseFromParent();
697         UpdatePHINodes(&*BB);
698         // Finding a cleanupret with an unwind destination would confuse
699         // subsequent calls to getUnwindDestToken, so map the cleanuppad
700         // to short-circuit any such calls and recognize this as an "unwind
701         // to caller" cleanup.
702         assert(!FuncletUnwindMap.count(CleanupPad) ||
703                isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
704         FuncletUnwindMap[CleanupPad] =
705             ConstantTokenNone::get(Caller->getContext());
706       }
707     }
708 
709     Instruction *I = BB->getFirstNonPHI();
710     if (!I->isEHPad())
711       continue;
712 
713     Instruction *Replacement = nullptr;
714     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
715       if (CatchSwitch->unwindsToCaller()) {
716         Value *UnwindDestToken;
717         if (auto *ParentPad =
718                 dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
719           // This catchswitch is nested inside another funclet.  If that
720           // funclet has an unwind destination within the inlinee, then
721           // unwinding out of this catchswitch would be UB.  Rewriting this
722           // catchswitch to unwind to the inlined invoke's unwind dest would
723           // give the parent funclet multiple unwind destinations, which is
724           // something that subsequent EH table generation can't handle and
725           // that the veirifer rejects.  So when we see such a call, leave it
726           // as "unwind to caller".
727           UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
728           if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
729             continue;
730         } else {
731           // This catchswitch has no parent to inherit constraints from, and
732           // none of its descendants can have an unwind edge that exits it and
733           // targets another funclet in the inlinee.  It may or may not have a
734           // descendant that definitively has an unwind to caller.  In either
735           // case, we'll have to assume that any unwinds out of it may need to
736           // be routed to the caller, so treat it as though it has a definitive
737           // unwind to caller.
738           UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
739         }
740         auto *NewCatchSwitch = CatchSwitchInst::Create(
741             CatchSwitch->getParentPad(), UnwindDest,
742             CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
743             CatchSwitch);
744         for (BasicBlock *PadBB : CatchSwitch->handlers())
745           NewCatchSwitch->addHandler(PadBB);
746         // Propagate info for the old catchswitch over to the new one in
747         // the unwind map.  This also serves to short-circuit any subsequent
748         // checks for the unwind dest of this catchswitch, which would get
749         // confused if they found the outer handler in the callee.
750         FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
751         Replacement = NewCatchSwitch;
752       }
753     } else if (!isa<FuncletPadInst>(I)) {
754       llvm_unreachable("unexpected EHPad!");
755     }
756 
757     if (Replacement) {
758       Replacement->takeName(I);
759       I->replaceAllUsesWith(Replacement);
760       I->eraseFromParent();
761       UpdatePHINodes(&*BB);
762     }
763   }
764 
765   if (InlinedCodeInfo.ContainsCalls)
766     for (Function::iterator BB = FirstNewBlock->getIterator(),
767                             E = Caller->end();
768          BB != E; ++BB)
769       if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
770               &*BB, UnwindDest, &FuncletUnwindMap))
771         // Update any PHI nodes in the exceptional block to indicate that there
772         // is now a new entry in them.
773         UpdatePHINodes(NewBB);
774 
775   // Now that everything is happy, we have one final detail.  The PHI nodes in
776   // the exception destination block still have entries due to the original
777   // invoke instruction. Eliminate these entries (which might even delete the
778   // PHI node) now.
779   UnwindDest->removePredecessor(InvokeBB);
780 }
781 
782 /// When inlining a call site that has !llvm.mem.parallel_loop_access,
783 /// !llvm.access.group, !alias.scope or !noalias metadata, that metadata should
784 /// be propagated to all memory-accessing cloned instructions.
785 static void PropagateCallSiteMetadata(CallBase &CB, ValueToValueMapTy &VMap) {
786   MDNode *MemParallelLoopAccess =
787       CB.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
788   MDNode *AccessGroup = CB.getMetadata(LLVMContext::MD_access_group);
789   MDNode *AliasScope = CB.getMetadata(LLVMContext::MD_alias_scope);
790   MDNode *NoAlias = CB.getMetadata(LLVMContext::MD_noalias);
791   if (!MemParallelLoopAccess && !AccessGroup && !AliasScope && !NoAlias)
792     return;
793 
794   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
795        VMI != VMIE; ++VMI) {
796     // Check that key is an instruction, to skip the Argument mapping, which
797     // points to an instruction in the original function, not the inlined one.
798     if (!VMI->second || !isa<Instruction>(VMI->first))
799       continue;
800 
801     Instruction *NI = dyn_cast<Instruction>(VMI->second);
802     if (!NI)
803       continue;
804 
805     // This metadata is only relevant for instructions that access memory.
806     if (!NI->mayReadOrWriteMemory())
807       continue;
808 
809     if (MemParallelLoopAccess) {
810       // TODO: This probably should not overwrite MemParalleLoopAccess.
811       MemParallelLoopAccess = MDNode::concatenate(
812           NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access),
813           MemParallelLoopAccess);
814       NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access,
815                       MemParallelLoopAccess);
816     }
817 
818     if (AccessGroup)
819       NI->setMetadata(LLVMContext::MD_access_group, uniteAccessGroups(
820           NI->getMetadata(LLVMContext::MD_access_group), AccessGroup));
821 
822     if (AliasScope)
823       NI->setMetadata(LLVMContext::MD_alias_scope, MDNode::concatenate(
824           NI->getMetadata(LLVMContext::MD_alias_scope), AliasScope));
825 
826     if (NoAlias)
827       NI->setMetadata(LLVMContext::MD_noalias, MDNode::concatenate(
828           NI->getMetadata(LLVMContext::MD_noalias), NoAlias));
829   }
830 }
831 
832 /// Utility for cloning !noalias and !alias.scope metadata. When a code region
833 /// using scoped alias metadata is inlined, the aliasing relationships may not
834 /// hold between the two version. It is necessary to create a deep clone of the
835 /// metadata, putting the two versions in separate scope domains.
836 class ScopedAliasMetadataDeepCloner {
837   using MetadataMap = DenseMap<const MDNode *, TrackingMDNodeRef>;
838   SetVector<const MDNode *> MD;
839   MetadataMap MDMap;
840   void addRecursiveMetadataUses();
841 
842 public:
843   ScopedAliasMetadataDeepCloner(const Function *F);
844 
845   /// Create a new clone of the scoped alias metadata, which will be used by
846   /// subsequent remap() calls.
847   void clone();
848 
849   /// Remap instructions in the given VMap from the original to the cloned
850   /// metadata.
851   void remap(ValueToValueMapTy &VMap);
852 };
853 
854 ScopedAliasMetadataDeepCloner::ScopedAliasMetadataDeepCloner(
855     const Function *F) {
856   for (const BasicBlock &BB : *F) {
857     for (const Instruction &I : BB) {
858       if (const MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope))
859         MD.insert(M);
860       if (const MDNode *M = I.getMetadata(LLVMContext::MD_noalias))
861         MD.insert(M);
862 
863       // We also need to clone the metadata in noalias intrinsics.
864       if (const auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
865         MD.insert(Decl->getScopeList());
866     }
867   }
868   addRecursiveMetadataUses();
869 }
870 
871 void ScopedAliasMetadataDeepCloner::addRecursiveMetadataUses() {
872   SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
873   while (!Queue.empty()) {
874     const MDNode *M = cast<MDNode>(Queue.pop_back_val());
875     for (const Metadata *Op : M->operands())
876       if (const MDNode *OpMD = dyn_cast<MDNode>(Op))
877         if (MD.insert(OpMD))
878           Queue.push_back(OpMD);
879   }
880 }
881 
882 void ScopedAliasMetadataDeepCloner::clone() {
883   assert(MDMap.empty() && "clone() already called ?");
884 
885   SmallVector<TempMDTuple, 16> DummyNodes;
886   for (const MDNode *I : MD) {
887     DummyNodes.push_back(MDTuple::getTemporary(I->getContext(), None));
888     MDMap[I].reset(DummyNodes.back().get());
889   }
890 
891   // Create new metadata nodes to replace the dummy nodes, replacing old
892   // metadata references with either a dummy node or an already-created new
893   // node.
894   SmallVector<Metadata *, 4> NewOps;
895   for (const MDNode *I : MD) {
896     for (const Metadata *Op : I->operands()) {
897       if (const MDNode *M = dyn_cast<MDNode>(Op))
898         NewOps.push_back(MDMap[M]);
899       else
900         NewOps.push_back(const_cast<Metadata *>(Op));
901     }
902 
903     MDNode *NewM = MDNode::get(I->getContext(), NewOps);
904     MDTuple *TempM = cast<MDTuple>(MDMap[I]);
905     assert(TempM->isTemporary() && "Expected temporary node");
906 
907     TempM->replaceAllUsesWith(NewM);
908     NewOps.clear();
909   }
910 }
911 
912 void ScopedAliasMetadataDeepCloner::remap(ValueToValueMapTy &VMap) {
913   if (MDMap.empty())
914     return; // Nothing to do.
915 
916   for (auto Entry : VMap) {
917     // Check that key is an instruction, to skip the Argument mapping, which
918     // points to an instruction in the original function, not the inlined one.
919     if (!Entry->second || !isa<Instruction>(Entry->first))
920       continue;
921 
922     Instruction *I = dyn_cast<Instruction>(Entry->second);
923     if (!I)
924       continue;
925 
926     if (MDNode *M = I->getMetadata(LLVMContext::MD_alias_scope))
927       I->setMetadata(LLVMContext::MD_alias_scope, MDMap[M]);
928 
929     if (MDNode *M = I->getMetadata(LLVMContext::MD_noalias))
930       I->setMetadata(LLVMContext::MD_noalias, MDMap[M]);
931 
932     if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(I))
933       Decl->setScopeList(MDMap[Decl->getScopeList()]);
934   }
935 }
936 
937 /// If the inlined function has noalias arguments,
938 /// then add new alias scopes for each noalias argument, tag the mapped noalias
939 /// parameters with noalias metadata specifying the new scope, and tag all
940 /// non-derived loads, stores and memory intrinsics with the new alias scopes.
941 static void AddAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap,
942                                   const DataLayout &DL, AAResults *CalleeAAR) {
943   if (!EnableNoAliasConversion)
944     return;
945 
946   const Function *CalledFunc = CB.getCalledFunction();
947   SmallVector<const Argument *, 4> NoAliasArgs;
948 
949   for (const Argument &Arg : CalledFunc->args())
950     if (CB.paramHasAttr(Arg.getArgNo(), Attribute::NoAlias) && !Arg.use_empty())
951       NoAliasArgs.push_back(&Arg);
952 
953   if (NoAliasArgs.empty())
954     return;
955 
956   // To do a good job, if a noalias variable is captured, we need to know if
957   // the capture point dominates the particular use we're considering.
958   DominatorTree DT;
959   DT.recalculate(const_cast<Function&>(*CalledFunc));
960 
961   // noalias indicates that pointer values based on the argument do not alias
962   // pointer values which are not based on it. So we add a new "scope" for each
963   // noalias function argument. Accesses using pointers based on that argument
964   // become part of that alias scope, accesses using pointers not based on that
965   // argument are tagged as noalias with that scope.
966 
967   DenseMap<const Argument *, MDNode *> NewScopes;
968   MDBuilder MDB(CalledFunc->getContext());
969 
970   // Create a new scope domain for this function.
971   MDNode *NewDomain =
972     MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
973   for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
974     const Argument *A = NoAliasArgs[i];
975 
976     std::string Name = std::string(CalledFunc->getName());
977     if (A->hasName()) {
978       Name += ": %";
979       Name += A->getName();
980     } else {
981       Name += ": argument ";
982       Name += utostr(i);
983     }
984 
985     // Note: We always create a new anonymous root here. This is true regardless
986     // of the linkage of the callee because the aliasing "scope" is not just a
987     // property of the callee, but also all control dependencies in the caller.
988     MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
989     NewScopes.insert(std::make_pair(A, NewScope));
990 
991     if (UseNoAliasIntrinsic) {
992       // Introduce a llvm.experimental.noalias.scope.decl for the noalias
993       // argument.
994       MDNode *AScopeList = MDNode::get(CalledFunc->getContext(), NewScope);
995       auto *NoAliasDecl =
996           IRBuilder<>(&CB).CreateNoAliasScopeDeclaration(AScopeList);
997       // Ignore the result for now. The result will be used when the
998       // llvm.noalias intrinsic is introduced.
999       (void)NoAliasDecl;
1000     }
1001   }
1002 
1003   // Iterate over all new instructions in the map; for all memory-access
1004   // instructions, add the alias scope metadata.
1005   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
1006        VMI != VMIE; ++VMI) {
1007     if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
1008       if (!VMI->second)
1009         continue;
1010 
1011       Instruction *NI = dyn_cast<Instruction>(VMI->second);
1012       if (!NI)
1013         continue;
1014 
1015       bool IsArgMemOnlyCall = false, IsFuncCall = false;
1016       SmallVector<const Value *, 2> PtrArgs;
1017 
1018       if (const LoadInst *LI = dyn_cast<LoadInst>(I))
1019         PtrArgs.push_back(LI->getPointerOperand());
1020       else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
1021         PtrArgs.push_back(SI->getPointerOperand());
1022       else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
1023         PtrArgs.push_back(VAAI->getPointerOperand());
1024       else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
1025         PtrArgs.push_back(CXI->getPointerOperand());
1026       else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
1027         PtrArgs.push_back(RMWI->getPointerOperand());
1028       else if (const auto *Call = dyn_cast<CallBase>(I)) {
1029         // If we know that the call does not access memory, then we'll still
1030         // know that about the inlined clone of this call site, and we don't
1031         // need to add metadata.
1032         if (Call->doesNotAccessMemory())
1033           continue;
1034 
1035         IsFuncCall = true;
1036         if (CalleeAAR) {
1037           FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call);
1038           if (AAResults::onlyAccessesArgPointees(MRB))
1039             IsArgMemOnlyCall = true;
1040         }
1041 
1042         for (Value *Arg : Call->args()) {
1043           // We need to check the underlying objects of all arguments, not just
1044           // the pointer arguments, because we might be passing pointers as
1045           // integers, etc.
1046           // However, if we know that the call only accesses pointer arguments,
1047           // then we only need to check the pointer arguments.
1048           if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy())
1049             continue;
1050 
1051           PtrArgs.push_back(Arg);
1052         }
1053       }
1054 
1055       // If we found no pointers, then this instruction is not suitable for
1056       // pairing with an instruction to receive aliasing metadata.
1057       // However, if this is a call, this we might just alias with none of the
1058       // noalias arguments.
1059       if (PtrArgs.empty() && !IsFuncCall)
1060         continue;
1061 
1062       // It is possible that there is only one underlying object, but you
1063       // need to go through several PHIs to see it, and thus could be
1064       // repeated in the Objects list.
1065       SmallPtrSet<const Value *, 4> ObjSet;
1066       SmallVector<Metadata *, 4> Scopes, NoAliases;
1067 
1068       SmallSetVector<const Argument *, 4> NAPtrArgs;
1069       for (const Value *V : PtrArgs) {
1070         SmallVector<const Value *, 4> Objects;
1071         getUnderlyingObjects(V, Objects, /* LI = */ nullptr);
1072 
1073         for (const Value *O : Objects)
1074           ObjSet.insert(O);
1075       }
1076 
1077       // Figure out if we're derived from anything that is not a noalias
1078       // argument.
1079       bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
1080       for (const Value *V : ObjSet) {
1081         // Is this value a constant that cannot be derived from any pointer
1082         // value (we need to exclude constant expressions, for example, that
1083         // are formed from arithmetic on global symbols).
1084         bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
1085                              isa<ConstantPointerNull>(V) ||
1086                              isa<ConstantDataVector>(V) || isa<UndefValue>(V);
1087         if (IsNonPtrConst)
1088           continue;
1089 
1090         // If this is anything other than a noalias argument, then we cannot
1091         // completely describe the aliasing properties using alias.scope
1092         // metadata (and, thus, won't add any).
1093         if (const Argument *A = dyn_cast<Argument>(V)) {
1094           if (!CB.paramHasAttr(A->getArgNo(), Attribute::NoAlias))
1095             UsesAliasingPtr = true;
1096         } else {
1097           UsesAliasingPtr = true;
1098         }
1099 
1100         // If this is not some identified function-local object (which cannot
1101         // directly alias a noalias argument), or some other argument (which,
1102         // by definition, also cannot alias a noalias argument), then we could
1103         // alias a noalias argument that has been captured).
1104         if (!isa<Argument>(V) &&
1105             !isIdentifiedFunctionLocal(const_cast<Value*>(V)))
1106           CanDeriveViaCapture = true;
1107       }
1108 
1109       // A function call can always get captured noalias pointers (via other
1110       // parameters, globals, etc.).
1111       if (IsFuncCall && !IsArgMemOnlyCall)
1112         CanDeriveViaCapture = true;
1113 
1114       // First, we want to figure out all of the sets with which we definitely
1115       // don't alias. Iterate over all noalias set, and add those for which:
1116       //   1. The noalias argument is not in the set of objects from which we
1117       //      definitely derive.
1118       //   2. The noalias argument has not yet been captured.
1119       // An arbitrary function that might load pointers could see captured
1120       // noalias arguments via other noalias arguments or globals, and so we
1121       // must always check for prior capture.
1122       for (const Argument *A : NoAliasArgs) {
1123         if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
1124                                  // It might be tempting to skip the
1125                                  // PointerMayBeCapturedBefore check if
1126                                  // A->hasNoCaptureAttr() is true, but this is
1127                                  // incorrect because nocapture only guarantees
1128                                  // that no copies outlive the function, not
1129                                  // that the value cannot be locally captured.
1130                                  !PointerMayBeCapturedBefore(A,
1131                                    /* ReturnCaptures */ false,
1132                                    /* StoreCaptures */ false, I, &DT)))
1133           NoAliases.push_back(NewScopes[A]);
1134       }
1135 
1136       if (!NoAliases.empty())
1137         NI->setMetadata(LLVMContext::MD_noalias,
1138                         MDNode::concatenate(
1139                             NI->getMetadata(LLVMContext::MD_noalias),
1140                             MDNode::get(CalledFunc->getContext(), NoAliases)));
1141 
1142       // Next, we want to figure out all of the sets to which we might belong.
1143       // We might belong to a set if the noalias argument is in the set of
1144       // underlying objects. If there is some non-noalias argument in our list
1145       // of underlying objects, then we cannot add a scope because the fact
1146       // that some access does not alias with any set of our noalias arguments
1147       // cannot itself guarantee that it does not alias with this access
1148       // (because there is some pointer of unknown origin involved and the
1149       // other access might also depend on this pointer). We also cannot add
1150       // scopes to arbitrary functions unless we know they don't access any
1151       // non-parameter pointer-values.
1152       bool CanAddScopes = !UsesAliasingPtr;
1153       if (CanAddScopes && IsFuncCall)
1154         CanAddScopes = IsArgMemOnlyCall;
1155 
1156       if (CanAddScopes)
1157         for (const Argument *A : NoAliasArgs) {
1158           if (ObjSet.count(A))
1159             Scopes.push_back(NewScopes[A]);
1160         }
1161 
1162       if (!Scopes.empty())
1163         NI->setMetadata(
1164             LLVMContext::MD_alias_scope,
1165             MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
1166                                 MDNode::get(CalledFunc->getContext(), Scopes)));
1167     }
1168   }
1169 }
1170 
1171 static bool MayContainThrowingOrExitingCall(Instruction *Begin,
1172                                             Instruction *End) {
1173 
1174   assert(Begin->getParent() == End->getParent() &&
1175          "Expected to be in same basic block!");
1176   unsigned NumInstChecked = 0;
1177   // Check that all instructions in the range [Begin, End) are guaranteed to
1178   // transfer execution to successor.
1179   for (auto &I : make_range(Begin->getIterator(), End->getIterator()))
1180     if (NumInstChecked++ > InlinerAttributeWindow ||
1181         !isGuaranteedToTransferExecutionToSuccessor(&I))
1182       return true;
1183   return false;
1184 }
1185 
1186 static AttrBuilder IdentifyValidAttributes(CallBase &CB) {
1187 
1188   AttrBuilder AB(CB.getAttributes(), AttributeList::ReturnIndex);
1189   if (AB.empty())
1190     return AB;
1191   AttrBuilder Valid;
1192   // Only allow these white listed attributes to be propagated back to the
1193   // callee. This is because other attributes may only be valid on the call
1194   // itself, i.e. attributes such as signext and zeroext.
1195   if (auto DerefBytes = AB.getDereferenceableBytes())
1196     Valid.addDereferenceableAttr(DerefBytes);
1197   if (auto DerefOrNullBytes = AB.getDereferenceableOrNullBytes())
1198     Valid.addDereferenceableOrNullAttr(DerefOrNullBytes);
1199   if (AB.contains(Attribute::NoAlias))
1200     Valid.addAttribute(Attribute::NoAlias);
1201   if (AB.contains(Attribute::NonNull))
1202     Valid.addAttribute(Attribute::NonNull);
1203   return Valid;
1204 }
1205 
1206 static void AddReturnAttributes(CallBase &CB, ValueToValueMapTy &VMap) {
1207   if (!UpdateReturnAttributes)
1208     return;
1209 
1210   AttrBuilder Valid = IdentifyValidAttributes(CB);
1211   if (Valid.empty())
1212     return;
1213   auto *CalledFunction = CB.getCalledFunction();
1214   auto &Context = CalledFunction->getContext();
1215 
1216   for (auto &BB : *CalledFunction) {
1217     auto *RI = dyn_cast<ReturnInst>(BB.getTerminator());
1218     if (!RI || !isa<CallBase>(RI->getOperand(0)))
1219       continue;
1220     auto *RetVal = cast<CallBase>(RI->getOperand(0));
1221     // Sanity check that the cloned RetVal exists and is a call, otherwise we
1222     // cannot add the attributes on the cloned RetVal.
1223     // Simplification during inlining could have transformed the cloned
1224     // instruction.
1225     auto *NewRetVal = dyn_cast_or_null<CallBase>(VMap.lookup(RetVal));
1226     if (!NewRetVal)
1227       continue;
1228     // Backward propagation of attributes to the returned value may be incorrect
1229     // if it is control flow dependent.
1230     // Consider:
1231     // @callee {
1232     //  %rv = call @foo()
1233     //  %rv2 = call @bar()
1234     //  if (%rv2 != null)
1235     //    return %rv2
1236     //  if (%rv == null)
1237     //    exit()
1238     //  return %rv
1239     // }
1240     // caller() {
1241     //   %val = call nonnull @callee()
1242     // }
1243     // Here we cannot add the nonnull attribute on either foo or bar. So, we
1244     // limit the check to both RetVal and RI are in the same basic block and
1245     // there are no throwing/exiting instructions between these instructions.
1246     if (RI->getParent() != RetVal->getParent() ||
1247         MayContainThrowingOrExitingCall(RetVal, RI))
1248       continue;
1249     // Add to the existing attributes of NewRetVal, i.e. the cloned call
1250     // instruction.
1251     // NB! When we have the same attribute already existing on NewRetVal, but
1252     // with a differing value, the AttributeList's merge API honours the already
1253     // existing attribute value (i.e. attributes such as dereferenceable,
1254     // dereferenceable_or_null etc). See AttrBuilder::merge for more details.
1255     AttributeList AL = NewRetVal->getAttributes();
1256     AttributeList NewAL =
1257         AL.addAttributes(Context, AttributeList::ReturnIndex, Valid);
1258     NewRetVal->setAttributes(NewAL);
1259   }
1260 }
1261 
1262 /// If the inlined function has non-byval align arguments, then
1263 /// add @llvm.assume-based alignment assumptions to preserve this information.
1264 static void AddAlignmentAssumptions(CallBase &CB, InlineFunctionInfo &IFI) {
1265   if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache)
1266     return;
1267 
1268   AssumptionCache *AC = &IFI.GetAssumptionCache(*CB.getCaller());
1269   auto &DL = CB.getCaller()->getParent()->getDataLayout();
1270 
1271   // To avoid inserting redundant assumptions, we should check for assumptions
1272   // already in the caller. To do this, we might need a DT of the caller.
1273   DominatorTree DT;
1274   bool DTCalculated = false;
1275 
1276   Function *CalledFunc = CB.getCalledFunction();
1277   for (Argument &Arg : CalledFunc->args()) {
1278     unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0;
1279     if (Align && !Arg.hasPassPointeeByValueCopyAttr() && !Arg.hasNUses(0)) {
1280       if (!DTCalculated) {
1281         DT.recalculate(*CB.getCaller());
1282         DTCalculated = true;
1283       }
1284 
1285       // If we can already prove the asserted alignment in the context of the
1286       // caller, then don't bother inserting the assumption.
1287       Value *ArgVal = CB.getArgOperand(Arg.getArgNo());
1288       if (getKnownAlignment(ArgVal, DL, &CB, AC, &DT) >= Align)
1289         continue;
1290 
1291       CallInst *NewAsmp =
1292           IRBuilder<>(&CB).CreateAlignmentAssumption(DL, ArgVal, Align);
1293       AC->registerAssumption(NewAsmp);
1294     }
1295   }
1296 }
1297 
1298 /// Once we have cloned code over from a callee into the caller,
1299 /// update the specified callgraph to reflect the changes we made.
1300 /// Note that it's possible that not all code was copied over, so only
1301 /// some edges of the callgraph may remain.
1302 static void UpdateCallGraphAfterInlining(CallBase &CB,
1303                                          Function::iterator FirstNewBlock,
1304                                          ValueToValueMapTy &VMap,
1305                                          InlineFunctionInfo &IFI) {
1306   CallGraph &CG = *IFI.CG;
1307   const Function *Caller = CB.getCaller();
1308   const Function *Callee = CB.getCalledFunction();
1309   CallGraphNode *CalleeNode = CG[Callee];
1310   CallGraphNode *CallerNode = CG[Caller];
1311 
1312   // Since we inlined some uninlined call sites in the callee into the caller,
1313   // add edges from the caller to all of the callees of the callee.
1314   CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
1315 
1316   // Consider the case where CalleeNode == CallerNode.
1317   CallGraphNode::CalledFunctionsVector CallCache;
1318   if (CalleeNode == CallerNode) {
1319     CallCache.assign(I, E);
1320     I = CallCache.begin();
1321     E = CallCache.end();
1322   }
1323 
1324   for (; I != E; ++I) {
1325     // Skip 'refererence' call records.
1326     if (!I->first)
1327       continue;
1328 
1329     const Value *OrigCall = *I->first;
1330 
1331     ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
1332     // Only copy the edge if the call was inlined!
1333     if (VMI == VMap.end() || VMI->second == nullptr)
1334       continue;
1335 
1336     // If the call was inlined, but then constant folded, there is no edge to
1337     // add.  Check for this case.
1338     auto *NewCall = dyn_cast<CallBase>(VMI->second);
1339     if (!NewCall)
1340       continue;
1341 
1342     // We do not treat intrinsic calls like real function calls because we
1343     // expect them to become inline code; do not add an edge for an intrinsic.
1344     if (NewCall->getCalledFunction() &&
1345         NewCall->getCalledFunction()->isIntrinsic())
1346       continue;
1347 
1348     // Remember that this call site got inlined for the client of
1349     // InlineFunction.
1350     IFI.InlinedCalls.push_back(NewCall);
1351 
1352     // It's possible that inlining the callsite will cause it to go from an
1353     // indirect to a direct call by resolving a function pointer.  If this
1354     // happens, set the callee of the new call site to a more precise
1355     // destination.  This can also happen if the call graph node of the caller
1356     // was just unnecessarily imprecise.
1357     if (!I->second->getFunction())
1358       if (Function *F = NewCall->getCalledFunction()) {
1359         // Indirect call site resolved to direct call.
1360         CallerNode->addCalledFunction(NewCall, CG[F]);
1361 
1362         continue;
1363       }
1364 
1365     CallerNode->addCalledFunction(NewCall, I->second);
1366   }
1367 
1368   // Update the call graph by deleting the edge from Callee to Caller.  We must
1369   // do this after the loop above in case Caller and Callee are the same.
1370   CallerNode->removeCallEdgeFor(*cast<CallBase>(&CB));
1371 }
1372 
1373 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
1374                                     BasicBlock *InsertBlock,
1375                                     InlineFunctionInfo &IFI) {
1376   Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
1377   IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
1378 
1379   Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy));
1380 
1381   // Always generate a memcpy of alignment 1 here because we don't know
1382   // the alignment of the src pointer.  Other optimizations can infer
1383   // better alignment.
1384   Builder.CreateMemCpy(Dst, /*DstAlign*/ Align(1), Src,
1385                        /*SrcAlign*/ Align(1), Size);
1386 }
1387 
1388 /// When inlining a call site that has a byval argument,
1389 /// we have to make the implicit memcpy explicit by adding it.
1390 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
1391                                   const Function *CalledFunc,
1392                                   InlineFunctionInfo &IFI,
1393                                   unsigned ByValAlignment) {
1394   PointerType *ArgTy = cast<PointerType>(Arg->getType());
1395   Type *AggTy = ArgTy->getElementType();
1396 
1397   Function *Caller = TheCall->getFunction();
1398   const DataLayout &DL = Caller->getParent()->getDataLayout();
1399 
1400   // If the called function is readonly, then it could not mutate the caller's
1401   // copy of the byval'd memory.  In this case, it is safe to elide the copy and
1402   // temporary.
1403   if (CalledFunc->onlyReadsMemory()) {
1404     // If the byval argument has a specified alignment that is greater than the
1405     // passed in pointer, then we either have to round up the input pointer or
1406     // give up on this transformation.
1407     if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
1408       return Arg;
1409 
1410     AssumptionCache *AC =
1411         IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
1412 
1413     // If the pointer is already known to be sufficiently aligned, or if we can
1414     // round it up to a larger alignment, then we don't need a temporary.
1415     if (getOrEnforceKnownAlignment(Arg, Align(ByValAlignment), DL, TheCall,
1416                                    AC) >= ByValAlignment)
1417       return Arg;
1418 
1419     // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
1420     // for code quality, but rarely happens and is required for correctness.
1421   }
1422 
1423   // Create the alloca.  If we have DataLayout, use nice alignment.
1424   Align Alignment(DL.getPrefTypeAlignment(AggTy));
1425 
1426   // If the byval had an alignment specified, we *must* use at least that
1427   // alignment, as it is required by the byval argument (and uses of the
1428   // pointer inside the callee).
1429   Alignment = max(Alignment, MaybeAlign(ByValAlignment));
1430 
1431   Value *NewAlloca =
1432       new AllocaInst(AggTy, DL.getAllocaAddrSpace(), nullptr, Alignment,
1433                      Arg->getName(), &*Caller->begin()->begin());
1434   IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
1435 
1436   // Uses of the argument in the function should use our new alloca
1437   // instead.
1438   return NewAlloca;
1439 }
1440 
1441 // Check whether this Value is used by a lifetime intrinsic.
1442 static bool isUsedByLifetimeMarker(Value *V) {
1443   for (User *U : V->users())
1444     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U))
1445       if (II->isLifetimeStartOrEnd())
1446         return true;
1447   return false;
1448 }
1449 
1450 // Check whether the given alloca already has
1451 // lifetime.start or lifetime.end intrinsics.
1452 static bool hasLifetimeMarkers(AllocaInst *AI) {
1453   Type *Ty = AI->getType();
1454   Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
1455                                        Ty->getPointerAddressSpace());
1456   if (Ty == Int8PtrTy)
1457     return isUsedByLifetimeMarker(AI);
1458 
1459   // Do a scan to find all the casts to i8*.
1460   for (User *U : AI->users()) {
1461     if (U->getType() != Int8PtrTy) continue;
1462     if (U->stripPointerCasts() != AI) continue;
1463     if (isUsedByLifetimeMarker(U))
1464       return true;
1465   }
1466   return false;
1467 }
1468 
1469 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry
1470 /// block. Allocas used in inalloca calls and allocas of dynamic array size
1471 /// cannot be static.
1472 static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) {
1473   return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca();
1474 }
1475 
1476 /// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL
1477 /// inlined at \p InlinedAt. \p IANodes is an inlined-at cache.
1478 static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt,
1479                                LLVMContext &Ctx,
1480                                DenseMap<const MDNode *, MDNode *> &IANodes) {
1481   auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes);
1482   return DILocation::get(Ctx, OrigDL.getLine(), OrigDL.getCol(),
1483                          OrigDL.getScope(), IA);
1484 }
1485 
1486 /// Update inlined instructions' line numbers to
1487 /// to encode location where these instructions are inlined.
1488 static void fixupLineNumbers(Function *Fn, Function::iterator FI,
1489                              Instruction *TheCall, bool CalleeHasDebugInfo) {
1490   const DebugLoc &TheCallDL = TheCall->getDebugLoc();
1491   if (!TheCallDL)
1492     return;
1493 
1494   auto &Ctx = Fn->getContext();
1495   DILocation *InlinedAtNode = TheCallDL;
1496 
1497   // Create a unique call site, not to be confused with any other call from the
1498   // same location.
1499   InlinedAtNode = DILocation::getDistinct(
1500       Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
1501       InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
1502 
1503   // Cache the inlined-at nodes as they're built so they are reused, without
1504   // this every instruction's inlined-at chain would become distinct from each
1505   // other.
1506   DenseMap<const MDNode *, MDNode *> IANodes;
1507 
1508   // Check if we are not generating inline line tables and want to use
1509   // the call site location instead.
1510   bool NoInlineLineTables = Fn->hasFnAttribute("no-inline-line-tables");
1511 
1512   for (; FI != Fn->end(); ++FI) {
1513     for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
1514          BI != BE; ++BI) {
1515       // Loop metadata needs to be updated so that the start and end locs
1516       // reference inlined-at locations.
1517       auto updateLoopInfoLoc = [&Ctx, &InlinedAtNode, &IANodes](
1518                                    const DILocation &Loc) -> DILocation * {
1519         return inlineDebugLoc(&Loc, InlinedAtNode, Ctx, IANodes).get();
1520       };
1521       updateLoopMetadataDebugLocations(*BI, updateLoopInfoLoc);
1522 
1523       if (!NoInlineLineTables)
1524         if (DebugLoc DL = BI->getDebugLoc()) {
1525           DebugLoc IDL =
1526               inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes);
1527           BI->setDebugLoc(IDL);
1528           continue;
1529         }
1530 
1531       if (CalleeHasDebugInfo && !NoInlineLineTables)
1532         continue;
1533 
1534       // If the inlined instruction has no line number, or if inline info
1535       // is not being generated, make it look as if it originates from the call
1536       // location. This is important for ((__always_inline, __nodebug__))
1537       // functions which must use caller location for all instructions in their
1538       // function body.
1539 
1540       // Don't update static allocas, as they may get moved later.
1541       if (auto *AI = dyn_cast<AllocaInst>(BI))
1542         if (allocaWouldBeStaticInEntry(AI))
1543           continue;
1544 
1545       BI->setDebugLoc(TheCallDL);
1546     }
1547 
1548     // Remove debug info intrinsics if we're not keeping inline info.
1549     if (NoInlineLineTables) {
1550       BasicBlock::iterator BI = FI->begin();
1551       while (BI != FI->end()) {
1552         if (isa<DbgInfoIntrinsic>(BI)) {
1553           BI = BI->eraseFromParent();
1554           continue;
1555         }
1556         ++BI;
1557       }
1558     }
1559 
1560   }
1561 }
1562 
1563 /// Update the block frequencies of the caller after a callee has been inlined.
1564 ///
1565 /// Each block cloned into the caller has its block frequency scaled by the
1566 /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of
1567 /// callee's entry block gets the same frequency as the callsite block and the
1568 /// relative frequencies of all cloned blocks remain the same after cloning.
1569 static void updateCallerBFI(BasicBlock *CallSiteBlock,
1570                             const ValueToValueMapTy &VMap,
1571                             BlockFrequencyInfo *CallerBFI,
1572                             BlockFrequencyInfo *CalleeBFI,
1573                             const BasicBlock &CalleeEntryBlock) {
1574   SmallPtrSet<BasicBlock *, 16> ClonedBBs;
1575   for (auto Entry : VMap) {
1576     if (!isa<BasicBlock>(Entry.first) || !Entry.second)
1577       continue;
1578     auto *OrigBB = cast<BasicBlock>(Entry.first);
1579     auto *ClonedBB = cast<BasicBlock>(Entry.second);
1580     uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency();
1581     if (!ClonedBBs.insert(ClonedBB).second) {
1582       // Multiple blocks in the callee might get mapped to one cloned block in
1583       // the caller since we prune the callee as we clone it. When that happens,
1584       // we want to use the maximum among the original blocks' frequencies.
1585       uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency();
1586       if (NewFreq > Freq)
1587         Freq = NewFreq;
1588     }
1589     CallerBFI->setBlockFreq(ClonedBB, Freq);
1590   }
1591   BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock));
1592   CallerBFI->setBlockFreqAndScale(
1593       EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(),
1594       ClonedBBs);
1595 }
1596 
1597 /// Update the branch metadata for cloned call instructions.
1598 static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap,
1599                               const ProfileCount &CalleeEntryCount,
1600                               const CallBase &TheCall, ProfileSummaryInfo *PSI,
1601                               BlockFrequencyInfo *CallerBFI) {
1602   if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() ||
1603       CalleeEntryCount.getCount() < 1)
1604     return;
1605   auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None;
1606   int64_t CallCount =
1607       std::min(CallSiteCount.getValueOr(0), CalleeEntryCount.getCount());
1608   updateProfileCallee(Callee, -CallCount, &VMap);
1609 }
1610 
1611 void llvm::updateProfileCallee(
1612     Function *Callee, int64_t entryDelta,
1613     const ValueMap<const Value *, WeakTrackingVH> *VMap) {
1614   auto CalleeCount = Callee->getEntryCount();
1615   if (!CalleeCount.hasValue())
1616     return;
1617 
1618   uint64_t priorEntryCount = CalleeCount.getCount();
1619   uint64_t newEntryCount;
1620 
1621   // Since CallSiteCount is an estimate, it could exceed the original callee
1622   // count and has to be set to 0 so guard against underflow.
1623   if (entryDelta < 0 && static_cast<uint64_t>(-entryDelta) > priorEntryCount)
1624     newEntryCount = 0;
1625   else
1626     newEntryCount = priorEntryCount + entryDelta;
1627 
1628   // During inlining ?
1629   if (VMap) {
1630     uint64_t cloneEntryCount = priorEntryCount - newEntryCount;
1631     for (auto Entry : *VMap)
1632       if (isa<CallInst>(Entry.first))
1633         if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second))
1634           CI->updateProfWeight(cloneEntryCount, priorEntryCount);
1635   }
1636 
1637   if (entryDelta) {
1638     Callee->setEntryCount(newEntryCount);
1639 
1640     for (BasicBlock &BB : *Callee)
1641       // No need to update the callsite if it is pruned during inlining.
1642       if (!VMap || VMap->count(&BB))
1643         for (Instruction &I : BB)
1644           if (CallInst *CI = dyn_cast<CallInst>(&I))
1645             CI->updateProfWeight(newEntryCount, priorEntryCount);
1646   }
1647 }
1648 
1649 static void
1650 insertRetainOrClaimRVCalls(CallBase &CB,
1651                            const SmallVectorImpl<ReturnInst *> &Returns) {
1652   Module *Mod = CB.getParent()->getParent()->getParent();
1653   bool IsRetainRV = objcarc::hasRetainRVAttr(&CB), IsClaimRV = !IsRetainRV;
1654 
1655   for (auto *RI : Returns) {
1656     Value *RetOpnd = llvm::objcarc::GetRCIdentityRoot(RI->getOperand(0));
1657     BasicBlock::reverse_iterator I = ++(RI->getIterator().getReverse());
1658     BasicBlock::reverse_iterator EI = RI->getParent()->rend();
1659     bool InsertRetainCall = IsRetainRV;
1660     IRBuilder<> Builder(RI->getContext());
1661 
1662     // Walk backwards through the basic block looking for either a matching
1663     // autoreleaseRV call or an unannotated call.
1664     for (; I != EI;) {
1665       auto CurI = I++;
1666 
1667       // Ignore casts.
1668       if (isa<CastInst>(*CurI))
1669         continue;
1670 
1671       if (auto *II = dyn_cast<IntrinsicInst>(&*CurI)) {
1672         if (II->getIntrinsicID() == Intrinsic::objc_autoreleaseReturnValue &&
1673             II->hasNUses(0) &&
1674             llvm::objcarc::GetRCIdentityRoot(II->getOperand(0)) == RetOpnd) {
1675           // If we've found a matching authoreleaseRV call:
1676           // - If the call is annotated with claimRV, insert a call to
1677           //   objc_release and erase the autoreleaseRV call.
1678           // - If the call is annotated with retainRV, just erase the
1679           //   autoreleaseRV call.
1680           if (IsClaimRV) {
1681             Builder.SetInsertPoint(II);
1682             Function *IFn =
1683                 Intrinsic::getDeclaration(Mod, Intrinsic::objc_release);
1684             Value *BC =
1685                 Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType());
1686             Builder.CreateCall(IFn, BC, "");
1687           }
1688           II->eraseFromParent();
1689           InsertRetainCall = false;
1690         }
1691       } else if (auto *CI = dyn_cast<CallInst>(&*CurI)) {
1692         if (llvm::objcarc::GetRCIdentityRoot(CI) == RetOpnd &&
1693             !objcarc::hasRetainRVOrClaimRVAttr(CI)) {
1694           // If we've found an unannotated call that defines RetOpnd, annotate
1695           // the call with the attributes.
1696           llvm::AttributeList AL = CI->getAttributes();
1697           AL = AL.addAttribute(CI->getContext(), AttributeList::ReturnIndex,
1698                                objcarc::getRVAttrKeyStr(),
1699                                objcarc::getRVAttrValStr(IsRetainRV));
1700           CI->setAttributes(AL);
1701           InsertRetainCall = false;
1702         }
1703       }
1704 
1705       break;
1706     }
1707 
1708     if (InsertRetainCall) {
1709       // The call is annotated with retainRV and we've failed to find a matching
1710       // autoreleaseRV or an annotated call in the callee. Emit a call to
1711       // objc_retain.
1712       Builder.SetInsertPoint(RI);
1713       Function *IFn = Intrinsic::getDeclaration(Mod, Intrinsic::objc_retain);
1714       Value *BC = Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType());
1715       Builder.CreateCall(IFn, BC, "");
1716     }
1717   }
1718 }
1719 
1720 /// This function inlines the called function into the basic block of the
1721 /// caller. This returns false if it is not possible to inline this call.
1722 /// The program is still in a well defined state if this occurs though.
1723 ///
1724 /// Note that this only does one level of inlining.  For example, if the
1725 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
1726 /// exists in the instruction stream.  Similarly this will inline a recursive
1727 /// function by one level.
1728 llvm::InlineResult llvm::InlineFunction(CallBase &CB, InlineFunctionInfo &IFI,
1729                                         AAResults *CalleeAAR,
1730                                         bool InsertLifetime,
1731                                         Function *ForwardVarArgsTo) {
1732   assert(CB.getParent() && CB.getFunction() && "Instruction not in function!");
1733 
1734   // FIXME: we don't inline callbr yet.
1735   if (isa<CallBrInst>(CB))
1736     return InlineResult::failure("We don't inline callbr yet.");
1737 
1738   // If IFI has any state in it, zap it before we fill it in.
1739   IFI.reset();
1740 
1741   Function *CalledFunc = CB.getCalledFunction();
1742   if (!CalledFunc ||               // Can't inline external function or indirect
1743       CalledFunc->isDeclaration()) // call!
1744     return InlineResult::failure("external or indirect");
1745 
1746   // The inliner does not know how to inline through calls with operand bundles
1747   // in general ...
1748   if (CB.hasOperandBundles()) {
1749     for (int i = 0, e = CB.getNumOperandBundles(); i != e; ++i) {
1750       uint32_t Tag = CB.getOperandBundleAt(i).getTagID();
1751       // ... but it knows how to inline through "deopt" operand bundles ...
1752       if (Tag == LLVMContext::OB_deopt)
1753         continue;
1754       // ... and "funclet" operand bundles.
1755       if (Tag == LLVMContext::OB_funclet)
1756         continue;
1757 
1758       return InlineResult::failure("unsupported operand bundle");
1759     }
1760   }
1761 
1762   // If the call to the callee cannot throw, set the 'nounwind' flag on any
1763   // calls that we inline.
1764   bool MarkNoUnwind = CB.doesNotThrow();
1765 
1766   BasicBlock *OrigBB = CB.getParent();
1767   Function *Caller = OrigBB->getParent();
1768 
1769   // GC poses two hazards to inlining, which only occur when the callee has GC:
1770   //  1. If the caller has no GC, then the callee's GC must be propagated to the
1771   //     caller.
1772   //  2. If the caller has a differing GC, it is invalid to inline.
1773   if (CalledFunc->hasGC()) {
1774     if (!Caller->hasGC())
1775       Caller->setGC(CalledFunc->getGC());
1776     else if (CalledFunc->getGC() != Caller->getGC())
1777       return InlineResult::failure("incompatible GC");
1778   }
1779 
1780   // Get the personality function from the callee if it contains a landing pad.
1781   Constant *CalledPersonality =
1782       CalledFunc->hasPersonalityFn()
1783           ? CalledFunc->getPersonalityFn()->stripPointerCasts()
1784           : nullptr;
1785 
1786   // Find the personality function used by the landing pads of the caller. If it
1787   // exists, then check to see that it matches the personality function used in
1788   // the callee.
1789   Constant *CallerPersonality =
1790       Caller->hasPersonalityFn()
1791           ? Caller->getPersonalityFn()->stripPointerCasts()
1792           : nullptr;
1793   if (CalledPersonality) {
1794     if (!CallerPersonality)
1795       Caller->setPersonalityFn(CalledPersonality);
1796     // If the personality functions match, then we can perform the
1797     // inlining. Otherwise, we can't inline.
1798     // TODO: This isn't 100% true. Some personality functions are proper
1799     //       supersets of others and can be used in place of the other.
1800     else if (CalledPersonality != CallerPersonality)
1801       return InlineResult::failure("incompatible personality");
1802   }
1803 
1804   // We need to figure out which funclet the callsite was in so that we may
1805   // properly nest the callee.
1806   Instruction *CallSiteEHPad = nullptr;
1807   if (CallerPersonality) {
1808     EHPersonality Personality = classifyEHPersonality(CallerPersonality);
1809     if (isScopedEHPersonality(Personality)) {
1810       Optional<OperandBundleUse> ParentFunclet =
1811           CB.getOperandBundle(LLVMContext::OB_funclet);
1812       if (ParentFunclet)
1813         CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
1814 
1815       // OK, the inlining site is legal.  What about the target function?
1816 
1817       if (CallSiteEHPad) {
1818         if (Personality == EHPersonality::MSVC_CXX) {
1819           // The MSVC personality cannot tolerate catches getting inlined into
1820           // cleanup funclets.
1821           if (isa<CleanupPadInst>(CallSiteEHPad)) {
1822             // Ok, the call site is within a cleanuppad.  Let's check the callee
1823             // for catchpads.
1824             for (const BasicBlock &CalledBB : *CalledFunc) {
1825               if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
1826                 return InlineResult::failure("catch in cleanup funclet");
1827             }
1828           }
1829         } else if (isAsynchronousEHPersonality(Personality)) {
1830           // SEH is even less tolerant, there may not be any sort of exceptional
1831           // funclet in the callee.
1832           for (const BasicBlock &CalledBB : *CalledFunc) {
1833             if (CalledBB.isEHPad())
1834               return InlineResult::failure("SEH in cleanup funclet");
1835           }
1836         }
1837       }
1838     }
1839   }
1840 
1841   // Determine if we are dealing with a call in an EHPad which does not unwind
1842   // to caller.
1843   bool EHPadForCallUnwindsLocally = false;
1844   if (CallSiteEHPad && isa<CallInst>(CB)) {
1845     UnwindDestMemoTy FuncletUnwindMap;
1846     Value *CallSiteUnwindDestToken =
1847         getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap);
1848 
1849     EHPadForCallUnwindsLocally =
1850         CallSiteUnwindDestToken &&
1851         !isa<ConstantTokenNone>(CallSiteUnwindDestToken);
1852   }
1853 
1854   // Get an iterator to the last basic block in the function, which will have
1855   // the new function inlined after it.
1856   Function::iterator LastBlock = --Caller->end();
1857 
1858   // Make sure to capture all of the return instructions from the cloned
1859   // function.
1860   SmallVector<ReturnInst*, 8> Returns;
1861   ClonedCodeInfo InlinedFunctionInfo;
1862   Function::iterator FirstNewBlock;
1863 
1864   { // Scope to destroy VMap after cloning.
1865     ValueToValueMapTy VMap;
1866     // Keep a list of pair (dst, src) to emit byval initializations.
1867     SmallVector<std::pair<Value*, Value*>, 4> ByValInit;
1868 
1869     // When inlining a function that contains noalias scope metadata,
1870     // this metadata needs to be cloned so that the inlined blocks
1871     // have different "unique scopes" at every call site.
1872     // Track the metadata that must be cloned. Do this before other changes to
1873     // the function, so that we do not get in trouble when inlining caller ==
1874     // callee.
1875     ScopedAliasMetadataDeepCloner SAMetadataCloner(CB.getCalledFunction());
1876 
1877     auto &DL = Caller->getParent()->getDataLayout();
1878 
1879     // Calculate the vector of arguments to pass into the function cloner, which
1880     // matches up the formal to the actual argument values.
1881     auto AI = CB.arg_begin();
1882     unsigned ArgNo = 0;
1883     for (Function::arg_iterator I = CalledFunc->arg_begin(),
1884          E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
1885       Value *ActualArg = *AI;
1886 
1887       // When byval arguments actually inlined, we need to make the copy implied
1888       // by them explicit.  However, we don't do this if the callee is readonly
1889       // or readnone, because the copy would be unneeded: the callee doesn't
1890       // modify the struct.
1891       if (CB.isByValArgument(ArgNo)) {
1892         ActualArg = HandleByValArgument(ActualArg, &CB, CalledFunc, IFI,
1893                                         CalledFunc->getParamAlignment(ArgNo));
1894         if (ActualArg != *AI)
1895           ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
1896       }
1897 
1898       VMap[&*I] = ActualArg;
1899     }
1900 
1901     // TODO: Remove this when users have been updated to the assume bundles.
1902     // Add alignment assumptions if necessary. We do this before the inlined
1903     // instructions are actually cloned into the caller so that we can easily
1904     // check what will be known at the start of the inlined code.
1905     AddAlignmentAssumptions(CB, IFI);
1906 
1907     AssumptionCache *AC =
1908         IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
1909 
1910     /// Preserve all attributes on of the call and its parameters.
1911     salvageKnowledge(&CB, AC);
1912 
1913     // We want the inliner to prune the code as it copies.  We would LOVE to
1914     // have no dead or constant instructions leftover after inlining occurs
1915     // (which can happen, e.g., because an argument was constant), but we'll be
1916     // happy with whatever the cloner can do.
1917     CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
1918                               /*ModuleLevelChanges=*/false, Returns, ".i",
1919                               &InlinedFunctionInfo, &CB);
1920     // Remember the first block that is newly cloned over.
1921     FirstNewBlock = LastBlock; ++FirstNewBlock;
1922 
1923     // Insert retainRV/clainRV runtime calls.
1924     if (objcarc::hasRetainRVOrClaimRVAttr(&CB))
1925       insertRetainOrClaimRVCalls(CB, Returns);
1926 
1927     if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr)
1928       // Update the BFI of blocks cloned into the caller.
1929       updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI,
1930                       CalledFunc->front());
1931 
1932     updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), CB,
1933                       IFI.PSI, IFI.CallerBFI);
1934 
1935     // Inject byval arguments initialization.
1936     for (std::pair<Value*, Value*> &Init : ByValInit)
1937       HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
1938                               &*FirstNewBlock, IFI);
1939 
1940     Optional<OperandBundleUse> ParentDeopt =
1941         CB.getOperandBundle(LLVMContext::OB_deopt);
1942     if (ParentDeopt) {
1943       SmallVector<OperandBundleDef, 2> OpDefs;
1944 
1945       for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
1946         CallBase *ICS = dyn_cast_or_null<CallBase>(VH);
1947         if (!ICS)
1948           continue; // instruction was DCE'd or RAUW'ed to undef
1949 
1950         OpDefs.clear();
1951 
1952         OpDefs.reserve(ICS->getNumOperandBundles());
1953 
1954         for (unsigned COBi = 0, COBe = ICS->getNumOperandBundles(); COBi < COBe;
1955              ++COBi) {
1956           auto ChildOB = ICS->getOperandBundleAt(COBi);
1957           if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
1958             // If the inlined call has other operand bundles, let them be
1959             OpDefs.emplace_back(ChildOB);
1960             continue;
1961           }
1962 
1963           // It may be useful to separate this logic (of handling operand
1964           // bundles) out to a separate "policy" component if this gets crowded.
1965           // Prepend the parent's deoptimization continuation to the newly
1966           // inlined call's deoptimization continuation.
1967           std::vector<Value *> MergedDeoptArgs;
1968           MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
1969                                   ChildOB.Inputs.size());
1970 
1971           llvm::append_range(MergedDeoptArgs, ParentDeopt->Inputs);
1972           llvm::append_range(MergedDeoptArgs, ChildOB.Inputs);
1973 
1974           OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
1975         }
1976 
1977         Instruction *NewI = CallBase::Create(ICS, OpDefs, ICS);
1978 
1979         // Note: the RAUW does the appropriate fixup in VMap, so we need to do
1980         // this even if the call returns void.
1981         ICS->replaceAllUsesWith(NewI);
1982 
1983         VH = nullptr;
1984         ICS->eraseFromParent();
1985       }
1986     }
1987 
1988     // Update the callgraph if requested.
1989     if (IFI.CG)
1990       UpdateCallGraphAfterInlining(CB, FirstNewBlock, VMap, IFI);
1991 
1992     // For 'nodebug' functions, the associated DISubprogram is always null.
1993     // Conservatively avoid propagating the callsite debug location to
1994     // instructions inlined from a function whose DISubprogram is not null.
1995     fixupLineNumbers(Caller, FirstNewBlock, &CB,
1996                      CalledFunc->getSubprogram() != nullptr);
1997 
1998     // Now clone the inlined noalias scope metadata.
1999     SAMetadataCloner.clone();
2000     SAMetadataCloner.remap(VMap);
2001 
2002     // Add noalias metadata if necessary.
2003     AddAliasScopeMetadata(CB, VMap, DL, CalleeAAR);
2004 
2005     // Clone return attributes on the callsite into the calls within the inlined
2006     // function which feed into its return value.
2007     AddReturnAttributes(CB, VMap);
2008 
2009     // Propagate metadata on the callsite if necessary.
2010     PropagateCallSiteMetadata(CB, VMap);
2011 
2012     // Register any cloned assumptions.
2013     if (IFI.GetAssumptionCache)
2014       for (BasicBlock &NewBlock :
2015            make_range(FirstNewBlock->getIterator(), Caller->end()))
2016         for (Instruction &I : NewBlock)
2017           if (auto *II = dyn_cast<IntrinsicInst>(&I))
2018             if (II->getIntrinsicID() == Intrinsic::assume)
2019               IFI.GetAssumptionCache(*Caller).registerAssumption(II);
2020   }
2021 
2022   // If there are any alloca instructions in the block that used to be the entry
2023   // block for the callee, move them to the entry block of the caller.  First
2024   // calculate which instruction they should be inserted before.  We insert the
2025   // instructions at the end of the current alloca list.
2026   {
2027     BasicBlock::iterator InsertPoint = Caller->begin()->begin();
2028     for (BasicBlock::iterator I = FirstNewBlock->begin(),
2029          E = FirstNewBlock->end(); I != E; ) {
2030       AllocaInst *AI = dyn_cast<AllocaInst>(I++);
2031       if (!AI) continue;
2032 
2033       // If the alloca is now dead, remove it.  This often occurs due to code
2034       // specialization.
2035       if (AI->use_empty()) {
2036         AI->eraseFromParent();
2037         continue;
2038       }
2039 
2040       if (!allocaWouldBeStaticInEntry(AI))
2041         continue;
2042 
2043       // Keep track of the static allocas that we inline into the caller.
2044       IFI.StaticAllocas.push_back(AI);
2045 
2046       // Scan for the block of allocas that we can move over, and move them
2047       // all at once.
2048       while (isa<AllocaInst>(I) &&
2049              !cast<AllocaInst>(I)->use_empty() &&
2050              allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) {
2051         IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
2052         ++I;
2053       }
2054 
2055       // Transfer all of the allocas over in a block.  Using splice means
2056       // that the instructions aren't removed from the symbol table, then
2057       // reinserted.
2058       Caller->getEntryBlock().getInstList().splice(
2059           InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I);
2060     }
2061   }
2062 
2063   SmallVector<Value*,4> VarArgsToForward;
2064   SmallVector<AttributeSet, 4> VarArgsAttrs;
2065   for (unsigned i = CalledFunc->getFunctionType()->getNumParams();
2066        i < CB.getNumArgOperands(); i++) {
2067     VarArgsToForward.push_back(CB.getArgOperand(i));
2068     VarArgsAttrs.push_back(CB.getAttributes().getParamAttributes(i));
2069   }
2070 
2071   bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false;
2072   if (InlinedFunctionInfo.ContainsCalls) {
2073     CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
2074     if (CallInst *CI = dyn_cast<CallInst>(&CB))
2075       CallSiteTailKind = CI->getTailCallKind();
2076 
2077     // For inlining purposes, the "notail" marker is the same as no marker.
2078     if (CallSiteTailKind == CallInst::TCK_NoTail)
2079       CallSiteTailKind = CallInst::TCK_None;
2080 
2081     for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
2082          ++BB) {
2083       for (auto II = BB->begin(); II != BB->end();) {
2084         Instruction &I = *II++;
2085         CallInst *CI = dyn_cast<CallInst>(&I);
2086         if (!CI)
2087           continue;
2088 
2089         // Forward varargs from inlined call site to calls to the
2090         // ForwardVarArgsTo function, if requested, and to musttail calls.
2091         if (!VarArgsToForward.empty() &&
2092             ((ForwardVarArgsTo &&
2093               CI->getCalledFunction() == ForwardVarArgsTo) ||
2094              CI->isMustTailCall())) {
2095           // Collect attributes for non-vararg parameters.
2096           AttributeList Attrs = CI->getAttributes();
2097           SmallVector<AttributeSet, 8> ArgAttrs;
2098           if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) {
2099             for (unsigned ArgNo = 0;
2100                  ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo)
2101               ArgAttrs.push_back(Attrs.getParamAttributes(ArgNo));
2102           }
2103 
2104           // Add VarArg attributes.
2105           ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end());
2106           Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttributes(),
2107                                      Attrs.getRetAttributes(), ArgAttrs);
2108           // Add VarArgs to existing parameters.
2109           SmallVector<Value *, 6> Params(CI->arg_operands());
2110           Params.append(VarArgsToForward.begin(), VarArgsToForward.end());
2111           CallInst *NewCI = CallInst::Create(
2112               CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI);
2113           NewCI->setDebugLoc(CI->getDebugLoc());
2114           NewCI->setAttributes(Attrs);
2115           NewCI->setCallingConv(CI->getCallingConv());
2116           CI->replaceAllUsesWith(NewCI);
2117           CI->eraseFromParent();
2118           CI = NewCI;
2119         }
2120 
2121         if (Function *F = CI->getCalledFunction())
2122           InlinedDeoptimizeCalls |=
2123               F->getIntrinsicID() == Intrinsic::experimental_deoptimize;
2124 
2125         // We need to reduce the strength of any inlined tail calls.  For
2126         // musttail, we have to avoid introducing potential unbounded stack
2127         // growth.  For example, if functions 'f' and 'g' are mutually recursive
2128         // with musttail, we can inline 'g' into 'f' so long as we preserve
2129         // musttail on the cloned call to 'f'.  If either the inlined call site
2130         // or the cloned call site is *not* musttail, the program already has
2131         // one frame of stack growth, so it's safe to remove musttail.  Here is
2132         // a table of example transformations:
2133         //
2134         //    f -> musttail g -> musttail f  ==>  f -> musttail f
2135         //    f -> musttail g ->     tail f  ==>  f ->     tail f
2136         //    f ->          g -> musttail f  ==>  f ->          f
2137         //    f ->          g ->     tail f  ==>  f ->          f
2138         //
2139         // Inlined notail calls should remain notail calls.
2140         CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
2141         if (ChildTCK != CallInst::TCK_NoTail)
2142           ChildTCK = std::min(CallSiteTailKind, ChildTCK);
2143         CI->setTailCallKind(ChildTCK);
2144         InlinedMustTailCalls |= CI->isMustTailCall();
2145 
2146         // Calls inlined through a 'nounwind' call site should be marked
2147         // 'nounwind'.
2148         if (MarkNoUnwind)
2149           CI->setDoesNotThrow();
2150       }
2151     }
2152   }
2153 
2154   // Leave lifetime markers for the static alloca's, scoping them to the
2155   // function we just inlined.
2156   if (InsertLifetime && !IFI.StaticAllocas.empty()) {
2157     IRBuilder<> builder(&FirstNewBlock->front());
2158     for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
2159       AllocaInst *AI = IFI.StaticAllocas[ai];
2160       // Don't mark swifterror allocas. They can't have bitcast uses.
2161       if (AI->isSwiftError())
2162         continue;
2163 
2164       // If the alloca is already scoped to something smaller than the whole
2165       // function then there's no need to add redundant, less accurate markers.
2166       if (hasLifetimeMarkers(AI))
2167         continue;
2168 
2169       // Try to determine the size of the allocation.
2170       ConstantInt *AllocaSize = nullptr;
2171       if (ConstantInt *AIArraySize =
2172           dyn_cast<ConstantInt>(AI->getArraySize())) {
2173         auto &DL = Caller->getParent()->getDataLayout();
2174         Type *AllocaType = AI->getAllocatedType();
2175         TypeSize AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
2176         uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
2177 
2178         // Don't add markers for zero-sized allocas.
2179         if (AllocaArraySize == 0)
2180           continue;
2181 
2182         // Check that array size doesn't saturate uint64_t and doesn't
2183         // overflow when it's multiplied by type size.
2184         if (!AllocaTypeSize.isScalable() &&
2185             AllocaArraySize != std::numeric_limits<uint64_t>::max() &&
2186             std::numeric_limits<uint64_t>::max() / AllocaArraySize >=
2187                 AllocaTypeSize.getFixedSize()) {
2188           AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
2189                                         AllocaArraySize * AllocaTypeSize);
2190         }
2191       }
2192 
2193       builder.CreateLifetimeStart(AI, AllocaSize);
2194       for (ReturnInst *RI : Returns) {
2195         // Don't insert llvm.lifetime.end calls between a musttail or deoptimize
2196         // call and a return.  The return kills all local allocas.
2197         if (InlinedMustTailCalls &&
2198             RI->getParent()->getTerminatingMustTailCall())
2199           continue;
2200         if (InlinedDeoptimizeCalls &&
2201             RI->getParent()->getTerminatingDeoptimizeCall())
2202           continue;
2203         IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
2204       }
2205     }
2206   }
2207 
2208   // If the inlined code contained dynamic alloca instructions, wrap the inlined
2209   // code with llvm.stacksave/llvm.stackrestore intrinsics.
2210   if (InlinedFunctionInfo.ContainsDynamicAllocas) {
2211     Module *M = Caller->getParent();
2212     // Get the two intrinsics we care about.
2213     Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
2214     Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
2215 
2216     // Insert the llvm.stacksave.
2217     CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
2218                              .CreateCall(StackSave, {}, "savedstack");
2219 
2220     // Insert a call to llvm.stackrestore before any return instructions in the
2221     // inlined function.
2222     for (ReturnInst *RI : Returns) {
2223       // Don't insert llvm.stackrestore calls between a musttail or deoptimize
2224       // call and a return.  The return will restore the stack pointer.
2225       if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
2226         continue;
2227       if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall())
2228         continue;
2229       IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
2230     }
2231   }
2232 
2233   // If we are inlining for an invoke instruction, we must make sure to rewrite
2234   // any call instructions into invoke instructions.  This is sensitive to which
2235   // funclet pads were top-level in the inlinee, so must be done before
2236   // rewriting the "parent pad" links.
2237   if (auto *II = dyn_cast<InvokeInst>(&CB)) {
2238     BasicBlock *UnwindDest = II->getUnwindDest();
2239     Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
2240     if (isa<LandingPadInst>(FirstNonPHI)) {
2241       HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
2242     } else {
2243       HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
2244     }
2245   }
2246 
2247   // Update the lexical scopes of the new funclets and callsites.
2248   // Anything that had 'none' as its parent is now nested inside the callsite's
2249   // EHPad.
2250 
2251   if (CallSiteEHPad) {
2252     for (Function::iterator BB = FirstNewBlock->getIterator(),
2253                             E = Caller->end();
2254          BB != E; ++BB) {
2255       // Add bundle operands to any top-level call sites.
2256       SmallVector<OperandBundleDef, 1> OpBundles;
2257       for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) {
2258         CallBase *I = dyn_cast<CallBase>(&*BBI++);
2259         if (!I)
2260           continue;
2261 
2262         // Skip call sites which are nounwind intrinsics.
2263         auto *CalledFn =
2264             dyn_cast<Function>(I->getCalledOperand()->stripPointerCasts());
2265         if (CalledFn && CalledFn->isIntrinsic() && I->doesNotThrow())
2266           continue;
2267 
2268         // Skip call sites which already have a "funclet" bundle.
2269         if (I->getOperandBundle(LLVMContext::OB_funclet))
2270           continue;
2271 
2272         I->getOperandBundlesAsDefs(OpBundles);
2273         OpBundles.emplace_back("funclet", CallSiteEHPad);
2274 
2275         Instruction *NewInst = CallBase::Create(I, OpBundles, I);
2276         NewInst->takeName(I);
2277         I->replaceAllUsesWith(NewInst);
2278         I->eraseFromParent();
2279 
2280         OpBundles.clear();
2281       }
2282 
2283       // It is problematic if the inlinee has a cleanupret which unwinds to
2284       // caller and we inline it into a call site which doesn't unwind but into
2285       // an EH pad that does.  Such an edge must be dynamically unreachable.
2286       // As such, we replace the cleanupret with unreachable.
2287       if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
2288         if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
2289           changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false);
2290 
2291       Instruction *I = BB->getFirstNonPHI();
2292       if (!I->isEHPad())
2293         continue;
2294 
2295       if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
2296         if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
2297           CatchSwitch->setParentPad(CallSiteEHPad);
2298       } else {
2299         auto *FPI = cast<FuncletPadInst>(I);
2300         if (isa<ConstantTokenNone>(FPI->getParentPad()))
2301           FPI->setParentPad(CallSiteEHPad);
2302       }
2303     }
2304   }
2305 
2306   if (InlinedDeoptimizeCalls) {
2307     // We need to at least remove the deoptimizing returns from the Return set,
2308     // so that the control flow from those returns does not get merged into the
2309     // caller (but terminate it instead).  If the caller's return type does not
2310     // match the callee's return type, we also need to change the return type of
2311     // the intrinsic.
2312     if (Caller->getReturnType() == CB.getType()) {
2313       llvm::erase_if(Returns, [](ReturnInst *RI) {
2314         return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr;
2315       });
2316     } else {
2317       SmallVector<ReturnInst *, 8> NormalReturns;
2318       Function *NewDeoptIntrinsic = Intrinsic::getDeclaration(
2319           Caller->getParent(), Intrinsic::experimental_deoptimize,
2320           {Caller->getReturnType()});
2321 
2322       for (ReturnInst *RI : Returns) {
2323         CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall();
2324         if (!DeoptCall) {
2325           NormalReturns.push_back(RI);
2326           continue;
2327         }
2328 
2329         // The calling convention on the deoptimize call itself may be bogus,
2330         // since the code we're inlining may have undefined behavior (and may
2331         // never actually execute at runtime); but all
2332         // @llvm.experimental.deoptimize declarations have to have the same
2333         // calling convention in a well-formed module.
2334         auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv();
2335         NewDeoptIntrinsic->setCallingConv(CallingConv);
2336         auto *CurBB = RI->getParent();
2337         RI->eraseFromParent();
2338 
2339         SmallVector<Value *, 4> CallArgs(DeoptCall->args());
2340 
2341         SmallVector<OperandBundleDef, 1> OpBundles;
2342         DeoptCall->getOperandBundlesAsDefs(OpBundles);
2343         DeoptCall->eraseFromParent();
2344         assert(!OpBundles.empty() &&
2345                "Expected at least the deopt operand bundle");
2346 
2347         IRBuilder<> Builder(CurBB);
2348         CallInst *NewDeoptCall =
2349             Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles);
2350         NewDeoptCall->setCallingConv(CallingConv);
2351         if (NewDeoptCall->getType()->isVoidTy())
2352           Builder.CreateRetVoid();
2353         else
2354           Builder.CreateRet(NewDeoptCall);
2355       }
2356 
2357       // Leave behind the normal returns so we can merge control flow.
2358       std::swap(Returns, NormalReturns);
2359     }
2360   }
2361 
2362   // Handle any inlined musttail call sites.  In order for a new call site to be
2363   // musttail, the source of the clone and the inlined call site must have been
2364   // musttail.  Therefore it's safe to return without merging control into the
2365   // phi below.
2366   if (InlinedMustTailCalls) {
2367     // Check if we need to bitcast the result of any musttail calls.
2368     Type *NewRetTy = Caller->getReturnType();
2369     bool NeedBitCast = !CB.use_empty() && CB.getType() != NewRetTy;
2370 
2371     // Handle the returns preceded by musttail calls separately.
2372     SmallVector<ReturnInst *, 8> NormalReturns;
2373     for (ReturnInst *RI : Returns) {
2374       CallInst *ReturnedMustTail =
2375           RI->getParent()->getTerminatingMustTailCall();
2376       if (!ReturnedMustTail) {
2377         NormalReturns.push_back(RI);
2378         continue;
2379       }
2380       if (!NeedBitCast)
2381         continue;
2382 
2383       // Delete the old return and any preceding bitcast.
2384       BasicBlock *CurBB = RI->getParent();
2385       auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
2386       RI->eraseFromParent();
2387       if (OldCast)
2388         OldCast->eraseFromParent();
2389 
2390       // Insert a new bitcast and return with the right type.
2391       IRBuilder<> Builder(CurBB);
2392       Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
2393     }
2394 
2395     // Leave behind the normal returns so we can merge control flow.
2396     std::swap(Returns, NormalReturns);
2397   }
2398 
2399   // Now that all of the transforms on the inlined code have taken place but
2400   // before we splice the inlined code into the CFG and lose track of which
2401   // blocks were actually inlined, collect the call sites. We only do this if
2402   // call graph updates weren't requested, as those provide value handle based
2403   // tracking of inlined call sites instead.
2404   if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) {
2405     // Otherwise just collect the raw call sites that were inlined.
2406     for (BasicBlock &NewBB :
2407          make_range(FirstNewBlock->getIterator(), Caller->end()))
2408       for (Instruction &I : NewBB)
2409         if (auto *CB = dyn_cast<CallBase>(&I))
2410           IFI.InlinedCallSites.push_back(CB);
2411   }
2412 
2413   // If we cloned in _exactly one_ basic block, and if that block ends in a
2414   // return instruction, we splice the body of the inlined callee directly into
2415   // the calling basic block.
2416   if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
2417     // Move all of the instructions right before the call.
2418     OrigBB->getInstList().splice(CB.getIterator(), FirstNewBlock->getInstList(),
2419                                  FirstNewBlock->begin(), FirstNewBlock->end());
2420     // Remove the cloned basic block.
2421     Caller->getBasicBlockList().pop_back();
2422 
2423     // If the call site was an invoke instruction, add a branch to the normal
2424     // destination.
2425     if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
2426       BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), &CB);
2427       NewBr->setDebugLoc(Returns[0]->getDebugLoc());
2428     }
2429 
2430     // If the return instruction returned a value, replace uses of the call with
2431     // uses of the returned value.
2432     if (!CB.use_empty()) {
2433       ReturnInst *R = Returns[0];
2434       if (&CB == R->getReturnValue())
2435         CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
2436       else
2437         CB.replaceAllUsesWith(R->getReturnValue());
2438     }
2439     // Since we are now done with the Call/Invoke, we can delete it.
2440     CB.eraseFromParent();
2441 
2442     // Since we are now done with the return instruction, delete it also.
2443     Returns[0]->eraseFromParent();
2444 
2445     // We are now done with the inlining.
2446     return InlineResult::success();
2447   }
2448 
2449   // Otherwise, we have the normal case, of more than one block to inline or
2450   // multiple return sites.
2451 
2452   // We want to clone the entire callee function into the hole between the
2453   // "starter" and "ender" blocks.  How we accomplish this depends on whether
2454   // this is an invoke instruction or a call instruction.
2455   BasicBlock *AfterCallBB;
2456   BranchInst *CreatedBranchToNormalDest = nullptr;
2457   if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
2458 
2459     // Add an unconditional branch to make this look like the CallInst case...
2460     CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), &CB);
2461 
2462     // Split the basic block.  This guarantees that no PHI nodes will have to be
2463     // updated due to new incoming edges, and make the invoke case more
2464     // symmetric to the call case.
2465     AfterCallBB =
2466         OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
2467                                 CalledFunc->getName() + ".exit");
2468 
2469   } else { // It's a call
2470     // If this is a call instruction, we need to split the basic block that
2471     // the call lives in.
2472     //
2473     AfterCallBB = OrigBB->splitBasicBlock(CB.getIterator(),
2474                                           CalledFunc->getName() + ".exit");
2475   }
2476 
2477   if (IFI.CallerBFI) {
2478     // Copy original BB's block frequency to AfterCallBB
2479     IFI.CallerBFI->setBlockFreq(
2480         AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency());
2481   }
2482 
2483   // Change the branch that used to go to AfterCallBB to branch to the first
2484   // basic block of the inlined function.
2485   //
2486   Instruction *Br = OrigBB->getTerminator();
2487   assert(Br && Br->getOpcode() == Instruction::Br &&
2488          "splitBasicBlock broken!");
2489   Br->setOperand(0, &*FirstNewBlock);
2490 
2491   // Now that the function is correct, make it a little bit nicer.  In
2492   // particular, move the basic blocks inserted from the end of the function
2493   // into the space made by splitting the source basic block.
2494   Caller->getBasicBlockList().splice(AfterCallBB->getIterator(),
2495                                      Caller->getBasicBlockList(), FirstNewBlock,
2496                                      Caller->end());
2497 
2498   // Handle all of the return instructions that we just cloned in, and eliminate
2499   // any users of the original call/invoke instruction.
2500   Type *RTy = CalledFunc->getReturnType();
2501 
2502   PHINode *PHI = nullptr;
2503   if (Returns.size() > 1) {
2504     // The PHI node should go at the front of the new basic block to merge all
2505     // possible incoming values.
2506     if (!CB.use_empty()) {
2507       PHI = PHINode::Create(RTy, Returns.size(), CB.getName(),
2508                             &AfterCallBB->front());
2509       // Anything that used the result of the function call should now use the
2510       // PHI node as their operand.
2511       CB.replaceAllUsesWith(PHI);
2512     }
2513 
2514     // Loop over all of the return instructions adding entries to the PHI node
2515     // as appropriate.
2516     if (PHI) {
2517       for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2518         ReturnInst *RI = Returns[i];
2519         assert(RI->getReturnValue()->getType() == PHI->getType() &&
2520                "Ret value not consistent in function!");
2521         PHI->addIncoming(RI->getReturnValue(), RI->getParent());
2522       }
2523     }
2524 
2525     // Add a branch to the merge points and remove return instructions.
2526     DebugLoc Loc;
2527     for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2528       ReturnInst *RI = Returns[i];
2529       BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
2530       Loc = RI->getDebugLoc();
2531       BI->setDebugLoc(Loc);
2532       RI->eraseFromParent();
2533     }
2534     // We need to set the debug location to *somewhere* inside the
2535     // inlined function. The line number may be nonsensical, but the
2536     // instruction will at least be associated with the right
2537     // function.
2538     if (CreatedBranchToNormalDest)
2539       CreatedBranchToNormalDest->setDebugLoc(Loc);
2540   } else if (!Returns.empty()) {
2541     // Otherwise, if there is exactly one return value, just replace anything
2542     // using the return value of the call with the computed value.
2543     if (!CB.use_empty()) {
2544       if (&CB == Returns[0]->getReturnValue())
2545         CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
2546       else
2547         CB.replaceAllUsesWith(Returns[0]->getReturnValue());
2548     }
2549 
2550     // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
2551     BasicBlock *ReturnBB = Returns[0]->getParent();
2552     ReturnBB->replaceAllUsesWith(AfterCallBB);
2553 
2554     // Splice the code from the return block into the block that it will return
2555     // to, which contains the code that was after the call.
2556     AfterCallBB->getInstList().splice(AfterCallBB->begin(),
2557                                       ReturnBB->getInstList());
2558 
2559     if (CreatedBranchToNormalDest)
2560       CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
2561 
2562     // Delete the return instruction now and empty ReturnBB now.
2563     Returns[0]->eraseFromParent();
2564     ReturnBB->eraseFromParent();
2565   } else if (!CB.use_empty()) {
2566     // No returns, but something is using the return value of the call.  Just
2567     // nuke the result.
2568     CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
2569   }
2570 
2571   // Since we are now done with the Call/Invoke, we can delete it.
2572   CB.eraseFromParent();
2573 
2574   // If we inlined any musttail calls and the original return is now
2575   // unreachable, delete it.  It can only contain a bitcast and ret.
2576   if (InlinedMustTailCalls && pred_empty(AfterCallBB))
2577     AfterCallBB->eraseFromParent();
2578 
2579   // We should always be able to fold the entry block of the function into the
2580   // single predecessor of the block...
2581   assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
2582   BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
2583 
2584   // Splice the code entry block into calling block, right before the
2585   // unconditional branch.
2586   CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
2587   OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList());
2588 
2589   // Remove the unconditional branch.
2590   OrigBB->getInstList().erase(Br);
2591 
2592   // Now we can remove the CalleeEntry block, which is now empty.
2593   Caller->getBasicBlockList().erase(CalleeEntry);
2594 
2595   // If we inserted a phi node, check to see if it has a single value (e.g. all
2596   // the entries are the same or undef).  If so, remove the PHI so it doesn't
2597   // block other optimizations.
2598   if (PHI) {
2599     AssumptionCache *AC =
2600         IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
2601     auto &DL = Caller->getParent()->getDataLayout();
2602     if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) {
2603       PHI->replaceAllUsesWith(V);
2604       PHI->eraseFromParent();
2605     }
2606   }
2607 
2608   return InlineResult::success();
2609 }
2610