1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements inlining of a function into a call site, resolving 10 // parameters and the return value as appropriate. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/BlockFrequencyInfo.h" 26 #include "llvm/Analysis/CallGraph.h" 27 #include "llvm/Analysis/CaptureTracking.h" 28 #include "llvm/Analysis/EHPersonalities.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/ObjCARCAnalysisUtils.h" 31 #include "llvm/Analysis/ObjCARCRVAttr.h" 32 #include "llvm/Analysis/ProfileSummaryInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DIBuilder.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfoMetadata.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Dominators.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/User.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 64 #include "llvm/Transforms/Utils/Cloning.h" 65 #include "llvm/Transforms/Utils/Local.h" 66 #include "llvm/Transforms/Utils/ValueMapper.h" 67 #include <algorithm> 68 #include <cassert> 69 #include <cstdint> 70 #include <iterator> 71 #include <limits> 72 #include <string> 73 #include <utility> 74 #include <vector> 75 76 using namespace llvm; 77 using ProfileCount = Function::ProfileCount; 78 79 static cl::opt<bool> 80 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), 81 cl::Hidden, 82 cl::desc("Convert noalias attributes to metadata during inlining.")); 83 84 static cl::opt<bool> 85 UseNoAliasIntrinsic("use-noalias-intrinsic-during-inlining", cl::Hidden, 86 cl::ZeroOrMore, cl::init(true), 87 cl::desc("Use the llvm.experimental.noalias.scope.decl " 88 "intrinsic during inlining.")); 89 90 // Disabled by default, because the added alignment assumptions may increase 91 // compile-time and block optimizations. This option is not suitable for use 92 // with frontends that emit comprehensive parameter alignment annotations. 93 static cl::opt<bool> 94 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", 95 cl::init(false), cl::Hidden, 96 cl::desc("Convert align attributes to assumptions during inlining.")); 97 98 static cl::opt<bool> UpdateReturnAttributes( 99 "update-return-attrs", cl::init(true), cl::Hidden, 100 cl::desc("Update return attributes on calls within inlined body")); 101 102 static cl::opt<unsigned> InlinerAttributeWindow( 103 "max-inst-checked-for-throw-during-inlining", cl::Hidden, 104 cl::desc("the maximum number of instructions analyzed for may throw during " 105 "attribute inference in inlined body"), 106 cl::init(4)); 107 108 namespace { 109 110 /// A class for recording information about inlining a landing pad. 111 class LandingPadInliningInfo { 112 /// Destination of the invoke's unwind. 113 BasicBlock *OuterResumeDest; 114 115 /// Destination for the callee's resume. 116 BasicBlock *InnerResumeDest = nullptr; 117 118 /// LandingPadInst associated with the invoke. 119 LandingPadInst *CallerLPad = nullptr; 120 121 /// PHI for EH values from landingpad insts. 122 PHINode *InnerEHValuesPHI = nullptr; 123 124 SmallVector<Value*, 8> UnwindDestPHIValues; 125 126 public: 127 LandingPadInliningInfo(InvokeInst *II) 128 : OuterResumeDest(II->getUnwindDest()) { 129 // If there are PHI nodes in the unwind destination block, we need to keep 130 // track of which values came into them from the invoke before removing 131 // the edge from this block. 132 BasicBlock *InvokeBB = II->getParent(); 133 BasicBlock::iterator I = OuterResumeDest->begin(); 134 for (; isa<PHINode>(I); ++I) { 135 // Save the value to use for this edge. 136 PHINode *PHI = cast<PHINode>(I); 137 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 138 } 139 140 CallerLPad = cast<LandingPadInst>(I); 141 } 142 143 /// The outer unwind destination is the target of 144 /// unwind edges introduced for calls within the inlined function. 145 BasicBlock *getOuterResumeDest() const { 146 return OuterResumeDest; 147 } 148 149 BasicBlock *getInnerResumeDest(); 150 151 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 152 153 /// Forward the 'resume' instruction to the caller's landing pad block. 154 /// When the landing pad block has only one predecessor, this is 155 /// a simple branch. When there is more than one predecessor, we need to 156 /// split the landing pad block after the landingpad instruction and jump 157 /// to there. 158 void forwardResume(ResumeInst *RI, 159 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); 160 161 /// Add incoming-PHI values to the unwind destination block for the given 162 /// basic block, using the values for the original invoke's source block. 163 void addIncomingPHIValuesFor(BasicBlock *BB) const { 164 addIncomingPHIValuesForInto(BB, OuterResumeDest); 165 } 166 167 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 168 BasicBlock::iterator I = dest->begin(); 169 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 170 PHINode *phi = cast<PHINode>(I); 171 phi->addIncoming(UnwindDestPHIValues[i], src); 172 } 173 } 174 }; 175 176 } // end anonymous namespace 177 178 /// Get or create a target for the branch from ResumeInsts. 179 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() { 180 if (InnerResumeDest) return InnerResumeDest; 181 182 // Split the landing pad. 183 BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator(); 184 InnerResumeDest = 185 OuterResumeDest->splitBasicBlock(SplitPoint, 186 OuterResumeDest->getName() + ".body"); 187 188 // The number of incoming edges we expect to the inner landing pad. 189 const unsigned PHICapacity = 2; 190 191 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 192 Instruction *InsertPoint = &InnerResumeDest->front(); 193 BasicBlock::iterator I = OuterResumeDest->begin(); 194 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 195 PHINode *OuterPHI = cast<PHINode>(I); 196 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 197 OuterPHI->getName() + ".lpad-body", 198 InsertPoint); 199 OuterPHI->replaceAllUsesWith(InnerPHI); 200 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 201 } 202 203 // Create a PHI for the exception values. 204 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 205 "eh.lpad-body", InsertPoint); 206 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 207 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 208 209 // All done. 210 return InnerResumeDest; 211 } 212 213 /// Forward the 'resume' instruction to the caller's landing pad block. 214 /// When the landing pad block has only one predecessor, this is a simple 215 /// branch. When there is more than one predecessor, we need to split the 216 /// landing pad block after the landingpad instruction and jump to there. 217 void LandingPadInliningInfo::forwardResume( 218 ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) { 219 BasicBlock *Dest = getInnerResumeDest(); 220 BasicBlock *Src = RI->getParent(); 221 222 BranchInst::Create(Dest, Src); 223 224 // Update the PHIs in the destination. They were inserted in an order which 225 // makes this work. 226 addIncomingPHIValuesForInto(Src, Dest); 227 228 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 229 RI->eraseFromParent(); 230 } 231 232 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper. 233 static Value *getParentPad(Value *EHPad) { 234 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 235 return FPI->getParentPad(); 236 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 237 } 238 239 using UnwindDestMemoTy = DenseMap<Instruction *, Value *>; 240 241 /// Helper for getUnwindDestToken that does the descendant-ward part of 242 /// the search. 243 static Value *getUnwindDestTokenHelper(Instruction *EHPad, 244 UnwindDestMemoTy &MemoMap) { 245 SmallVector<Instruction *, 8> Worklist(1, EHPad); 246 247 while (!Worklist.empty()) { 248 Instruction *CurrentPad = Worklist.pop_back_val(); 249 // We only put pads on the worklist that aren't in the MemoMap. When 250 // we find an unwind dest for a pad we may update its ancestors, but 251 // the queue only ever contains uncles/great-uncles/etc. of CurrentPad, 252 // so they should never get updated while queued on the worklist. 253 assert(!MemoMap.count(CurrentPad)); 254 Value *UnwindDestToken = nullptr; 255 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) { 256 if (CatchSwitch->hasUnwindDest()) { 257 UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI(); 258 } else { 259 // Catchswitch doesn't have a 'nounwind' variant, and one might be 260 // annotated as "unwinds to caller" when really it's nounwind (see 261 // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the 262 // parent's unwind dest from this. We can check its catchpads' 263 // descendants, since they might include a cleanuppad with an 264 // "unwinds to caller" cleanupret, which can be trusted. 265 for (auto HI = CatchSwitch->handler_begin(), 266 HE = CatchSwitch->handler_end(); 267 HI != HE && !UnwindDestToken; ++HI) { 268 BasicBlock *HandlerBlock = *HI; 269 auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI()); 270 for (User *Child : CatchPad->users()) { 271 // Intentionally ignore invokes here -- since the catchswitch is 272 // marked "unwind to caller", it would be a verifier error if it 273 // contained an invoke which unwinds out of it, so any invoke we'd 274 // encounter must unwind to some child of the catch. 275 if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child)) 276 continue; 277 278 Instruction *ChildPad = cast<Instruction>(Child); 279 auto Memo = MemoMap.find(ChildPad); 280 if (Memo == MemoMap.end()) { 281 // Haven't figured out this child pad yet; queue it. 282 Worklist.push_back(ChildPad); 283 continue; 284 } 285 // We've already checked this child, but might have found that 286 // it offers no proof either way. 287 Value *ChildUnwindDestToken = Memo->second; 288 if (!ChildUnwindDestToken) 289 continue; 290 // We already know the child's unwind dest, which can either 291 // be ConstantTokenNone to indicate unwind to caller, or can 292 // be another child of the catchpad. Only the former indicates 293 // the unwind dest of the catchswitch. 294 if (isa<ConstantTokenNone>(ChildUnwindDestToken)) { 295 UnwindDestToken = ChildUnwindDestToken; 296 break; 297 } 298 assert(getParentPad(ChildUnwindDestToken) == CatchPad); 299 } 300 } 301 } 302 } else { 303 auto *CleanupPad = cast<CleanupPadInst>(CurrentPad); 304 for (User *U : CleanupPad->users()) { 305 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) { 306 if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest()) 307 UnwindDestToken = RetUnwindDest->getFirstNonPHI(); 308 else 309 UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext()); 310 break; 311 } 312 Value *ChildUnwindDestToken; 313 if (auto *Invoke = dyn_cast<InvokeInst>(U)) { 314 ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI(); 315 } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) { 316 Instruction *ChildPad = cast<Instruction>(U); 317 auto Memo = MemoMap.find(ChildPad); 318 if (Memo == MemoMap.end()) { 319 // Haven't resolved this child yet; queue it and keep searching. 320 Worklist.push_back(ChildPad); 321 continue; 322 } 323 // We've checked this child, but still need to ignore it if it 324 // had no proof either way. 325 ChildUnwindDestToken = Memo->second; 326 if (!ChildUnwindDestToken) 327 continue; 328 } else { 329 // Not a relevant user of the cleanuppad 330 continue; 331 } 332 // In a well-formed program, the child/invoke must either unwind to 333 // an(other) child of the cleanup, or exit the cleanup. In the 334 // first case, continue searching. 335 if (isa<Instruction>(ChildUnwindDestToken) && 336 getParentPad(ChildUnwindDestToken) == CleanupPad) 337 continue; 338 UnwindDestToken = ChildUnwindDestToken; 339 break; 340 } 341 } 342 // If we haven't found an unwind dest for CurrentPad, we may have queued its 343 // children, so move on to the next in the worklist. 344 if (!UnwindDestToken) 345 continue; 346 347 // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits 348 // any ancestors of CurrentPad up to but not including UnwindDestToken's 349 // parent pad. Record this in the memo map, and check to see if the 350 // original EHPad being queried is one of the ones exited. 351 Value *UnwindParent; 352 if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken)) 353 UnwindParent = getParentPad(UnwindPad); 354 else 355 UnwindParent = nullptr; 356 bool ExitedOriginalPad = false; 357 for (Instruction *ExitedPad = CurrentPad; 358 ExitedPad && ExitedPad != UnwindParent; 359 ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) { 360 // Skip over catchpads since they just follow their catchswitches. 361 if (isa<CatchPadInst>(ExitedPad)) 362 continue; 363 MemoMap[ExitedPad] = UnwindDestToken; 364 ExitedOriginalPad |= (ExitedPad == EHPad); 365 } 366 367 if (ExitedOriginalPad) 368 return UnwindDestToken; 369 370 // Continue the search. 371 } 372 373 // No definitive information is contained within this funclet. 374 return nullptr; 375 } 376 377 /// Given an EH pad, find where it unwinds. If it unwinds to an EH pad, 378 /// return that pad instruction. If it unwinds to caller, return 379 /// ConstantTokenNone. If it does not have a definitive unwind destination, 380 /// return nullptr. 381 /// 382 /// This routine gets invoked for calls in funclets in inlinees when inlining 383 /// an invoke. Since many funclets don't have calls inside them, it's queried 384 /// on-demand rather than building a map of pads to unwind dests up front. 385 /// Determining a funclet's unwind dest may require recursively searching its 386 /// descendants, and also ancestors and cousins if the descendants don't provide 387 /// an answer. Since most funclets will have their unwind dest immediately 388 /// available as the unwind dest of a catchswitch or cleanupret, this routine 389 /// searches top-down from the given pad and then up. To avoid worst-case 390 /// quadratic run-time given that approach, it uses a memo map to avoid 391 /// re-processing funclet trees. The callers that rewrite the IR as they go 392 /// take advantage of this, for correctness, by checking/forcing rewritten 393 /// pads' entries to match the original callee view. 394 static Value *getUnwindDestToken(Instruction *EHPad, 395 UnwindDestMemoTy &MemoMap) { 396 // Catchpads unwind to the same place as their catchswitch; 397 // redirct any queries on catchpads so the code below can 398 // deal with just catchswitches and cleanuppads. 399 if (auto *CPI = dyn_cast<CatchPadInst>(EHPad)) 400 EHPad = CPI->getCatchSwitch(); 401 402 // Check if we've already determined the unwind dest for this pad. 403 auto Memo = MemoMap.find(EHPad); 404 if (Memo != MemoMap.end()) 405 return Memo->second; 406 407 // Search EHPad and, if necessary, its descendants. 408 Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap); 409 assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0)); 410 if (UnwindDestToken) 411 return UnwindDestToken; 412 413 // No information is available for this EHPad from itself or any of its 414 // descendants. An unwind all the way out to a pad in the caller would 415 // need also to agree with the unwind dest of the parent funclet, so 416 // search up the chain to try to find a funclet with information. Put 417 // null entries in the memo map to avoid re-processing as we go up. 418 MemoMap[EHPad] = nullptr; 419 #ifndef NDEBUG 420 SmallPtrSet<Instruction *, 4> TempMemos; 421 TempMemos.insert(EHPad); 422 #endif 423 Instruction *LastUselessPad = EHPad; 424 Value *AncestorToken; 425 for (AncestorToken = getParentPad(EHPad); 426 auto *AncestorPad = dyn_cast<Instruction>(AncestorToken); 427 AncestorToken = getParentPad(AncestorToken)) { 428 // Skip over catchpads since they just follow their catchswitches. 429 if (isa<CatchPadInst>(AncestorPad)) 430 continue; 431 // If the MemoMap had an entry mapping AncestorPad to nullptr, since we 432 // haven't yet called getUnwindDestTokenHelper for AncestorPad in this 433 // call to getUnwindDestToken, that would mean that AncestorPad had no 434 // information in itself, its descendants, or its ancestors. If that 435 // were the case, then we should also have recorded the lack of information 436 // for the descendant that we're coming from. So assert that we don't 437 // find a null entry in the MemoMap for AncestorPad. 438 assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]); 439 auto AncestorMemo = MemoMap.find(AncestorPad); 440 if (AncestorMemo == MemoMap.end()) { 441 UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap); 442 } else { 443 UnwindDestToken = AncestorMemo->second; 444 } 445 if (UnwindDestToken) 446 break; 447 LastUselessPad = AncestorPad; 448 MemoMap[LastUselessPad] = nullptr; 449 #ifndef NDEBUG 450 TempMemos.insert(LastUselessPad); 451 #endif 452 } 453 454 // We know that getUnwindDestTokenHelper was called on LastUselessPad and 455 // returned nullptr (and likewise for EHPad and any of its ancestors up to 456 // LastUselessPad), so LastUselessPad has no information from below. Since 457 // getUnwindDestTokenHelper must investigate all downward paths through 458 // no-information nodes to prove that a node has no information like this, 459 // and since any time it finds information it records it in the MemoMap for 460 // not just the immediately-containing funclet but also any ancestors also 461 // exited, it must be the case that, walking downward from LastUselessPad, 462 // visiting just those nodes which have not been mapped to an unwind dest 463 // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since 464 // they are just used to keep getUnwindDestTokenHelper from repeating work), 465 // any node visited must have been exhaustively searched with no information 466 // for it found. 467 SmallVector<Instruction *, 8> Worklist(1, LastUselessPad); 468 while (!Worklist.empty()) { 469 Instruction *UselessPad = Worklist.pop_back_val(); 470 auto Memo = MemoMap.find(UselessPad); 471 if (Memo != MemoMap.end() && Memo->second) { 472 // Here the name 'UselessPad' is a bit of a misnomer, because we've found 473 // that it is a funclet that does have information about unwinding to 474 // a particular destination; its parent was a useless pad. 475 // Since its parent has no information, the unwind edge must not escape 476 // the parent, and must target a sibling of this pad. This local unwind 477 // gives us no information about EHPad. Leave it and the subtree rooted 478 // at it alone. 479 assert(getParentPad(Memo->second) == getParentPad(UselessPad)); 480 continue; 481 } 482 // We know we don't have information for UselesPad. If it has an entry in 483 // the MemoMap (mapping it to nullptr), it must be one of the TempMemos 484 // added on this invocation of getUnwindDestToken; if a previous invocation 485 // recorded nullptr, it would have had to prove that the ancestors of 486 // UselessPad, which include LastUselessPad, had no information, and that 487 // in turn would have required proving that the descendants of 488 // LastUselesPad, which include EHPad, have no information about 489 // LastUselessPad, which would imply that EHPad was mapped to nullptr in 490 // the MemoMap on that invocation, which isn't the case if we got here. 491 assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad)); 492 // Assert as we enumerate users that 'UselessPad' doesn't have any unwind 493 // information that we'd be contradicting by making a map entry for it 494 // (which is something that getUnwindDestTokenHelper must have proved for 495 // us to get here). Just assert on is direct users here; the checks in 496 // this downward walk at its descendants will verify that they don't have 497 // any unwind edges that exit 'UselessPad' either (i.e. they either have no 498 // unwind edges or unwind to a sibling). 499 MemoMap[UselessPad] = UnwindDestToken; 500 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) { 501 assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad"); 502 for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) { 503 auto *CatchPad = HandlerBlock->getFirstNonPHI(); 504 for (User *U : CatchPad->users()) { 505 assert( 506 (!isa<InvokeInst>(U) || 507 (getParentPad( 508 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 509 CatchPad)) && 510 "Expected useless pad"); 511 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 512 Worklist.push_back(cast<Instruction>(U)); 513 } 514 } 515 } else { 516 assert(isa<CleanupPadInst>(UselessPad)); 517 for (User *U : UselessPad->users()) { 518 assert(!isa<CleanupReturnInst>(U) && "Expected useless pad"); 519 assert((!isa<InvokeInst>(U) || 520 (getParentPad( 521 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 522 UselessPad)) && 523 "Expected useless pad"); 524 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 525 Worklist.push_back(cast<Instruction>(U)); 526 } 527 } 528 } 529 530 return UnwindDestToken; 531 } 532 533 /// When we inline a basic block into an invoke, 534 /// we have to turn all of the calls that can throw into invokes. 535 /// This function analyze BB to see if there are any calls, and if so, 536 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 537 /// nodes in that block with the values specified in InvokeDestPHIValues. 538 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke( 539 BasicBlock *BB, BasicBlock *UnwindEdge, 540 UnwindDestMemoTy *FuncletUnwindMap = nullptr) { 541 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 542 Instruction *I = &*BBI++; 543 544 // We only need to check for function calls: inlined invoke 545 // instructions require no special handling. 546 CallInst *CI = dyn_cast<CallInst>(I); 547 548 if (!CI || CI->doesNotThrow() || CI->isInlineAsm()) 549 continue; 550 551 // We do not need to (and in fact, cannot) convert possibly throwing calls 552 // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into 553 // invokes. The caller's "segment" of the deoptimization continuation 554 // attached to the newly inlined @llvm.experimental_deoptimize 555 // (resp. @llvm.experimental.guard) call should contain the exception 556 // handling logic, if any. 557 if (auto *F = CI->getCalledFunction()) 558 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize || 559 F->getIntrinsicID() == Intrinsic::experimental_guard) 560 continue; 561 562 if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) { 563 // This call is nested inside a funclet. If that funclet has an unwind 564 // destination within the inlinee, then unwinding out of this call would 565 // be UB. Rewriting this call to an invoke which targets the inlined 566 // invoke's unwind dest would give the call's parent funclet multiple 567 // unwind destinations, which is something that subsequent EH table 568 // generation can't handle and that the veirifer rejects. So when we 569 // see such a call, leave it as a call. 570 auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]); 571 Value *UnwindDestToken = 572 getUnwindDestToken(FuncletPad, *FuncletUnwindMap); 573 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 574 continue; 575 #ifndef NDEBUG 576 Instruction *MemoKey; 577 if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad)) 578 MemoKey = CatchPad->getCatchSwitch(); 579 else 580 MemoKey = FuncletPad; 581 assert(FuncletUnwindMap->count(MemoKey) && 582 (*FuncletUnwindMap)[MemoKey] == UnwindDestToken && 583 "must get memoized to avoid confusing later searches"); 584 #endif // NDEBUG 585 } 586 587 changeToInvokeAndSplitBasicBlock(CI, UnwindEdge); 588 return BB; 589 } 590 return nullptr; 591 } 592 593 /// If we inlined an invoke site, we need to convert calls 594 /// in the body of the inlined function into invokes. 595 /// 596 /// II is the invoke instruction being inlined. FirstNewBlock is the first 597 /// block of the inlined code (the last block is the end of the function), 598 /// and InlineCodeInfo is information about the code that got inlined. 599 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock, 600 ClonedCodeInfo &InlinedCodeInfo) { 601 BasicBlock *InvokeDest = II->getUnwindDest(); 602 603 Function *Caller = FirstNewBlock->getParent(); 604 605 // The inlined code is currently at the end of the function, scan from the 606 // start of the inlined code to its end, checking for stuff we need to 607 // rewrite. 608 LandingPadInliningInfo Invoke(II); 609 610 // Get all of the inlined landing pad instructions. 611 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 612 for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end(); 613 I != E; ++I) 614 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 615 InlinedLPads.insert(II->getLandingPadInst()); 616 617 // Append the clauses from the outer landing pad instruction into the inlined 618 // landing pad instructions. 619 LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 620 for (LandingPadInst *InlinedLPad : InlinedLPads) { 621 unsigned OuterNum = OuterLPad->getNumClauses(); 622 InlinedLPad->reserveClauses(OuterNum); 623 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 624 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 625 if (OuterLPad->isCleanup()) 626 InlinedLPad->setCleanup(true); 627 } 628 629 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 630 BB != E; ++BB) { 631 if (InlinedCodeInfo.ContainsCalls) 632 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 633 &*BB, Invoke.getOuterResumeDest())) 634 // Update any PHI nodes in the exceptional block to indicate that there 635 // is now a new entry in them. 636 Invoke.addIncomingPHIValuesFor(NewBB); 637 638 // Forward any resumes that are remaining here. 639 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 640 Invoke.forwardResume(RI, InlinedLPads); 641 } 642 643 // Now that everything is happy, we have one final detail. The PHI nodes in 644 // the exception destination block still have entries due to the original 645 // invoke instruction. Eliminate these entries (which might even delete the 646 // PHI node) now. 647 InvokeDest->removePredecessor(II->getParent()); 648 } 649 650 /// If we inlined an invoke site, we need to convert calls 651 /// in the body of the inlined function into invokes. 652 /// 653 /// II is the invoke instruction being inlined. FirstNewBlock is the first 654 /// block of the inlined code (the last block is the end of the function), 655 /// and InlineCodeInfo is information about the code that got inlined. 656 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock, 657 ClonedCodeInfo &InlinedCodeInfo) { 658 BasicBlock *UnwindDest = II->getUnwindDest(); 659 Function *Caller = FirstNewBlock->getParent(); 660 661 assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!"); 662 663 // If there are PHI nodes in the unwind destination block, we need to keep 664 // track of which values came into them from the invoke before removing the 665 // edge from this block. 666 SmallVector<Value *, 8> UnwindDestPHIValues; 667 BasicBlock *InvokeBB = II->getParent(); 668 for (Instruction &I : *UnwindDest) { 669 // Save the value to use for this edge. 670 PHINode *PHI = dyn_cast<PHINode>(&I); 671 if (!PHI) 672 break; 673 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 674 } 675 676 // Add incoming-PHI values to the unwind destination block for the given basic 677 // block, using the values for the original invoke's source block. 678 auto UpdatePHINodes = [&](BasicBlock *Src) { 679 BasicBlock::iterator I = UnwindDest->begin(); 680 for (Value *V : UnwindDestPHIValues) { 681 PHINode *PHI = cast<PHINode>(I); 682 PHI->addIncoming(V, Src); 683 ++I; 684 } 685 }; 686 687 // This connects all the instructions which 'unwind to caller' to the invoke 688 // destination. 689 UnwindDestMemoTy FuncletUnwindMap; 690 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 691 BB != E; ++BB) { 692 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 693 if (CRI->unwindsToCaller()) { 694 auto *CleanupPad = CRI->getCleanupPad(); 695 CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI); 696 CRI->eraseFromParent(); 697 UpdatePHINodes(&*BB); 698 // Finding a cleanupret with an unwind destination would confuse 699 // subsequent calls to getUnwindDestToken, so map the cleanuppad 700 // to short-circuit any such calls and recognize this as an "unwind 701 // to caller" cleanup. 702 assert(!FuncletUnwindMap.count(CleanupPad) || 703 isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad])); 704 FuncletUnwindMap[CleanupPad] = 705 ConstantTokenNone::get(Caller->getContext()); 706 } 707 } 708 709 Instruction *I = BB->getFirstNonPHI(); 710 if (!I->isEHPad()) 711 continue; 712 713 Instruction *Replacement = nullptr; 714 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 715 if (CatchSwitch->unwindsToCaller()) { 716 Value *UnwindDestToken; 717 if (auto *ParentPad = 718 dyn_cast<Instruction>(CatchSwitch->getParentPad())) { 719 // This catchswitch is nested inside another funclet. If that 720 // funclet has an unwind destination within the inlinee, then 721 // unwinding out of this catchswitch would be UB. Rewriting this 722 // catchswitch to unwind to the inlined invoke's unwind dest would 723 // give the parent funclet multiple unwind destinations, which is 724 // something that subsequent EH table generation can't handle and 725 // that the veirifer rejects. So when we see such a call, leave it 726 // as "unwind to caller". 727 UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap); 728 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 729 continue; 730 } else { 731 // This catchswitch has no parent to inherit constraints from, and 732 // none of its descendants can have an unwind edge that exits it and 733 // targets another funclet in the inlinee. It may or may not have a 734 // descendant that definitively has an unwind to caller. In either 735 // case, we'll have to assume that any unwinds out of it may need to 736 // be routed to the caller, so treat it as though it has a definitive 737 // unwind to caller. 738 UnwindDestToken = ConstantTokenNone::get(Caller->getContext()); 739 } 740 auto *NewCatchSwitch = CatchSwitchInst::Create( 741 CatchSwitch->getParentPad(), UnwindDest, 742 CatchSwitch->getNumHandlers(), CatchSwitch->getName(), 743 CatchSwitch); 744 for (BasicBlock *PadBB : CatchSwitch->handlers()) 745 NewCatchSwitch->addHandler(PadBB); 746 // Propagate info for the old catchswitch over to the new one in 747 // the unwind map. This also serves to short-circuit any subsequent 748 // checks for the unwind dest of this catchswitch, which would get 749 // confused if they found the outer handler in the callee. 750 FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken; 751 Replacement = NewCatchSwitch; 752 } 753 } else if (!isa<FuncletPadInst>(I)) { 754 llvm_unreachable("unexpected EHPad!"); 755 } 756 757 if (Replacement) { 758 Replacement->takeName(I); 759 I->replaceAllUsesWith(Replacement); 760 I->eraseFromParent(); 761 UpdatePHINodes(&*BB); 762 } 763 } 764 765 if (InlinedCodeInfo.ContainsCalls) 766 for (Function::iterator BB = FirstNewBlock->getIterator(), 767 E = Caller->end(); 768 BB != E; ++BB) 769 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 770 &*BB, UnwindDest, &FuncletUnwindMap)) 771 // Update any PHI nodes in the exceptional block to indicate that there 772 // is now a new entry in them. 773 UpdatePHINodes(NewBB); 774 775 // Now that everything is happy, we have one final detail. The PHI nodes in 776 // the exception destination block still have entries due to the original 777 // invoke instruction. Eliminate these entries (which might even delete the 778 // PHI node) now. 779 UnwindDest->removePredecessor(InvokeBB); 780 } 781 782 /// When inlining a call site that has !llvm.mem.parallel_loop_access, 783 /// !llvm.access.group, !alias.scope or !noalias metadata, that metadata should 784 /// be propagated to all memory-accessing cloned instructions. 785 static void PropagateCallSiteMetadata(CallBase &CB, ValueToValueMapTy &VMap) { 786 MDNode *MemParallelLoopAccess = 787 CB.getMetadata(LLVMContext::MD_mem_parallel_loop_access); 788 MDNode *AccessGroup = CB.getMetadata(LLVMContext::MD_access_group); 789 MDNode *AliasScope = CB.getMetadata(LLVMContext::MD_alias_scope); 790 MDNode *NoAlias = CB.getMetadata(LLVMContext::MD_noalias); 791 if (!MemParallelLoopAccess && !AccessGroup && !AliasScope && !NoAlias) 792 return; 793 794 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 795 VMI != VMIE; ++VMI) { 796 // Check that key is an instruction, to skip the Argument mapping, which 797 // points to an instruction in the original function, not the inlined one. 798 if (!VMI->second || !isa<Instruction>(VMI->first)) 799 continue; 800 801 Instruction *NI = dyn_cast<Instruction>(VMI->second); 802 if (!NI) 803 continue; 804 805 // This metadata is only relevant for instructions that access memory. 806 if (!NI->mayReadOrWriteMemory()) 807 continue; 808 809 if (MemParallelLoopAccess) { 810 // TODO: This probably should not overwrite MemParalleLoopAccess. 811 MemParallelLoopAccess = MDNode::concatenate( 812 NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access), 813 MemParallelLoopAccess); 814 NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, 815 MemParallelLoopAccess); 816 } 817 818 if (AccessGroup) 819 NI->setMetadata(LLVMContext::MD_access_group, uniteAccessGroups( 820 NI->getMetadata(LLVMContext::MD_access_group), AccessGroup)); 821 822 if (AliasScope) 823 NI->setMetadata(LLVMContext::MD_alias_scope, MDNode::concatenate( 824 NI->getMetadata(LLVMContext::MD_alias_scope), AliasScope)); 825 826 if (NoAlias) 827 NI->setMetadata(LLVMContext::MD_noalias, MDNode::concatenate( 828 NI->getMetadata(LLVMContext::MD_noalias), NoAlias)); 829 } 830 } 831 832 /// Utility for cloning !noalias and !alias.scope metadata. When a code region 833 /// using scoped alias metadata is inlined, the aliasing relationships may not 834 /// hold between the two version. It is necessary to create a deep clone of the 835 /// metadata, putting the two versions in separate scope domains. 836 class ScopedAliasMetadataDeepCloner { 837 using MetadataMap = DenseMap<const MDNode *, TrackingMDNodeRef>; 838 SetVector<const MDNode *> MD; 839 MetadataMap MDMap; 840 void addRecursiveMetadataUses(); 841 842 public: 843 ScopedAliasMetadataDeepCloner(const Function *F); 844 845 /// Create a new clone of the scoped alias metadata, which will be used by 846 /// subsequent remap() calls. 847 void clone(); 848 849 /// Remap instructions in the given VMap from the original to the cloned 850 /// metadata. 851 void remap(ValueToValueMapTy &VMap); 852 }; 853 854 ScopedAliasMetadataDeepCloner::ScopedAliasMetadataDeepCloner( 855 const Function *F) { 856 for (const BasicBlock &BB : *F) { 857 for (const Instruction &I : BB) { 858 if (const MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope)) 859 MD.insert(M); 860 if (const MDNode *M = I.getMetadata(LLVMContext::MD_noalias)) 861 MD.insert(M); 862 863 // We also need to clone the metadata in noalias intrinsics. 864 if (const auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) 865 MD.insert(Decl->getScopeList()); 866 } 867 } 868 addRecursiveMetadataUses(); 869 } 870 871 void ScopedAliasMetadataDeepCloner::addRecursiveMetadataUses() { 872 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end()); 873 while (!Queue.empty()) { 874 const MDNode *M = cast<MDNode>(Queue.pop_back_val()); 875 for (const Metadata *Op : M->operands()) 876 if (const MDNode *OpMD = dyn_cast<MDNode>(Op)) 877 if (MD.insert(OpMD)) 878 Queue.push_back(OpMD); 879 } 880 } 881 882 void ScopedAliasMetadataDeepCloner::clone() { 883 assert(MDMap.empty() && "clone() already called ?"); 884 885 SmallVector<TempMDTuple, 16> DummyNodes; 886 for (const MDNode *I : MD) { 887 DummyNodes.push_back(MDTuple::getTemporary(I->getContext(), None)); 888 MDMap[I].reset(DummyNodes.back().get()); 889 } 890 891 // Create new metadata nodes to replace the dummy nodes, replacing old 892 // metadata references with either a dummy node or an already-created new 893 // node. 894 SmallVector<Metadata *, 4> NewOps; 895 for (const MDNode *I : MD) { 896 for (const Metadata *Op : I->operands()) { 897 if (const MDNode *M = dyn_cast<MDNode>(Op)) 898 NewOps.push_back(MDMap[M]); 899 else 900 NewOps.push_back(const_cast<Metadata *>(Op)); 901 } 902 903 MDNode *NewM = MDNode::get(I->getContext(), NewOps); 904 MDTuple *TempM = cast<MDTuple>(MDMap[I]); 905 assert(TempM->isTemporary() && "Expected temporary node"); 906 907 TempM->replaceAllUsesWith(NewM); 908 NewOps.clear(); 909 } 910 } 911 912 void ScopedAliasMetadataDeepCloner::remap(ValueToValueMapTy &VMap) { 913 if (MDMap.empty()) 914 return; // Nothing to do. 915 916 for (auto Entry : VMap) { 917 // Check that key is an instruction, to skip the Argument mapping, which 918 // points to an instruction in the original function, not the inlined one. 919 if (!Entry->second || !isa<Instruction>(Entry->first)) 920 continue; 921 922 Instruction *I = dyn_cast<Instruction>(Entry->second); 923 if (!I) 924 continue; 925 926 if (MDNode *M = I->getMetadata(LLVMContext::MD_alias_scope)) 927 I->setMetadata(LLVMContext::MD_alias_scope, MDMap[M]); 928 929 if (MDNode *M = I->getMetadata(LLVMContext::MD_noalias)) 930 I->setMetadata(LLVMContext::MD_noalias, MDMap[M]); 931 932 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(I)) 933 Decl->setScopeList(MDMap[Decl->getScopeList()]); 934 } 935 } 936 937 /// If the inlined function has noalias arguments, 938 /// then add new alias scopes for each noalias argument, tag the mapped noalias 939 /// parameters with noalias metadata specifying the new scope, and tag all 940 /// non-derived loads, stores and memory intrinsics with the new alias scopes. 941 static void AddAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap, 942 const DataLayout &DL, AAResults *CalleeAAR) { 943 if (!EnableNoAliasConversion) 944 return; 945 946 const Function *CalledFunc = CB.getCalledFunction(); 947 SmallVector<const Argument *, 4> NoAliasArgs; 948 949 for (const Argument &Arg : CalledFunc->args()) 950 if (CB.paramHasAttr(Arg.getArgNo(), Attribute::NoAlias) && !Arg.use_empty()) 951 NoAliasArgs.push_back(&Arg); 952 953 if (NoAliasArgs.empty()) 954 return; 955 956 // To do a good job, if a noalias variable is captured, we need to know if 957 // the capture point dominates the particular use we're considering. 958 DominatorTree DT; 959 DT.recalculate(const_cast<Function&>(*CalledFunc)); 960 961 // noalias indicates that pointer values based on the argument do not alias 962 // pointer values which are not based on it. So we add a new "scope" for each 963 // noalias function argument. Accesses using pointers based on that argument 964 // become part of that alias scope, accesses using pointers not based on that 965 // argument are tagged as noalias with that scope. 966 967 DenseMap<const Argument *, MDNode *> NewScopes; 968 MDBuilder MDB(CalledFunc->getContext()); 969 970 // Create a new scope domain for this function. 971 MDNode *NewDomain = 972 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); 973 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { 974 const Argument *A = NoAliasArgs[i]; 975 976 std::string Name = std::string(CalledFunc->getName()); 977 if (A->hasName()) { 978 Name += ": %"; 979 Name += A->getName(); 980 } else { 981 Name += ": argument "; 982 Name += utostr(i); 983 } 984 985 // Note: We always create a new anonymous root here. This is true regardless 986 // of the linkage of the callee because the aliasing "scope" is not just a 987 // property of the callee, but also all control dependencies in the caller. 988 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); 989 NewScopes.insert(std::make_pair(A, NewScope)); 990 991 if (UseNoAliasIntrinsic) { 992 // Introduce a llvm.experimental.noalias.scope.decl for the noalias 993 // argument. 994 MDNode *AScopeList = MDNode::get(CalledFunc->getContext(), NewScope); 995 auto *NoAliasDecl = 996 IRBuilder<>(&CB).CreateNoAliasScopeDeclaration(AScopeList); 997 // Ignore the result for now. The result will be used when the 998 // llvm.noalias intrinsic is introduced. 999 (void)NoAliasDecl; 1000 } 1001 } 1002 1003 // Iterate over all new instructions in the map; for all memory-access 1004 // instructions, add the alias scope metadata. 1005 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 1006 VMI != VMIE; ++VMI) { 1007 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { 1008 if (!VMI->second) 1009 continue; 1010 1011 Instruction *NI = dyn_cast<Instruction>(VMI->second); 1012 if (!NI) 1013 continue; 1014 1015 bool IsArgMemOnlyCall = false, IsFuncCall = false; 1016 SmallVector<const Value *, 2> PtrArgs; 1017 1018 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 1019 PtrArgs.push_back(LI->getPointerOperand()); 1020 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 1021 PtrArgs.push_back(SI->getPointerOperand()); 1022 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) 1023 PtrArgs.push_back(VAAI->getPointerOperand()); 1024 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 1025 PtrArgs.push_back(CXI->getPointerOperand()); 1026 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 1027 PtrArgs.push_back(RMWI->getPointerOperand()); 1028 else if (const auto *Call = dyn_cast<CallBase>(I)) { 1029 // If we know that the call does not access memory, then we'll still 1030 // know that about the inlined clone of this call site, and we don't 1031 // need to add metadata. 1032 if (Call->doesNotAccessMemory()) 1033 continue; 1034 1035 IsFuncCall = true; 1036 if (CalleeAAR) { 1037 FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call); 1038 if (AAResults::onlyAccessesArgPointees(MRB)) 1039 IsArgMemOnlyCall = true; 1040 } 1041 1042 for (Value *Arg : Call->args()) { 1043 // We need to check the underlying objects of all arguments, not just 1044 // the pointer arguments, because we might be passing pointers as 1045 // integers, etc. 1046 // However, if we know that the call only accesses pointer arguments, 1047 // then we only need to check the pointer arguments. 1048 if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy()) 1049 continue; 1050 1051 PtrArgs.push_back(Arg); 1052 } 1053 } 1054 1055 // If we found no pointers, then this instruction is not suitable for 1056 // pairing with an instruction to receive aliasing metadata. 1057 // However, if this is a call, this we might just alias with none of the 1058 // noalias arguments. 1059 if (PtrArgs.empty() && !IsFuncCall) 1060 continue; 1061 1062 // It is possible that there is only one underlying object, but you 1063 // need to go through several PHIs to see it, and thus could be 1064 // repeated in the Objects list. 1065 SmallPtrSet<const Value *, 4> ObjSet; 1066 SmallVector<Metadata *, 4> Scopes, NoAliases; 1067 1068 SmallSetVector<const Argument *, 4> NAPtrArgs; 1069 for (const Value *V : PtrArgs) { 1070 SmallVector<const Value *, 4> Objects; 1071 getUnderlyingObjects(V, Objects, /* LI = */ nullptr); 1072 1073 for (const Value *O : Objects) 1074 ObjSet.insert(O); 1075 } 1076 1077 // Figure out if we're derived from anything that is not a noalias 1078 // argument. 1079 bool CanDeriveViaCapture = false, UsesAliasingPtr = false; 1080 for (const Value *V : ObjSet) { 1081 // Is this value a constant that cannot be derived from any pointer 1082 // value (we need to exclude constant expressions, for example, that 1083 // are formed from arithmetic on global symbols). 1084 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || 1085 isa<ConstantPointerNull>(V) || 1086 isa<ConstantDataVector>(V) || isa<UndefValue>(V); 1087 if (IsNonPtrConst) 1088 continue; 1089 1090 // If this is anything other than a noalias argument, then we cannot 1091 // completely describe the aliasing properties using alias.scope 1092 // metadata (and, thus, won't add any). 1093 if (const Argument *A = dyn_cast<Argument>(V)) { 1094 if (!CB.paramHasAttr(A->getArgNo(), Attribute::NoAlias)) 1095 UsesAliasingPtr = true; 1096 } else { 1097 UsesAliasingPtr = true; 1098 } 1099 1100 // If this is not some identified function-local object (which cannot 1101 // directly alias a noalias argument), or some other argument (which, 1102 // by definition, also cannot alias a noalias argument), then we could 1103 // alias a noalias argument that has been captured). 1104 if (!isa<Argument>(V) && 1105 !isIdentifiedFunctionLocal(const_cast<Value*>(V))) 1106 CanDeriveViaCapture = true; 1107 } 1108 1109 // A function call can always get captured noalias pointers (via other 1110 // parameters, globals, etc.). 1111 if (IsFuncCall && !IsArgMemOnlyCall) 1112 CanDeriveViaCapture = true; 1113 1114 // First, we want to figure out all of the sets with which we definitely 1115 // don't alias. Iterate over all noalias set, and add those for which: 1116 // 1. The noalias argument is not in the set of objects from which we 1117 // definitely derive. 1118 // 2. The noalias argument has not yet been captured. 1119 // An arbitrary function that might load pointers could see captured 1120 // noalias arguments via other noalias arguments or globals, and so we 1121 // must always check for prior capture. 1122 for (const Argument *A : NoAliasArgs) { 1123 if (!ObjSet.count(A) && (!CanDeriveViaCapture || 1124 // It might be tempting to skip the 1125 // PointerMayBeCapturedBefore check if 1126 // A->hasNoCaptureAttr() is true, but this is 1127 // incorrect because nocapture only guarantees 1128 // that no copies outlive the function, not 1129 // that the value cannot be locally captured. 1130 !PointerMayBeCapturedBefore(A, 1131 /* ReturnCaptures */ false, 1132 /* StoreCaptures */ false, I, &DT))) 1133 NoAliases.push_back(NewScopes[A]); 1134 } 1135 1136 if (!NoAliases.empty()) 1137 NI->setMetadata(LLVMContext::MD_noalias, 1138 MDNode::concatenate( 1139 NI->getMetadata(LLVMContext::MD_noalias), 1140 MDNode::get(CalledFunc->getContext(), NoAliases))); 1141 1142 // Next, we want to figure out all of the sets to which we might belong. 1143 // We might belong to a set if the noalias argument is in the set of 1144 // underlying objects. If there is some non-noalias argument in our list 1145 // of underlying objects, then we cannot add a scope because the fact 1146 // that some access does not alias with any set of our noalias arguments 1147 // cannot itself guarantee that it does not alias with this access 1148 // (because there is some pointer of unknown origin involved and the 1149 // other access might also depend on this pointer). We also cannot add 1150 // scopes to arbitrary functions unless we know they don't access any 1151 // non-parameter pointer-values. 1152 bool CanAddScopes = !UsesAliasingPtr; 1153 if (CanAddScopes && IsFuncCall) 1154 CanAddScopes = IsArgMemOnlyCall; 1155 1156 if (CanAddScopes) 1157 for (const Argument *A : NoAliasArgs) { 1158 if (ObjSet.count(A)) 1159 Scopes.push_back(NewScopes[A]); 1160 } 1161 1162 if (!Scopes.empty()) 1163 NI->setMetadata( 1164 LLVMContext::MD_alias_scope, 1165 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), 1166 MDNode::get(CalledFunc->getContext(), Scopes))); 1167 } 1168 } 1169 } 1170 1171 static bool MayContainThrowingOrExitingCall(Instruction *Begin, 1172 Instruction *End) { 1173 1174 assert(Begin->getParent() == End->getParent() && 1175 "Expected to be in same basic block!"); 1176 unsigned NumInstChecked = 0; 1177 // Check that all instructions in the range [Begin, End) are guaranteed to 1178 // transfer execution to successor. 1179 for (auto &I : make_range(Begin->getIterator(), End->getIterator())) 1180 if (NumInstChecked++ > InlinerAttributeWindow || 1181 !isGuaranteedToTransferExecutionToSuccessor(&I)) 1182 return true; 1183 return false; 1184 } 1185 1186 static AttrBuilder IdentifyValidAttributes(CallBase &CB) { 1187 1188 AttrBuilder AB(CB.getAttributes(), AttributeList::ReturnIndex); 1189 if (AB.empty()) 1190 return AB; 1191 AttrBuilder Valid; 1192 // Only allow these white listed attributes to be propagated back to the 1193 // callee. This is because other attributes may only be valid on the call 1194 // itself, i.e. attributes such as signext and zeroext. 1195 if (auto DerefBytes = AB.getDereferenceableBytes()) 1196 Valid.addDereferenceableAttr(DerefBytes); 1197 if (auto DerefOrNullBytes = AB.getDereferenceableOrNullBytes()) 1198 Valid.addDereferenceableOrNullAttr(DerefOrNullBytes); 1199 if (AB.contains(Attribute::NoAlias)) 1200 Valid.addAttribute(Attribute::NoAlias); 1201 if (AB.contains(Attribute::NonNull)) 1202 Valid.addAttribute(Attribute::NonNull); 1203 return Valid; 1204 } 1205 1206 static void AddReturnAttributes(CallBase &CB, ValueToValueMapTy &VMap) { 1207 if (!UpdateReturnAttributes) 1208 return; 1209 1210 AttrBuilder Valid = IdentifyValidAttributes(CB); 1211 if (Valid.empty()) 1212 return; 1213 auto *CalledFunction = CB.getCalledFunction(); 1214 auto &Context = CalledFunction->getContext(); 1215 1216 for (auto &BB : *CalledFunction) { 1217 auto *RI = dyn_cast<ReturnInst>(BB.getTerminator()); 1218 if (!RI || !isa<CallBase>(RI->getOperand(0))) 1219 continue; 1220 auto *RetVal = cast<CallBase>(RI->getOperand(0)); 1221 // Sanity check that the cloned RetVal exists and is a call, otherwise we 1222 // cannot add the attributes on the cloned RetVal. 1223 // Simplification during inlining could have transformed the cloned 1224 // instruction. 1225 auto *NewRetVal = dyn_cast_or_null<CallBase>(VMap.lookup(RetVal)); 1226 if (!NewRetVal) 1227 continue; 1228 // Backward propagation of attributes to the returned value may be incorrect 1229 // if it is control flow dependent. 1230 // Consider: 1231 // @callee { 1232 // %rv = call @foo() 1233 // %rv2 = call @bar() 1234 // if (%rv2 != null) 1235 // return %rv2 1236 // if (%rv == null) 1237 // exit() 1238 // return %rv 1239 // } 1240 // caller() { 1241 // %val = call nonnull @callee() 1242 // } 1243 // Here we cannot add the nonnull attribute on either foo or bar. So, we 1244 // limit the check to both RetVal and RI are in the same basic block and 1245 // there are no throwing/exiting instructions between these instructions. 1246 if (RI->getParent() != RetVal->getParent() || 1247 MayContainThrowingOrExitingCall(RetVal, RI)) 1248 continue; 1249 // Add to the existing attributes of NewRetVal, i.e. the cloned call 1250 // instruction. 1251 // NB! When we have the same attribute already existing on NewRetVal, but 1252 // with a differing value, the AttributeList's merge API honours the already 1253 // existing attribute value (i.e. attributes such as dereferenceable, 1254 // dereferenceable_or_null etc). See AttrBuilder::merge for more details. 1255 AttributeList AL = NewRetVal->getAttributes(); 1256 AttributeList NewAL = 1257 AL.addAttributes(Context, AttributeList::ReturnIndex, Valid); 1258 NewRetVal->setAttributes(NewAL); 1259 } 1260 } 1261 1262 /// If the inlined function has non-byval align arguments, then 1263 /// add @llvm.assume-based alignment assumptions to preserve this information. 1264 static void AddAlignmentAssumptions(CallBase &CB, InlineFunctionInfo &IFI) { 1265 if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache) 1266 return; 1267 1268 AssumptionCache *AC = &IFI.GetAssumptionCache(*CB.getCaller()); 1269 auto &DL = CB.getCaller()->getParent()->getDataLayout(); 1270 1271 // To avoid inserting redundant assumptions, we should check for assumptions 1272 // already in the caller. To do this, we might need a DT of the caller. 1273 DominatorTree DT; 1274 bool DTCalculated = false; 1275 1276 Function *CalledFunc = CB.getCalledFunction(); 1277 for (Argument &Arg : CalledFunc->args()) { 1278 unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0; 1279 if (Align && !Arg.hasPassPointeeByValueCopyAttr() && !Arg.hasNUses(0)) { 1280 if (!DTCalculated) { 1281 DT.recalculate(*CB.getCaller()); 1282 DTCalculated = true; 1283 } 1284 1285 // If we can already prove the asserted alignment in the context of the 1286 // caller, then don't bother inserting the assumption. 1287 Value *ArgVal = CB.getArgOperand(Arg.getArgNo()); 1288 if (getKnownAlignment(ArgVal, DL, &CB, AC, &DT) >= Align) 1289 continue; 1290 1291 CallInst *NewAsmp = 1292 IRBuilder<>(&CB).CreateAlignmentAssumption(DL, ArgVal, Align); 1293 AC->registerAssumption(NewAsmp); 1294 } 1295 } 1296 } 1297 1298 /// Once we have cloned code over from a callee into the caller, 1299 /// update the specified callgraph to reflect the changes we made. 1300 /// Note that it's possible that not all code was copied over, so only 1301 /// some edges of the callgraph may remain. 1302 static void UpdateCallGraphAfterInlining(CallBase &CB, 1303 Function::iterator FirstNewBlock, 1304 ValueToValueMapTy &VMap, 1305 InlineFunctionInfo &IFI) { 1306 CallGraph &CG = *IFI.CG; 1307 const Function *Caller = CB.getCaller(); 1308 const Function *Callee = CB.getCalledFunction(); 1309 CallGraphNode *CalleeNode = CG[Callee]; 1310 CallGraphNode *CallerNode = CG[Caller]; 1311 1312 // Since we inlined some uninlined call sites in the callee into the caller, 1313 // add edges from the caller to all of the callees of the callee. 1314 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 1315 1316 // Consider the case where CalleeNode == CallerNode. 1317 CallGraphNode::CalledFunctionsVector CallCache; 1318 if (CalleeNode == CallerNode) { 1319 CallCache.assign(I, E); 1320 I = CallCache.begin(); 1321 E = CallCache.end(); 1322 } 1323 1324 for (; I != E; ++I) { 1325 // Skip 'refererence' call records. 1326 if (!I->first) 1327 continue; 1328 1329 const Value *OrigCall = *I->first; 1330 1331 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 1332 // Only copy the edge if the call was inlined! 1333 if (VMI == VMap.end() || VMI->second == nullptr) 1334 continue; 1335 1336 // If the call was inlined, but then constant folded, there is no edge to 1337 // add. Check for this case. 1338 auto *NewCall = dyn_cast<CallBase>(VMI->second); 1339 if (!NewCall) 1340 continue; 1341 1342 // We do not treat intrinsic calls like real function calls because we 1343 // expect them to become inline code; do not add an edge for an intrinsic. 1344 if (NewCall->getCalledFunction() && 1345 NewCall->getCalledFunction()->isIntrinsic()) 1346 continue; 1347 1348 // Remember that this call site got inlined for the client of 1349 // InlineFunction. 1350 IFI.InlinedCalls.push_back(NewCall); 1351 1352 // It's possible that inlining the callsite will cause it to go from an 1353 // indirect to a direct call by resolving a function pointer. If this 1354 // happens, set the callee of the new call site to a more precise 1355 // destination. This can also happen if the call graph node of the caller 1356 // was just unnecessarily imprecise. 1357 if (!I->second->getFunction()) 1358 if (Function *F = NewCall->getCalledFunction()) { 1359 // Indirect call site resolved to direct call. 1360 CallerNode->addCalledFunction(NewCall, CG[F]); 1361 1362 continue; 1363 } 1364 1365 CallerNode->addCalledFunction(NewCall, I->second); 1366 } 1367 1368 // Update the call graph by deleting the edge from Callee to Caller. We must 1369 // do this after the loop above in case Caller and Callee are the same. 1370 CallerNode->removeCallEdgeFor(*cast<CallBase>(&CB)); 1371 } 1372 1373 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M, 1374 BasicBlock *InsertBlock, 1375 InlineFunctionInfo &IFI) { 1376 Type *AggTy = cast<PointerType>(Src->getType())->getElementType(); 1377 IRBuilder<> Builder(InsertBlock, InsertBlock->begin()); 1378 1379 Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy)); 1380 1381 // Always generate a memcpy of alignment 1 here because we don't know 1382 // the alignment of the src pointer. Other optimizations can infer 1383 // better alignment. 1384 Builder.CreateMemCpy(Dst, /*DstAlign*/ Align(1), Src, 1385 /*SrcAlign*/ Align(1), Size); 1386 } 1387 1388 /// When inlining a call site that has a byval argument, 1389 /// we have to make the implicit memcpy explicit by adding it. 1390 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 1391 const Function *CalledFunc, 1392 InlineFunctionInfo &IFI, 1393 unsigned ByValAlignment) { 1394 PointerType *ArgTy = cast<PointerType>(Arg->getType()); 1395 Type *AggTy = ArgTy->getElementType(); 1396 1397 Function *Caller = TheCall->getFunction(); 1398 const DataLayout &DL = Caller->getParent()->getDataLayout(); 1399 1400 // If the called function is readonly, then it could not mutate the caller's 1401 // copy of the byval'd memory. In this case, it is safe to elide the copy and 1402 // temporary. 1403 if (CalledFunc->onlyReadsMemory()) { 1404 // If the byval argument has a specified alignment that is greater than the 1405 // passed in pointer, then we either have to round up the input pointer or 1406 // give up on this transformation. 1407 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 1408 return Arg; 1409 1410 AssumptionCache *AC = 1411 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr; 1412 1413 // If the pointer is already known to be sufficiently aligned, or if we can 1414 // round it up to a larger alignment, then we don't need a temporary. 1415 if (getOrEnforceKnownAlignment(Arg, Align(ByValAlignment), DL, TheCall, 1416 AC) >= ByValAlignment) 1417 return Arg; 1418 1419 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 1420 // for code quality, but rarely happens and is required for correctness. 1421 } 1422 1423 // Create the alloca. If we have DataLayout, use nice alignment. 1424 Align Alignment(DL.getPrefTypeAlignment(AggTy)); 1425 1426 // If the byval had an alignment specified, we *must* use at least that 1427 // alignment, as it is required by the byval argument (and uses of the 1428 // pointer inside the callee). 1429 Alignment = max(Alignment, MaybeAlign(ByValAlignment)); 1430 1431 Value *NewAlloca = 1432 new AllocaInst(AggTy, DL.getAllocaAddrSpace(), nullptr, Alignment, 1433 Arg->getName(), &*Caller->begin()->begin()); 1434 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); 1435 1436 // Uses of the argument in the function should use our new alloca 1437 // instead. 1438 return NewAlloca; 1439 } 1440 1441 // Check whether this Value is used by a lifetime intrinsic. 1442 static bool isUsedByLifetimeMarker(Value *V) { 1443 for (User *U : V->users()) 1444 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) 1445 if (II->isLifetimeStartOrEnd()) 1446 return true; 1447 return false; 1448 } 1449 1450 // Check whether the given alloca already has 1451 // lifetime.start or lifetime.end intrinsics. 1452 static bool hasLifetimeMarkers(AllocaInst *AI) { 1453 Type *Ty = AI->getType(); 1454 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), 1455 Ty->getPointerAddressSpace()); 1456 if (Ty == Int8PtrTy) 1457 return isUsedByLifetimeMarker(AI); 1458 1459 // Do a scan to find all the casts to i8*. 1460 for (User *U : AI->users()) { 1461 if (U->getType() != Int8PtrTy) continue; 1462 if (U->stripPointerCasts() != AI) continue; 1463 if (isUsedByLifetimeMarker(U)) 1464 return true; 1465 } 1466 return false; 1467 } 1468 1469 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry 1470 /// block. Allocas used in inalloca calls and allocas of dynamic array size 1471 /// cannot be static. 1472 static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) { 1473 return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca(); 1474 } 1475 1476 /// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL 1477 /// inlined at \p InlinedAt. \p IANodes is an inlined-at cache. 1478 static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt, 1479 LLVMContext &Ctx, 1480 DenseMap<const MDNode *, MDNode *> &IANodes) { 1481 auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes); 1482 return DILocation::get(Ctx, OrigDL.getLine(), OrigDL.getCol(), 1483 OrigDL.getScope(), IA); 1484 } 1485 1486 /// Update inlined instructions' line numbers to 1487 /// to encode location where these instructions are inlined. 1488 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 1489 Instruction *TheCall, bool CalleeHasDebugInfo) { 1490 const DebugLoc &TheCallDL = TheCall->getDebugLoc(); 1491 if (!TheCallDL) 1492 return; 1493 1494 auto &Ctx = Fn->getContext(); 1495 DILocation *InlinedAtNode = TheCallDL; 1496 1497 // Create a unique call site, not to be confused with any other call from the 1498 // same location. 1499 InlinedAtNode = DILocation::getDistinct( 1500 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(), 1501 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt()); 1502 1503 // Cache the inlined-at nodes as they're built so they are reused, without 1504 // this every instruction's inlined-at chain would become distinct from each 1505 // other. 1506 DenseMap<const MDNode *, MDNode *> IANodes; 1507 1508 // Check if we are not generating inline line tables and want to use 1509 // the call site location instead. 1510 bool NoInlineLineTables = Fn->hasFnAttribute("no-inline-line-tables"); 1511 1512 for (; FI != Fn->end(); ++FI) { 1513 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 1514 BI != BE; ++BI) { 1515 // Loop metadata needs to be updated so that the start and end locs 1516 // reference inlined-at locations. 1517 auto updateLoopInfoLoc = [&Ctx, &InlinedAtNode, &IANodes]( 1518 const DILocation &Loc) -> DILocation * { 1519 return inlineDebugLoc(&Loc, InlinedAtNode, Ctx, IANodes).get(); 1520 }; 1521 updateLoopMetadataDebugLocations(*BI, updateLoopInfoLoc); 1522 1523 if (!NoInlineLineTables) 1524 if (DebugLoc DL = BI->getDebugLoc()) { 1525 DebugLoc IDL = 1526 inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes); 1527 BI->setDebugLoc(IDL); 1528 continue; 1529 } 1530 1531 if (CalleeHasDebugInfo && !NoInlineLineTables) 1532 continue; 1533 1534 // If the inlined instruction has no line number, or if inline info 1535 // is not being generated, make it look as if it originates from the call 1536 // location. This is important for ((__always_inline, __nodebug__)) 1537 // functions which must use caller location for all instructions in their 1538 // function body. 1539 1540 // Don't update static allocas, as they may get moved later. 1541 if (auto *AI = dyn_cast<AllocaInst>(BI)) 1542 if (allocaWouldBeStaticInEntry(AI)) 1543 continue; 1544 1545 BI->setDebugLoc(TheCallDL); 1546 } 1547 1548 // Remove debug info intrinsics if we're not keeping inline info. 1549 if (NoInlineLineTables) { 1550 BasicBlock::iterator BI = FI->begin(); 1551 while (BI != FI->end()) { 1552 if (isa<DbgInfoIntrinsic>(BI)) { 1553 BI = BI->eraseFromParent(); 1554 continue; 1555 } 1556 ++BI; 1557 } 1558 } 1559 1560 } 1561 } 1562 1563 /// Update the block frequencies of the caller after a callee has been inlined. 1564 /// 1565 /// Each block cloned into the caller has its block frequency scaled by the 1566 /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of 1567 /// callee's entry block gets the same frequency as the callsite block and the 1568 /// relative frequencies of all cloned blocks remain the same after cloning. 1569 static void updateCallerBFI(BasicBlock *CallSiteBlock, 1570 const ValueToValueMapTy &VMap, 1571 BlockFrequencyInfo *CallerBFI, 1572 BlockFrequencyInfo *CalleeBFI, 1573 const BasicBlock &CalleeEntryBlock) { 1574 SmallPtrSet<BasicBlock *, 16> ClonedBBs; 1575 for (auto Entry : VMap) { 1576 if (!isa<BasicBlock>(Entry.first) || !Entry.second) 1577 continue; 1578 auto *OrigBB = cast<BasicBlock>(Entry.first); 1579 auto *ClonedBB = cast<BasicBlock>(Entry.second); 1580 uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency(); 1581 if (!ClonedBBs.insert(ClonedBB).second) { 1582 // Multiple blocks in the callee might get mapped to one cloned block in 1583 // the caller since we prune the callee as we clone it. When that happens, 1584 // we want to use the maximum among the original blocks' frequencies. 1585 uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency(); 1586 if (NewFreq > Freq) 1587 Freq = NewFreq; 1588 } 1589 CallerBFI->setBlockFreq(ClonedBB, Freq); 1590 } 1591 BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock)); 1592 CallerBFI->setBlockFreqAndScale( 1593 EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(), 1594 ClonedBBs); 1595 } 1596 1597 /// Update the branch metadata for cloned call instructions. 1598 static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap, 1599 const ProfileCount &CalleeEntryCount, 1600 const CallBase &TheCall, ProfileSummaryInfo *PSI, 1601 BlockFrequencyInfo *CallerBFI) { 1602 if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() || 1603 CalleeEntryCount.getCount() < 1) 1604 return; 1605 auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None; 1606 int64_t CallCount = 1607 std::min(CallSiteCount.getValueOr(0), CalleeEntryCount.getCount()); 1608 updateProfileCallee(Callee, -CallCount, &VMap); 1609 } 1610 1611 void llvm::updateProfileCallee( 1612 Function *Callee, int64_t entryDelta, 1613 const ValueMap<const Value *, WeakTrackingVH> *VMap) { 1614 auto CalleeCount = Callee->getEntryCount(); 1615 if (!CalleeCount.hasValue()) 1616 return; 1617 1618 uint64_t priorEntryCount = CalleeCount.getCount(); 1619 uint64_t newEntryCount; 1620 1621 // Since CallSiteCount is an estimate, it could exceed the original callee 1622 // count and has to be set to 0 so guard against underflow. 1623 if (entryDelta < 0 && static_cast<uint64_t>(-entryDelta) > priorEntryCount) 1624 newEntryCount = 0; 1625 else 1626 newEntryCount = priorEntryCount + entryDelta; 1627 1628 // During inlining ? 1629 if (VMap) { 1630 uint64_t cloneEntryCount = priorEntryCount - newEntryCount; 1631 for (auto Entry : *VMap) 1632 if (isa<CallInst>(Entry.first)) 1633 if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second)) 1634 CI->updateProfWeight(cloneEntryCount, priorEntryCount); 1635 } 1636 1637 if (entryDelta) { 1638 Callee->setEntryCount(newEntryCount); 1639 1640 for (BasicBlock &BB : *Callee) 1641 // No need to update the callsite if it is pruned during inlining. 1642 if (!VMap || VMap->count(&BB)) 1643 for (Instruction &I : BB) 1644 if (CallInst *CI = dyn_cast<CallInst>(&I)) 1645 CI->updateProfWeight(newEntryCount, priorEntryCount); 1646 } 1647 } 1648 1649 static void 1650 insertRetainOrClaimRVCalls(CallBase &CB, 1651 const SmallVectorImpl<ReturnInst *> &Returns) { 1652 Module *Mod = CB.getParent()->getParent()->getParent(); 1653 bool IsRetainRV = objcarc::hasRetainRVAttr(&CB), IsClaimRV = !IsRetainRV; 1654 1655 for (auto *RI : Returns) { 1656 Value *RetOpnd = llvm::objcarc::GetRCIdentityRoot(RI->getOperand(0)); 1657 BasicBlock::reverse_iterator I = ++(RI->getIterator().getReverse()); 1658 BasicBlock::reverse_iterator EI = RI->getParent()->rend(); 1659 bool InsertRetainCall = IsRetainRV; 1660 IRBuilder<> Builder(RI->getContext()); 1661 1662 // Walk backwards through the basic block looking for either a matching 1663 // autoreleaseRV call or an unannotated call. 1664 for (; I != EI;) { 1665 auto CurI = I++; 1666 1667 // Ignore casts. 1668 if (isa<CastInst>(*CurI)) 1669 continue; 1670 1671 if (auto *II = dyn_cast<IntrinsicInst>(&*CurI)) { 1672 if (II->getIntrinsicID() == Intrinsic::objc_autoreleaseReturnValue && 1673 II->hasNUses(0) && 1674 llvm::objcarc::GetRCIdentityRoot(II->getOperand(0)) == RetOpnd) { 1675 // If we've found a matching authoreleaseRV call: 1676 // - If the call is annotated with claimRV, insert a call to 1677 // objc_release and erase the autoreleaseRV call. 1678 // - If the call is annotated with retainRV, just erase the 1679 // autoreleaseRV call. 1680 if (IsClaimRV) { 1681 Builder.SetInsertPoint(II); 1682 Function *IFn = 1683 Intrinsic::getDeclaration(Mod, Intrinsic::objc_release); 1684 Value *BC = 1685 Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType()); 1686 Builder.CreateCall(IFn, BC, ""); 1687 } 1688 II->eraseFromParent(); 1689 InsertRetainCall = false; 1690 } 1691 } else if (auto *CI = dyn_cast<CallInst>(&*CurI)) { 1692 if (llvm::objcarc::GetRCIdentityRoot(CI) == RetOpnd && 1693 !objcarc::hasRetainRVOrClaimRVAttr(CI)) { 1694 // If we've found an unannotated call that defines RetOpnd, annotate 1695 // the call with the attributes. 1696 llvm::AttributeList AL = CI->getAttributes(); 1697 AL = AL.addAttribute(CI->getContext(), AttributeList::ReturnIndex, 1698 objcarc::getRVAttrKeyStr(), 1699 objcarc::getRVAttrValStr(IsRetainRV)); 1700 CI->setAttributes(AL); 1701 InsertRetainCall = false; 1702 } 1703 } 1704 1705 break; 1706 } 1707 1708 if (InsertRetainCall) { 1709 // The call is annotated with retainRV and we've failed to find a matching 1710 // autoreleaseRV or an annotated call in the callee. Emit a call to 1711 // objc_retain. 1712 Builder.SetInsertPoint(RI); 1713 Function *IFn = Intrinsic::getDeclaration(Mod, Intrinsic::objc_retain); 1714 Value *BC = Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType()); 1715 Builder.CreateCall(IFn, BC, ""); 1716 } 1717 } 1718 } 1719 1720 /// This function inlines the called function into the basic block of the 1721 /// caller. This returns false if it is not possible to inline this call. 1722 /// The program is still in a well defined state if this occurs though. 1723 /// 1724 /// Note that this only does one level of inlining. For example, if the 1725 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 1726 /// exists in the instruction stream. Similarly this will inline a recursive 1727 /// function by one level. 1728 llvm::InlineResult llvm::InlineFunction(CallBase &CB, InlineFunctionInfo &IFI, 1729 AAResults *CalleeAAR, 1730 bool InsertLifetime, 1731 Function *ForwardVarArgsTo) { 1732 assert(CB.getParent() && CB.getFunction() && "Instruction not in function!"); 1733 1734 // FIXME: we don't inline callbr yet. 1735 if (isa<CallBrInst>(CB)) 1736 return InlineResult::failure("We don't inline callbr yet."); 1737 1738 // If IFI has any state in it, zap it before we fill it in. 1739 IFI.reset(); 1740 1741 Function *CalledFunc = CB.getCalledFunction(); 1742 if (!CalledFunc || // Can't inline external function or indirect 1743 CalledFunc->isDeclaration()) // call! 1744 return InlineResult::failure("external or indirect"); 1745 1746 // The inliner does not know how to inline through calls with operand bundles 1747 // in general ... 1748 if (CB.hasOperandBundles()) { 1749 for (int i = 0, e = CB.getNumOperandBundles(); i != e; ++i) { 1750 uint32_t Tag = CB.getOperandBundleAt(i).getTagID(); 1751 // ... but it knows how to inline through "deopt" operand bundles ... 1752 if (Tag == LLVMContext::OB_deopt) 1753 continue; 1754 // ... and "funclet" operand bundles. 1755 if (Tag == LLVMContext::OB_funclet) 1756 continue; 1757 1758 return InlineResult::failure("unsupported operand bundle"); 1759 } 1760 } 1761 1762 // If the call to the callee cannot throw, set the 'nounwind' flag on any 1763 // calls that we inline. 1764 bool MarkNoUnwind = CB.doesNotThrow(); 1765 1766 BasicBlock *OrigBB = CB.getParent(); 1767 Function *Caller = OrigBB->getParent(); 1768 1769 // GC poses two hazards to inlining, which only occur when the callee has GC: 1770 // 1. If the caller has no GC, then the callee's GC must be propagated to the 1771 // caller. 1772 // 2. If the caller has a differing GC, it is invalid to inline. 1773 if (CalledFunc->hasGC()) { 1774 if (!Caller->hasGC()) 1775 Caller->setGC(CalledFunc->getGC()); 1776 else if (CalledFunc->getGC() != Caller->getGC()) 1777 return InlineResult::failure("incompatible GC"); 1778 } 1779 1780 // Get the personality function from the callee if it contains a landing pad. 1781 Constant *CalledPersonality = 1782 CalledFunc->hasPersonalityFn() 1783 ? CalledFunc->getPersonalityFn()->stripPointerCasts() 1784 : nullptr; 1785 1786 // Find the personality function used by the landing pads of the caller. If it 1787 // exists, then check to see that it matches the personality function used in 1788 // the callee. 1789 Constant *CallerPersonality = 1790 Caller->hasPersonalityFn() 1791 ? Caller->getPersonalityFn()->stripPointerCasts() 1792 : nullptr; 1793 if (CalledPersonality) { 1794 if (!CallerPersonality) 1795 Caller->setPersonalityFn(CalledPersonality); 1796 // If the personality functions match, then we can perform the 1797 // inlining. Otherwise, we can't inline. 1798 // TODO: This isn't 100% true. Some personality functions are proper 1799 // supersets of others and can be used in place of the other. 1800 else if (CalledPersonality != CallerPersonality) 1801 return InlineResult::failure("incompatible personality"); 1802 } 1803 1804 // We need to figure out which funclet the callsite was in so that we may 1805 // properly nest the callee. 1806 Instruction *CallSiteEHPad = nullptr; 1807 if (CallerPersonality) { 1808 EHPersonality Personality = classifyEHPersonality(CallerPersonality); 1809 if (isScopedEHPersonality(Personality)) { 1810 Optional<OperandBundleUse> ParentFunclet = 1811 CB.getOperandBundle(LLVMContext::OB_funclet); 1812 if (ParentFunclet) 1813 CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front()); 1814 1815 // OK, the inlining site is legal. What about the target function? 1816 1817 if (CallSiteEHPad) { 1818 if (Personality == EHPersonality::MSVC_CXX) { 1819 // The MSVC personality cannot tolerate catches getting inlined into 1820 // cleanup funclets. 1821 if (isa<CleanupPadInst>(CallSiteEHPad)) { 1822 // Ok, the call site is within a cleanuppad. Let's check the callee 1823 // for catchpads. 1824 for (const BasicBlock &CalledBB : *CalledFunc) { 1825 if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI())) 1826 return InlineResult::failure("catch in cleanup funclet"); 1827 } 1828 } 1829 } else if (isAsynchronousEHPersonality(Personality)) { 1830 // SEH is even less tolerant, there may not be any sort of exceptional 1831 // funclet in the callee. 1832 for (const BasicBlock &CalledBB : *CalledFunc) { 1833 if (CalledBB.isEHPad()) 1834 return InlineResult::failure("SEH in cleanup funclet"); 1835 } 1836 } 1837 } 1838 } 1839 } 1840 1841 // Determine if we are dealing with a call in an EHPad which does not unwind 1842 // to caller. 1843 bool EHPadForCallUnwindsLocally = false; 1844 if (CallSiteEHPad && isa<CallInst>(CB)) { 1845 UnwindDestMemoTy FuncletUnwindMap; 1846 Value *CallSiteUnwindDestToken = 1847 getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap); 1848 1849 EHPadForCallUnwindsLocally = 1850 CallSiteUnwindDestToken && 1851 !isa<ConstantTokenNone>(CallSiteUnwindDestToken); 1852 } 1853 1854 // Get an iterator to the last basic block in the function, which will have 1855 // the new function inlined after it. 1856 Function::iterator LastBlock = --Caller->end(); 1857 1858 // Make sure to capture all of the return instructions from the cloned 1859 // function. 1860 SmallVector<ReturnInst*, 8> Returns; 1861 ClonedCodeInfo InlinedFunctionInfo; 1862 Function::iterator FirstNewBlock; 1863 1864 { // Scope to destroy VMap after cloning. 1865 ValueToValueMapTy VMap; 1866 // Keep a list of pair (dst, src) to emit byval initializations. 1867 SmallVector<std::pair<Value*, Value*>, 4> ByValInit; 1868 1869 // When inlining a function that contains noalias scope metadata, 1870 // this metadata needs to be cloned so that the inlined blocks 1871 // have different "unique scopes" at every call site. 1872 // Track the metadata that must be cloned. Do this before other changes to 1873 // the function, so that we do not get in trouble when inlining caller == 1874 // callee. 1875 ScopedAliasMetadataDeepCloner SAMetadataCloner(CB.getCalledFunction()); 1876 1877 auto &DL = Caller->getParent()->getDataLayout(); 1878 1879 // Calculate the vector of arguments to pass into the function cloner, which 1880 // matches up the formal to the actual argument values. 1881 auto AI = CB.arg_begin(); 1882 unsigned ArgNo = 0; 1883 for (Function::arg_iterator I = CalledFunc->arg_begin(), 1884 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 1885 Value *ActualArg = *AI; 1886 1887 // When byval arguments actually inlined, we need to make the copy implied 1888 // by them explicit. However, we don't do this if the callee is readonly 1889 // or readnone, because the copy would be unneeded: the callee doesn't 1890 // modify the struct. 1891 if (CB.isByValArgument(ArgNo)) { 1892 ActualArg = HandleByValArgument(ActualArg, &CB, CalledFunc, IFI, 1893 CalledFunc->getParamAlignment(ArgNo)); 1894 if (ActualArg != *AI) 1895 ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI)); 1896 } 1897 1898 VMap[&*I] = ActualArg; 1899 } 1900 1901 // TODO: Remove this when users have been updated to the assume bundles. 1902 // Add alignment assumptions if necessary. We do this before the inlined 1903 // instructions are actually cloned into the caller so that we can easily 1904 // check what will be known at the start of the inlined code. 1905 AddAlignmentAssumptions(CB, IFI); 1906 1907 AssumptionCache *AC = 1908 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr; 1909 1910 /// Preserve all attributes on of the call and its parameters. 1911 salvageKnowledge(&CB, AC); 1912 1913 // We want the inliner to prune the code as it copies. We would LOVE to 1914 // have no dead or constant instructions leftover after inlining occurs 1915 // (which can happen, e.g., because an argument was constant), but we'll be 1916 // happy with whatever the cloner can do. 1917 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 1918 /*ModuleLevelChanges=*/false, Returns, ".i", 1919 &InlinedFunctionInfo, &CB); 1920 // Remember the first block that is newly cloned over. 1921 FirstNewBlock = LastBlock; ++FirstNewBlock; 1922 1923 // Insert retainRV/clainRV runtime calls. 1924 if (objcarc::hasRetainRVOrClaimRVAttr(&CB)) 1925 insertRetainOrClaimRVCalls(CB, Returns); 1926 1927 if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr) 1928 // Update the BFI of blocks cloned into the caller. 1929 updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI, 1930 CalledFunc->front()); 1931 1932 updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), CB, 1933 IFI.PSI, IFI.CallerBFI); 1934 1935 // Inject byval arguments initialization. 1936 for (std::pair<Value*, Value*> &Init : ByValInit) 1937 HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(), 1938 &*FirstNewBlock, IFI); 1939 1940 Optional<OperandBundleUse> ParentDeopt = 1941 CB.getOperandBundle(LLVMContext::OB_deopt); 1942 if (ParentDeopt) { 1943 SmallVector<OperandBundleDef, 2> OpDefs; 1944 1945 for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) { 1946 CallBase *ICS = dyn_cast_or_null<CallBase>(VH); 1947 if (!ICS) 1948 continue; // instruction was DCE'd or RAUW'ed to undef 1949 1950 OpDefs.clear(); 1951 1952 OpDefs.reserve(ICS->getNumOperandBundles()); 1953 1954 for (unsigned COBi = 0, COBe = ICS->getNumOperandBundles(); COBi < COBe; 1955 ++COBi) { 1956 auto ChildOB = ICS->getOperandBundleAt(COBi); 1957 if (ChildOB.getTagID() != LLVMContext::OB_deopt) { 1958 // If the inlined call has other operand bundles, let them be 1959 OpDefs.emplace_back(ChildOB); 1960 continue; 1961 } 1962 1963 // It may be useful to separate this logic (of handling operand 1964 // bundles) out to a separate "policy" component if this gets crowded. 1965 // Prepend the parent's deoptimization continuation to the newly 1966 // inlined call's deoptimization continuation. 1967 std::vector<Value *> MergedDeoptArgs; 1968 MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() + 1969 ChildOB.Inputs.size()); 1970 1971 llvm::append_range(MergedDeoptArgs, ParentDeopt->Inputs); 1972 llvm::append_range(MergedDeoptArgs, ChildOB.Inputs); 1973 1974 OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs)); 1975 } 1976 1977 Instruction *NewI = CallBase::Create(ICS, OpDefs, ICS); 1978 1979 // Note: the RAUW does the appropriate fixup in VMap, so we need to do 1980 // this even if the call returns void. 1981 ICS->replaceAllUsesWith(NewI); 1982 1983 VH = nullptr; 1984 ICS->eraseFromParent(); 1985 } 1986 } 1987 1988 // Update the callgraph if requested. 1989 if (IFI.CG) 1990 UpdateCallGraphAfterInlining(CB, FirstNewBlock, VMap, IFI); 1991 1992 // For 'nodebug' functions, the associated DISubprogram is always null. 1993 // Conservatively avoid propagating the callsite debug location to 1994 // instructions inlined from a function whose DISubprogram is not null. 1995 fixupLineNumbers(Caller, FirstNewBlock, &CB, 1996 CalledFunc->getSubprogram() != nullptr); 1997 1998 // Now clone the inlined noalias scope metadata. 1999 SAMetadataCloner.clone(); 2000 SAMetadataCloner.remap(VMap); 2001 2002 // Add noalias metadata if necessary. 2003 AddAliasScopeMetadata(CB, VMap, DL, CalleeAAR); 2004 2005 // Clone return attributes on the callsite into the calls within the inlined 2006 // function which feed into its return value. 2007 AddReturnAttributes(CB, VMap); 2008 2009 // Propagate metadata on the callsite if necessary. 2010 PropagateCallSiteMetadata(CB, VMap); 2011 2012 // Register any cloned assumptions. 2013 if (IFI.GetAssumptionCache) 2014 for (BasicBlock &NewBlock : 2015 make_range(FirstNewBlock->getIterator(), Caller->end())) 2016 for (Instruction &I : NewBlock) 2017 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 2018 if (II->getIntrinsicID() == Intrinsic::assume) 2019 IFI.GetAssumptionCache(*Caller).registerAssumption(II); 2020 } 2021 2022 // If there are any alloca instructions in the block that used to be the entry 2023 // block for the callee, move them to the entry block of the caller. First 2024 // calculate which instruction they should be inserted before. We insert the 2025 // instructions at the end of the current alloca list. 2026 { 2027 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 2028 for (BasicBlock::iterator I = FirstNewBlock->begin(), 2029 E = FirstNewBlock->end(); I != E; ) { 2030 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 2031 if (!AI) continue; 2032 2033 // If the alloca is now dead, remove it. This often occurs due to code 2034 // specialization. 2035 if (AI->use_empty()) { 2036 AI->eraseFromParent(); 2037 continue; 2038 } 2039 2040 if (!allocaWouldBeStaticInEntry(AI)) 2041 continue; 2042 2043 // Keep track of the static allocas that we inline into the caller. 2044 IFI.StaticAllocas.push_back(AI); 2045 2046 // Scan for the block of allocas that we can move over, and move them 2047 // all at once. 2048 while (isa<AllocaInst>(I) && 2049 !cast<AllocaInst>(I)->use_empty() && 2050 allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) { 2051 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 2052 ++I; 2053 } 2054 2055 // Transfer all of the allocas over in a block. Using splice means 2056 // that the instructions aren't removed from the symbol table, then 2057 // reinserted. 2058 Caller->getEntryBlock().getInstList().splice( 2059 InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I); 2060 } 2061 } 2062 2063 SmallVector<Value*,4> VarArgsToForward; 2064 SmallVector<AttributeSet, 4> VarArgsAttrs; 2065 for (unsigned i = CalledFunc->getFunctionType()->getNumParams(); 2066 i < CB.getNumArgOperands(); i++) { 2067 VarArgsToForward.push_back(CB.getArgOperand(i)); 2068 VarArgsAttrs.push_back(CB.getAttributes().getParamAttributes(i)); 2069 } 2070 2071 bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false; 2072 if (InlinedFunctionInfo.ContainsCalls) { 2073 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; 2074 if (CallInst *CI = dyn_cast<CallInst>(&CB)) 2075 CallSiteTailKind = CI->getTailCallKind(); 2076 2077 // For inlining purposes, the "notail" marker is the same as no marker. 2078 if (CallSiteTailKind == CallInst::TCK_NoTail) 2079 CallSiteTailKind = CallInst::TCK_None; 2080 2081 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 2082 ++BB) { 2083 for (auto II = BB->begin(); II != BB->end();) { 2084 Instruction &I = *II++; 2085 CallInst *CI = dyn_cast<CallInst>(&I); 2086 if (!CI) 2087 continue; 2088 2089 // Forward varargs from inlined call site to calls to the 2090 // ForwardVarArgsTo function, if requested, and to musttail calls. 2091 if (!VarArgsToForward.empty() && 2092 ((ForwardVarArgsTo && 2093 CI->getCalledFunction() == ForwardVarArgsTo) || 2094 CI->isMustTailCall())) { 2095 // Collect attributes for non-vararg parameters. 2096 AttributeList Attrs = CI->getAttributes(); 2097 SmallVector<AttributeSet, 8> ArgAttrs; 2098 if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) { 2099 for (unsigned ArgNo = 0; 2100 ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo) 2101 ArgAttrs.push_back(Attrs.getParamAttributes(ArgNo)); 2102 } 2103 2104 // Add VarArg attributes. 2105 ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end()); 2106 Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttributes(), 2107 Attrs.getRetAttributes(), ArgAttrs); 2108 // Add VarArgs to existing parameters. 2109 SmallVector<Value *, 6> Params(CI->arg_operands()); 2110 Params.append(VarArgsToForward.begin(), VarArgsToForward.end()); 2111 CallInst *NewCI = CallInst::Create( 2112 CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI); 2113 NewCI->setDebugLoc(CI->getDebugLoc()); 2114 NewCI->setAttributes(Attrs); 2115 NewCI->setCallingConv(CI->getCallingConv()); 2116 CI->replaceAllUsesWith(NewCI); 2117 CI->eraseFromParent(); 2118 CI = NewCI; 2119 } 2120 2121 if (Function *F = CI->getCalledFunction()) 2122 InlinedDeoptimizeCalls |= 2123 F->getIntrinsicID() == Intrinsic::experimental_deoptimize; 2124 2125 // We need to reduce the strength of any inlined tail calls. For 2126 // musttail, we have to avoid introducing potential unbounded stack 2127 // growth. For example, if functions 'f' and 'g' are mutually recursive 2128 // with musttail, we can inline 'g' into 'f' so long as we preserve 2129 // musttail on the cloned call to 'f'. If either the inlined call site 2130 // or the cloned call site is *not* musttail, the program already has 2131 // one frame of stack growth, so it's safe to remove musttail. Here is 2132 // a table of example transformations: 2133 // 2134 // f -> musttail g -> musttail f ==> f -> musttail f 2135 // f -> musttail g -> tail f ==> f -> tail f 2136 // f -> g -> musttail f ==> f -> f 2137 // f -> g -> tail f ==> f -> f 2138 // 2139 // Inlined notail calls should remain notail calls. 2140 CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); 2141 if (ChildTCK != CallInst::TCK_NoTail) 2142 ChildTCK = std::min(CallSiteTailKind, ChildTCK); 2143 CI->setTailCallKind(ChildTCK); 2144 InlinedMustTailCalls |= CI->isMustTailCall(); 2145 2146 // Calls inlined through a 'nounwind' call site should be marked 2147 // 'nounwind'. 2148 if (MarkNoUnwind) 2149 CI->setDoesNotThrow(); 2150 } 2151 } 2152 } 2153 2154 // Leave lifetime markers for the static alloca's, scoping them to the 2155 // function we just inlined. 2156 if (InsertLifetime && !IFI.StaticAllocas.empty()) { 2157 IRBuilder<> builder(&FirstNewBlock->front()); 2158 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 2159 AllocaInst *AI = IFI.StaticAllocas[ai]; 2160 // Don't mark swifterror allocas. They can't have bitcast uses. 2161 if (AI->isSwiftError()) 2162 continue; 2163 2164 // If the alloca is already scoped to something smaller than the whole 2165 // function then there's no need to add redundant, less accurate markers. 2166 if (hasLifetimeMarkers(AI)) 2167 continue; 2168 2169 // Try to determine the size of the allocation. 2170 ConstantInt *AllocaSize = nullptr; 2171 if (ConstantInt *AIArraySize = 2172 dyn_cast<ConstantInt>(AI->getArraySize())) { 2173 auto &DL = Caller->getParent()->getDataLayout(); 2174 Type *AllocaType = AI->getAllocatedType(); 2175 TypeSize AllocaTypeSize = DL.getTypeAllocSize(AllocaType); 2176 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 2177 2178 // Don't add markers for zero-sized allocas. 2179 if (AllocaArraySize == 0) 2180 continue; 2181 2182 // Check that array size doesn't saturate uint64_t and doesn't 2183 // overflow when it's multiplied by type size. 2184 if (!AllocaTypeSize.isScalable() && 2185 AllocaArraySize != std::numeric_limits<uint64_t>::max() && 2186 std::numeric_limits<uint64_t>::max() / AllocaArraySize >= 2187 AllocaTypeSize.getFixedSize()) { 2188 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 2189 AllocaArraySize * AllocaTypeSize); 2190 } 2191 } 2192 2193 builder.CreateLifetimeStart(AI, AllocaSize); 2194 for (ReturnInst *RI : Returns) { 2195 // Don't insert llvm.lifetime.end calls between a musttail or deoptimize 2196 // call and a return. The return kills all local allocas. 2197 if (InlinedMustTailCalls && 2198 RI->getParent()->getTerminatingMustTailCall()) 2199 continue; 2200 if (InlinedDeoptimizeCalls && 2201 RI->getParent()->getTerminatingDeoptimizeCall()) 2202 continue; 2203 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); 2204 } 2205 } 2206 } 2207 2208 // If the inlined code contained dynamic alloca instructions, wrap the inlined 2209 // code with llvm.stacksave/llvm.stackrestore intrinsics. 2210 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 2211 Module *M = Caller->getParent(); 2212 // Get the two intrinsics we care about. 2213 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 2214 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 2215 2216 // Insert the llvm.stacksave. 2217 CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin()) 2218 .CreateCall(StackSave, {}, "savedstack"); 2219 2220 // Insert a call to llvm.stackrestore before any return instructions in the 2221 // inlined function. 2222 for (ReturnInst *RI : Returns) { 2223 // Don't insert llvm.stackrestore calls between a musttail or deoptimize 2224 // call and a return. The return will restore the stack pointer. 2225 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) 2226 continue; 2227 if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall()) 2228 continue; 2229 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); 2230 } 2231 } 2232 2233 // If we are inlining for an invoke instruction, we must make sure to rewrite 2234 // any call instructions into invoke instructions. This is sensitive to which 2235 // funclet pads were top-level in the inlinee, so must be done before 2236 // rewriting the "parent pad" links. 2237 if (auto *II = dyn_cast<InvokeInst>(&CB)) { 2238 BasicBlock *UnwindDest = II->getUnwindDest(); 2239 Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI(); 2240 if (isa<LandingPadInst>(FirstNonPHI)) { 2241 HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo); 2242 } else { 2243 HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo); 2244 } 2245 } 2246 2247 // Update the lexical scopes of the new funclets and callsites. 2248 // Anything that had 'none' as its parent is now nested inside the callsite's 2249 // EHPad. 2250 2251 if (CallSiteEHPad) { 2252 for (Function::iterator BB = FirstNewBlock->getIterator(), 2253 E = Caller->end(); 2254 BB != E; ++BB) { 2255 // Add bundle operands to any top-level call sites. 2256 SmallVector<OperandBundleDef, 1> OpBundles; 2257 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) { 2258 CallBase *I = dyn_cast<CallBase>(&*BBI++); 2259 if (!I) 2260 continue; 2261 2262 // Skip call sites which are nounwind intrinsics. 2263 auto *CalledFn = 2264 dyn_cast<Function>(I->getCalledOperand()->stripPointerCasts()); 2265 if (CalledFn && CalledFn->isIntrinsic() && I->doesNotThrow()) 2266 continue; 2267 2268 // Skip call sites which already have a "funclet" bundle. 2269 if (I->getOperandBundle(LLVMContext::OB_funclet)) 2270 continue; 2271 2272 I->getOperandBundlesAsDefs(OpBundles); 2273 OpBundles.emplace_back("funclet", CallSiteEHPad); 2274 2275 Instruction *NewInst = CallBase::Create(I, OpBundles, I); 2276 NewInst->takeName(I); 2277 I->replaceAllUsesWith(NewInst); 2278 I->eraseFromParent(); 2279 2280 OpBundles.clear(); 2281 } 2282 2283 // It is problematic if the inlinee has a cleanupret which unwinds to 2284 // caller and we inline it into a call site which doesn't unwind but into 2285 // an EH pad that does. Such an edge must be dynamically unreachable. 2286 // As such, we replace the cleanupret with unreachable. 2287 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator())) 2288 if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally) 2289 changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false); 2290 2291 Instruction *I = BB->getFirstNonPHI(); 2292 if (!I->isEHPad()) 2293 continue; 2294 2295 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 2296 if (isa<ConstantTokenNone>(CatchSwitch->getParentPad())) 2297 CatchSwitch->setParentPad(CallSiteEHPad); 2298 } else { 2299 auto *FPI = cast<FuncletPadInst>(I); 2300 if (isa<ConstantTokenNone>(FPI->getParentPad())) 2301 FPI->setParentPad(CallSiteEHPad); 2302 } 2303 } 2304 } 2305 2306 if (InlinedDeoptimizeCalls) { 2307 // We need to at least remove the deoptimizing returns from the Return set, 2308 // so that the control flow from those returns does not get merged into the 2309 // caller (but terminate it instead). If the caller's return type does not 2310 // match the callee's return type, we also need to change the return type of 2311 // the intrinsic. 2312 if (Caller->getReturnType() == CB.getType()) { 2313 llvm::erase_if(Returns, [](ReturnInst *RI) { 2314 return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr; 2315 }); 2316 } else { 2317 SmallVector<ReturnInst *, 8> NormalReturns; 2318 Function *NewDeoptIntrinsic = Intrinsic::getDeclaration( 2319 Caller->getParent(), Intrinsic::experimental_deoptimize, 2320 {Caller->getReturnType()}); 2321 2322 for (ReturnInst *RI : Returns) { 2323 CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall(); 2324 if (!DeoptCall) { 2325 NormalReturns.push_back(RI); 2326 continue; 2327 } 2328 2329 // The calling convention on the deoptimize call itself may be bogus, 2330 // since the code we're inlining may have undefined behavior (and may 2331 // never actually execute at runtime); but all 2332 // @llvm.experimental.deoptimize declarations have to have the same 2333 // calling convention in a well-formed module. 2334 auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv(); 2335 NewDeoptIntrinsic->setCallingConv(CallingConv); 2336 auto *CurBB = RI->getParent(); 2337 RI->eraseFromParent(); 2338 2339 SmallVector<Value *, 4> CallArgs(DeoptCall->args()); 2340 2341 SmallVector<OperandBundleDef, 1> OpBundles; 2342 DeoptCall->getOperandBundlesAsDefs(OpBundles); 2343 DeoptCall->eraseFromParent(); 2344 assert(!OpBundles.empty() && 2345 "Expected at least the deopt operand bundle"); 2346 2347 IRBuilder<> Builder(CurBB); 2348 CallInst *NewDeoptCall = 2349 Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles); 2350 NewDeoptCall->setCallingConv(CallingConv); 2351 if (NewDeoptCall->getType()->isVoidTy()) 2352 Builder.CreateRetVoid(); 2353 else 2354 Builder.CreateRet(NewDeoptCall); 2355 } 2356 2357 // Leave behind the normal returns so we can merge control flow. 2358 std::swap(Returns, NormalReturns); 2359 } 2360 } 2361 2362 // Handle any inlined musttail call sites. In order for a new call site to be 2363 // musttail, the source of the clone and the inlined call site must have been 2364 // musttail. Therefore it's safe to return without merging control into the 2365 // phi below. 2366 if (InlinedMustTailCalls) { 2367 // Check if we need to bitcast the result of any musttail calls. 2368 Type *NewRetTy = Caller->getReturnType(); 2369 bool NeedBitCast = !CB.use_empty() && CB.getType() != NewRetTy; 2370 2371 // Handle the returns preceded by musttail calls separately. 2372 SmallVector<ReturnInst *, 8> NormalReturns; 2373 for (ReturnInst *RI : Returns) { 2374 CallInst *ReturnedMustTail = 2375 RI->getParent()->getTerminatingMustTailCall(); 2376 if (!ReturnedMustTail) { 2377 NormalReturns.push_back(RI); 2378 continue; 2379 } 2380 if (!NeedBitCast) 2381 continue; 2382 2383 // Delete the old return and any preceding bitcast. 2384 BasicBlock *CurBB = RI->getParent(); 2385 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); 2386 RI->eraseFromParent(); 2387 if (OldCast) 2388 OldCast->eraseFromParent(); 2389 2390 // Insert a new bitcast and return with the right type. 2391 IRBuilder<> Builder(CurBB); 2392 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); 2393 } 2394 2395 // Leave behind the normal returns so we can merge control flow. 2396 std::swap(Returns, NormalReturns); 2397 } 2398 2399 // Now that all of the transforms on the inlined code have taken place but 2400 // before we splice the inlined code into the CFG and lose track of which 2401 // blocks were actually inlined, collect the call sites. We only do this if 2402 // call graph updates weren't requested, as those provide value handle based 2403 // tracking of inlined call sites instead. 2404 if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) { 2405 // Otherwise just collect the raw call sites that were inlined. 2406 for (BasicBlock &NewBB : 2407 make_range(FirstNewBlock->getIterator(), Caller->end())) 2408 for (Instruction &I : NewBB) 2409 if (auto *CB = dyn_cast<CallBase>(&I)) 2410 IFI.InlinedCallSites.push_back(CB); 2411 } 2412 2413 // If we cloned in _exactly one_ basic block, and if that block ends in a 2414 // return instruction, we splice the body of the inlined callee directly into 2415 // the calling basic block. 2416 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 2417 // Move all of the instructions right before the call. 2418 OrigBB->getInstList().splice(CB.getIterator(), FirstNewBlock->getInstList(), 2419 FirstNewBlock->begin(), FirstNewBlock->end()); 2420 // Remove the cloned basic block. 2421 Caller->getBasicBlockList().pop_back(); 2422 2423 // If the call site was an invoke instruction, add a branch to the normal 2424 // destination. 2425 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 2426 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), &CB); 2427 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 2428 } 2429 2430 // If the return instruction returned a value, replace uses of the call with 2431 // uses of the returned value. 2432 if (!CB.use_empty()) { 2433 ReturnInst *R = Returns[0]; 2434 if (&CB == R->getReturnValue()) 2435 CB.replaceAllUsesWith(UndefValue::get(CB.getType())); 2436 else 2437 CB.replaceAllUsesWith(R->getReturnValue()); 2438 } 2439 // Since we are now done with the Call/Invoke, we can delete it. 2440 CB.eraseFromParent(); 2441 2442 // Since we are now done with the return instruction, delete it also. 2443 Returns[0]->eraseFromParent(); 2444 2445 // We are now done with the inlining. 2446 return InlineResult::success(); 2447 } 2448 2449 // Otherwise, we have the normal case, of more than one block to inline or 2450 // multiple return sites. 2451 2452 // We want to clone the entire callee function into the hole between the 2453 // "starter" and "ender" blocks. How we accomplish this depends on whether 2454 // this is an invoke instruction or a call instruction. 2455 BasicBlock *AfterCallBB; 2456 BranchInst *CreatedBranchToNormalDest = nullptr; 2457 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 2458 2459 // Add an unconditional branch to make this look like the CallInst case... 2460 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), &CB); 2461 2462 // Split the basic block. This guarantees that no PHI nodes will have to be 2463 // updated due to new incoming edges, and make the invoke case more 2464 // symmetric to the call case. 2465 AfterCallBB = 2466 OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(), 2467 CalledFunc->getName() + ".exit"); 2468 2469 } else { // It's a call 2470 // If this is a call instruction, we need to split the basic block that 2471 // the call lives in. 2472 // 2473 AfterCallBB = OrigBB->splitBasicBlock(CB.getIterator(), 2474 CalledFunc->getName() + ".exit"); 2475 } 2476 2477 if (IFI.CallerBFI) { 2478 // Copy original BB's block frequency to AfterCallBB 2479 IFI.CallerBFI->setBlockFreq( 2480 AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency()); 2481 } 2482 2483 // Change the branch that used to go to AfterCallBB to branch to the first 2484 // basic block of the inlined function. 2485 // 2486 Instruction *Br = OrigBB->getTerminator(); 2487 assert(Br && Br->getOpcode() == Instruction::Br && 2488 "splitBasicBlock broken!"); 2489 Br->setOperand(0, &*FirstNewBlock); 2490 2491 // Now that the function is correct, make it a little bit nicer. In 2492 // particular, move the basic blocks inserted from the end of the function 2493 // into the space made by splitting the source basic block. 2494 Caller->getBasicBlockList().splice(AfterCallBB->getIterator(), 2495 Caller->getBasicBlockList(), FirstNewBlock, 2496 Caller->end()); 2497 2498 // Handle all of the return instructions that we just cloned in, and eliminate 2499 // any users of the original call/invoke instruction. 2500 Type *RTy = CalledFunc->getReturnType(); 2501 2502 PHINode *PHI = nullptr; 2503 if (Returns.size() > 1) { 2504 // The PHI node should go at the front of the new basic block to merge all 2505 // possible incoming values. 2506 if (!CB.use_empty()) { 2507 PHI = PHINode::Create(RTy, Returns.size(), CB.getName(), 2508 &AfterCallBB->front()); 2509 // Anything that used the result of the function call should now use the 2510 // PHI node as their operand. 2511 CB.replaceAllUsesWith(PHI); 2512 } 2513 2514 // Loop over all of the return instructions adding entries to the PHI node 2515 // as appropriate. 2516 if (PHI) { 2517 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2518 ReturnInst *RI = Returns[i]; 2519 assert(RI->getReturnValue()->getType() == PHI->getType() && 2520 "Ret value not consistent in function!"); 2521 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 2522 } 2523 } 2524 2525 // Add a branch to the merge points and remove return instructions. 2526 DebugLoc Loc; 2527 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2528 ReturnInst *RI = Returns[i]; 2529 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 2530 Loc = RI->getDebugLoc(); 2531 BI->setDebugLoc(Loc); 2532 RI->eraseFromParent(); 2533 } 2534 // We need to set the debug location to *somewhere* inside the 2535 // inlined function. The line number may be nonsensical, but the 2536 // instruction will at least be associated with the right 2537 // function. 2538 if (CreatedBranchToNormalDest) 2539 CreatedBranchToNormalDest->setDebugLoc(Loc); 2540 } else if (!Returns.empty()) { 2541 // Otherwise, if there is exactly one return value, just replace anything 2542 // using the return value of the call with the computed value. 2543 if (!CB.use_empty()) { 2544 if (&CB == Returns[0]->getReturnValue()) 2545 CB.replaceAllUsesWith(UndefValue::get(CB.getType())); 2546 else 2547 CB.replaceAllUsesWith(Returns[0]->getReturnValue()); 2548 } 2549 2550 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 2551 BasicBlock *ReturnBB = Returns[0]->getParent(); 2552 ReturnBB->replaceAllUsesWith(AfterCallBB); 2553 2554 // Splice the code from the return block into the block that it will return 2555 // to, which contains the code that was after the call. 2556 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 2557 ReturnBB->getInstList()); 2558 2559 if (CreatedBranchToNormalDest) 2560 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 2561 2562 // Delete the return instruction now and empty ReturnBB now. 2563 Returns[0]->eraseFromParent(); 2564 ReturnBB->eraseFromParent(); 2565 } else if (!CB.use_empty()) { 2566 // No returns, but something is using the return value of the call. Just 2567 // nuke the result. 2568 CB.replaceAllUsesWith(UndefValue::get(CB.getType())); 2569 } 2570 2571 // Since we are now done with the Call/Invoke, we can delete it. 2572 CB.eraseFromParent(); 2573 2574 // If we inlined any musttail calls and the original return is now 2575 // unreachable, delete it. It can only contain a bitcast and ret. 2576 if (InlinedMustTailCalls && pred_empty(AfterCallBB)) 2577 AfterCallBB->eraseFromParent(); 2578 2579 // We should always be able to fold the entry block of the function into the 2580 // single predecessor of the block... 2581 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 2582 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 2583 2584 // Splice the code entry block into calling block, right before the 2585 // unconditional branch. 2586 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 2587 OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList()); 2588 2589 // Remove the unconditional branch. 2590 OrigBB->getInstList().erase(Br); 2591 2592 // Now we can remove the CalleeEntry block, which is now empty. 2593 Caller->getBasicBlockList().erase(CalleeEntry); 2594 2595 // If we inserted a phi node, check to see if it has a single value (e.g. all 2596 // the entries are the same or undef). If so, remove the PHI so it doesn't 2597 // block other optimizations. 2598 if (PHI) { 2599 AssumptionCache *AC = 2600 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr; 2601 auto &DL = Caller->getParent()->getDataLayout(); 2602 if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) { 2603 PHI->replaceAllUsesWith(V); 2604 PHI->eraseFromParent(); 2605 } 2606 } 2607 2608 return InlineResult::success(); 2609 } 2610