1 //===- InjectTLIMAppings.cpp - TLI to VFABI attribute injection ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Populates the VFABI attribute with the scalar-to-vector mappings 10 // from the TargetLibraryInfo. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/Analysis/DemandedBits.h" 17 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 18 #include "llvm/Analysis/VectorUtils.h" 19 #include "llvm/IR/InstIterator.h" 20 #include "llvm/Transforms/Utils.h" 21 #include "llvm/Transforms/Utils/ModuleUtils.h" 22 23 using namespace llvm; 24 25 #define DEBUG_TYPE "inject-tli-mappings" 26 27 STATISTIC(NumCallInjected, 28 "Number of calls in which the mappings have been injected."); 29 30 STATISTIC(NumVFDeclAdded, 31 "Number of function declarations that have been added."); 32 STATISTIC(NumCompUsedAdded, 33 "Number of `@llvm.compiler.used` operands that have been added."); 34 35 /// Helper function to map the TLI name to a strings that holds 36 /// scalar-to-vector mapping. 37 /// 38 /// _ZGV<isa><mask><vlen><vparams>_<scalarname>(<vectorname>) 39 /// 40 /// where: 41 /// 42 /// <isa> = "_LLVM_" 43 /// <mask> = "N". Note: TLI does not support masked interfaces. 44 /// <vlen> = Number of concurrent lanes, stored in the `VectorizationFactor` 45 /// field of the `VecDesc` struct. 46 /// <vparams> = "v", as many as are the number of parameters of CI. 47 /// <scalarname> = the name of the scalar function called by CI. 48 /// <vectorname> = the name of the vector function mapped by the TLI. 49 static std::string mangleTLIName(StringRef VectorName, const CallInst &CI, 50 unsigned VF) { 51 SmallString<256> Buffer; 52 llvm::raw_svector_ostream Out(Buffer); 53 Out << "_ZGV" << VFABI::_LLVM_ << "N" << VF; 54 for (unsigned I = 0; I < CI.getNumArgOperands(); ++I) 55 Out << "v"; 56 Out << "_" << CI.getCalledFunction()->getName() << "(" << VectorName << ")"; 57 return Out.str(); 58 } 59 60 /// A helper function for converting Scalar types to vector types. 61 /// If the incoming type is void, we return void. If the VF is 1, we return 62 /// the scalar type. 63 static Type *ToVectorTy(Type *Scalar, unsigned VF, bool isScalable = false) { 64 if (Scalar->isVoidTy() || VF == 1) 65 return Scalar; 66 return VectorType::get(Scalar, {VF, isScalable}); 67 } 68 69 /// A helper function that adds the vector function declaration that 70 /// vectorizes the CallInst CI with a vectorization factor of VF 71 /// lanes. The TLI assumes that all parameters and the return type of 72 /// CI (other than void) need to be widened to a VectorType of VF 73 /// lanes. 74 static void addVariantDeclaration(CallInst &CI, const unsigned VF, 75 const StringRef VFName) { 76 Module *M = CI.getModule(); 77 78 // Add function declaration. 79 Type *RetTy = ToVectorTy(CI.getType(), VF); 80 SmallVector<Type *, 4> Tys; 81 for (Value *ArgOperand : CI.arg_operands()) 82 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 83 assert(!CI.getFunctionType()->isVarArg() && 84 "VarArg functions are not supported."); 85 FunctionType *FTy = FunctionType::get(RetTy, Tys, /*isVarArg=*/false); 86 Function *VectorF = 87 Function::Create(FTy, Function::ExternalLinkage, VFName, M); 88 VectorF->copyAttributesFrom(CI.getCalledFunction()); 89 ++NumVFDeclAdded; 90 LLVM_DEBUG(dbgs() << DEBUG_TYPE << ": Added to the module: `" << VFName 91 << "` of type " << *(VectorF->getType()) << "\n"); 92 93 // Make function declaration (without a body) "sticky" in the IR by 94 // listing it in the @llvm.compiler.used intrinsic. 95 assert(!VectorF->size() && "VFABI attribute requires `@llvm.compiler.used` " 96 "only on declarations."); 97 appendToCompilerUsed(*M, {VectorF}); 98 LLVM_DEBUG(dbgs() << DEBUG_TYPE << ": Adding `" << VFName 99 << "` to `@llvm.compiler.used`.\n"); 100 ++NumCompUsedAdded; 101 } 102 103 static void addMappingsFromTLI(const TargetLibraryInfo &TLI, CallInst &CI) { 104 // This is needed to make sure we don't query the TLI for calls to 105 // bitcast of function pointers, like `%call = call i32 (i32*, ...) 106 // bitcast (i32 (...)* @goo to i32 (i32*, ...)*)(i32* nonnull %i)`, 107 // as such calls make the `isFunctionVectorizable` raise an 108 // exception. 109 if (CI.isNoBuiltin() || !CI.getCalledFunction()) 110 return; 111 112 const std::string ScalarName = CI.getCalledFunction()->getName(); 113 // Nothing to be done if the TLI thinks the function is not 114 // vectorizable. 115 if (!TLI.isFunctionVectorizable(ScalarName)) 116 return; 117 SmallVector<std::string, 8> Mappings; 118 VFABI::getVectorVariantNames(CI, Mappings); 119 Module *M = CI.getModule(); 120 const SetVector<StringRef> OriginalSetOfMappings(Mappings.begin(), 121 Mappings.end()); 122 // All VFs in the TLI are powers of 2. 123 for (unsigned VF = 2, WidestVF = TLI.getWidestVF(ScalarName); VF <= WidestVF; 124 VF *= 2) { 125 const std::string TLIName = TLI.getVectorizedFunction(ScalarName, VF); 126 if (!TLIName.empty()) { 127 std::string MangledName = mangleTLIName(TLIName, CI, VF); 128 if (!OriginalSetOfMappings.count(MangledName)) { 129 Mappings.push_back(MangledName); 130 ++NumCallInjected; 131 } 132 Function *VariantF = M->getFunction(TLIName); 133 if (!VariantF) 134 addVariantDeclaration(CI, VF, TLIName); 135 } 136 } 137 138 VFABI::setVectorVariantNames(&CI, Mappings); 139 } 140 141 static bool runImpl(const TargetLibraryInfo &TLI, Function &F) { 142 for (auto &I : instructions(F)) 143 if (auto CI = dyn_cast<CallInst>(&I)) 144 addMappingsFromTLI(TLI, *CI); 145 // Even if the pass adds IR attributes, the analyses are preserved. 146 return false; 147 } 148 149 //////////////////////////////////////////////////////////////////////////////// 150 // New pass manager implementation. 151 //////////////////////////////////////////////////////////////////////////////// 152 PreservedAnalyses InjectTLIMappings::run(Function &F, 153 FunctionAnalysisManager &AM) { 154 const TargetLibraryInfo &TLI = AM.getResult<TargetLibraryAnalysis>(F); 155 runImpl(TLI, F); 156 // Even if the pass adds IR attributes, the analyses are preserved. 157 return PreservedAnalyses::all(); 158 } 159 160 //////////////////////////////////////////////////////////////////////////////// 161 // Legacy PM Implementation. 162 //////////////////////////////////////////////////////////////////////////////// 163 bool InjectTLIMappingsLegacy::runOnFunction(Function &F) { 164 const TargetLibraryInfo &TLI = 165 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 166 return runImpl(TLI, F); 167 } 168 169 void InjectTLIMappingsLegacy::getAnalysisUsage(AnalysisUsage &AU) const { 170 AU.setPreservesCFG(); 171 AU.addRequired<TargetLibraryInfoWrapperPass>(); 172 AU.addPreserved<TargetLibraryInfoWrapperPass>(); 173 AU.addPreserved<ScalarEvolutionWrapperPass>(); 174 AU.addPreserved<AAResultsWrapperPass>(); 175 AU.addPreserved<LoopAccessLegacyAnalysis>(); 176 AU.addPreserved<DemandedBitsWrapperPass>(); 177 AU.addPreserved<OptimizationRemarkEmitterWrapperPass>(); 178 } 179 180 //////////////////////////////////////////////////////////////////////////////// 181 // Legacy Pass manager initialization 182 //////////////////////////////////////////////////////////////////////////////// 183 char InjectTLIMappingsLegacy::ID = 0; 184 185 INITIALIZE_PASS_BEGIN(InjectTLIMappingsLegacy, DEBUG_TYPE, 186 "Inject TLI Mappings", false, false) 187 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 188 INITIALIZE_PASS_END(InjectTLIMappingsLegacy, DEBUG_TYPE, "Inject TLI Mappings", 189 false, false) 190 191 FunctionPass *llvm::createInjectTLIMappingsLegacyPass() { 192 return new InjectTLIMappingsLegacy(); 193 } 194