1 //===- Evaluator.cpp - LLVM IR evaluator ----------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Function evaluator for LLVM IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Evaluator.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/IR/BasicBlock.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Constant.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/GlobalValue.h" 28 #include "llvm/IR/GlobalVariable.h" 29 #include "llvm/IR/InstrTypes.h" 30 #include "llvm/IR/Instruction.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/IR/User.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include <iterator> 42 43 #define DEBUG_TYPE "evaluator" 44 45 using namespace llvm; 46 47 static inline bool 48 isSimpleEnoughValueToCommit(Constant *C, 49 SmallPtrSetImpl<Constant *> &SimpleConstants, 50 const DataLayout &DL); 51 52 /// Return true if the specified constant can be handled by the code generator. 53 /// We don't want to generate something like: 54 /// void *X = &X/42; 55 /// because the code generator doesn't have a relocation that can handle that. 56 /// 57 /// This function should be called if C was not found (but just got inserted) 58 /// in SimpleConstants to avoid having to rescan the same constants all the 59 /// time. 60 static bool 61 isSimpleEnoughValueToCommitHelper(Constant *C, 62 SmallPtrSetImpl<Constant *> &SimpleConstants, 63 const DataLayout &DL) { 64 // Simple global addresses are supported, do not allow dllimport or 65 // thread-local globals. 66 if (auto *GV = dyn_cast<GlobalValue>(C)) 67 return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal(); 68 69 // Simple integer, undef, constant aggregate zero, etc are all supported. 70 if (C->getNumOperands() == 0 || isa<BlockAddress>(C)) 71 return true; 72 73 // Aggregate values are safe if all their elements are. 74 if (isa<ConstantAggregate>(C)) { 75 for (Value *Op : C->operands()) 76 if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL)) 77 return false; 78 return true; 79 } 80 81 // We don't know exactly what relocations are allowed in constant expressions, 82 // so we allow &global+constantoffset, which is safe and uniformly supported 83 // across targets. 84 ConstantExpr *CE = cast<ConstantExpr>(C); 85 switch (CE->getOpcode()) { 86 case Instruction::BitCast: 87 // Bitcast is fine if the casted value is fine. 88 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 89 90 case Instruction::IntToPtr: 91 case Instruction::PtrToInt: 92 // int <=> ptr is fine if the int type is the same size as the 93 // pointer type. 94 if (DL.getTypeSizeInBits(CE->getType()) != 95 DL.getTypeSizeInBits(CE->getOperand(0)->getType())) 96 return false; 97 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 98 99 // GEP is fine if it is simple + constant offset. 100 case Instruction::GetElementPtr: 101 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) 102 if (!isa<ConstantInt>(CE->getOperand(i))) 103 return false; 104 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 105 106 case Instruction::Add: 107 // We allow simple+cst. 108 if (!isa<ConstantInt>(CE->getOperand(1))) 109 return false; 110 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 111 } 112 return false; 113 } 114 115 static inline bool 116 isSimpleEnoughValueToCommit(Constant *C, 117 SmallPtrSetImpl<Constant *> &SimpleConstants, 118 const DataLayout &DL) { 119 // If we already checked this constant, we win. 120 if (!SimpleConstants.insert(C).second) 121 return true; 122 // Check the constant. 123 return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL); 124 } 125 126 /// Return true if this constant is simple enough for us to understand. In 127 /// particular, if it is a cast to anything other than from one pointer type to 128 /// another pointer type, we punt. We basically just support direct accesses to 129 /// globals and GEP's of globals. This should be kept up to date with 130 /// CommitValueTo. 131 static bool isSimpleEnoughPointerToCommit(Constant *C) { 132 // Conservatively, avoid aggregate types. This is because we don't 133 // want to worry about them partially overlapping other stores. 134 if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType()) 135 return false; 136 137 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 138 // Do not allow weak/*_odr/linkonce linkage or external globals. 139 return GV->hasUniqueInitializer(); 140 141 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 142 // Handle a constantexpr gep. 143 if (CE->getOpcode() == Instruction::GetElementPtr && 144 isa<GlobalVariable>(CE->getOperand(0)) && 145 cast<GEPOperator>(CE)->isInBounds()) { 146 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 147 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or 148 // external globals. 149 if (!GV->hasUniqueInitializer()) 150 return false; 151 152 // The first index must be zero. 153 ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin())); 154 if (!CI || !CI->isZero()) return false; 155 156 // The remaining indices must be compile-time known integers within the 157 // notional bounds of the corresponding static array types. 158 if (!CE->isGEPWithNoNotionalOverIndexing()) 159 return false; 160 161 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE); 162 163 // A constantexpr bitcast from a pointer to another pointer is a no-op, 164 // and we know how to evaluate it by moving the bitcast from the pointer 165 // operand to the value operand. 166 } else if (CE->getOpcode() == Instruction::BitCast && 167 isa<GlobalVariable>(CE->getOperand(0))) { 168 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or 169 // external globals. 170 return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer(); 171 } 172 } 173 174 return false; 175 } 176 177 static Constant *getInitializer(Constant *C) { 178 auto *GV = dyn_cast<GlobalVariable>(C); 179 return GV && GV->hasDefinitiveInitializer() ? GV->getInitializer() : nullptr; 180 } 181 182 /// Return the value that would be computed by a load from P after the stores 183 /// reflected by 'memory' have been performed. If we can't decide, return null. 184 Constant *Evaluator::ComputeLoadResult(Constant *P) { 185 // If this memory location has been recently stored, use the stored value: it 186 // is the most up-to-date. 187 DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P); 188 if (I != MutatedMemory.end()) return I->second; 189 190 // Access it. 191 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 192 if (GV->hasDefinitiveInitializer()) 193 return GV->getInitializer(); 194 return nullptr; 195 } 196 197 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P)) { 198 switch (CE->getOpcode()) { 199 // Handle a constantexpr getelementptr. 200 case Instruction::GetElementPtr: 201 if (auto *I = getInitializer(CE->getOperand(0))) 202 return ConstantFoldLoadThroughGEPConstantExpr(I, CE); 203 break; 204 // Handle a constantexpr bitcast. 205 case Instruction::BitCast: 206 Constant *Val = getVal(CE->getOperand(0)); 207 auto MM = MutatedMemory.find(Val); 208 auto *I = (MM != MutatedMemory.end()) ? MM->second 209 : getInitializer(CE->getOperand(0)); 210 if (I) 211 return ConstantFoldLoadThroughBitcast( 212 I, P->getType()->getPointerElementType(), DL); 213 break; 214 } 215 } 216 217 return nullptr; // don't know how to evaluate. 218 } 219 220 /// Evaluate all instructions in block BB, returning true if successful, false 221 /// if we can't evaluate it. NewBB returns the next BB that control flows into, 222 /// or null upon return. 223 bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst, 224 BasicBlock *&NextBB) { 225 // This is the main evaluation loop. 226 while (true) { 227 Constant *InstResult = nullptr; 228 229 DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n"); 230 231 if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) { 232 if (!SI->isSimple()) { 233 DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n"); 234 return false; // no volatile/atomic accesses. 235 } 236 Constant *Ptr = getVal(SI->getOperand(1)); 237 if (auto *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI)) { 238 DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr); 239 Ptr = FoldedPtr; 240 DEBUG(dbgs() << "; To: " << *Ptr << "\n"); 241 } 242 if (!isSimpleEnoughPointerToCommit(Ptr)) { 243 // If this is too complex for us to commit, reject it. 244 DEBUG(dbgs() << "Pointer is too complex for us to evaluate store."); 245 return false; 246 } 247 248 Constant *Val = getVal(SI->getOperand(0)); 249 250 // If this might be too difficult for the backend to handle (e.g. the addr 251 // of one global variable divided by another) then we can't commit it. 252 if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) { 253 DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val 254 << "\n"); 255 return false; 256 } 257 258 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) { 259 if (CE->getOpcode() == Instruction::BitCast) { 260 DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n"); 261 // If we're evaluating a store through a bitcast, then we need 262 // to pull the bitcast off the pointer type and push it onto the 263 // stored value. 264 Ptr = CE->getOperand(0); 265 266 Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType(); 267 268 // In order to push the bitcast onto the stored value, a bitcast 269 // from NewTy to Val's type must be legal. If it's not, we can try 270 // introspecting NewTy to find a legal conversion. 271 Constant *NewVal; 272 while (!(NewVal = ConstantFoldLoadThroughBitcast(Val, NewTy, DL))) { 273 // If NewTy is a struct, we can convert the pointer to the struct 274 // into a pointer to its first member. 275 // FIXME: This could be extended to support arrays as well. 276 if (StructType *STy = dyn_cast<StructType>(NewTy)) { 277 NewTy = STy->getTypeAtIndex(0U); 278 279 IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32); 280 Constant *IdxZero = ConstantInt::get(IdxTy, 0, false); 281 Constant * const IdxList[] = {IdxZero, IdxZero}; 282 283 Ptr = ConstantExpr::getGetElementPtr(nullptr, Ptr, IdxList); 284 if (auto *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI)) 285 Ptr = FoldedPtr; 286 287 // If we can't improve the situation by introspecting NewTy, 288 // we have to give up. 289 } else { 290 DEBUG(dbgs() << "Failed to bitcast constant ptr, can not " 291 "evaluate.\n"); 292 return false; 293 } 294 } 295 296 Val = NewVal; 297 DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n"); 298 } 299 } 300 301 MutatedMemory[Ptr] = Val; 302 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) { 303 InstResult = ConstantExpr::get(BO->getOpcode(), 304 getVal(BO->getOperand(0)), 305 getVal(BO->getOperand(1))); 306 DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult 307 << "\n"); 308 } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) { 309 InstResult = ConstantExpr::getCompare(CI->getPredicate(), 310 getVal(CI->getOperand(0)), 311 getVal(CI->getOperand(1))); 312 DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult 313 << "\n"); 314 } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) { 315 InstResult = ConstantExpr::getCast(CI->getOpcode(), 316 getVal(CI->getOperand(0)), 317 CI->getType()); 318 DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult 319 << "\n"); 320 } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) { 321 InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)), 322 getVal(SI->getOperand(1)), 323 getVal(SI->getOperand(2))); 324 DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult 325 << "\n"); 326 } else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) { 327 InstResult = ConstantExpr::getExtractValue( 328 getVal(EVI->getAggregateOperand()), EVI->getIndices()); 329 DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: " << *InstResult 330 << "\n"); 331 } else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) { 332 InstResult = ConstantExpr::getInsertValue( 333 getVal(IVI->getAggregateOperand()), 334 getVal(IVI->getInsertedValueOperand()), IVI->getIndices()); 335 DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: " << *InstResult 336 << "\n"); 337 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) { 338 Constant *P = getVal(GEP->getOperand(0)); 339 SmallVector<Constant*, 8> GEPOps; 340 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); 341 i != e; ++i) 342 GEPOps.push_back(getVal(*i)); 343 InstResult = 344 ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps, 345 cast<GEPOperator>(GEP)->isInBounds()); 346 DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult 347 << "\n"); 348 } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) { 349 if (!LI->isSimple()) { 350 DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n"); 351 return false; // no volatile/atomic accesses. 352 } 353 354 Constant *Ptr = getVal(LI->getOperand(0)); 355 if (auto *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI)) { 356 Ptr = FoldedPtr; 357 DEBUG(dbgs() << "Found a constant pointer expression, constant " 358 "folding: " << *Ptr << "\n"); 359 } 360 InstResult = ComputeLoadResult(Ptr); 361 if (!InstResult) { 362 DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load." 363 "\n"); 364 return false; // Could not evaluate load. 365 } 366 367 DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n"); 368 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) { 369 if (AI->isArrayAllocation()) { 370 DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n"); 371 return false; // Cannot handle array allocs. 372 } 373 Type *Ty = AI->getAllocatedType(); 374 AllocaTmps.push_back(llvm::make_unique<GlobalVariable>( 375 Ty, false, GlobalValue::InternalLinkage, UndefValue::get(Ty), 376 AI->getName())); 377 InstResult = AllocaTmps.back().get(); 378 DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n"); 379 } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) { 380 CallSite CS(&*CurInst); 381 382 // Debug info can safely be ignored here. 383 if (isa<DbgInfoIntrinsic>(CS.getInstruction())) { 384 DEBUG(dbgs() << "Ignoring debug info.\n"); 385 ++CurInst; 386 continue; 387 } 388 389 // Cannot handle inline asm. 390 if (isa<InlineAsm>(CS.getCalledValue())) { 391 DEBUG(dbgs() << "Found inline asm, can not evaluate.\n"); 392 return false; 393 } 394 395 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) { 396 if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) { 397 if (MSI->isVolatile()) { 398 DEBUG(dbgs() << "Can not optimize a volatile memset " << 399 "intrinsic.\n"); 400 return false; 401 } 402 Constant *Ptr = getVal(MSI->getDest()); 403 Constant *Val = getVal(MSI->getValue()); 404 Constant *DestVal = ComputeLoadResult(getVal(Ptr)); 405 if (Val->isNullValue() && DestVal && DestVal->isNullValue()) { 406 // This memset is a no-op. 407 DEBUG(dbgs() << "Ignoring no-op memset.\n"); 408 ++CurInst; 409 continue; 410 } 411 } 412 413 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 414 II->getIntrinsicID() == Intrinsic::lifetime_end) { 415 DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n"); 416 ++CurInst; 417 continue; 418 } 419 420 if (II->getIntrinsicID() == Intrinsic::invariant_start) { 421 // We don't insert an entry into Values, as it doesn't have a 422 // meaningful return value. 423 if (!II->use_empty()) { 424 DEBUG(dbgs() << "Found unused invariant_start. Can't evaluate.\n"); 425 return false; 426 } 427 ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0)); 428 Value *PtrArg = getVal(II->getArgOperand(1)); 429 Value *Ptr = PtrArg->stripPointerCasts(); 430 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { 431 Type *ElemTy = GV->getValueType(); 432 if (!Size->isMinusOne() && 433 Size->getValue().getLimitedValue() >= 434 DL.getTypeStoreSize(ElemTy)) { 435 Invariants.insert(GV); 436 DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV 437 << "\n"); 438 } else { 439 DEBUG(dbgs() << "Found a global var, but can not treat it as an " 440 "invariant.\n"); 441 } 442 } 443 // Continue even if we do nothing. 444 ++CurInst; 445 continue; 446 } else if (II->getIntrinsicID() == Intrinsic::assume) { 447 DEBUG(dbgs() << "Skipping assume intrinsic.\n"); 448 ++CurInst; 449 continue; 450 } else if (II->getIntrinsicID() == Intrinsic::sideeffect) { 451 DEBUG(dbgs() << "Skipping sideeffect intrinsic.\n"); 452 ++CurInst; 453 continue; 454 } 455 456 DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n"); 457 return false; 458 } 459 460 // Resolve function pointers. 461 Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue())); 462 if (!Callee || Callee->isInterposable()) { 463 DEBUG(dbgs() << "Can not resolve function pointer.\n"); 464 return false; // Cannot resolve. 465 } 466 467 SmallVector<Constant*, 8> Formals; 468 for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i) 469 Formals.push_back(getVal(*i)); 470 471 if (Callee->isDeclaration()) { 472 // If this is a function we can constant fold, do it. 473 if (Constant *C = ConstantFoldCall(CS, Callee, Formals, TLI)) { 474 InstResult = C; 475 DEBUG(dbgs() << "Constant folded function call. Result: " << 476 *InstResult << "\n"); 477 } else { 478 DEBUG(dbgs() << "Can not constant fold function call.\n"); 479 return false; 480 } 481 } else { 482 if (Callee->getFunctionType()->isVarArg()) { 483 DEBUG(dbgs() << "Can not constant fold vararg function call.\n"); 484 return false; 485 } 486 487 Constant *RetVal = nullptr; 488 // Execute the call, if successful, use the return value. 489 ValueStack.emplace_back(); 490 if (!EvaluateFunction(Callee, RetVal, Formals)) { 491 DEBUG(dbgs() << "Failed to evaluate function.\n"); 492 return false; 493 } 494 ValueStack.pop_back(); 495 InstResult = RetVal; 496 497 if (InstResult) { 498 DEBUG(dbgs() << "Successfully evaluated function. Result: " 499 << *InstResult << "\n\n"); 500 } else { 501 DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n"); 502 } 503 } 504 } else if (isa<TerminatorInst>(CurInst)) { 505 DEBUG(dbgs() << "Found a terminator instruction.\n"); 506 507 if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) { 508 if (BI->isUnconditional()) { 509 NextBB = BI->getSuccessor(0); 510 } else { 511 ConstantInt *Cond = 512 dyn_cast<ConstantInt>(getVal(BI->getCondition())); 513 if (!Cond) return false; // Cannot determine. 514 515 NextBB = BI->getSuccessor(!Cond->getZExtValue()); 516 } 517 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) { 518 ConstantInt *Val = 519 dyn_cast<ConstantInt>(getVal(SI->getCondition())); 520 if (!Val) return false; // Cannot determine. 521 NextBB = SI->findCaseValue(Val)->getCaseSuccessor(); 522 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) { 523 Value *Val = getVal(IBI->getAddress())->stripPointerCasts(); 524 if (BlockAddress *BA = dyn_cast<BlockAddress>(Val)) 525 NextBB = BA->getBasicBlock(); 526 else 527 return false; // Cannot determine. 528 } else if (isa<ReturnInst>(CurInst)) { 529 NextBB = nullptr; 530 } else { 531 // invoke, unwind, resume, unreachable. 532 DEBUG(dbgs() << "Can not handle terminator."); 533 return false; // Cannot handle this terminator. 534 } 535 536 // We succeeded at evaluating this block! 537 DEBUG(dbgs() << "Successfully evaluated block.\n"); 538 return true; 539 } else { 540 // Did not know how to evaluate this! 541 DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction." 542 "\n"); 543 return false; 544 } 545 546 if (!CurInst->use_empty()) { 547 if (auto *FoldedInstResult = ConstantFoldConstant(InstResult, DL, TLI)) 548 InstResult = FoldedInstResult; 549 550 setVal(&*CurInst, InstResult); 551 } 552 553 // If we just processed an invoke, we finished evaluating the block. 554 if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) { 555 NextBB = II->getNormalDest(); 556 DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n"); 557 return true; 558 } 559 560 // Advance program counter. 561 ++CurInst; 562 } 563 } 564 565 /// Evaluate a call to function F, returning true if successful, false if we 566 /// can't evaluate it. ActualArgs contains the formal arguments for the 567 /// function. 568 bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal, 569 const SmallVectorImpl<Constant*> &ActualArgs) { 570 // Check to see if this function is already executing (recursion). If so, 571 // bail out. TODO: we might want to accept limited recursion. 572 if (is_contained(CallStack, F)) 573 return false; 574 575 CallStack.push_back(F); 576 577 // Initialize arguments to the incoming values specified. 578 unsigned ArgNo = 0; 579 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; 580 ++AI, ++ArgNo) 581 setVal(&*AI, ActualArgs[ArgNo]); 582 583 // ExecutedBlocks - We only handle non-looping, non-recursive code. As such, 584 // we can only evaluate any one basic block at most once. This set keeps 585 // track of what we have executed so we can detect recursive cases etc. 586 SmallPtrSet<BasicBlock*, 32> ExecutedBlocks; 587 588 // CurBB - The current basic block we're evaluating. 589 BasicBlock *CurBB = &F->front(); 590 591 BasicBlock::iterator CurInst = CurBB->begin(); 592 593 while (true) { 594 BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings. 595 DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n"); 596 597 if (!EvaluateBlock(CurInst, NextBB)) 598 return false; 599 600 if (!NextBB) { 601 // Successfully running until there's no next block means that we found 602 // the return. Fill it the return value and pop the call stack. 603 ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator()); 604 if (RI->getNumOperands()) 605 RetVal = getVal(RI->getOperand(0)); 606 CallStack.pop_back(); 607 return true; 608 } 609 610 // Okay, we succeeded in evaluating this control flow. See if we have 611 // executed the new block before. If so, we have a looping function, 612 // which we cannot evaluate in reasonable time. 613 if (!ExecutedBlocks.insert(NextBB).second) 614 return false; // looped! 615 616 // Okay, we have never been in this block before. Check to see if there 617 // are any PHI nodes. If so, evaluate them with information about where 618 // we came from. 619 PHINode *PN = nullptr; 620 for (CurInst = NextBB->begin(); 621 (PN = dyn_cast<PHINode>(CurInst)); ++CurInst) 622 setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB))); 623 624 // Advance to the next block. 625 CurBB = NextBB; 626 } 627 } 628