1 //===- Evaluator.cpp - LLVM IR evaluator ----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Function evaluator for LLVM IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/Evaluator.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/IR/BasicBlock.h" 20 #include "llvm/IR/Constant.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/GlobalAlias.h" 26 #include "llvm/IR/GlobalValue.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Operator.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/User.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/Support/Casting.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/raw_ostream.h" 39 40 #define DEBUG_TYPE "evaluator" 41 42 using namespace llvm; 43 44 static inline bool 45 isSimpleEnoughValueToCommit(Constant *C, 46 SmallPtrSetImpl<Constant *> &SimpleConstants, 47 const DataLayout &DL); 48 49 /// Return true if the specified constant can be handled by the code generator. 50 /// We don't want to generate something like: 51 /// void *X = &X/42; 52 /// because the code generator doesn't have a relocation that can handle that. 53 /// 54 /// This function should be called if C was not found (but just got inserted) 55 /// in SimpleConstants to avoid having to rescan the same constants all the 56 /// time. 57 static bool 58 isSimpleEnoughValueToCommitHelper(Constant *C, 59 SmallPtrSetImpl<Constant *> &SimpleConstants, 60 const DataLayout &DL) { 61 // Simple global addresses are supported, do not allow dllimport or 62 // thread-local globals. 63 if (auto *GV = dyn_cast<GlobalValue>(C)) 64 return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal(); 65 66 // Simple integer, undef, constant aggregate zero, etc are all supported. 67 if (C->getNumOperands() == 0 || isa<BlockAddress>(C)) 68 return true; 69 70 // Aggregate values are safe if all their elements are. 71 if (isa<ConstantAggregate>(C)) { 72 for (Value *Op : C->operands()) 73 if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL)) 74 return false; 75 return true; 76 } 77 78 // We don't know exactly what relocations are allowed in constant expressions, 79 // so we allow &global+constantoffset, which is safe and uniformly supported 80 // across targets. 81 ConstantExpr *CE = cast<ConstantExpr>(C); 82 switch (CE->getOpcode()) { 83 case Instruction::BitCast: 84 // Bitcast is fine if the casted value is fine. 85 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 86 87 case Instruction::IntToPtr: 88 case Instruction::PtrToInt: 89 // int <=> ptr is fine if the int type is the same size as the 90 // pointer type. 91 if (DL.getTypeSizeInBits(CE->getType()) != 92 DL.getTypeSizeInBits(CE->getOperand(0)->getType())) 93 return false; 94 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 95 96 // GEP is fine if it is simple + constant offset. 97 case Instruction::GetElementPtr: 98 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) 99 if (!isa<ConstantInt>(CE->getOperand(i))) 100 return false; 101 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 102 103 case Instruction::Add: 104 // We allow simple+cst. 105 if (!isa<ConstantInt>(CE->getOperand(1))) 106 return false; 107 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 108 } 109 return false; 110 } 111 112 static inline bool 113 isSimpleEnoughValueToCommit(Constant *C, 114 SmallPtrSetImpl<Constant *> &SimpleConstants, 115 const DataLayout &DL) { 116 // If we already checked this constant, we win. 117 if (!SimpleConstants.insert(C).second) 118 return true; 119 // Check the constant. 120 return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL); 121 } 122 123 void Evaluator::MutableValue::clear() { 124 if (auto *Agg = Val.dyn_cast<MutableAggregate *>()) 125 delete Agg; 126 Val = nullptr; 127 } 128 129 Constant *Evaluator::MutableValue::read(Type *Ty, APInt Offset, 130 const DataLayout &DL) const { 131 TypeSize TySize = DL.getTypeStoreSize(Ty); 132 const MutableValue *V = this; 133 while (const auto *Agg = V->Val.dyn_cast<MutableAggregate *>()) { 134 Type *AggTy = Agg->Ty; 135 Optional<APInt> Index = DL.getGEPIndexForOffset(AggTy, Offset); 136 if (!Index || Index->uge(Agg->Elements.size()) || 137 !TypeSize::isKnownLE(TySize, DL.getTypeStoreSize(AggTy))) 138 return nullptr; 139 140 V = &Agg->Elements[Index->getZExtValue()]; 141 } 142 143 return ConstantFoldLoadFromConst(V->Val.get<Constant *>(), Ty, Offset, DL); 144 } 145 146 bool Evaluator::MutableValue::makeMutable() { 147 Constant *C = Val.get<Constant *>(); 148 Type *Ty = C->getType(); 149 unsigned NumElements; 150 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { 151 NumElements = VT->getNumElements(); 152 } else if (auto *AT = dyn_cast<ArrayType>(Ty)) 153 NumElements = AT->getNumElements(); 154 else if (auto *ST = dyn_cast<StructType>(Ty)) 155 NumElements = ST->getNumElements(); 156 else 157 return false; 158 159 MutableAggregate *MA = new MutableAggregate(Ty); 160 MA->Elements.reserve(NumElements); 161 for (unsigned I = 0; I < NumElements; ++I) 162 MA->Elements.push_back(C->getAggregateElement(I)); 163 Val = MA; 164 return true; 165 } 166 167 bool Evaluator::MutableValue::write(Constant *V, APInt Offset, 168 const DataLayout &DL) { 169 Type *Ty = V->getType(); 170 TypeSize TySize = DL.getTypeStoreSize(Ty); 171 MutableValue *MV = this; 172 while (Offset != 0 || 173 !CastInst::isBitOrNoopPointerCastable(Ty, MV->getType(), DL)) { 174 if (MV->Val.is<Constant *>() && !MV->makeMutable()) 175 return false; 176 177 MutableAggregate *Agg = MV->Val.get<MutableAggregate *>(); 178 Type *AggTy = Agg->Ty; 179 Optional<APInt> Index = DL.getGEPIndexForOffset(AggTy, Offset); 180 if (!Index || Index->uge(Agg->Elements.size()) || 181 !TypeSize::isKnownLE(TySize, DL.getTypeStoreSize(AggTy))) 182 return false; 183 184 MV = &Agg->Elements[Index->getZExtValue()]; 185 } 186 187 Type *MVType = MV->getType(); 188 MV->clear(); 189 if (Ty->isIntegerTy() && MVType->isPointerTy()) 190 MV->Val = ConstantExpr::getIntToPtr(V, MVType); 191 else if (Ty->isPointerTy() && MVType->isIntegerTy()) 192 MV->Val = ConstantExpr::getPtrToInt(V, MVType); 193 else if (Ty != MVType) 194 MV->Val = ConstantExpr::getBitCast(V, MVType); 195 else 196 MV->Val = V; 197 return true; 198 } 199 200 Constant *Evaluator::MutableAggregate::toConstant() const { 201 SmallVector<Constant *, 32> Consts; 202 for (const MutableValue &MV : Elements) 203 Consts.push_back(MV.toConstant()); 204 205 if (auto *ST = dyn_cast<StructType>(Ty)) 206 return ConstantStruct::get(ST, Consts); 207 if (auto *AT = dyn_cast<ArrayType>(Ty)) 208 return ConstantArray::get(AT, Consts); 209 assert(isa<FixedVectorType>(Ty) && "Must be vector"); 210 return ConstantVector::get(Consts); 211 } 212 213 /// Return the value that would be computed by a load from P after the stores 214 /// reflected by 'memory' have been performed. If we can't decide, return null. 215 Constant *Evaluator::ComputeLoadResult(Constant *P, Type *Ty) { 216 APInt Offset(DL.getIndexTypeSizeInBits(P->getType()), 0); 217 P = cast<Constant>(P->stripAndAccumulateConstantOffsets( 218 DL, Offset, /* AllowNonInbounds */ true)); 219 Offset = Offset.sextOrTrunc(DL.getIndexTypeSizeInBits(P->getType())); 220 if (auto *GV = dyn_cast<GlobalVariable>(P)) 221 return ComputeLoadResult(GV, Ty, Offset); 222 return nullptr; 223 } 224 225 Constant *Evaluator::ComputeLoadResult(GlobalVariable *GV, Type *Ty, 226 const APInt &Offset) { 227 auto It = MutatedMemory.find(GV); 228 if (It != MutatedMemory.end()) 229 return It->second.read(Ty, Offset, DL); 230 231 if (!GV->hasDefinitiveInitializer()) 232 return nullptr; 233 return ConstantFoldLoadFromConst(GV->getInitializer(), Ty, Offset, DL); 234 } 235 236 static Function *getFunction(Constant *C) { 237 if (auto *Fn = dyn_cast<Function>(C)) 238 return Fn; 239 240 if (auto *Alias = dyn_cast<GlobalAlias>(C)) 241 if (auto *Fn = dyn_cast<Function>(Alias->getAliasee())) 242 return Fn; 243 return nullptr; 244 } 245 246 Function * 247 Evaluator::getCalleeWithFormalArgs(CallBase &CB, 248 SmallVectorImpl<Constant *> &Formals) { 249 auto *V = CB.getCalledOperand()->stripPointerCasts(); 250 if (auto *Fn = getFunction(getVal(V))) 251 return getFormalParams(CB, Fn, Formals) ? Fn : nullptr; 252 return nullptr; 253 } 254 255 bool Evaluator::getFormalParams(CallBase &CB, Function *F, 256 SmallVectorImpl<Constant *> &Formals) { 257 if (!F) 258 return false; 259 260 auto *FTy = F->getFunctionType(); 261 if (FTy->getNumParams() > CB.arg_size()) { 262 LLVM_DEBUG(dbgs() << "Too few arguments for function.\n"); 263 return false; 264 } 265 266 auto ArgI = CB.arg_begin(); 267 for (Type *PTy : FTy->params()) { 268 auto *ArgC = ConstantFoldLoadThroughBitcast(getVal(*ArgI), PTy, DL); 269 if (!ArgC) { 270 LLVM_DEBUG(dbgs() << "Can not convert function argument.\n"); 271 return false; 272 } 273 Formals.push_back(ArgC); 274 ++ArgI; 275 } 276 return true; 277 } 278 279 /// If call expression contains bitcast then we may need to cast 280 /// evaluated return value to a type of the call expression. 281 Constant *Evaluator::castCallResultIfNeeded(Type *ReturnType, Constant *RV) { 282 if (!RV || RV->getType() == ReturnType) 283 return RV; 284 285 RV = ConstantFoldLoadThroughBitcast(RV, ReturnType, DL); 286 if (!RV) 287 LLVM_DEBUG(dbgs() << "Failed to fold bitcast call expr\n"); 288 return RV; 289 } 290 291 /// Evaluate all instructions in block BB, returning true if successful, false 292 /// if we can't evaluate it. NewBB returns the next BB that control flows into, 293 /// or null upon return. StrippedPointerCastsForAliasAnalysis is set to true if 294 /// we looked through pointer casts to evaluate something. 295 bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB, 296 bool &StrippedPointerCastsForAliasAnalysis) { 297 // This is the main evaluation loop. 298 while (true) { 299 Constant *InstResult = nullptr; 300 301 LLVM_DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n"); 302 303 if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) { 304 if (!SI->isSimple()) { 305 LLVM_DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n"); 306 return false; // no volatile/atomic accesses. 307 } 308 Constant *Ptr = getVal(SI->getOperand(1)); 309 Constant *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI); 310 if (Ptr != FoldedPtr) { 311 LLVM_DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr); 312 Ptr = FoldedPtr; 313 LLVM_DEBUG(dbgs() << "; To: " << *Ptr << "\n"); 314 } 315 316 APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0); 317 Ptr = cast<Constant>(Ptr->stripAndAccumulateConstantOffsets( 318 DL, Offset, /* AllowNonInbounds */ true)); 319 Offset = Offset.sextOrTrunc(DL.getIndexTypeSizeInBits(Ptr->getType())); 320 auto *GV = dyn_cast<GlobalVariable>(Ptr); 321 if (!GV || !GV->hasUniqueInitializer()) { 322 LLVM_DEBUG(dbgs() << "Store is not to global with unique initializer: " 323 << *Ptr << "\n"); 324 return false; 325 } 326 327 // If this might be too difficult for the backend to handle (e.g. the addr 328 // of one global variable divided by another) then we can't commit it. 329 Constant *Val = getVal(SI->getOperand(0)); 330 if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) { 331 LLVM_DEBUG(dbgs() << "Store value is too complex to evaluate store. " 332 << *Val << "\n"); 333 return false; 334 } 335 336 auto Res = MutatedMemory.try_emplace(GV, GV->getInitializer()); 337 if (!Res.first->second.write(Val, Offset, DL)) 338 return false; 339 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) { 340 InstResult = ConstantExpr::get(BO->getOpcode(), 341 getVal(BO->getOperand(0)), 342 getVal(BO->getOperand(1))); 343 LLVM_DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " 344 << *InstResult << "\n"); 345 } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) { 346 InstResult = ConstantExpr::getCompare(CI->getPredicate(), 347 getVal(CI->getOperand(0)), 348 getVal(CI->getOperand(1))); 349 LLVM_DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult 350 << "\n"); 351 } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) { 352 InstResult = ConstantExpr::getCast(CI->getOpcode(), 353 getVal(CI->getOperand(0)), 354 CI->getType()); 355 LLVM_DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult 356 << "\n"); 357 } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) { 358 InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)), 359 getVal(SI->getOperand(1)), 360 getVal(SI->getOperand(2))); 361 LLVM_DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult 362 << "\n"); 363 } else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) { 364 InstResult = ConstantExpr::getExtractValue( 365 getVal(EVI->getAggregateOperand()), EVI->getIndices()); 366 LLVM_DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: " 367 << *InstResult << "\n"); 368 } else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) { 369 InstResult = ConstantExpr::getInsertValue( 370 getVal(IVI->getAggregateOperand()), 371 getVal(IVI->getInsertedValueOperand()), IVI->getIndices()); 372 LLVM_DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: " 373 << *InstResult << "\n"); 374 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) { 375 Constant *P = getVal(GEP->getOperand(0)); 376 SmallVector<Constant*, 8> GEPOps; 377 for (Use &Op : llvm::drop_begin(GEP->operands())) 378 GEPOps.push_back(getVal(Op)); 379 InstResult = 380 ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps, 381 cast<GEPOperator>(GEP)->isInBounds()); 382 LLVM_DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult << "\n"); 383 } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) { 384 if (!LI->isSimple()) { 385 LLVM_DEBUG( 386 dbgs() << "Found a Load! Not a simple load, can not evaluate.\n"); 387 return false; // no volatile/atomic accesses. 388 } 389 390 Constant *Ptr = getVal(LI->getOperand(0)); 391 Constant *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI); 392 if (Ptr != FoldedPtr) { 393 Ptr = FoldedPtr; 394 LLVM_DEBUG(dbgs() << "Found a constant pointer expression, constant " 395 "folding: " 396 << *Ptr << "\n"); 397 } 398 InstResult = ComputeLoadResult(Ptr, LI->getType()); 399 if (!InstResult) { 400 LLVM_DEBUG( 401 dbgs() << "Failed to compute load result. Can not evaluate load." 402 "\n"); 403 return false; // Could not evaluate load. 404 } 405 406 LLVM_DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n"); 407 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) { 408 if (AI->isArrayAllocation()) { 409 LLVM_DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n"); 410 return false; // Cannot handle array allocs. 411 } 412 Type *Ty = AI->getAllocatedType(); 413 AllocaTmps.push_back(std::make_unique<GlobalVariable>( 414 Ty, false, GlobalValue::InternalLinkage, UndefValue::get(Ty), 415 AI->getName(), /*TLMode=*/GlobalValue::NotThreadLocal, 416 AI->getType()->getPointerAddressSpace())); 417 InstResult = AllocaTmps.back().get(); 418 LLVM_DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n"); 419 } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) { 420 CallBase &CB = *cast<CallBase>(&*CurInst); 421 422 // Debug info can safely be ignored here. 423 if (isa<DbgInfoIntrinsic>(CB)) { 424 LLVM_DEBUG(dbgs() << "Ignoring debug info.\n"); 425 ++CurInst; 426 continue; 427 } 428 429 // Cannot handle inline asm. 430 if (CB.isInlineAsm()) { 431 LLVM_DEBUG(dbgs() << "Found inline asm, can not evaluate.\n"); 432 return false; 433 } 434 435 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CB)) { 436 if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) { 437 if (MSI->isVolatile()) { 438 LLVM_DEBUG(dbgs() << "Can not optimize a volatile memset " 439 << "intrinsic.\n"); 440 return false; 441 } 442 443 auto *LenC = dyn_cast<ConstantInt>(getVal(MSI->getLength())); 444 if (!LenC) { 445 LLVM_DEBUG(dbgs() << "Memset with unknown length.\n"); 446 return false; 447 } 448 449 Constant *Ptr = getVal(MSI->getDest()); 450 APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0); 451 Ptr = cast<Constant>(Ptr->stripAndAccumulateConstantOffsets( 452 DL, Offset, /* AllowNonInbounds */ true)); 453 auto *GV = dyn_cast<GlobalVariable>(Ptr); 454 if (!GV) { 455 LLVM_DEBUG(dbgs() << "Memset with unknown base.\n"); 456 return false; 457 } 458 459 Constant *Val = getVal(MSI->getValue()); 460 APInt Len = LenC->getValue(); 461 while (Len != 0) { 462 Constant *DestVal = ComputeLoadResult(GV, Val->getType(), Offset); 463 if (DestVal != Val) { 464 LLVM_DEBUG(dbgs() << "Memset is not a no-op at offset " 465 << Offset << " of " << *GV << ".\n"); 466 return false; 467 } 468 ++Offset; 469 --Len; 470 } 471 472 LLVM_DEBUG(dbgs() << "Ignoring no-op memset.\n"); 473 ++CurInst; 474 continue; 475 } 476 477 if (II->isLifetimeStartOrEnd()) { 478 LLVM_DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n"); 479 ++CurInst; 480 continue; 481 } 482 483 if (II->getIntrinsicID() == Intrinsic::invariant_start) { 484 // We don't insert an entry into Values, as it doesn't have a 485 // meaningful return value. 486 if (!II->use_empty()) { 487 LLVM_DEBUG(dbgs() 488 << "Found unused invariant_start. Can't evaluate.\n"); 489 return false; 490 } 491 ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0)); 492 Value *PtrArg = getVal(II->getArgOperand(1)); 493 Value *Ptr = PtrArg->stripPointerCasts(); 494 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { 495 Type *ElemTy = GV->getValueType(); 496 if (!Size->isMinusOne() && 497 Size->getValue().getLimitedValue() >= 498 DL.getTypeStoreSize(ElemTy)) { 499 Invariants.insert(GV); 500 LLVM_DEBUG(dbgs() << "Found a global var that is an invariant: " 501 << *GV << "\n"); 502 } else { 503 LLVM_DEBUG(dbgs() 504 << "Found a global var, but can not treat it as an " 505 "invariant.\n"); 506 } 507 } 508 // Continue even if we do nothing. 509 ++CurInst; 510 continue; 511 } else if (II->getIntrinsicID() == Intrinsic::assume) { 512 LLVM_DEBUG(dbgs() << "Skipping assume intrinsic.\n"); 513 ++CurInst; 514 continue; 515 } else if (II->getIntrinsicID() == Intrinsic::sideeffect) { 516 LLVM_DEBUG(dbgs() << "Skipping sideeffect intrinsic.\n"); 517 ++CurInst; 518 continue; 519 } else if (II->getIntrinsicID() == Intrinsic::pseudoprobe) { 520 LLVM_DEBUG(dbgs() << "Skipping pseudoprobe intrinsic.\n"); 521 ++CurInst; 522 continue; 523 } else { 524 Value *Stripped = CurInst->stripPointerCastsForAliasAnalysis(); 525 // Only attempt to getVal() if we've actually managed to strip 526 // anything away, or else we'll call getVal() on the current 527 // instruction. 528 if (Stripped != &*CurInst) { 529 InstResult = getVal(Stripped); 530 } 531 if (InstResult) { 532 LLVM_DEBUG(dbgs() 533 << "Stripped pointer casts for alias analysis for " 534 "intrinsic call.\n"); 535 StrippedPointerCastsForAliasAnalysis = true; 536 InstResult = ConstantExpr::getBitCast(InstResult, II->getType()); 537 } else { 538 LLVM_DEBUG(dbgs() << "Unknown intrinsic. Cannot evaluate.\n"); 539 return false; 540 } 541 } 542 } 543 544 if (!InstResult) { 545 // Resolve function pointers. 546 SmallVector<Constant *, 8> Formals; 547 Function *Callee = getCalleeWithFormalArgs(CB, Formals); 548 if (!Callee || Callee->isInterposable()) { 549 LLVM_DEBUG(dbgs() << "Can not resolve function pointer.\n"); 550 return false; // Cannot resolve. 551 } 552 553 if (Callee->isDeclaration()) { 554 // If this is a function we can constant fold, do it. 555 if (Constant *C = ConstantFoldCall(&CB, Callee, Formals, TLI)) { 556 InstResult = castCallResultIfNeeded(CB.getType(), C); 557 if (!InstResult) 558 return false; 559 LLVM_DEBUG(dbgs() << "Constant folded function call. Result: " 560 << *InstResult << "\n"); 561 } else { 562 LLVM_DEBUG(dbgs() << "Can not constant fold function call.\n"); 563 return false; 564 } 565 } else { 566 if (Callee->getFunctionType()->isVarArg()) { 567 LLVM_DEBUG(dbgs() 568 << "Can not constant fold vararg function call.\n"); 569 return false; 570 } 571 572 Constant *RetVal = nullptr; 573 // Execute the call, if successful, use the return value. 574 ValueStack.emplace_back(); 575 if (!EvaluateFunction(Callee, RetVal, Formals)) { 576 LLVM_DEBUG(dbgs() << "Failed to evaluate function.\n"); 577 return false; 578 } 579 ValueStack.pop_back(); 580 InstResult = castCallResultIfNeeded(CB.getType(), RetVal); 581 if (RetVal && !InstResult) 582 return false; 583 584 if (InstResult) { 585 LLVM_DEBUG(dbgs() << "Successfully evaluated function. Result: " 586 << *InstResult << "\n\n"); 587 } else { 588 LLVM_DEBUG(dbgs() 589 << "Successfully evaluated function. Result: 0\n\n"); 590 } 591 } 592 } 593 } else if (CurInst->isTerminator()) { 594 LLVM_DEBUG(dbgs() << "Found a terminator instruction.\n"); 595 596 if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) { 597 if (BI->isUnconditional()) { 598 NextBB = BI->getSuccessor(0); 599 } else { 600 ConstantInt *Cond = 601 dyn_cast<ConstantInt>(getVal(BI->getCondition())); 602 if (!Cond) return false; // Cannot determine. 603 604 NextBB = BI->getSuccessor(!Cond->getZExtValue()); 605 } 606 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) { 607 ConstantInt *Val = 608 dyn_cast<ConstantInt>(getVal(SI->getCondition())); 609 if (!Val) return false; // Cannot determine. 610 NextBB = SI->findCaseValue(Val)->getCaseSuccessor(); 611 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) { 612 Value *Val = getVal(IBI->getAddress())->stripPointerCasts(); 613 if (BlockAddress *BA = dyn_cast<BlockAddress>(Val)) 614 NextBB = BA->getBasicBlock(); 615 else 616 return false; // Cannot determine. 617 } else if (isa<ReturnInst>(CurInst)) { 618 NextBB = nullptr; 619 } else { 620 // invoke, unwind, resume, unreachable. 621 LLVM_DEBUG(dbgs() << "Can not handle terminator."); 622 return false; // Cannot handle this terminator. 623 } 624 625 // We succeeded at evaluating this block! 626 LLVM_DEBUG(dbgs() << "Successfully evaluated block.\n"); 627 return true; 628 } else { 629 // Did not know how to evaluate this! 630 LLVM_DEBUG( 631 dbgs() << "Failed to evaluate block due to unhandled instruction." 632 "\n"); 633 return false; 634 } 635 636 if (!CurInst->use_empty()) { 637 InstResult = ConstantFoldConstant(InstResult, DL, TLI); 638 setVal(&*CurInst, InstResult); 639 } 640 641 // If we just processed an invoke, we finished evaluating the block. 642 if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) { 643 NextBB = II->getNormalDest(); 644 LLVM_DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n"); 645 return true; 646 } 647 648 // Advance program counter. 649 ++CurInst; 650 } 651 } 652 653 /// Evaluate a call to function F, returning true if successful, false if we 654 /// can't evaluate it. ActualArgs contains the formal arguments for the 655 /// function. 656 bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal, 657 const SmallVectorImpl<Constant*> &ActualArgs) { 658 assert(ActualArgs.size() == F->arg_size() && "wrong number of arguments"); 659 660 // Check to see if this function is already executing (recursion). If so, 661 // bail out. TODO: we might want to accept limited recursion. 662 if (is_contained(CallStack, F)) 663 return false; 664 665 CallStack.push_back(F); 666 667 // Initialize arguments to the incoming values specified. 668 unsigned ArgNo = 0; 669 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; 670 ++AI, ++ArgNo) 671 setVal(&*AI, ActualArgs[ArgNo]); 672 673 // ExecutedBlocks - We only handle non-looping, non-recursive code. As such, 674 // we can only evaluate any one basic block at most once. This set keeps 675 // track of what we have executed so we can detect recursive cases etc. 676 SmallPtrSet<BasicBlock*, 32> ExecutedBlocks; 677 678 // CurBB - The current basic block we're evaluating. 679 BasicBlock *CurBB = &F->front(); 680 681 BasicBlock::iterator CurInst = CurBB->begin(); 682 683 while (true) { 684 BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings. 685 LLVM_DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n"); 686 687 bool StrippedPointerCastsForAliasAnalysis = false; 688 689 if (!EvaluateBlock(CurInst, NextBB, StrippedPointerCastsForAliasAnalysis)) 690 return false; 691 692 if (!NextBB) { 693 // Successfully running until there's no next block means that we found 694 // the return. Fill it the return value and pop the call stack. 695 ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator()); 696 if (RI->getNumOperands()) { 697 // The Evaluator can look through pointer casts as long as alias 698 // analysis holds because it's just a simple interpreter and doesn't 699 // skip memory accesses due to invariant group metadata, but we can't 700 // let users of Evaluator use a value that's been gleaned looking 701 // through stripping pointer casts. 702 if (StrippedPointerCastsForAliasAnalysis && 703 !RI->getReturnValue()->getType()->isVoidTy()) { 704 return false; 705 } 706 RetVal = getVal(RI->getOperand(0)); 707 } 708 CallStack.pop_back(); 709 return true; 710 } 711 712 // Okay, we succeeded in evaluating this control flow. See if we have 713 // executed the new block before. If so, we have a looping function, 714 // which we cannot evaluate in reasonable time. 715 if (!ExecutedBlocks.insert(NextBB).second) 716 return false; // looped! 717 718 // Okay, we have never been in this block before. Check to see if there 719 // are any PHI nodes. If so, evaluate them with information about where 720 // we came from. 721 PHINode *PN = nullptr; 722 for (CurInst = NextBB->begin(); 723 (PN = dyn_cast<PHINode>(CurInst)); ++CurInst) 724 setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB))); 725 726 // Advance to the next block. 727 CurBB = NextBB; 728 } 729 } 730