1 //===- Evaluator.cpp - LLVM IR evaluator ----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Function evaluator for LLVM IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/Evaluator.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/IR/BasicBlock.h" 20 #include "llvm/IR/Constant.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/GlobalAlias.h" 26 #include "llvm/IR/GlobalValue.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/Operator.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/IR/User.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include <iterator> 41 42 #define DEBUG_TYPE "evaluator" 43 44 using namespace llvm; 45 46 static inline bool 47 isSimpleEnoughValueToCommit(Constant *C, 48 SmallPtrSetImpl<Constant *> &SimpleConstants, 49 const DataLayout &DL); 50 51 /// Return true if the specified constant can be handled by the code generator. 52 /// We don't want to generate something like: 53 /// void *X = &X/42; 54 /// because the code generator doesn't have a relocation that can handle that. 55 /// 56 /// This function should be called if C was not found (but just got inserted) 57 /// in SimpleConstants to avoid having to rescan the same constants all the 58 /// time. 59 static bool 60 isSimpleEnoughValueToCommitHelper(Constant *C, 61 SmallPtrSetImpl<Constant *> &SimpleConstants, 62 const DataLayout &DL) { 63 // Simple global addresses are supported, do not allow dllimport or 64 // thread-local globals. 65 if (auto *GV = dyn_cast<GlobalValue>(C)) 66 return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal(); 67 68 // Simple integer, undef, constant aggregate zero, etc are all supported. 69 if (C->getNumOperands() == 0 || isa<BlockAddress>(C)) 70 return true; 71 72 // Aggregate values are safe if all their elements are. 73 if (isa<ConstantAggregate>(C)) { 74 for (Value *Op : C->operands()) 75 if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL)) 76 return false; 77 return true; 78 } 79 80 // We don't know exactly what relocations are allowed in constant expressions, 81 // so we allow &global+constantoffset, which is safe and uniformly supported 82 // across targets. 83 ConstantExpr *CE = cast<ConstantExpr>(C); 84 switch (CE->getOpcode()) { 85 case Instruction::BitCast: 86 // Bitcast is fine if the casted value is fine. 87 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 88 89 case Instruction::IntToPtr: 90 case Instruction::PtrToInt: 91 // int <=> ptr is fine if the int type is the same size as the 92 // pointer type. 93 if (DL.getTypeSizeInBits(CE->getType()) != 94 DL.getTypeSizeInBits(CE->getOperand(0)->getType())) 95 return false; 96 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 97 98 // GEP is fine if it is simple + constant offset. 99 case Instruction::GetElementPtr: 100 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) 101 if (!isa<ConstantInt>(CE->getOperand(i))) 102 return false; 103 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 104 105 case Instruction::Add: 106 // We allow simple+cst. 107 if (!isa<ConstantInt>(CE->getOperand(1))) 108 return false; 109 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 110 } 111 return false; 112 } 113 114 static inline bool 115 isSimpleEnoughValueToCommit(Constant *C, 116 SmallPtrSetImpl<Constant *> &SimpleConstants, 117 const DataLayout &DL) { 118 // If we already checked this constant, we win. 119 if (!SimpleConstants.insert(C).second) 120 return true; 121 // Check the constant. 122 return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL); 123 } 124 125 /// Return true if this constant is simple enough for us to understand. In 126 /// particular, if it is a cast to anything other than from one pointer type to 127 /// another pointer type, we punt. We basically just support direct accesses to 128 /// globals and GEP's of globals. This should be kept up to date with 129 /// CommitValueTo. 130 static bool isSimpleEnoughPointerToCommit(Constant *C, const DataLayout &DL) { 131 // Conservatively, avoid aggregate types. This is because we don't 132 // want to worry about them partially overlapping other stores. 133 if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType()) 134 return false; 135 136 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 137 // Do not allow weak/*_odr/linkonce linkage or external globals. 138 return GV->hasUniqueInitializer(); 139 140 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 141 // Handle a constantexpr gep. 142 if (CE->getOpcode() == Instruction::GetElementPtr && 143 isa<GlobalVariable>(CE->getOperand(0)) && 144 cast<GEPOperator>(CE)->isInBounds()) { 145 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 146 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or 147 // external globals. 148 if (!GV->hasUniqueInitializer()) 149 return false; 150 151 // The first index must be zero. 152 ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin())); 153 if (!CI || !CI->isZero()) return false; 154 155 // The remaining indices must be compile-time known integers within the 156 // notional bounds of the corresponding static array types. 157 if (!CE->isGEPWithNoNotionalOverIndexing()) 158 return false; 159 160 return ConstantFoldLoadThroughGEPConstantExpr( 161 GV->getInitializer(), CE, 162 cast<GEPOperator>(CE)->getResultElementType(), DL); 163 } else if (CE->getOpcode() == Instruction::BitCast && 164 isa<GlobalVariable>(CE->getOperand(0))) { 165 // A constantexpr bitcast from a pointer to another pointer is a no-op, 166 // and we know how to evaluate it by moving the bitcast from the pointer 167 // operand to the value operand. 168 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or 169 // external globals. 170 return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer(); 171 } 172 } 173 174 return false; 175 } 176 177 /// Apply 'Func' to Ptr. If this returns nullptr, introspect the pointer's 178 /// type and walk down through the initial elements to obtain additional 179 /// pointers to try. Returns the first non-null return value from Func, or 180 /// nullptr if the type can't be introspected further. 181 static Constant * 182 evaluateBitcastFromPtr(Constant *Ptr, const DataLayout &DL, 183 const TargetLibraryInfo *TLI, 184 std::function<Constant *(Constant *)> Func) { 185 Constant *Val; 186 while (!(Val = Func(Ptr))) { 187 // If Ty is a non-opaque struct, we can convert the pointer to the struct 188 // into a pointer to its first member. 189 // FIXME: This could be extended to support arrays as well. 190 Type *Ty = cast<PointerType>(Ptr->getType())->getElementType(); 191 if (!isa<StructType>(Ty) || cast<StructType>(Ty)->isOpaque()) 192 break; 193 194 IntegerType *IdxTy = IntegerType::get(Ty->getContext(), 32); 195 Constant *IdxZero = ConstantInt::get(IdxTy, 0, false); 196 Constant *const IdxList[] = {IdxZero, IdxZero}; 197 198 Ptr = ConstantExpr::getGetElementPtr(Ty, Ptr, IdxList); 199 Ptr = ConstantFoldConstant(Ptr, DL, TLI); 200 } 201 return Val; 202 } 203 204 static Constant *getInitializer(Constant *C) { 205 auto *GV = dyn_cast<GlobalVariable>(C); 206 return GV && GV->hasDefinitiveInitializer() ? GV->getInitializer() : nullptr; 207 } 208 209 /// Return the value that would be computed by a load from P after the stores 210 /// reflected by 'memory' have been performed. If we can't decide, return null. 211 Constant *Evaluator::ComputeLoadResult(Constant *P, Type *Ty) { 212 // If this memory location has been recently stored, use the stored value: it 213 // is the most up-to-date. 214 auto findMemLoc = [this](Constant *Ptr) { return MutatedMemory.lookup(Ptr); }; 215 216 if (Constant *Val = findMemLoc(P)) 217 return Val; 218 219 // Access it. 220 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 221 if (GV->hasDefinitiveInitializer()) 222 return GV->getInitializer(); 223 return nullptr; 224 } 225 226 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P)) { 227 switch (CE->getOpcode()) { 228 // Handle a constantexpr getelementptr. 229 case Instruction::GetElementPtr: 230 if (auto *I = getInitializer(CE->getOperand(0))) 231 return ConstantFoldLoadThroughGEPConstantExpr(I, CE, Ty, DL); 232 break; 233 // Handle a constantexpr bitcast. 234 case Instruction::BitCast: 235 // We're evaluating a load through a pointer that was bitcast to a 236 // different type. See if the "from" pointer has recently been stored. 237 // If it hasn't, we may still be able to find a stored pointer by 238 // introspecting the type. 239 Constant *Val = 240 evaluateBitcastFromPtr(CE->getOperand(0), DL, TLI, findMemLoc); 241 if (!Val) 242 Val = getInitializer(CE->getOperand(0)); 243 if (Val) 244 return ConstantFoldLoadThroughBitcast( 245 Val, P->getType()->getPointerElementType(), DL); 246 break; 247 } 248 } 249 250 return nullptr; // don't know how to evaluate. 251 } 252 253 static Function *getFunction(Constant *C) { 254 if (auto *Fn = dyn_cast<Function>(C)) 255 return Fn; 256 257 if (auto *Alias = dyn_cast<GlobalAlias>(C)) 258 if (auto *Fn = dyn_cast<Function>(Alias->getAliasee())) 259 return Fn; 260 return nullptr; 261 } 262 263 Function * 264 Evaluator::getCalleeWithFormalArgs(CallBase &CB, 265 SmallVectorImpl<Constant *> &Formals) { 266 auto *V = CB.getCalledOperand(); 267 if (auto *Fn = getFunction(getVal(V))) 268 return getFormalParams(CB, Fn, Formals) ? Fn : nullptr; 269 270 auto *CE = dyn_cast<ConstantExpr>(V); 271 if (!CE || CE->getOpcode() != Instruction::BitCast || 272 !getFormalParams(CB, getFunction(CE->getOperand(0)), Formals)) 273 return nullptr; 274 275 return dyn_cast<Function>( 276 ConstantFoldLoadThroughBitcast(CE, CE->getOperand(0)->getType(), DL)); 277 } 278 279 bool Evaluator::getFormalParams(CallBase &CB, Function *F, 280 SmallVectorImpl<Constant *> &Formals) { 281 if (!F) 282 return false; 283 284 auto *FTy = F->getFunctionType(); 285 if (FTy->getNumParams() > CB.getNumArgOperands()) { 286 LLVM_DEBUG(dbgs() << "Too few arguments for function.\n"); 287 return false; 288 } 289 290 auto ArgI = CB.arg_begin(); 291 for (auto ParI = FTy->param_begin(), ParE = FTy->param_end(); ParI != ParE; 292 ++ParI) { 293 auto *ArgC = ConstantFoldLoadThroughBitcast(getVal(*ArgI), *ParI, DL); 294 if (!ArgC) { 295 LLVM_DEBUG(dbgs() << "Can not convert function argument.\n"); 296 return false; 297 } 298 Formals.push_back(ArgC); 299 ++ArgI; 300 } 301 return true; 302 } 303 304 /// If call expression contains bitcast then we may need to cast 305 /// evaluated return value to a type of the call expression. 306 Constant *Evaluator::castCallResultIfNeeded(Value *CallExpr, Constant *RV) { 307 ConstantExpr *CE = dyn_cast<ConstantExpr>(CallExpr); 308 if (!RV || !CE || CE->getOpcode() != Instruction::BitCast) 309 return RV; 310 311 if (auto *FT = 312 dyn_cast<FunctionType>(CE->getType()->getPointerElementType())) { 313 RV = ConstantFoldLoadThroughBitcast(RV, FT->getReturnType(), DL); 314 if (!RV) 315 LLVM_DEBUG(dbgs() << "Failed to fold bitcast call expr\n"); 316 } 317 return RV; 318 } 319 320 /// Evaluate all instructions in block BB, returning true if successful, false 321 /// if we can't evaluate it. NewBB returns the next BB that control flows into, 322 /// or null upon return. StrippedPointerCastsForAliasAnalysis is set to true if 323 /// we looked through pointer casts to evaluate something. 324 bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB, 325 bool &StrippedPointerCastsForAliasAnalysis) { 326 // This is the main evaluation loop. 327 while (true) { 328 Constant *InstResult = nullptr; 329 330 LLVM_DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n"); 331 332 if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) { 333 if (!SI->isSimple()) { 334 LLVM_DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n"); 335 return false; // no volatile/atomic accesses. 336 } 337 Constant *Ptr = getVal(SI->getOperand(1)); 338 Constant *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI); 339 if (Ptr != FoldedPtr) { 340 LLVM_DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr); 341 Ptr = FoldedPtr; 342 LLVM_DEBUG(dbgs() << "; To: " << *Ptr << "\n"); 343 } 344 if (!isSimpleEnoughPointerToCommit(Ptr, DL)) { 345 // If this is too complex for us to commit, reject it. 346 LLVM_DEBUG( 347 dbgs() << "Pointer is too complex for us to evaluate store."); 348 return false; 349 } 350 351 Constant *Val = getVal(SI->getOperand(0)); 352 353 // If this might be too difficult for the backend to handle (e.g. the addr 354 // of one global variable divided by another) then we can't commit it. 355 if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) { 356 LLVM_DEBUG(dbgs() << "Store value is too complex to evaluate store. " 357 << *Val << "\n"); 358 return false; 359 } 360 361 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) { 362 if (CE->getOpcode() == Instruction::BitCast) { 363 LLVM_DEBUG(dbgs() 364 << "Attempting to resolve bitcast on constant ptr.\n"); 365 // If we're evaluating a store through a bitcast, then we need 366 // to pull the bitcast off the pointer type and push it onto the 367 // stored value. In order to push the bitcast onto the stored value, 368 // a bitcast from the pointer's element type to Val's type must be 369 // legal. If it's not, we can try introspecting the type to find a 370 // legal conversion. 371 372 auto castValTy = [&](Constant *P) -> Constant * { 373 Type *Ty = cast<PointerType>(P->getType())->getElementType(); 374 if (Constant *FV = ConstantFoldLoadThroughBitcast(Val, Ty, DL)) { 375 Ptr = P; 376 return FV; 377 } 378 return nullptr; 379 }; 380 381 Constant *NewVal = 382 evaluateBitcastFromPtr(CE->getOperand(0), DL, TLI, castValTy); 383 if (!NewVal) { 384 LLVM_DEBUG(dbgs() << "Failed to bitcast constant ptr, can not " 385 "evaluate.\n"); 386 return false; 387 } 388 389 Val = NewVal; 390 LLVM_DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n"); 391 } 392 } 393 394 MutatedMemory[Ptr] = Val; 395 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) { 396 InstResult = ConstantExpr::get(BO->getOpcode(), 397 getVal(BO->getOperand(0)), 398 getVal(BO->getOperand(1))); 399 LLVM_DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " 400 << *InstResult << "\n"); 401 } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) { 402 InstResult = ConstantExpr::getCompare(CI->getPredicate(), 403 getVal(CI->getOperand(0)), 404 getVal(CI->getOperand(1))); 405 LLVM_DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult 406 << "\n"); 407 } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) { 408 InstResult = ConstantExpr::getCast(CI->getOpcode(), 409 getVal(CI->getOperand(0)), 410 CI->getType()); 411 LLVM_DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult 412 << "\n"); 413 } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) { 414 InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)), 415 getVal(SI->getOperand(1)), 416 getVal(SI->getOperand(2))); 417 LLVM_DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult 418 << "\n"); 419 } else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) { 420 InstResult = ConstantExpr::getExtractValue( 421 getVal(EVI->getAggregateOperand()), EVI->getIndices()); 422 LLVM_DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: " 423 << *InstResult << "\n"); 424 } else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) { 425 InstResult = ConstantExpr::getInsertValue( 426 getVal(IVI->getAggregateOperand()), 427 getVal(IVI->getInsertedValueOperand()), IVI->getIndices()); 428 LLVM_DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: " 429 << *InstResult << "\n"); 430 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) { 431 Constant *P = getVal(GEP->getOperand(0)); 432 SmallVector<Constant*, 8> GEPOps; 433 for (Use &Op : llvm::drop_begin(GEP->operands())) 434 GEPOps.push_back(getVal(Op)); 435 InstResult = 436 ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps, 437 cast<GEPOperator>(GEP)->isInBounds()); 438 LLVM_DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult << "\n"); 439 } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) { 440 if (!LI->isSimple()) { 441 LLVM_DEBUG( 442 dbgs() << "Found a Load! Not a simple load, can not evaluate.\n"); 443 return false; // no volatile/atomic accesses. 444 } 445 446 Constant *Ptr = getVal(LI->getOperand(0)); 447 Constant *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI); 448 if (Ptr != FoldedPtr) { 449 Ptr = FoldedPtr; 450 LLVM_DEBUG(dbgs() << "Found a constant pointer expression, constant " 451 "folding: " 452 << *Ptr << "\n"); 453 } 454 InstResult = ComputeLoadResult(Ptr, LI->getType()); 455 if (!InstResult) { 456 LLVM_DEBUG( 457 dbgs() << "Failed to compute load result. Can not evaluate load." 458 "\n"); 459 return false; // Could not evaluate load. 460 } 461 462 LLVM_DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n"); 463 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) { 464 if (AI->isArrayAllocation()) { 465 LLVM_DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n"); 466 return false; // Cannot handle array allocs. 467 } 468 Type *Ty = AI->getAllocatedType(); 469 AllocaTmps.push_back(std::make_unique<GlobalVariable>( 470 Ty, false, GlobalValue::InternalLinkage, UndefValue::get(Ty), 471 AI->getName(), /*TLMode=*/GlobalValue::NotThreadLocal, 472 AI->getType()->getPointerAddressSpace())); 473 InstResult = AllocaTmps.back().get(); 474 LLVM_DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n"); 475 } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) { 476 CallBase &CB = *cast<CallBase>(&*CurInst); 477 478 // Debug info can safely be ignored here. 479 if (isa<DbgInfoIntrinsic>(CB)) { 480 LLVM_DEBUG(dbgs() << "Ignoring debug info.\n"); 481 ++CurInst; 482 continue; 483 } 484 485 // Cannot handle inline asm. 486 if (CB.isInlineAsm()) { 487 LLVM_DEBUG(dbgs() << "Found inline asm, can not evaluate.\n"); 488 return false; 489 } 490 491 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CB)) { 492 if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) { 493 if (MSI->isVolatile()) { 494 LLVM_DEBUG(dbgs() << "Can not optimize a volatile memset " 495 << "intrinsic.\n"); 496 return false; 497 } 498 Constant *Ptr = getVal(MSI->getDest()); 499 Constant *Val = getVal(MSI->getValue()); 500 Constant *DestVal = 501 ComputeLoadResult(getVal(Ptr), MSI->getValue()->getType()); 502 if (Val->isNullValue() && DestVal && DestVal->isNullValue()) { 503 // This memset is a no-op. 504 LLVM_DEBUG(dbgs() << "Ignoring no-op memset.\n"); 505 ++CurInst; 506 continue; 507 } 508 } 509 510 if (II->isLifetimeStartOrEnd()) { 511 LLVM_DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n"); 512 ++CurInst; 513 continue; 514 } 515 516 if (II->getIntrinsicID() == Intrinsic::invariant_start) { 517 // We don't insert an entry into Values, as it doesn't have a 518 // meaningful return value. 519 if (!II->use_empty()) { 520 LLVM_DEBUG(dbgs() 521 << "Found unused invariant_start. Can't evaluate.\n"); 522 return false; 523 } 524 ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0)); 525 Value *PtrArg = getVal(II->getArgOperand(1)); 526 Value *Ptr = PtrArg->stripPointerCasts(); 527 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { 528 Type *ElemTy = GV->getValueType(); 529 if (!Size->isMinusOne() && 530 Size->getValue().getLimitedValue() >= 531 DL.getTypeStoreSize(ElemTy)) { 532 Invariants.insert(GV); 533 LLVM_DEBUG(dbgs() << "Found a global var that is an invariant: " 534 << *GV << "\n"); 535 } else { 536 LLVM_DEBUG(dbgs() 537 << "Found a global var, but can not treat it as an " 538 "invariant.\n"); 539 } 540 } 541 // Continue even if we do nothing. 542 ++CurInst; 543 continue; 544 } else if (II->getIntrinsicID() == Intrinsic::assume) { 545 LLVM_DEBUG(dbgs() << "Skipping assume intrinsic.\n"); 546 ++CurInst; 547 continue; 548 } else if (II->getIntrinsicID() == Intrinsic::sideeffect) { 549 LLVM_DEBUG(dbgs() << "Skipping sideeffect intrinsic.\n"); 550 ++CurInst; 551 continue; 552 } else if (II->getIntrinsicID() == Intrinsic::pseudoprobe) { 553 LLVM_DEBUG(dbgs() << "Skipping pseudoprobe intrinsic.\n"); 554 ++CurInst; 555 continue; 556 } else { 557 Value *Stripped = CurInst->stripPointerCastsForAliasAnalysis(); 558 // Only attempt to getVal() if we've actually managed to strip 559 // anything away, or else we'll call getVal() on the current 560 // instruction. 561 if (Stripped != &*CurInst) { 562 InstResult = getVal(Stripped); 563 } 564 if (InstResult) { 565 LLVM_DEBUG(dbgs() 566 << "Stripped pointer casts for alias analysis for " 567 "intrinsic call.\n"); 568 StrippedPointerCastsForAliasAnalysis = true; 569 InstResult = ConstantExpr::getBitCast(InstResult, II->getType()); 570 } else { 571 LLVM_DEBUG(dbgs() << "Unknown intrinsic. Cannot evaluate.\n"); 572 return false; 573 } 574 } 575 } 576 577 if (!InstResult) { 578 // Resolve function pointers. 579 SmallVector<Constant *, 8> Formals; 580 Function *Callee = getCalleeWithFormalArgs(CB, Formals); 581 if (!Callee || Callee->isInterposable()) { 582 LLVM_DEBUG(dbgs() << "Can not resolve function pointer.\n"); 583 return false; // Cannot resolve. 584 } 585 586 if (Callee->isDeclaration()) { 587 // If this is a function we can constant fold, do it. 588 if (Constant *C = ConstantFoldCall(&CB, Callee, Formals, TLI)) { 589 InstResult = castCallResultIfNeeded(CB.getCalledOperand(), C); 590 if (!InstResult) 591 return false; 592 LLVM_DEBUG(dbgs() << "Constant folded function call. Result: " 593 << *InstResult << "\n"); 594 } else { 595 LLVM_DEBUG(dbgs() << "Can not constant fold function call.\n"); 596 return false; 597 } 598 } else { 599 if (Callee->getFunctionType()->isVarArg()) { 600 LLVM_DEBUG(dbgs() 601 << "Can not constant fold vararg function call.\n"); 602 return false; 603 } 604 605 Constant *RetVal = nullptr; 606 // Execute the call, if successful, use the return value. 607 ValueStack.emplace_back(); 608 if (!EvaluateFunction(Callee, RetVal, Formals)) { 609 LLVM_DEBUG(dbgs() << "Failed to evaluate function.\n"); 610 return false; 611 } 612 ValueStack.pop_back(); 613 InstResult = castCallResultIfNeeded(CB.getCalledOperand(), RetVal); 614 if (RetVal && !InstResult) 615 return false; 616 617 if (InstResult) { 618 LLVM_DEBUG(dbgs() << "Successfully evaluated function. Result: " 619 << *InstResult << "\n\n"); 620 } else { 621 LLVM_DEBUG(dbgs() 622 << "Successfully evaluated function. Result: 0\n\n"); 623 } 624 } 625 } 626 } else if (CurInst->isTerminator()) { 627 LLVM_DEBUG(dbgs() << "Found a terminator instruction.\n"); 628 629 if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) { 630 if (BI->isUnconditional()) { 631 NextBB = BI->getSuccessor(0); 632 } else { 633 ConstantInt *Cond = 634 dyn_cast<ConstantInt>(getVal(BI->getCondition())); 635 if (!Cond) return false; // Cannot determine. 636 637 NextBB = BI->getSuccessor(!Cond->getZExtValue()); 638 } 639 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) { 640 ConstantInt *Val = 641 dyn_cast<ConstantInt>(getVal(SI->getCondition())); 642 if (!Val) return false; // Cannot determine. 643 NextBB = SI->findCaseValue(Val)->getCaseSuccessor(); 644 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) { 645 Value *Val = getVal(IBI->getAddress())->stripPointerCasts(); 646 if (BlockAddress *BA = dyn_cast<BlockAddress>(Val)) 647 NextBB = BA->getBasicBlock(); 648 else 649 return false; // Cannot determine. 650 } else if (isa<ReturnInst>(CurInst)) { 651 NextBB = nullptr; 652 } else { 653 // invoke, unwind, resume, unreachable. 654 LLVM_DEBUG(dbgs() << "Can not handle terminator."); 655 return false; // Cannot handle this terminator. 656 } 657 658 // We succeeded at evaluating this block! 659 LLVM_DEBUG(dbgs() << "Successfully evaluated block.\n"); 660 return true; 661 } else { 662 // Did not know how to evaluate this! 663 LLVM_DEBUG( 664 dbgs() << "Failed to evaluate block due to unhandled instruction." 665 "\n"); 666 return false; 667 } 668 669 if (!CurInst->use_empty()) { 670 InstResult = ConstantFoldConstant(InstResult, DL, TLI); 671 setVal(&*CurInst, InstResult); 672 } 673 674 // If we just processed an invoke, we finished evaluating the block. 675 if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) { 676 NextBB = II->getNormalDest(); 677 LLVM_DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n"); 678 return true; 679 } 680 681 // Advance program counter. 682 ++CurInst; 683 } 684 } 685 686 /// Evaluate a call to function F, returning true if successful, false if we 687 /// can't evaluate it. ActualArgs contains the formal arguments for the 688 /// function. 689 bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal, 690 const SmallVectorImpl<Constant*> &ActualArgs) { 691 // Check to see if this function is already executing (recursion). If so, 692 // bail out. TODO: we might want to accept limited recursion. 693 if (is_contained(CallStack, F)) 694 return false; 695 696 CallStack.push_back(F); 697 698 // Initialize arguments to the incoming values specified. 699 unsigned ArgNo = 0; 700 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; 701 ++AI, ++ArgNo) 702 setVal(&*AI, ActualArgs[ArgNo]); 703 704 // ExecutedBlocks - We only handle non-looping, non-recursive code. As such, 705 // we can only evaluate any one basic block at most once. This set keeps 706 // track of what we have executed so we can detect recursive cases etc. 707 SmallPtrSet<BasicBlock*, 32> ExecutedBlocks; 708 709 // CurBB - The current basic block we're evaluating. 710 BasicBlock *CurBB = &F->front(); 711 712 BasicBlock::iterator CurInst = CurBB->begin(); 713 714 while (true) { 715 BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings. 716 LLVM_DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n"); 717 718 bool StrippedPointerCastsForAliasAnalysis = false; 719 720 if (!EvaluateBlock(CurInst, NextBB, StrippedPointerCastsForAliasAnalysis)) 721 return false; 722 723 if (!NextBB) { 724 // Successfully running until there's no next block means that we found 725 // the return. Fill it the return value and pop the call stack. 726 ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator()); 727 if (RI->getNumOperands()) { 728 // The Evaluator can look through pointer casts as long as alias 729 // analysis holds because it's just a simple interpreter and doesn't 730 // skip memory accesses due to invariant group metadata, but we can't 731 // let users of Evaluator use a value that's been gleaned looking 732 // through stripping pointer casts. 733 if (StrippedPointerCastsForAliasAnalysis && 734 !RI->getReturnValue()->getType()->isVoidTy()) { 735 return false; 736 } 737 RetVal = getVal(RI->getOperand(0)); 738 } 739 CallStack.pop_back(); 740 return true; 741 } 742 743 // Okay, we succeeded in evaluating this control flow. See if we have 744 // executed the new block before. If so, we have a looping function, 745 // which we cannot evaluate in reasonable time. 746 if (!ExecutedBlocks.insert(NextBB).second) 747 return false; // looped! 748 749 // Okay, we have never been in this block before. Check to see if there 750 // are any PHI nodes. If so, evaluate them with information about where 751 // we came from. 752 PHINode *PN = nullptr; 753 for (CurInst = NextBB->begin(); 754 (PN = dyn_cast<PHINode>(CurInst)); ++CurInst) 755 setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB))); 756 757 // Advance to the next block. 758 CurBB = NextBB; 759 } 760 } 761