1*f573f686Sspupyrev //===- CodeLayout.cpp - Implementation of code layout algorithms ----------===// 2*f573f686Sspupyrev // 3*f573f686Sspupyrev // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4*f573f686Sspupyrev // See https://llvm.org/LICENSE.txt for license information. 5*f573f686Sspupyrev // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6*f573f686Sspupyrev // 7*f573f686Sspupyrev //===----------------------------------------------------------------------===// 8*f573f686Sspupyrev // 9*f573f686Sspupyrev // ExtTSP - layout of basic blocks with i-cache optimization. 10*f573f686Sspupyrev // 11*f573f686Sspupyrev // The algorithm tries to find a layout of nodes (basic blocks) of a given CFG 12*f573f686Sspupyrev // optimizing jump locality and thus processor I-cache utilization. This is 13*f573f686Sspupyrev // achieved via increasing the number of fall-through jumps and co-locating 14*f573f686Sspupyrev // frequently executed nodes together. The name follows the underlying 15*f573f686Sspupyrev // optimization problem, Extended-TSP, which is a generalization of classical 16*f573f686Sspupyrev // (maximum) Traveling Salesmen Problem. 17*f573f686Sspupyrev // 18*f573f686Sspupyrev // The algorithm is a greedy heuristic that works with chains (ordered lists) 19*f573f686Sspupyrev // of basic blocks. Initially all chains are isolated basic blocks. On every 20*f573f686Sspupyrev // iteration, we pick a pair of chains whose merging yields the biggest increase 21*f573f686Sspupyrev // in the ExtTSP score, which models how i-cache "friendly" a specific chain is. 22*f573f686Sspupyrev // A pair of chains giving the maximum gain is merged into a new chain. The 23*f573f686Sspupyrev // procedure stops when there is only one chain left, or when merging does not 24*f573f686Sspupyrev // increase ExtTSP. In the latter case, the remaining chains are sorted by 25*f573f686Sspupyrev // density in the decreasing order. 26*f573f686Sspupyrev // 27*f573f686Sspupyrev // An important aspect is the way two chains are merged. Unlike earlier 28*f573f686Sspupyrev // algorithms (e.g., based on the approach of Pettis-Hansen), two 29*f573f686Sspupyrev // chains, X and Y, are first split into three, X1, X2, and Y. Then we 30*f573f686Sspupyrev // consider all possible ways of gluing the three chains (e.g., X1YX2, X1X2Y, 31*f573f686Sspupyrev // X2X1Y, X2YX1, YX1X2, YX2X1) and choose the one producing the largest score. 32*f573f686Sspupyrev // This improves the quality of the final result (the search space is larger) 33*f573f686Sspupyrev // while keeping the implementation sufficiently fast. 34*f573f686Sspupyrev // 35*f573f686Sspupyrev // Reference: 36*f573f686Sspupyrev // * A. Newell and S. Pupyrev, Improved Basic Block Reordering, 37*f573f686Sspupyrev // IEEE Transactions on Computers, 2020 38*f573f686Sspupyrev // 39*f573f686Sspupyrev //===----------------------------------------------------------------------===// 40*f573f686Sspupyrev 41*f573f686Sspupyrev #include "llvm/Transforms/Utils/CodeLayout.h" 42*f573f686Sspupyrev #include "llvm/Support/CommandLine.h" 43*f573f686Sspupyrev #include "llvm/Support/Debug.h" 44*f573f686Sspupyrev 45*f573f686Sspupyrev using namespace llvm; 46*f573f686Sspupyrev #define DEBUG_TYPE "code-layout" 47*f573f686Sspupyrev 48*f573f686Sspupyrev // Algorithm-specific constants. The values are tuned for the best performance 49*f573f686Sspupyrev // of large-scale front-end bound binaries. 50*f573f686Sspupyrev static cl::opt<double> 51*f573f686Sspupyrev ForwardWeight("ext-tsp-forward-weight", cl::Hidden, cl::init(0.1), 52*f573f686Sspupyrev cl::desc("The weight of forward jumps for ExtTSP value")); 53*f573f686Sspupyrev 54*f573f686Sspupyrev static cl::opt<double> 55*f573f686Sspupyrev BackwardWeight("ext-tsp-backward-weight", cl::Hidden, cl::init(0.1), 56*f573f686Sspupyrev cl::desc("The weight of backward jumps for ExtTSP value")); 57*f573f686Sspupyrev 58*f573f686Sspupyrev static cl::opt<unsigned> ForwardDistance( 59*f573f686Sspupyrev "ext-tsp-forward-distance", cl::Hidden, cl::init(1024), 60*f573f686Sspupyrev cl::desc("The maximum distance (in bytes) of a forward jump for ExtTSP")); 61*f573f686Sspupyrev 62*f573f686Sspupyrev static cl::opt<unsigned> BackwardDistance( 63*f573f686Sspupyrev "ext-tsp-backward-distance", cl::Hidden, cl::init(640), 64*f573f686Sspupyrev cl::desc("The maximum distance (in bytes) of a backward jump for ExtTSP")); 65*f573f686Sspupyrev 66*f573f686Sspupyrev // The maximum size of a chain for splitting. Larger values of the threshold 67*f573f686Sspupyrev // may yield better quality at the cost of worsen run-time. 68*f573f686Sspupyrev static cl::opt<unsigned> ChainSplitThreshold( 69*f573f686Sspupyrev "ext-tsp-chain-split-threshold", cl::Hidden, cl::init(128), 70*f573f686Sspupyrev cl::desc("The maximum size of a chain to apply splitting")); 71*f573f686Sspupyrev 72*f573f686Sspupyrev // The option enables splitting (large) chains along in-coming and out-going 73*f573f686Sspupyrev // jumps. This typically results in a better quality. 74*f573f686Sspupyrev static cl::opt<bool> EnableChainSplitAlongJumps( 75*f573f686Sspupyrev "ext-tsp-enable-chain-split-along-jumps", cl::Hidden, cl::init(true), 76*f573f686Sspupyrev cl::desc("The maximum size of a chain to apply splitting")); 77*f573f686Sspupyrev 78*f573f686Sspupyrev namespace { 79*f573f686Sspupyrev 80*f573f686Sspupyrev // Epsilon for comparison of doubles. 81*f573f686Sspupyrev constexpr double EPS = 1e-8; 82*f573f686Sspupyrev 83*f573f686Sspupyrev // Compute the Ext-TSP score for a jump between a given pair of blocks, 84*f573f686Sspupyrev // using their sizes, (estimated) addresses and the jump execution count. 85*f573f686Sspupyrev double extTSPScore(uint64_t SrcAddr, uint64_t SrcSize, uint64_t DstAddr, 86*f573f686Sspupyrev uint64_t Count) { 87*f573f686Sspupyrev // Fallthrough 88*f573f686Sspupyrev if (SrcAddr + SrcSize == DstAddr) { 89*f573f686Sspupyrev // Assume that FallthroughWeight = 1.0 after normalization 90*f573f686Sspupyrev return static_cast<double>(Count); 91*f573f686Sspupyrev } 92*f573f686Sspupyrev // Forward 93*f573f686Sspupyrev if (SrcAddr + SrcSize < DstAddr) { 94*f573f686Sspupyrev const auto Dist = DstAddr - (SrcAddr + SrcSize); 95*f573f686Sspupyrev if (Dist <= ForwardDistance) { 96*f573f686Sspupyrev double Prob = 1.0 - static_cast<double>(Dist) / ForwardDistance; 97*f573f686Sspupyrev return ForwardWeight * Prob * Count; 98*f573f686Sspupyrev } 99*f573f686Sspupyrev return 0; 100*f573f686Sspupyrev } 101*f573f686Sspupyrev // Backward 102*f573f686Sspupyrev const auto Dist = SrcAddr + SrcSize - DstAddr; 103*f573f686Sspupyrev if (Dist <= BackwardDistance) { 104*f573f686Sspupyrev double Prob = 1.0 - static_cast<double>(Dist) / BackwardDistance; 105*f573f686Sspupyrev return BackwardWeight * Prob * Count; 106*f573f686Sspupyrev } 107*f573f686Sspupyrev return 0; 108*f573f686Sspupyrev } 109*f573f686Sspupyrev 110*f573f686Sspupyrev /// A type of merging two chains, X and Y. The former chain is split into 111*f573f686Sspupyrev /// X1 and X2 and then concatenated with Y in the order specified by the type. 112*f573f686Sspupyrev enum class MergeTypeTy : int { X_Y, X1_Y_X2, Y_X2_X1, X2_X1_Y }; 113*f573f686Sspupyrev 114*f573f686Sspupyrev /// The gain of merging two chains, that is, the Ext-TSP score of the merge 115*f573f686Sspupyrev /// together with the corresponfiding merge 'type' and 'offset'. 116*f573f686Sspupyrev class MergeGainTy { 117*f573f686Sspupyrev public: 118*f573f686Sspupyrev explicit MergeGainTy() {} 119*f573f686Sspupyrev explicit MergeGainTy(double Score, size_t MergeOffset, MergeTypeTy MergeType) 120*f573f686Sspupyrev : Score(Score), MergeOffset(MergeOffset), MergeType(MergeType) {} 121*f573f686Sspupyrev 122*f573f686Sspupyrev double score() const { return Score; } 123*f573f686Sspupyrev 124*f573f686Sspupyrev size_t mergeOffset() const { return MergeOffset; } 125*f573f686Sspupyrev 126*f573f686Sspupyrev MergeTypeTy mergeType() const { return MergeType; } 127*f573f686Sspupyrev 128*f573f686Sspupyrev // Returns 'true' iff Other is preferred over this. 129*f573f686Sspupyrev bool operator<(const MergeGainTy &Other) const { 130*f573f686Sspupyrev return (Other.Score > EPS && Other.Score > Score + EPS); 131*f573f686Sspupyrev } 132*f573f686Sspupyrev 133*f573f686Sspupyrev // Update the current gain if Other is preferred over this. 134*f573f686Sspupyrev void updateIfLessThan(const MergeGainTy &Other) { 135*f573f686Sspupyrev if (*this < Other) 136*f573f686Sspupyrev *this = Other; 137*f573f686Sspupyrev } 138*f573f686Sspupyrev 139*f573f686Sspupyrev private: 140*f573f686Sspupyrev double Score{-1.0}; 141*f573f686Sspupyrev size_t MergeOffset{0}; 142*f573f686Sspupyrev MergeTypeTy MergeType{MergeTypeTy::X_Y}; 143*f573f686Sspupyrev }; 144*f573f686Sspupyrev 145*f573f686Sspupyrev class Block; 146*f573f686Sspupyrev class Jump; 147*f573f686Sspupyrev class Chain; 148*f573f686Sspupyrev class ChainEdge; 149*f573f686Sspupyrev 150*f573f686Sspupyrev /// A node in the graph, typically corresponding to a basic block in CFG. 151*f573f686Sspupyrev class Block { 152*f573f686Sspupyrev public: 153*f573f686Sspupyrev Block(const Block &) = delete; 154*f573f686Sspupyrev Block(Block &&) = default; 155*f573f686Sspupyrev Block &operator=(const Block &) = delete; 156*f573f686Sspupyrev Block &operator=(Block &&) = default; 157*f573f686Sspupyrev 158*f573f686Sspupyrev // The original index of the block in CFG. 159*f573f686Sspupyrev size_t Index{0}; 160*f573f686Sspupyrev // The index of the block in the current chain. 161*f573f686Sspupyrev size_t CurIndex{0}; 162*f573f686Sspupyrev // Size of the block in the binary. 163*f573f686Sspupyrev uint64_t Size{0}; 164*f573f686Sspupyrev // Execution count of the block in the profile data. 165*f573f686Sspupyrev uint64_t ExecutionCount{0}; 166*f573f686Sspupyrev // Current chain of the node. 167*f573f686Sspupyrev Chain *CurChain{nullptr}; 168*f573f686Sspupyrev // An offset of the block in the current chain. 169*f573f686Sspupyrev mutable uint64_t EstimatedAddr{0}; 170*f573f686Sspupyrev // Forced successor of the block in CFG. 171*f573f686Sspupyrev Block *ForcedSucc{nullptr}; 172*f573f686Sspupyrev // Forced predecessor of the block in CFG. 173*f573f686Sspupyrev Block *ForcedPred{nullptr}; 174*f573f686Sspupyrev // Outgoing jumps from the block. 175*f573f686Sspupyrev std::vector<Jump *> OutJumps; 176*f573f686Sspupyrev // Incoming jumps to the block. 177*f573f686Sspupyrev std::vector<Jump *> InJumps; 178*f573f686Sspupyrev 179*f573f686Sspupyrev public: 180*f573f686Sspupyrev explicit Block(size_t Index, uint64_t Size_, uint64_t EC) 181*f573f686Sspupyrev : Index(Index), Size(Size_), ExecutionCount(EC) {} 182*f573f686Sspupyrev bool isEntry() const { return Index == 0; } 183*f573f686Sspupyrev }; 184*f573f686Sspupyrev 185*f573f686Sspupyrev /// An arc in the graph, typically corresponding to a jump between two blocks. 186*f573f686Sspupyrev class Jump { 187*f573f686Sspupyrev public: 188*f573f686Sspupyrev Jump(const Jump &) = delete; 189*f573f686Sspupyrev Jump(Jump &&) = default; 190*f573f686Sspupyrev Jump &operator=(const Jump &) = delete; 191*f573f686Sspupyrev Jump &operator=(Jump &&) = default; 192*f573f686Sspupyrev 193*f573f686Sspupyrev // Source block of the jump. 194*f573f686Sspupyrev Block *Source; 195*f573f686Sspupyrev // Target block of the jump. 196*f573f686Sspupyrev Block *Target; 197*f573f686Sspupyrev // Execution count of the arc in the profile data. 198*f573f686Sspupyrev uint64_t ExecutionCount{0}; 199*f573f686Sspupyrev 200*f573f686Sspupyrev public: 201*f573f686Sspupyrev explicit Jump(Block *Source, Block *Target, uint64_t ExecutionCount) 202*f573f686Sspupyrev : Source(Source), Target(Target), ExecutionCount(ExecutionCount) {} 203*f573f686Sspupyrev }; 204*f573f686Sspupyrev 205*f573f686Sspupyrev /// A chain (ordered sequence) of blocks. 206*f573f686Sspupyrev class Chain { 207*f573f686Sspupyrev public: 208*f573f686Sspupyrev Chain(const Chain &) = delete; 209*f573f686Sspupyrev Chain(Chain &&) = default; 210*f573f686Sspupyrev Chain &operator=(const Chain &) = delete; 211*f573f686Sspupyrev Chain &operator=(Chain &&) = default; 212*f573f686Sspupyrev 213*f573f686Sspupyrev explicit Chain(uint64_t Id, Block *Block) 214*f573f686Sspupyrev : Id(Id), Score(0), Blocks(1, Block) {} 215*f573f686Sspupyrev 216*f573f686Sspupyrev uint64_t id() const { return Id; } 217*f573f686Sspupyrev 218*f573f686Sspupyrev bool isEntry() const { return Blocks[0]->Index == 0; } 219*f573f686Sspupyrev 220*f573f686Sspupyrev double score() const { return Score; } 221*f573f686Sspupyrev 222*f573f686Sspupyrev void setScore(double NewScore) { Score = NewScore; } 223*f573f686Sspupyrev 224*f573f686Sspupyrev const std::vector<Block *> &blocks() const { return Blocks; } 225*f573f686Sspupyrev 226*f573f686Sspupyrev const std::vector<std::pair<Chain *, ChainEdge *>> &edges() const { 227*f573f686Sspupyrev return Edges; 228*f573f686Sspupyrev } 229*f573f686Sspupyrev 230*f573f686Sspupyrev ChainEdge *getEdge(Chain *Other) const { 231*f573f686Sspupyrev for (auto It : Edges) { 232*f573f686Sspupyrev if (It.first == Other) 233*f573f686Sspupyrev return It.second; 234*f573f686Sspupyrev } 235*f573f686Sspupyrev return nullptr; 236*f573f686Sspupyrev } 237*f573f686Sspupyrev 238*f573f686Sspupyrev void removeEdge(Chain *Other) { 239*f573f686Sspupyrev auto It = Edges.begin(); 240*f573f686Sspupyrev while (It != Edges.end()) { 241*f573f686Sspupyrev if (It->first == Other) { 242*f573f686Sspupyrev Edges.erase(It); 243*f573f686Sspupyrev return; 244*f573f686Sspupyrev } 245*f573f686Sspupyrev It++; 246*f573f686Sspupyrev } 247*f573f686Sspupyrev } 248*f573f686Sspupyrev 249*f573f686Sspupyrev void addEdge(Chain *Other, ChainEdge *Edge) { 250*f573f686Sspupyrev Edges.push_back(std::make_pair(Other, Edge)); 251*f573f686Sspupyrev } 252*f573f686Sspupyrev 253*f573f686Sspupyrev void merge(Chain *Other, const std::vector<Block *> &MergedBlocks) { 254*f573f686Sspupyrev Blocks = MergedBlocks; 255*f573f686Sspupyrev // Update the block's chains 256*f573f686Sspupyrev for (size_t Idx = 0; Idx < Blocks.size(); Idx++) { 257*f573f686Sspupyrev Blocks[Idx]->CurChain = this; 258*f573f686Sspupyrev Blocks[Idx]->CurIndex = Idx; 259*f573f686Sspupyrev } 260*f573f686Sspupyrev } 261*f573f686Sspupyrev 262*f573f686Sspupyrev void mergeEdges(Chain *Other); 263*f573f686Sspupyrev 264*f573f686Sspupyrev void clear() { 265*f573f686Sspupyrev Blocks.clear(); 266*f573f686Sspupyrev Blocks.shrink_to_fit(); 267*f573f686Sspupyrev Edges.clear(); 268*f573f686Sspupyrev Edges.shrink_to_fit(); 269*f573f686Sspupyrev } 270*f573f686Sspupyrev 271*f573f686Sspupyrev private: 272*f573f686Sspupyrev // Unique chain identifier. 273*f573f686Sspupyrev uint64_t Id; 274*f573f686Sspupyrev // Cached ext-tsp score for the chain. 275*f573f686Sspupyrev double Score; 276*f573f686Sspupyrev // Blocks of the chain. 277*f573f686Sspupyrev std::vector<Block *> Blocks; 278*f573f686Sspupyrev // Adjacent chains and corresponding edges (lists of jumps). 279*f573f686Sspupyrev std::vector<std::pair<Chain *, ChainEdge *>> Edges; 280*f573f686Sspupyrev }; 281*f573f686Sspupyrev 282*f573f686Sspupyrev /// An edge in CFG representing jumps between two chains. 283*f573f686Sspupyrev /// When blocks are merged into chains, the edges are combined too so that 284*f573f686Sspupyrev /// there is always at most one edge between a pair of chains 285*f573f686Sspupyrev class ChainEdge { 286*f573f686Sspupyrev public: 287*f573f686Sspupyrev ChainEdge(const ChainEdge &) = delete; 288*f573f686Sspupyrev ChainEdge(ChainEdge &&) = default; 289*f573f686Sspupyrev ChainEdge &operator=(const ChainEdge &) = delete; 290*f573f686Sspupyrev ChainEdge &operator=(ChainEdge &&) = default; 291*f573f686Sspupyrev 292*f573f686Sspupyrev explicit ChainEdge(Jump *Jump) 293*f573f686Sspupyrev : SrcChain(Jump->Source->CurChain), DstChain(Jump->Target->CurChain), 294*f573f686Sspupyrev Jumps(1, Jump) {} 295*f573f686Sspupyrev 296*f573f686Sspupyrev const std::vector<Jump *> &jumps() const { return Jumps; } 297*f573f686Sspupyrev 298*f573f686Sspupyrev void changeEndpoint(Chain *From, Chain *To) { 299*f573f686Sspupyrev if (From == SrcChain) 300*f573f686Sspupyrev SrcChain = To; 301*f573f686Sspupyrev if (From == DstChain) 302*f573f686Sspupyrev DstChain = To; 303*f573f686Sspupyrev } 304*f573f686Sspupyrev 305*f573f686Sspupyrev void appendJump(Jump *Jump) { Jumps.push_back(Jump); } 306*f573f686Sspupyrev 307*f573f686Sspupyrev void moveJumps(ChainEdge *Other) { 308*f573f686Sspupyrev Jumps.insert(Jumps.end(), Other->Jumps.begin(), Other->Jumps.end()); 309*f573f686Sspupyrev Other->Jumps.clear(); 310*f573f686Sspupyrev Other->Jumps.shrink_to_fit(); 311*f573f686Sspupyrev } 312*f573f686Sspupyrev 313*f573f686Sspupyrev bool hasCachedMergeGain(Chain *Src, Chain *Dst) const { 314*f573f686Sspupyrev return Src == SrcChain ? CacheValidForward : CacheValidBackward; 315*f573f686Sspupyrev } 316*f573f686Sspupyrev 317*f573f686Sspupyrev MergeGainTy getCachedMergeGain(Chain *Src, Chain *Dst) const { 318*f573f686Sspupyrev return Src == SrcChain ? CachedGainForward : CachedGainBackward; 319*f573f686Sspupyrev } 320*f573f686Sspupyrev 321*f573f686Sspupyrev void setCachedMergeGain(Chain *Src, Chain *Dst, MergeGainTy MergeGain) { 322*f573f686Sspupyrev if (Src == SrcChain) { 323*f573f686Sspupyrev CachedGainForward = MergeGain; 324*f573f686Sspupyrev CacheValidForward = true; 325*f573f686Sspupyrev } else { 326*f573f686Sspupyrev CachedGainBackward = MergeGain; 327*f573f686Sspupyrev CacheValidBackward = true; 328*f573f686Sspupyrev } 329*f573f686Sspupyrev } 330*f573f686Sspupyrev 331*f573f686Sspupyrev void invalidateCache() { 332*f573f686Sspupyrev CacheValidForward = false; 333*f573f686Sspupyrev CacheValidBackward = false; 334*f573f686Sspupyrev } 335*f573f686Sspupyrev 336*f573f686Sspupyrev private: 337*f573f686Sspupyrev // Source chain. 338*f573f686Sspupyrev Chain *SrcChain{nullptr}; 339*f573f686Sspupyrev // Destination chain. 340*f573f686Sspupyrev Chain *DstChain{nullptr}; 341*f573f686Sspupyrev // Original jumps in the binary with correspinding execution counts. 342*f573f686Sspupyrev std::vector<Jump *> Jumps; 343*f573f686Sspupyrev // Cached ext-tsp value for merging the pair of chains. 344*f573f686Sspupyrev // Since the gain of merging (Src, Dst) and (Dst, Src) might be different, 345*f573f686Sspupyrev // we store both values here. 346*f573f686Sspupyrev MergeGainTy CachedGainForward; 347*f573f686Sspupyrev MergeGainTy CachedGainBackward; 348*f573f686Sspupyrev // Whether the cached value must be recomputed. 349*f573f686Sspupyrev bool CacheValidForward{false}; 350*f573f686Sspupyrev bool CacheValidBackward{false}; 351*f573f686Sspupyrev }; 352*f573f686Sspupyrev 353*f573f686Sspupyrev void Chain::mergeEdges(Chain *Other) { 354*f573f686Sspupyrev assert(this != Other && "cannot merge a chain with itself"); 355*f573f686Sspupyrev 356*f573f686Sspupyrev // Update edges adjacent to chain Other 357*f573f686Sspupyrev for (auto EdgeIt : Other->Edges) { 358*f573f686Sspupyrev const auto DstChain = EdgeIt.first; 359*f573f686Sspupyrev const auto DstEdge = EdgeIt.second; 360*f573f686Sspupyrev const auto TargetChain = DstChain == Other ? this : DstChain; 361*f573f686Sspupyrev auto CurEdge = getEdge(TargetChain); 362*f573f686Sspupyrev if (CurEdge == nullptr) { 363*f573f686Sspupyrev DstEdge->changeEndpoint(Other, this); 364*f573f686Sspupyrev this->addEdge(TargetChain, DstEdge); 365*f573f686Sspupyrev if (DstChain != this && DstChain != Other) { 366*f573f686Sspupyrev DstChain->addEdge(this, DstEdge); 367*f573f686Sspupyrev } 368*f573f686Sspupyrev } else { 369*f573f686Sspupyrev CurEdge->moveJumps(DstEdge); 370*f573f686Sspupyrev } 371*f573f686Sspupyrev // Cleanup leftover edge 372*f573f686Sspupyrev if (DstChain != Other) { 373*f573f686Sspupyrev DstChain->removeEdge(Other); 374*f573f686Sspupyrev } 375*f573f686Sspupyrev } 376*f573f686Sspupyrev } 377*f573f686Sspupyrev 378*f573f686Sspupyrev using BlockIter = std::vector<Block *>::const_iterator; 379*f573f686Sspupyrev 380*f573f686Sspupyrev /// A wrapper around three chains of blocks; it is used to avoid extra 381*f573f686Sspupyrev /// instantiation of the vectors. 382*f573f686Sspupyrev class MergedChain { 383*f573f686Sspupyrev public: 384*f573f686Sspupyrev MergedChain(BlockIter Begin1, BlockIter End1, BlockIter Begin2 = BlockIter(), 385*f573f686Sspupyrev BlockIter End2 = BlockIter(), BlockIter Begin3 = BlockIter(), 386*f573f686Sspupyrev BlockIter End3 = BlockIter()) 387*f573f686Sspupyrev : Begin1(Begin1), End1(End1), Begin2(Begin2), End2(End2), Begin3(Begin3), 388*f573f686Sspupyrev End3(End3) {} 389*f573f686Sspupyrev 390*f573f686Sspupyrev template <typename F> void forEach(const F &Func) const { 391*f573f686Sspupyrev for (auto It = Begin1; It != End1; It++) 392*f573f686Sspupyrev Func(*It); 393*f573f686Sspupyrev for (auto It = Begin2; It != End2; It++) 394*f573f686Sspupyrev Func(*It); 395*f573f686Sspupyrev for (auto It = Begin3; It != End3; It++) 396*f573f686Sspupyrev Func(*It); 397*f573f686Sspupyrev } 398*f573f686Sspupyrev 399*f573f686Sspupyrev std::vector<Block *> getBlocks() const { 400*f573f686Sspupyrev std::vector<Block *> Result; 401*f573f686Sspupyrev Result.reserve(std::distance(Begin1, End1) + std::distance(Begin2, End2) + 402*f573f686Sspupyrev std::distance(Begin3, End3)); 403*f573f686Sspupyrev Result.insert(Result.end(), Begin1, End1); 404*f573f686Sspupyrev Result.insert(Result.end(), Begin2, End2); 405*f573f686Sspupyrev Result.insert(Result.end(), Begin3, End3); 406*f573f686Sspupyrev return Result; 407*f573f686Sspupyrev } 408*f573f686Sspupyrev 409*f573f686Sspupyrev const Block *getFirstBlock() const { return *Begin1; } 410*f573f686Sspupyrev 411*f573f686Sspupyrev private: 412*f573f686Sspupyrev BlockIter Begin1; 413*f573f686Sspupyrev BlockIter End1; 414*f573f686Sspupyrev BlockIter Begin2; 415*f573f686Sspupyrev BlockIter End2; 416*f573f686Sspupyrev BlockIter Begin3; 417*f573f686Sspupyrev BlockIter End3; 418*f573f686Sspupyrev }; 419*f573f686Sspupyrev 420*f573f686Sspupyrev /// The implementation of the ExtTSP algorithm. 421*f573f686Sspupyrev class ExtTSPImpl { 422*f573f686Sspupyrev using EdgeT = std::pair<uint64_t, uint64_t>; 423*f573f686Sspupyrev using EdgeCountMap = DenseMap<EdgeT, uint64_t>; 424*f573f686Sspupyrev 425*f573f686Sspupyrev public: 426*f573f686Sspupyrev ExtTSPImpl(size_t NumNodes, const std::vector<uint64_t> &NodeSizes, 427*f573f686Sspupyrev const std::vector<uint64_t> &NodeCounts, 428*f573f686Sspupyrev const EdgeCountMap &EdgeCounts) 429*f573f686Sspupyrev : NumNodes(NumNodes) { 430*f573f686Sspupyrev initialize(NodeSizes, NodeCounts, EdgeCounts); 431*f573f686Sspupyrev } 432*f573f686Sspupyrev 433*f573f686Sspupyrev /// Run the algorithm and return an optimized ordering of blocks. 434*f573f686Sspupyrev void run(std::vector<uint64_t> &Result) { 435*f573f686Sspupyrev // Pass 1: Merge blocks with their mutually forced successors 436*f573f686Sspupyrev mergeForcedPairs(); 437*f573f686Sspupyrev 438*f573f686Sspupyrev // Pass 2: Merge pairs of chains while improving the ExtTSP objective 439*f573f686Sspupyrev mergeChainPairs(); 440*f573f686Sspupyrev 441*f573f686Sspupyrev // Pass 3: Merge cold blocks to reduce code size 442*f573f686Sspupyrev mergeColdChains(); 443*f573f686Sspupyrev 444*f573f686Sspupyrev // Collect blocks from all chains 445*f573f686Sspupyrev concatChains(Result); 446*f573f686Sspupyrev } 447*f573f686Sspupyrev 448*f573f686Sspupyrev private: 449*f573f686Sspupyrev /// Initialize the algorithm's data structures. 450*f573f686Sspupyrev void initialize(const std::vector<uint64_t> &NodeSizes, 451*f573f686Sspupyrev const std::vector<uint64_t> &NodeCounts, 452*f573f686Sspupyrev const EdgeCountMap &EdgeCounts) { 453*f573f686Sspupyrev // Initialize blocks 454*f573f686Sspupyrev AllBlocks.reserve(NumNodes); 455*f573f686Sspupyrev for (uint64_t Node = 0; Node < NumNodes; Node++) { 456*f573f686Sspupyrev uint64_t Size = std::max<uint64_t>(NodeSizes[Node], 1ULL); 457*f573f686Sspupyrev uint64_t ExecutionCount = NodeCounts[Node]; 458*f573f686Sspupyrev // The execution count of the entry block is set to at least 1 459*f573f686Sspupyrev if (Node == 0 && ExecutionCount == 0) 460*f573f686Sspupyrev ExecutionCount = 1; 461*f573f686Sspupyrev AllBlocks.emplace_back(Node, Size, ExecutionCount); 462*f573f686Sspupyrev } 463*f573f686Sspupyrev 464*f573f686Sspupyrev // Initialize jumps between blocks 465*f573f686Sspupyrev SuccNodes = std::vector<std::vector<uint64_t>>(NumNodes); 466*f573f686Sspupyrev PredNodes = std::vector<std::vector<uint64_t>>(NumNodes); 467*f573f686Sspupyrev AllJumps.reserve(EdgeCounts.size()); 468*f573f686Sspupyrev for (auto It : EdgeCounts) { 469*f573f686Sspupyrev auto Pred = It.first.first; 470*f573f686Sspupyrev auto Succ = It.first.second; 471*f573f686Sspupyrev // Ignore self-edges 472*f573f686Sspupyrev if (Pred == Succ) 473*f573f686Sspupyrev continue; 474*f573f686Sspupyrev 475*f573f686Sspupyrev SuccNodes[Pred].push_back(Succ); 476*f573f686Sspupyrev PredNodes[Succ].push_back(Pred); 477*f573f686Sspupyrev auto ExecutionCount = It.second; 478*f573f686Sspupyrev if (ExecutionCount > 0) { 479*f573f686Sspupyrev auto &Block = AllBlocks[Pred]; 480*f573f686Sspupyrev auto &SuccBlock = AllBlocks[Succ]; 481*f573f686Sspupyrev AllJumps.emplace_back(&Block, &SuccBlock, ExecutionCount); 482*f573f686Sspupyrev SuccBlock.InJumps.push_back(&AllJumps.back()); 483*f573f686Sspupyrev Block.OutJumps.push_back(&AllJumps.back()); 484*f573f686Sspupyrev } 485*f573f686Sspupyrev } 486*f573f686Sspupyrev 487*f573f686Sspupyrev // Initialize chains 488*f573f686Sspupyrev AllChains.reserve(NumNodes); 489*f573f686Sspupyrev HotChains.reserve(NumNodes); 490*f573f686Sspupyrev for (auto &Block : AllBlocks) { 491*f573f686Sspupyrev AllChains.emplace_back(Block.Index, &Block); 492*f573f686Sspupyrev Block.CurChain = &AllChains.back(); 493*f573f686Sspupyrev if (Block.ExecutionCount > 0) { 494*f573f686Sspupyrev HotChains.push_back(&AllChains.back()); 495*f573f686Sspupyrev } 496*f573f686Sspupyrev } 497*f573f686Sspupyrev 498*f573f686Sspupyrev // Initialize chain edges 499*f573f686Sspupyrev AllEdges.reserve(AllJumps.size()); 500*f573f686Sspupyrev for (auto &Block : AllBlocks) { 501*f573f686Sspupyrev for (auto &Jump : Block.OutJumps) { 502*f573f686Sspupyrev const auto SuccBlock = Jump->Target; 503*f573f686Sspupyrev auto CurEdge = Block.CurChain->getEdge(SuccBlock->CurChain); 504*f573f686Sspupyrev // this edge is already present in the graph 505*f573f686Sspupyrev if (CurEdge != nullptr) { 506*f573f686Sspupyrev assert(SuccBlock->CurChain->getEdge(Block.CurChain) != nullptr); 507*f573f686Sspupyrev CurEdge->appendJump(Jump); 508*f573f686Sspupyrev continue; 509*f573f686Sspupyrev } 510*f573f686Sspupyrev // this is a new edge 511*f573f686Sspupyrev AllEdges.emplace_back(Jump); 512*f573f686Sspupyrev Block.CurChain->addEdge(SuccBlock->CurChain, &AllEdges.back()); 513*f573f686Sspupyrev SuccBlock->CurChain->addEdge(Block.CurChain, &AllEdges.back()); 514*f573f686Sspupyrev } 515*f573f686Sspupyrev } 516*f573f686Sspupyrev } 517*f573f686Sspupyrev 518*f573f686Sspupyrev /// For a pair of blocks, A and B, block B is the forced successor of A, 519*f573f686Sspupyrev /// if (i) all jumps (based on profile) from A goes to B and (ii) all jumps 520*f573f686Sspupyrev /// to B are from A. Such blocks should be adjacent in the optimal ordering; 521*f573f686Sspupyrev /// the method finds and merges such pairs of blocks. 522*f573f686Sspupyrev void mergeForcedPairs() { 523*f573f686Sspupyrev // Find fallthroughs based on edge weights 524*f573f686Sspupyrev for (auto &Block : AllBlocks) { 525*f573f686Sspupyrev if (SuccNodes[Block.Index].size() == 1 && 526*f573f686Sspupyrev PredNodes[SuccNodes[Block.Index][0]].size() == 1 && 527*f573f686Sspupyrev SuccNodes[Block.Index][0] != 0) { 528*f573f686Sspupyrev size_t SuccIndex = SuccNodes[Block.Index][0]; 529*f573f686Sspupyrev Block.ForcedSucc = &AllBlocks[SuccIndex]; 530*f573f686Sspupyrev AllBlocks[SuccIndex].ForcedPred = &Block; 531*f573f686Sspupyrev } 532*f573f686Sspupyrev } 533*f573f686Sspupyrev 534*f573f686Sspupyrev // There might be 'cycles' in the forced dependencies, since profile 535*f573f686Sspupyrev // data isn't 100% accurate. Typically this is observed in loops, when the 536*f573f686Sspupyrev // loop edges are the hottest successors for the basic blocks of the loop. 537*f573f686Sspupyrev // Break the cycles by choosing the block with the smallest index as the 538*f573f686Sspupyrev // head. This helps to keep the original order of the loops, which likely 539*f573f686Sspupyrev // have already been rotated in the optimized manner. 540*f573f686Sspupyrev for (auto &Block : AllBlocks) { 541*f573f686Sspupyrev if (Block.ForcedSucc == nullptr || Block.ForcedPred == nullptr) 542*f573f686Sspupyrev continue; 543*f573f686Sspupyrev 544*f573f686Sspupyrev auto SuccBlock = Block.ForcedSucc; 545*f573f686Sspupyrev while (SuccBlock != nullptr && SuccBlock != &Block) { 546*f573f686Sspupyrev SuccBlock = SuccBlock->ForcedSucc; 547*f573f686Sspupyrev } 548*f573f686Sspupyrev if (SuccBlock == nullptr) 549*f573f686Sspupyrev continue; 550*f573f686Sspupyrev // Break the cycle 551*f573f686Sspupyrev AllBlocks[Block.ForcedPred->Index].ForcedSucc = nullptr; 552*f573f686Sspupyrev Block.ForcedPred = nullptr; 553*f573f686Sspupyrev } 554*f573f686Sspupyrev 555*f573f686Sspupyrev // Merge blocks with their fallthrough successors 556*f573f686Sspupyrev for (auto &Block : AllBlocks) { 557*f573f686Sspupyrev if (Block.ForcedPred == nullptr && Block.ForcedSucc != nullptr) { 558*f573f686Sspupyrev auto CurBlock = &Block; 559*f573f686Sspupyrev while (CurBlock->ForcedSucc != nullptr) { 560*f573f686Sspupyrev const auto NextBlock = CurBlock->ForcedSucc; 561*f573f686Sspupyrev mergeChains(Block.CurChain, NextBlock->CurChain, 0, MergeTypeTy::X_Y); 562*f573f686Sspupyrev CurBlock = NextBlock; 563*f573f686Sspupyrev } 564*f573f686Sspupyrev } 565*f573f686Sspupyrev } 566*f573f686Sspupyrev } 567*f573f686Sspupyrev 568*f573f686Sspupyrev /// Merge pairs of chains while improving the ExtTSP objective. 569*f573f686Sspupyrev void mergeChainPairs() { 570*f573f686Sspupyrev /// Deterministically compare pairs of chains 571*f573f686Sspupyrev auto compareChainPairs = [](const Chain *A1, const Chain *B1, 572*f573f686Sspupyrev const Chain *A2, const Chain *B2) { 573*f573f686Sspupyrev if (A1 != A2) 574*f573f686Sspupyrev return A1->id() < A2->id(); 575*f573f686Sspupyrev return B1->id() < B2->id(); 576*f573f686Sspupyrev }; 577*f573f686Sspupyrev 578*f573f686Sspupyrev while (HotChains.size() > 1) { 579*f573f686Sspupyrev Chain *BestChainPred = nullptr; 580*f573f686Sspupyrev Chain *BestChainSucc = nullptr; 581*f573f686Sspupyrev auto BestGain = MergeGainTy(); 582*f573f686Sspupyrev // Iterate over all pairs of chains 583*f573f686Sspupyrev for (auto ChainPred : HotChains) { 584*f573f686Sspupyrev // Get candidates for merging with the current chain 585*f573f686Sspupyrev for (auto EdgeIter : ChainPred->edges()) { 586*f573f686Sspupyrev auto ChainSucc = EdgeIter.first; 587*f573f686Sspupyrev auto ChainEdge = EdgeIter.second; 588*f573f686Sspupyrev // Ignore loop edges 589*f573f686Sspupyrev if (ChainPred == ChainSucc) 590*f573f686Sspupyrev continue; 591*f573f686Sspupyrev 592*f573f686Sspupyrev // Compute the gain of merging the two chains 593*f573f686Sspupyrev auto CurGain = getBestMergeGain(ChainPred, ChainSucc, ChainEdge); 594*f573f686Sspupyrev if (CurGain.score() <= EPS) 595*f573f686Sspupyrev continue; 596*f573f686Sspupyrev 597*f573f686Sspupyrev if (BestGain < CurGain || 598*f573f686Sspupyrev (std::abs(CurGain.score() - BestGain.score()) < EPS && 599*f573f686Sspupyrev compareChainPairs(ChainPred, ChainSucc, BestChainPred, 600*f573f686Sspupyrev BestChainSucc))) { 601*f573f686Sspupyrev BestGain = CurGain; 602*f573f686Sspupyrev BestChainPred = ChainPred; 603*f573f686Sspupyrev BestChainSucc = ChainSucc; 604*f573f686Sspupyrev } 605*f573f686Sspupyrev } 606*f573f686Sspupyrev } 607*f573f686Sspupyrev 608*f573f686Sspupyrev // Stop merging when there is no improvement 609*f573f686Sspupyrev if (BestGain.score() <= EPS) 610*f573f686Sspupyrev break; 611*f573f686Sspupyrev 612*f573f686Sspupyrev // Merge the best pair of chains 613*f573f686Sspupyrev mergeChains(BestChainPred, BestChainSucc, BestGain.mergeOffset(), 614*f573f686Sspupyrev BestGain.mergeType()); 615*f573f686Sspupyrev } 616*f573f686Sspupyrev } 617*f573f686Sspupyrev 618*f573f686Sspupyrev /// Merge cold blocks to reduce code size. 619*f573f686Sspupyrev void mergeColdChains() { 620*f573f686Sspupyrev for (size_t SrcBB = 0; SrcBB < NumNodes; SrcBB++) { 621*f573f686Sspupyrev // Iterating over neighbors in the reverse order to make sure original 622*f573f686Sspupyrev // fallthrough jumps are merged first 623*f573f686Sspupyrev size_t NumSuccs = SuccNodes[SrcBB].size(); 624*f573f686Sspupyrev for (size_t Idx = 0; Idx < NumSuccs; Idx++) { 625*f573f686Sspupyrev auto DstBB = SuccNodes[SrcBB][NumSuccs - Idx - 1]; 626*f573f686Sspupyrev auto SrcChain = AllBlocks[SrcBB].CurChain; 627*f573f686Sspupyrev auto DstChain = AllBlocks[DstBB].CurChain; 628*f573f686Sspupyrev if (SrcChain != DstChain && !DstChain->isEntry() && 629*f573f686Sspupyrev SrcChain->blocks().back()->Index == SrcBB && 630*f573f686Sspupyrev DstChain->blocks().front()->Index == DstBB) { 631*f573f686Sspupyrev mergeChains(SrcChain, DstChain, 0, MergeTypeTy::X_Y); 632*f573f686Sspupyrev } 633*f573f686Sspupyrev } 634*f573f686Sspupyrev } 635*f573f686Sspupyrev } 636*f573f686Sspupyrev 637*f573f686Sspupyrev /// Compute the Ext-TSP score for a given block order and a list of jumps. 638*f573f686Sspupyrev double extTSPScore(const MergedChain &MergedBlocks, 639*f573f686Sspupyrev const std::vector<Jump *> &Jumps) const { 640*f573f686Sspupyrev if (Jumps.empty()) 641*f573f686Sspupyrev return 0.0; 642*f573f686Sspupyrev uint64_t CurAddr = 0; 643*f573f686Sspupyrev MergedBlocks.forEach([&](const Block *BB) { 644*f573f686Sspupyrev BB->EstimatedAddr = CurAddr; 645*f573f686Sspupyrev CurAddr += BB->Size; 646*f573f686Sspupyrev }); 647*f573f686Sspupyrev 648*f573f686Sspupyrev double Score = 0; 649*f573f686Sspupyrev for (auto &Jump : Jumps) { 650*f573f686Sspupyrev const auto SrcBlock = Jump->Source; 651*f573f686Sspupyrev const auto DstBlock = Jump->Target; 652*f573f686Sspupyrev Score += ::extTSPScore(SrcBlock->EstimatedAddr, SrcBlock->Size, 653*f573f686Sspupyrev DstBlock->EstimatedAddr, Jump->ExecutionCount); 654*f573f686Sspupyrev } 655*f573f686Sspupyrev return Score; 656*f573f686Sspupyrev } 657*f573f686Sspupyrev 658*f573f686Sspupyrev /// Compute the gain of merging two chains. 659*f573f686Sspupyrev /// 660*f573f686Sspupyrev /// The function considers all possible ways of merging two chains and 661*f573f686Sspupyrev /// computes the one having the largest increase in ExtTSP objective. The 662*f573f686Sspupyrev /// result is a pair with the first element being the gain and the second 663*f573f686Sspupyrev /// element being the corresponding merging type. 664*f573f686Sspupyrev MergeGainTy getBestMergeGain(Chain *ChainPred, Chain *ChainSucc, 665*f573f686Sspupyrev ChainEdge *Edge) const { 666*f573f686Sspupyrev if (Edge->hasCachedMergeGain(ChainPred, ChainSucc)) { 667*f573f686Sspupyrev return Edge->getCachedMergeGain(ChainPred, ChainSucc); 668*f573f686Sspupyrev } 669*f573f686Sspupyrev 670*f573f686Sspupyrev // Precompute jumps between ChainPred and ChainSucc 671*f573f686Sspupyrev auto Jumps = Edge->jumps(); 672*f573f686Sspupyrev auto EdgePP = ChainPred->getEdge(ChainPred); 673*f573f686Sspupyrev if (EdgePP != nullptr) { 674*f573f686Sspupyrev Jumps.insert(Jumps.end(), EdgePP->jumps().begin(), EdgePP->jumps().end()); 675*f573f686Sspupyrev } 676*f573f686Sspupyrev assert(!Jumps.empty() && "trying to merge chains w/o jumps"); 677*f573f686Sspupyrev 678*f573f686Sspupyrev // The object holds the best currently chosen gain of merging the two chains 679*f573f686Sspupyrev MergeGainTy Gain = MergeGainTy(); 680*f573f686Sspupyrev 681*f573f686Sspupyrev /// Given a merge offset and a list of merge types, try to merge two chains 682*f573f686Sspupyrev /// and update Gain with a better alternative 683*f573f686Sspupyrev auto tryChainMerging = [&](size_t Offset, 684*f573f686Sspupyrev const std::vector<MergeTypeTy> &MergeTypes) { 685*f573f686Sspupyrev // Skip merging corresponding to concatenation w/o splitting 686*f573f686Sspupyrev if (Offset == 0 || Offset == ChainPred->blocks().size()) 687*f573f686Sspupyrev return; 688*f573f686Sspupyrev // Skip merging if it breaks Forced successors 689*f573f686Sspupyrev auto BB = ChainPred->blocks()[Offset - 1]; 690*f573f686Sspupyrev if (BB->ForcedSucc != nullptr) 691*f573f686Sspupyrev return; 692*f573f686Sspupyrev // Apply the merge, compute the corresponding gain, and update the best 693*f573f686Sspupyrev // value, if the merge is beneficial 694*f573f686Sspupyrev for (auto &MergeType : MergeTypes) { 695*f573f686Sspupyrev Gain.updateIfLessThan( 696*f573f686Sspupyrev computeMergeGain(ChainPred, ChainSucc, Jumps, Offset, MergeType)); 697*f573f686Sspupyrev } 698*f573f686Sspupyrev }; 699*f573f686Sspupyrev 700*f573f686Sspupyrev // Try to concatenate two chains w/o splitting 701*f573f686Sspupyrev Gain.updateIfLessThan( 702*f573f686Sspupyrev computeMergeGain(ChainPred, ChainSucc, Jumps, 0, MergeTypeTy::X_Y)); 703*f573f686Sspupyrev 704*f573f686Sspupyrev if (EnableChainSplitAlongJumps) { 705*f573f686Sspupyrev // Attach (a part of) ChainPred before the first block of ChainSucc 706*f573f686Sspupyrev for (auto &Jump : ChainSucc->blocks().front()->InJumps) { 707*f573f686Sspupyrev const auto SrcBlock = Jump->Source; 708*f573f686Sspupyrev if (SrcBlock->CurChain != ChainPred) 709*f573f686Sspupyrev continue; 710*f573f686Sspupyrev size_t Offset = SrcBlock->CurIndex + 1; 711*f573f686Sspupyrev tryChainMerging(Offset, {MergeTypeTy::X1_Y_X2, MergeTypeTy::X2_X1_Y}); 712*f573f686Sspupyrev } 713*f573f686Sspupyrev 714*f573f686Sspupyrev // Attach (a part of) ChainPred after the last block of ChainSucc 715*f573f686Sspupyrev for (auto &Jump : ChainSucc->blocks().back()->OutJumps) { 716*f573f686Sspupyrev const auto DstBlock = Jump->Source; 717*f573f686Sspupyrev if (DstBlock->CurChain != ChainPred) 718*f573f686Sspupyrev continue; 719*f573f686Sspupyrev size_t Offset = DstBlock->CurIndex; 720*f573f686Sspupyrev tryChainMerging(Offset, {MergeTypeTy::X1_Y_X2, MergeTypeTy::Y_X2_X1}); 721*f573f686Sspupyrev } 722*f573f686Sspupyrev } 723*f573f686Sspupyrev 724*f573f686Sspupyrev // Try to break ChainPred in various ways and concatenate with ChainSucc 725*f573f686Sspupyrev if (ChainPred->blocks().size() <= ChainSplitThreshold) { 726*f573f686Sspupyrev for (size_t Offset = 1; Offset < ChainPred->blocks().size(); Offset++) { 727*f573f686Sspupyrev // Try to split the chain in different ways. In practice, applying 728*f573f686Sspupyrev // X2_Y_X1 merging is almost never provides benefits; thus, we exclude 729*f573f686Sspupyrev // it from consideration to reduce the search space 730*f573f686Sspupyrev tryChainMerging(Offset, {MergeTypeTy::X1_Y_X2, MergeTypeTy::Y_X2_X1, 731*f573f686Sspupyrev MergeTypeTy::X2_X1_Y}); 732*f573f686Sspupyrev } 733*f573f686Sspupyrev } 734*f573f686Sspupyrev Edge->setCachedMergeGain(ChainPred, ChainSucc, Gain); 735*f573f686Sspupyrev return Gain; 736*f573f686Sspupyrev } 737*f573f686Sspupyrev 738*f573f686Sspupyrev /// Compute the score gain of merging two chains, respecting a given 739*f573f686Sspupyrev /// merge 'type' and 'offset'. 740*f573f686Sspupyrev /// 741*f573f686Sspupyrev /// The two chains are not modified in the method. 742*f573f686Sspupyrev MergeGainTy computeMergeGain(const Chain *ChainPred, const Chain *ChainSucc, 743*f573f686Sspupyrev const std::vector<Jump *> &Jumps, 744*f573f686Sspupyrev size_t MergeOffset, 745*f573f686Sspupyrev MergeTypeTy MergeType) const { 746*f573f686Sspupyrev auto MergedBlocks = mergeBlocks(ChainPred->blocks(), ChainSucc->blocks(), 747*f573f686Sspupyrev MergeOffset, MergeType); 748*f573f686Sspupyrev 749*f573f686Sspupyrev // Do not allow a merge that does not preserve the original entry block 750*f573f686Sspupyrev if ((ChainPred->isEntry() || ChainSucc->isEntry()) && 751*f573f686Sspupyrev !MergedBlocks.getFirstBlock()->isEntry()) 752*f573f686Sspupyrev return MergeGainTy(); 753*f573f686Sspupyrev 754*f573f686Sspupyrev // The gain for the new chain 755*f573f686Sspupyrev auto NewGainScore = extTSPScore(MergedBlocks, Jumps) - ChainPred->score(); 756*f573f686Sspupyrev return MergeGainTy(NewGainScore, MergeOffset, MergeType); 757*f573f686Sspupyrev } 758*f573f686Sspupyrev 759*f573f686Sspupyrev /// Merge two chains of blocks respecting a given merge 'type' and 'offset'. 760*f573f686Sspupyrev /// 761*f573f686Sspupyrev /// If MergeType == 0, then the result is a concatentation of two chains. 762*f573f686Sspupyrev /// Otherwise, the first chain is cut into two sub-chains at the offset, 763*f573f686Sspupyrev /// and merged using all possible ways of concatenating three chains. 764*f573f686Sspupyrev MergedChain mergeBlocks(const std::vector<Block *> &X, 765*f573f686Sspupyrev const std::vector<Block *> &Y, size_t MergeOffset, 766*f573f686Sspupyrev MergeTypeTy MergeType) const { 767*f573f686Sspupyrev // Split the first chain, X, into X1 and X2 768*f573f686Sspupyrev BlockIter BeginX1 = X.begin(); 769*f573f686Sspupyrev BlockIter EndX1 = X.begin() + MergeOffset; 770*f573f686Sspupyrev BlockIter BeginX2 = X.begin() + MergeOffset; 771*f573f686Sspupyrev BlockIter EndX2 = X.end(); 772*f573f686Sspupyrev BlockIter BeginY = Y.begin(); 773*f573f686Sspupyrev BlockIter EndY = Y.end(); 774*f573f686Sspupyrev 775*f573f686Sspupyrev // Construct a new chain from the three existing ones 776*f573f686Sspupyrev switch (MergeType) { 777*f573f686Sspupyrev case MergeTypeTy::X_Y: 778*f573f686Sspupyrev return MergedChain(BeginX1, EndX2, BeginY, EndY); 779*f573f686Sspupyrev case MergeTypeTy::X1_Y_X2: 780*f573f686Sspupyrev return MergedChain(BeginX1, EndX1, BeginY, EndY, BeginX2, EndX2); 781*f573f686Sspupyrev case MergeTypeTy::Y_X2_X1: 782*f573f686Sspupyrev return MergedChain(BeginY, EndY, BeginX2, EndX2, BeginX1, EndX1); 783*f573f686Sspupyrev case MergeTypeTy::X2_X1_Y: 784*f573f686Sspupyrev return MergedChain(BeginX2, EndX2, BeginX1, EndX1, BeginY, EndY); 785*f573f686Sspupyrev } 786*f573f686Sspupyrev llvm_unreachable("unexpected chain merge type"); 787*f573f686Sspupyrev } 788*f573f686Sspupyrev 789*f573f686Sspupyrev /// Merge chain From into chain Into, update the list of active chains, 790*f573f686Sspupyrev /// adjacency information, and the corresponding cached values. 791*f573f686Sspupyrev void mergeChains(Chain *Into, Chain *From, size_t MergeOffset, 792*f573f686Sspupyrev MergeTypeTy MergeType) { 793*f573f686Sspupyrev assert(Into != From && "a chain cannot be merged with itself"); 794*f573f686Sspupyrev 795*f573f686Sspupyrev // Merge the blocks 796*f573f686Sspupyrev auto MergedBlocks = 797*f573f686Sspupyrev mergeBlocks(Into->blocks(), From->blocks(), MergeOffset, MergeType); 798*f573f686Sspupyrev Into->merge(From, MergedBlocks.getBlocks()); 799*f573f686Sspupyrev Into->mergeEdges(From); 800*f573f686Sspupyrev From->clear(); 801*f573f686Sspupyrev 802*f573f686Sspupyrev // Update cached ext-tsp score for the new chain 803*f573f686Sspupyrev auto SelfEdge = Into->getEdge(Into); 804*f573f686Sspupyrev if (SelfEdge != nullptr) { 805*f573f686Sspupyrev MergedBlocks = MergedChain(Into->blocks().begin(), Into->blocks().end()); 806*f573f686Sspupyrev Into->setScore(extTSPScore(MergedBlocks, SelfEdge->jumps())); 807*f573f686Sspupyrev } 808*f573f686Sspupyrev 809*f573f686Sspupyrev // Remove chain From from the list of active chains 810*f573f686Sspupyrev auto Iter = std::remove(HotChains.begin(), HotChains.end(), From); 811*f573f686Sspupyrev HotChains.erase(Iter, HotChains.end()); 812*f573f686Sspupyrev 813*f573f686Sspupyrev // Invalidate caches 814*f573f686Sspupyrev for (auto EdgeIter : Into->edges()) { 815*f573f686Sspupyrev EdgeIter.second->invalidateCache(); 816*f573f686Sspupyrev } 817*f573f686Sspupyrev } 818*f573f686Sspupyrev 819*f573f686Sspupyrev /// Concatenate all chains into a final order of blocks. 820*f573f686Sspupyrev void concatChains(std::vector<uint64_t> &Order) { 821*f573f686Sspupyrev // Collect chains and calculate some stats for their sorting 822*f573f686Sspupyrev std::vector<Chain *> SortedChains; 823*f573f686Sspupyrev DenseMap<const Chain *, double> ChainDensity; 824*f573f686Sspupyrev for (auto &Chain : AllChains) { 825*f573f686Sspupyrev if (!Chain.blocks().empty()) { 826*f573f686Sspupyrev SortedChains.push_back(&Chain); 827*f573f686Sspupyrev // Using doubles to avoid overflow of ExecutionCount 828*f573f686Sspupyrev double Size = 0; 829*f573f686Sspupyrev double ExecutionCount = 0; 830*f573f686Sspupyrev for (auto Block : Chain.blocks()) { 831*f573f686Sspupyrev Size += static_cast<double>(Block->Size); 832*f573f686Sspupyrev ExecutionCount += static_cast<double>(Block->ExecutionCount); 833*f573f686Sspupyrev } 834*f573f686Sspupyrev assert(Size > 0 && "a chain of zero size"); 835*f573f686Sspupyrev ChainDensity[&Chain] = ExecutionCount / Size; 836*f573f686Sspupyrev } 837*f573f686Sspupyrev } 838*f573f686Sspupyrev 839*f573f686Sspupyrev // Sorting chains by density in the decreasing order 840*f573f686Sspupyrev std::stable_sort(SortedChains.begin(), SortedChains.end(), 841*f573f686Sspupyrev [&](const Chain *C1, const Chain *C2) { 842*f573f686Sspupyrev // Makre sure the original entry block is at the 843*f573f686Sspupyrev // beginning of the order 844*f573f686Sspupyrev if (C1->isEntry() != C2->isEntry()) { 845*f573f686Sspupyrev return C1->isEntry(); 846*f573f686Sspupyrev } 847*f573f686Sspupyrev 848*f573f686Sspupyrev const double D1 = ChainDensity[C1]; 849*f573f686Sspupyrev const double D2 = ChainDensity[C2]; 850*f573f686Sspupyrev // Compare by density and break ties by chain identifiers 851*f573f686Sspupyrev return (D1 != D2) ? (D1 > D2) : (C1->id() < C2->id()); 852*f573f686Sspupyrev }); 853*f573f686Sspupyrev 854*f573f686Sspupyrev // Collect the blocks in the order specified by their chains 855*f573f686Sspupyrev Order.reserve(NumNodes); 856*f573f686Sspupyrev for (auto Chain : SortedChains) { 857*f573f686Sspupyrev for (auto Block : Chain->blocks()) { 858*f573f686Sspupyrev Order.push_back(Block->Index); 859*f573f686Sspupyrev } 860*f573f686Sspupyrev } 861*f573f686Sspupyrev } 862*f573f686Sspupyrev 863*f573f686Sspupyrev private: 864*f573f686Sspupyrev /// The number of nodes in the graph. 865*f573f686Sspupyrev const size_t NumNodes; 866*f573f686Sspupyrev 867*f573f686Sspupyrev /// Successors of each node. 868*f573f686Sspupyrev std::vector<std::vector<uint64_t>> SuccNodes; 869*f573f686Sspupyrev 870*f573f686Sspupyrev /// Predecessors of each node. 871*f573f686Sspupyrev std::vector<std::vector<uint64_t>> PredNodes; 872*f573f686Sspupyrev 873*f573f686Sspupyrev /// All basic blocks. 874*f573f686Sspupyrev std::vector<Block> AllBlocks; 875*f573f686Sspupyrev 876*f573f686Sspupyrev /// All jumps between blocks. 877*f573f686Sspupyrev std::vector<Jump> AllJumps; 878*f573f686Sspupyrev 879*f573f686Sspupyrev /// All chains of basic blocks. 880*f573f686Sspupyrev std::vector<Chain> AllChains; 881*f573f686Sspupyrev 882*f573f686Sspupyrev /// All edges between chains. 883*f573f686Sspupyrev std::vector<ChainEdge> AllEdges; 884*f573f686Sspupyrev 885*f573f686Sspupyrev /// Active chains. The vector gets updated at runtime when chains are merged. 886*f573f686Sspupyrev std::vector<Chain *> HotChains; 887*f573f686Sspupyrev }; 888*f573f686Sspupyrev 889*f573f686Sspupyrev } // end of anonymous namespace 890*f573f686Sspupyrev 891*f573f686Sspupyrev std::vector<uint64_t> llvm::applyExtTspLayout( 892*f573f686Sspupyrev const std::vector<uint64_t> &NodeSizes, 893*f573f686Sspupyrev const std::vector<uint64_t> &NodeCounts, 894*f573f686Sspupyrev const DenseMap<std::pair<uint64_t, uint64_t>, uint64_t> &EdgeCounts) { 895*f573f686Sspupyrev size_t NumNodes = NodeSizes.size(); 896*f573f686Sspupyrev 897*f573f686Sspupyrev // Verify correctness of the input data. 898*f573f686Sspupyrev assert(NodeCounts.size() == NodeSizes.size() && "Incorrect input"); 899*f573f686Sspupyrev assert(NumNodes > 2 && "Incorrect input"); 900*f573f686Sspupyrev 901*f573f686Sspupyrev // Apply the reordering algorithm. 902*f573f686Sspupyrev auto Alg = ExtTSPImpl(NumNodes, NodeSizes, NodeCounts, EdgeCounts); 903*f573f686Sspupyrev std::vector<uint64_t> Result; 904*f573f686Sspupyrev Alg.run(Result); 905*f573f686Sspupyrev 906*f573f686Sspupyrev // Verify correctness of the output. 907*f573f686Sspupyrev assert(Result.front() == 0 && "Original entry point is not preserved"); 908*f573f686Sspupyrev assert(Result.size() == NumNodes && "Incorrect size of reordered layout"); 909*f573f686Sspupyrev return Result; 910*f573f686Sspupyrev } 911*f573f686Sspupyrev 912*f573f686Sspupyrev double llvm::calcExtTspScore( 913*f573f686Sspupyrev const std::vector<uint64_t> &Order, const std::vector<uint64_t> &NodeSizes, 914*f573f686Sspupyrev const std::vector<uint64_t> &NodeCounts, 915*f573f686Sspupyrev const DenseMap<std::pair<uint64_t, uint64_t>, uint64_t> &EdgeCounts) { 916*f573f686Sspupyrev // Estimate addresses of the blocks in memory 917*f573f686Sspupyrev auto Addr = std::vector<uint64_t>(NodeSizes.size(), 0); 918*f573f686Sspupyrev for (size_t Idx = 1; Idx < Order.size(); Idx++) { 919*f573f686Sspupyrev Addr[Order[Idx]] = Addr[Order[Idx - 1]] + NodeSizes[Order[Idx - 1]]; 920*f573f686Sspupyrev } 921*f573f686Sspupyrev 922*f573f686Sspupyrev // Increase the score for each jump 923*f573f686Sspupyrev double Score = 0; 924*f573f686Sspupyrev for (auto It : EdgeCounts) { 925*f573f686Sspupyrev auto Pred = It.first.first; 926*f573f686Sspupyrev auto Succ = It.first.second; 927*f573f686Sspupyrev uint64_t Count = It.second; 928*f573f686Sspupyrev Score += extTSPScore(Addr[Pred], NodeSizes[Pred], Addr[Succ], Count); 929*f573f686Sspupyrev } 930*f573f686Sspupyrev return Score; 931*f573f686Sspupyrev } 932*f573f686Sspupyrev 933*f573f686Sspupyrev double llvm::calcExtTspScore( 934*f573f686Sspupyrev const std::vector<uint64_t> &NodeSizes, 935*f573f686Sspupyrev const std::vector<uint64_t> &NodeCounts, 936*f573f686Sspupyrev const DenseMap<std::pair<uint64_t, uint64_t>, uint64_t> &EdgeCounts) { 937*f573f686Sspupyrev auto Order = std::vector<uint64_t>(NodeSizes.size()); 938*f573f686Sspupyrev for (size_t Idx = 0; Idx < NodeSizes.size(); Idx++) { 939*f573f686Sspupyrev Order[Idx] = Idx; 940*f573f686Sspupyrev } 941*f573f686Sspupyrev return calcExtTspScore(Order, NodeSizes, NodeCounts, EdgeCounts); 942*f573f686Sspupyrev } 943